Skip to main content

Lessons for Forecasting Unemployment in the U.S.: Use Flow Rates, Mind the Trend


This paper evaluates the ability of autoregressive models, professional forecasters, and models that leverage unemployment flows to forecast the unemployment rate. We pay particular attention to flows-based approaches—the more reduced form approach of Barnichon and Nekarda (2012) and the more structural method in Tasci (2012)—to generalize whether data on unemployment flows is useful in forecasting the unemployment rate. We find that any approach that leverages unemployment inflow and outflow rates performs well in the near term. Over longer forecast horizons, Tasci (2012) appears to be a useful framework, even though it was designed to be mainly a tool to uncover long-run labor market dynamics such as the “natural” rate. Its usefulness is amplified at specific points in the business cycle when unemployment rate is away from the longer-run natural rate. Judgmental forecasts from professional economists tend to be the single best predictor of future unemployment rates. However, combining those guesses with flows-based approaches yields significant gains in forecasting accuracy.

Key words: Unemployment Forecasting, Natural Rate, Unemployment Flows, Labor Market Search.

JEL Classification: E24, E32, J64, C53.


Suggested citation: Meyer, Brent and Murat Tasci, 2015. “Lessons for Forecasting Unemployment in the U.S.: Use Flow Rates, Mind the Trend ,” Federal Reserve Bank of Cleveland, Working Paper no 15-02.

Upcoming EventsSEE ALL

  • No Upcoming Events to display, please check back soon.