The Price Adjustment Hazard Function
Evidence from High Inflation Periods

Shaowen Luo
Virginia Tech

Daniel Villar
Federal Reserve Board of Governors

Inflation: Drivers and Dynamics Conference
The views expressed in this presentation are those of the authors and do not necessarily reflect those of the Board of Governors or the Federal Reserve System.

FRB Cleveland, May 2020
Real effects of monetary policy depend on nominal rigidities
Nature of price adjustment frictions is crucial
Caballero and Engel (1993, 2007): think about sticky prices with hazard function

\[H(x) = P(\Delta p_t | x \equiv p^*_t - p_{t-1}) \]

Does not require specifying/solving model
Complementary with price adjustment models
This paper
 - Use price micro data to estimate hazard function
 - Show implications for monetary non-neutrality
Important determinant of aggregate flexibility: selection effect

Caballero and Engel (2007) show flexibility can be derived from hazard function:

\[
\Delta p_t'(\Delta m = 0) = \int H(x)f_t(x)dx + \int xH'(x)f_t(x)dx.
\]

- EM = 0 in Calvo, high in Ss case
- Slope is crucial
Approach

- **Challenge:** do not observe price misalignment
- **Method:**
 - Specify process for optimal price
 - Hazard function yields distribution of price changes
 - Look for hazard function to match empirical moments
 - Use differences between high and low inflation periods
- **Data:** prices underlying U.S. CPI from 1977 onwards
- **Existing estimates**
 - Berger and Vavra (2018), Petrella et al. (2019): period-by-period estimates
 - We use data on **high inflation periods** and co-movement between inflation and price change moments
Set-up

- Idiosyncratic and aggregate shocks to desired/optimal price:
 \[p_{it}^* = z_{it} + m_t \]

- Specify processes for shocks:
 \[z_{it} = \begin{cases}
 \rho z_{it-1} + \epsilon_t, & P = p_\epsilon \\
 z_{it-1}, & P = 1 - p_\epsilon
 \end{cases}, \quad \epsilon_t \sim iid \ N(0, \sigma^2_\epsilon) \]

 \[m_t = \mu + m_{t-1} + \eta_t, \quad \eta_t \sim iid \ N(0, \sigma^2_\eta) \]

- Hazard function determines price adjustment probability:
 \[H(x) = P(\Delta p_t \mid x \equiv p_{t}^* - p_{t-1}) \]

- \(p^* \) observed only when price changes
- Must also estimate parameters of underlying shock process
Flexible quadratic functional form:

\[
H(x)^{\text{quad}} = \begin{cases}
1, & \text{if } x < c^- \\
p_0 + a^- \cdot x + b^- \cdot x^2, & \text{if } c^- \leq x < 0 \\
p_0, & \text{if } x = 0 \\
p_0 + a^+ \cdot x + b^+ \cdot x^2, & \text{if } 0 < x \leq c^+ \\
1, & \text{if } x > c^+
\end{cases}
\]

- Allows for asymmetry around zero
- Nests simple functions with threshold parameter
- Also use logistic and non-parametric form
- All are flexible, yield similar results
Moments Used

- **Standard unconditional moments:**
 - Average frequency of price change
 - Frequency of increases and decreases
 - Average absolute price change (increases and decreases)

- **Additional unconditional moments:**
 - Average fraction of small price changes
 - Average dispersion and skewness

- **Moment correlations:**
 - \(\text{Corr}(\text{Freq}, \pi) > 0 \)
 - \(\text{Corr}(\text{IQR}, \pi) < 0 \)
 - \(\text{Corr}(\text{Skew}, \pi) \geq 0 \)

- **Exploit variation in inflation over sample period**

Moment Values
Menu Cost, inflation = 0, skewness = 0

Menu Cost, inflation > 0, skewness < 0

Calvo, inflation = 0, skewness = 0

Calvo, inflation > 0, skewness = 0
Note: we estimate $p_0 = 0.069$, $a^+ = 1.224$, $b^+ = 0.208$, $c^+ = 0.244$, $a^- = -0.005$, $b^- = 1.665$, $c^- = -0.412$, $\sigma_\epsilon = 0.055$, $p_\epsilon = 0.485$ in the quadratic hazard function.
Key Features

Find that to match data, hazard function must have three important features:

1. Significant p_0: Calvo feature
2. Asymmetry: price increases more likely
3. Probability increases only slowly in $|x|$

Skewness correlation key to establish these features

Important implications for non-neutrality
Illustration with ρ_0
Illustration with c^+
Use of Skewness Correlation

\[a^+ = a^- \]

Corr(Skew, Inflation)

\[a^- = -0.5 \]

fix \(p_0 = .069 \)

\[p_0 = 0.069, \ a^+ = a^- \]

Hazard function

\[a^+ = 1.224, \ a^- = -0.5 \]

\[a^- = -0.005, \ p_0 = 0.069 \]
Monetary Non-Neutrality

- Compute $\text{Var}(c_t)$ induced by aggregate shocks
- Use Hazard function to derive price level
- Similar results to Luo and Villar (2019)

<table>
<thead>
<tr>
<th>Hazard Function</th>
<th>$\text{Var}(c_t) \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calvo</td>
<td>0.537</td>
</tr>
<tr>
<td>Non-Parametric</td>
<td>0.312</td>
</tr>
<tr>
<td>Logistic</td>
<td>0.334</td>
</tr>
<tr>
<td>Flexible Quadratic</td>
<td>0.329</td>
</tr>
<tr>
<td>Midrigan/CalvoPlus</td>
<td>0.195</td>
</tr>
<tr>
<td>Caballero & Engel</td>
<td>0.176</td>
</tr>
<tr>
<td>Golosov & Lucas</td>
<td>0.064</td>
</tr>
</tbody>
</table>
Conclusion

- Hazard function allows us to directly evaluate question of selection effect, indirectly evaluate models
- Estimate hazard function using new data and moments
- Find hazard function has small extensive margin/selection effect
- Significant asymmetry between price increases and decreases
- Flexible framework to evaluate price flexibility
- Possible next steps/extensions:
 - Relevance of asymmetry for response to shocks
 - Use framework to evaluate imperfect information models
 - Better understand processes that determine price gaps
Moment Values

Table: Target Moments

<table>
<thead>
<tr>
<th>Unconditional Moments</th>
<th>Conditional Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Frequency</td>
<td>10.7%</td>
</tr>
<tr>
<td>Avg. Dispersion (IQR)</td>
<td>9.9%</td>
</tr>
<tr>
<td>Avg. Skewness</td>
<td>-0.14</td>
</tr>
<tr>
<td>Avg. absolute price change</td>
<td>7.5%</td>
</tr>
<tr>
<td>Fraction of Small Changes</td>
<td>13.2%</td>
</tr>
<tr>
<td>Avg. Frequency of Increases</td>
<td>7.64%</td>
</tr>
<tr>
<td>Avg. Frequency of Decreases</td>
<td>2.97%</td>
</tr>
<tr>
<td>Avg. Size of Increases</td>
<td>7.2%</td>
</tr>
<tr>
<td>Avg. Size of Decreases</td>
<td>7.9%</td>
</tr>
<tr>
<td>Dispersion of Price Increases</td>
<td>7.7%</td>
</tr>
<tr>
<td>Dispersion of Price Decreases</td>
<td>8.7%</td>
</tr>
</tbody>
</table>
Moments

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Quadratic</th>
<th>Logistic</th>
<th>Non-Parametric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Frequency</td>
<td>0.107</td>
<td>10.8</td>
<td>0.108</td>
<td>0.107</td>
</tr>
<tr>
<td>Frequency Increases</td>
<td>0.076</td>
<td>0.067</td>
<td>0.068</td>
<td>0.068</td>
</tr>
<tr>
<td>Frequency Decreases</td>
<td>0.030</td>
<td>0.041</td>
<td>0.040</td>
<td>0.039</td>
</tr>
<tr>
<td>Avg. Size</td>
<td>0.075</td>
<td>0.075</td>
<td>0.077</td>
<td>0.077</td>
</tr>
<tr>
<td>Avg. Size Increases</td>
<td>0.072</td>
<td>0.075</td>
<td>0.076</td>
<td>0.076</td>
</tr>
<tr>
<td>Avg. Size Decreases</td>
<td>0.079</td>
<td>0.076</td>
<td>0.080</td>
<td>0.078</td>
</tr>
<tr>
<td>Fraction Small</td>
<td>13.2%</td>
<td>12.4%</td>
<td>13.0%</td>
<td>13.5%</td>
</tr>
<tr>
<td>Corr(Frequency, π)</td>
<td>0.70</td>
<td>0.91</td>
<td>0.82</td>
<td>0.91</td>
</tr>
<tr>
<td>Corr(IQR, π)</td>
<td>-0.68</td>
<td>-0.91</td>
<td>0.88</td>
<td>-0.92</td>
</tr>
<tr>
<td>Corr(Skew, π)</td>
<td>0.36</td>
<td>0.22</td>
<td>31</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Two hazard functions estimated to match moments from one period:
Estimation for Sub-Periods

Two hazard functions estimated to match moments from one period:

(a) 1977-1984
 - Logistic
 - Quadratic
 - Non Parametric

(b) 1985 onwards
 - Logistic
 - Quadratic
 - Non Parametric