Skip to:
  1. Main navigation
  2. Main content
  3. Footer
Working Paper

Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy

This paper constructs hybrid forecasts that combine both short- and long-term conditioning information from external surveys with forecasts from a standard fixed-coefficient vector autoregression (VAR) model. Specifically, we use relative entropy to tilt one-step ahead and long-horizon VAR forecasts to match the nowcast and long-horizon forecast from the Survey of Professional Forecasters. The results indicate meaningful gains in multi-horizon forecast accuracy relative to model forecasts that do not incorporate long-term survey conditions. The accuracy gains are achieved for a range of variables, including those that are not directly tilted but are affected through spillover effects from tilted variables. The forecast accuracy gains for inflation are substantial, statistically significant, and are competitive with the forecast accuracy from both time-varying VARs and univariate benchmarks. We view our proposal as an indirect approach to accommodating structural change and moving end points.

Working Papers of the Federal Reserve Bank of Cleveland are preliminary materials circulated to stimulate discussion and critical comment on research in progress. They may not have been subject to the formal editorial review accorded official Federal Reserve Bank of Cleveland publications. The views expressed in this paper are those of the authors and do not represent the views of the Federal Reserve Bank of Cleveland or the Federal Reserve System.


Suggested Citation

Tallman, Ellis W., and Saeed Zaman. 2018. “Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy.” Federal Reserve Bank of Cleveland, Working Paper No. 18-09. https://doi.org/10.26509/frbc-wp-201809