Heterogeneous Price Rigidities and Monetary Policy

Christopher Clayton \(^1\) Xavier Jaravel \(^2\) Andreas Schaab \(^1\)

\(^1\) Harvard University
\(^2\) LSE

May 16, 2019
Introduction

What are the implications of heterogeneity for monetary policy (MP)?

- Normative perspective
- But also positive implications for MP transmission mechanism
Introduction

- What are the implications of heterogeneity for monetary policy (MP)?
 - Normative perspective
 - But also positive implications for MP transmission mechanism

- Previous work:
 - Savers and debtors
 - Incidence of unemployment
 - Income composition
 - Cash holdings heterogeneity
Introduction

- What are the implications of heterogeneity for monetary policy (MP)?
 - Normative perspective
 - But also positive implications for MP transmission mechanism

- Previous work:
 - Savers and debtors
 - Incidence of unemployment
 - Income composition
 - Cash holdings heterogeneity

- Does heterogeneity in price rigidities across sectors matter?
 - Price stickiness is source of monetary non-neutrality in NK models
 - Price stickiness is known to be heterogeneous across sectors
 - What are the implications for distributional and/or aggregate effects of MP?
This paper

1. New stylized facts (BLS/CEX/ACS data): prices are more rigid in industries...
 - ... selling to richer/more educated households (“expenditure channel”)
 - ... employing richer/more education households (“earnings channel”)
 - Example: services and manufacturing
This paper

1. New stylized facts (BLS/CEX/ACS data): prices are more rigid in industries...
 ▶ ... selling to richer/more educated households ("expenditure channel")
 ▶ ... employing richer/more education households ("earnings channel")
 ▶ Example: services and manufacturing

2. Heterogeneous Agent New Keynesian model with many sectors and household types
 ▶ Quantify the aggregate and distributional implications
 ▶ Consumption of college-educated households is 30% more sensitive
 ▶ Aggregate real effect of a 100bps MP tightening is dampened by 7%
Literature

Literature

Our contribution: We document and study a set of novel *earnings* and *expenditure* channels of monetary policy transmission

Literature

Our contribution: We document and study a set of novel *earnings* and *expenditure* channels of monetary policy transmission

Our contribution: Two novel stylized facts about the cross-sectional exposure of households to price rigidity (and thus monetary policy)

Literature

Our contribution: We document and study a set of novel *earnings* and *expenditure* channels of monetary policy transmission

Our contribution: Two novel stylized facts about the cross-sectional exposure of households to price rigidity (and thus monetary policy)

Our contribution: We study an enriched HANK model with firm and household heterogeneity.
Outline

1. Conceptual framework

2. Data and stylized facts

3. Quantitative analysis
The simple model

- Two periods: $t = 1, 2$
- Two sectors: $s \in \{A, B\}$
- Finite household types i with different sectoral exposures
The simple model

- Two periods: \(t = 1, 2 \)
- Two sectors: \(s \in \{A, B\} \)
- Finite household types \(i \) with different sectoral exposures

Household \(i \) solves:

\[
\max \sum_{t=1}^{2} \beta^{t-1} U \left((c_{i,t}^A)^{1-\alpha^i} (c_{i,t}^B)^{\alpha^i} \right)
\]
The simple model

- Two periods: \(t = 1, 2 \)
- Two sectors: \(s \in \{A, B\} \)
- Finite household types \(i \) with different sectoral exposures

Household \(i \) solves:

\[
\max \sum_{t=1}^{2} \beta^{t-1} U[(c_{i,t}^A)^{1-\alpha^i} (c_{i,t}^B)^{\alpha^i}]
\]

subject to

\[c_{i,1}^A + \frac{c_{i,2}^A}{R} + p_1 c_{i,1}^B + p_2 \frac{c_{i,2}^B}{R} = b_{i,1} \frac{\gamma^i(Y_1^A)}{\pi_1} + \gamma^i(Y_2^A) + p_1 \gamma^i(Y_1^B) + p_2 \frac{\gamma^i(Y_2^B)}{R}\]

where \(p_t = \frac{P_t^B}{P_t^A} \) is relative price, \(\alpha^i \) expenditure exposure and \(\gamma^i \) earnings exposure.
Simple perturbation: partial equilibrium

- Consider the general perturbation \(\{dR, dY^A_1, dY^B_1, dp, d\pi^A\} \)
Simple perturbation: partial equilibrium

- Consider the general perturbation \(\{dR, dY_1^A, dY_1^B, dp, d\pi^A\} \)
- Define:

\[
MPC_{i,1} \equiv \frac{\partial}{\partial y_i} p^{\alpha_i} c_{i,1}.
\]
Simple perturbation: partial equilibrium

- Consider the general perturbation \(\{dR, dY^A_1, dY^B_1, dp, d\pi^A\} \)

- Define:

\[
MPC_{i,1} \equiv \frac{\partial}{\partial y_i} p^{\alpha_i} c_{i,1}.
\]

Proposition: Household \(i' \)’s behavioral consumption response can be decomposed into

\[
dc_{i,1} = -\frac{1}{\gamma} MPS_{i,1} c_{i,1} \frac{dR}{R} + MPC_{i,1} \left\{ b_{i,2} \frac{dR}{R} - \frac{b_{i,1}}{\pi^A} \frac{dP^A}{P^A} \right\} + \gamma^A_i dY^A_1 + p\gamma^B_i dY^B_1 + \gamma^B_i p \left(Y^B_1 + \frac{1}{R} Y^B_2 \right) \frac{dp}{p} - \alpha_i p^{\alpha_i} \left(c_{i,1} + \frac{1}{R} c_{i,2} \right) \frac{dp}{p} \right\}.\]

Substitution effect
Interest rate exposure
Bond revaluation
Heterogeneous earnings channel
Relative price effect on real earnings
Relative price effect on real expenditures
Simple perturbation: general equilibrium

Proposition: In response to our proposed aggregate perturbation, the change in aggregate demand can be decomposed as

\[
dY_1 = \left[\text{Cov}_I \left(\mu \text{MPC}_{i,1}, b_{i,2} \right) - \frac{1}{\gamma} \mathbb{E}_I \left(\mu \text{MPS}_{i,1} c_{i,1} \right) \right] \frac{dR}{R} - \text{Cov}_I \left(\mu \text{MPC}_{i,1}, \frac{b_{i,1}}{\pi_A} \right) \frac{dP_A}{P_A} \\
+ \sum_s \frac{P^s_t}{P^A_t} \left(\mathbb{E}_I(\text{MPC}_{i,1}) + \text{Cov}_I(\mu \text{MPC}_{i,1}, \gamma^s_i) \right) dY_1^s
\]

Heterogeneous earnings effect

\[
+ \sum_t \frac{1}{R^{t-1}} p \left(\mathbb{E}_I(\text{MPC}_{i,1}) + \text{Cov}_I(\mu \text{MPC}_{i,1}, \gamma^B_i) \right) Y^B_t \frac{dp}{p}
\]

Relative price effect on earnings

\[
- \sum_t \frac{1}{R^{t-1}} \mathbb{E}_I \left(\mu \text{MPC}_{i,1} \alpha^i p^{\alpha^i} c_{i,t} \right) \frac{dp}{p}
\]

Relative price effect on expenditures
Outline

1. Conceptual framework

2. Data and stylized facts

3. Quantitative analysis
Data

- Build 3 linked datasets with price rigidities (consumer and producer prices), expenditures and payrolls
 - Covers full U.S. economy (except shelter in most cases)

- CPI-ACS sample:
 - merge price rigidity data from Nakamura and Steinsson (2008) (at the ELI level) to earnings data from the ACS (at the industry level)

- PPI-ACS sample:
 - match price rigidity data from Pasten et al. (2016) (at the 6-digit NAICS level) to ACS industries

- CPI-CEX sample:
 - merge price rigidity data from Nakamura and Steinsson (2008) (at the ELI level) to spending data from the CEX (at the UCC level).
New facts

Two empirical findings:

1. Prices more rigid in product categories selling to more educated/richer households (consistent with Cravino-Lan-Levchenko, 2019)

Examples:
- Services (frequency: 6.39%, share of sales to College: 37.9%)
- Taxi fares (frequency: 4.41%, share of sales to College: 62.3%)
- Fast food lunch (frequency: 7%, share of sales to College: 34.4%)
New facts

Two empirical findings:

1. Prices more rigid in product categories selling to more educated/richer households (consistent with Cravino-Lan-Levchenko, 2019)

 Examples:
 - Services (frequency: 6.39%, share of sales to College: 37.9%)
 - Taxi fares (frequency: 4.41%, share of sales to College: 62.3%)
 - Fast food lunch (frequency: 7%, share of sales to College: 34.4%)

2. Prices more rigid in product categories employing more educated/richer households

 Examples:
 - Computer electronics (frequency: 28.95%, payroll share to College: 72.15%)
 - Poultry processing (frequency: 35.1%, payroll share to College: 14.43%)
Earnings channel: CPI-ACS

Clayton - Jaravel - Schaab
Heterogeneous Price Rigidities and Monetary Policy 9 / 23
Earnings channel: CPI-ACS

<table>
<thead>
<tr>
<th>Frequency of Price Changes (%)</th>
<th>Share of Payroll to College Graduates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>-0.9330***</td>
<td>-0.463**</td>
</tr>
<tr>
<td>(0.2649)</td>
<td>(0.2119)</td>
</tr>
</tbody>
</table>

- Excluding industries with price change frequency > p95:
 - Yes
 - Yes
 - No

- 2-digit Naics Code F.E.:
 - No
 - Yes
 - No

- Sample Size:
 - 86
 - 86
 - 94
Earnings channel: PPI-ACS

Notes: Includes All Prices Changes
Earnings channel: PPI-ACS

<table>
<thead>
<tr>
<th>Frequency of Price Changes (%)</th>
<th>Share of Payroll to College Graduates (%)</th>
<th>Excluding industries with price change frequency $> p95$</th>
<th>2-digit Naics Code F.E.</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>Yes</td>
<td>No</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>Yes</td>
<td>Yes</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>No</td>
<td>No</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>-0.9823***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2149)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.2027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1306)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.3771*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1978)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expenditure channel: CPI-CEX

Notes: Includes All Prices Changes
Expenditure channel: CPI-CEX

<table>
<thead>
<tr>
<th></th>
<th>Share of Sales to College Graduates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Frequency of Price Changes (%)</td>
<td>-0.2108**</td>
</tr>
<tr>
<td></td>
<td>(0.0824)</td>
</tr>
<tr>
<td>Excluding industries with price change frequency > p95</td>
<td>Yes</td>
</tr>
<tr>
<td>Expenditure Category F.E.</td>
<td>No</td>
</tr>
<tr>
<td>Sample Size</td>
<td>242</td>
</tr>
</tbody>
</table>
Interaction between Earnings / Expenditure channels

Notes: OLS Coeff. 0.5416*** (s.e. 0.2264), N=88
New facts

- Implications for monetary policy tightening:
 - NK model prediction for sector with more rigid prices: less deflation, but bigger output gap
 - More educated households suffer more: preferred goods relatively more expensive, stronger labor demand contraction
 - Feedback loop on consumption of more educated households: demand for goods in more rigid sector falls even more (→ relative price, labor demand)
 - Monetary policy has relatively larger effect on richer, low-MPC households → dampened aggregate effect
New facts

- Implications for monetary policy tightening:
 - NK model prediction for sector with more rigid prices: less deflation, but bigger output gap
 - More educated households suffer more: preferred goods relatively more expensive, stronger labor demand contraction
 - Feedback loop on consumption of more educated households: demand for goods in more rigid sector falls even more (\rightarrow relative price, labor demand)
 - Monetary policy has relatively larger effect on richer, low-MPC households \rightarrow dampened aggregate effect

- Robustness
 - Excluding sales
 - Different measures of income and education
 - Broad sector fixed effects (e.g. within goods)
Outline

1. Conceptual framework

2. Data and stylized facts

3. Quantitative analysis
Model overview

- Start from one-asset heterogeneous-agent New Keynesian model
Model overview

- Start from one-asset heterogeneous-agent New Keynesian model

- Four intermediate goods sectors s
 - Different price rigidity: δ^s
 - Sectors employ two types of workers: $N_{C,t}^s$ and $N_{NC,t}^s$
 - Each sector has its own, fully segmented labor market (business cycle frequency)
Model overview

- Start from one-asset heterogeneous-agent New Keynesian model

- Four intermediate goods sectors s
 - Different price rigidity: δ^s
 - Sectors employ two types of workers: $N^s_{C,t}$ and $N^s_{NC,t}$
 - Each sector has its own, fully segmented labor market (business cycle frequency)

- Two household types $i \in \{C, NC\}$: college and non-college
 - Within type heterogeneity: uninsurable earnings risk (standard incomplete markets model)
 - Different sector-specific productivities: Z^s_e (equivalent to γ_i in simple model)
 - Different tastes: α^s_C and α^s_{NC}

Policy experiment: contractionary 100bps monetary policy shock
Model overview

- Start from one-asset heterogeneous-agent New Keynesian model

- Four intermediate goods sectors s
 - Different price rigidity: δ^s
 - Sectors employ two types of workers: $N^s_{C,t}$ and $N^s_{NC,t}$
 - Each sector has its own, fully segmented labor market (business cycle frequency)

- Two household types $i \in \{C, NC\}$: college and non-college
 - Within type heterogeneity: uninsurable earnings risk (standard incomplete markets model)
 - Different sector-specific productivities: Z^s_e (equivalent to γ_i in simple model)
 - Different tastes: α^s_C and α^s_{NC}

- Policy experiment: contractionary 100bps monetary policy shock
Model details

- CES consumption baskets

\[c_{i,t} = \left[\sum_{s}^{N} \left(\alpha_{i}^{s} \frac{1}{\eta} \left(c_{i,t}^{s} \right)^{\frac{n-1}{\eta}} \right) \right]^{\frac{n}{\eta-1}} \]

- Household budget constraint (assumptions on profit rebate important)

\[\dot{a}_{i,t} = (i^{N} - \pi^{N})a_{i,t} + z_{i,t}n_{i,t}w_{i,t}p_{i,t} + \tau_{i,t}p_{i,t} - c_{i,t}p_{i,t}, \quad a_{i,t} \geq a \]

 - Interest income
 - Labor income
 - Transfer income
 - Consumption

- Intermediate goods producer production function

\[Y^{s}_{t}(j) = \left[\sum_{e \in C, NC} (Z^{s}_{e}) \frac{1}{\kappa} N^{s}_{e,t}(j)^{\frac{\kappa-1}{\kappa}} \right]^{\frac{\kappa}{\kappa-1}} \]

- Two Phillips Curves (under Rotemberg pricing)

\[\dot{\pi}^{s}_{t} = \pi^{s}_{t} \left(i_{t} - \pi^{s}_{t} - \frac{Y^{s}_{t}}{Y^{s}_{t}} \right) - \frac{\epsilon - 1}{\delta^{s}} \left(\frac{\epsilon}{\epsilon - 1} MC^{s}_{t} - 1 \right) \]

- HJB
- Taylor rule
- Kolmogorov forward equation
- Channel decomposition
Calibration strategy

- Heterogeneous expenditure shares: α_i^s
- Heterogeneous sectoral skill intensities: Z_e^s
- Heterogeneous sectoral price stickiness: δ^s
Summary of quantitative exercise

- Consider two cases: baseline (homogeneous price rigidities) and full model

- Cross-sectional effect: Compute distributional effects between C and NC as

\[\Delta = \frac{\Delta C^C}{C^C_{SS}} - \frac{\Delta C^{NC}}{C^{NC}_{SS}}, \]

then difference full model from baseline, \(\Delta - \Delta^{baseline} \) and normalize by aggregate consumption response

- Aggregate effect: change in aggregate consumption response in full model relative to baseline

\[\frac{\Delta C}{\Delta C^{baseline}} \]
Summary of quantitative exercise: cross-sectional
Summary of quantitative exercise: aggregate

![Graph showing the change in aggregate consumption response relative to baseline](image-url)
Conclusion

- This paper re-evaluates the implications of heterogeneous price stickiness for the transmission and the distributional effects of monetary policy.

- Establish new facts using micro data:
 1. Richer/more educated households purchase in more rigid sectors.
 2. Richer/more educated households work in more rigid sectors.

- Quantitative model to assess implications of these new facts:
 - Real effects of MP dampened in the presence of heterogeneous price stickiness.
 - Consumption of college households 30% more sensitive to MP shocks.
 - Aggregate effects of monetary policy muted by 5 - 10% due to novel earnings and expenditure channels.
Table 1: Parameters for Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>Curvature of (relative) labor supply curve</td>
<td>1.5</td>
<td>Smets and Wouters (2007)</td>
</tr>
<tr>
<td>θ_C</td>
<td>$P(\text{Non-College}</td>
<td>\text{College})$</td>
<td>0.45/35</td>
</tr>
<tr>
<td>θ_{NC}</td>
<td>$P(\text{College}</td>
<td>\text{Non-College})$</td>
<td>0.22/35</td>
</tr>
<tr>
<td>ϵ</td>
<td>Elasticity of substitution between intermediates</td>
<td>11</td>
<td>Basu and Fernald (1997)</td>
</tr>
<tr>
<td>γ</td>
<td>CRRA for upper-level utility function</td>
<td>1.5</td>
<td>N/A</td>
</tr>
<tr>
<td>$1 - \alpha^{NC}_A$</td>
<td>Non-college spending in A</td>
<td>41.5%</td>
<td>CEX</td>
</tr>
<tr>
<td>$1 - \alpha^{C}_A$</td>
<td>College spending in A</td>
<td>58.5%</td>
<td></td>
</tr>
<tr>
<td>Z^{NC}_A</td>
<td>Non-college prod in A</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Z^{C}_A</td>
<td>College prod in A, normalized</td>
<td>1.14</td>
<td>QCEW</td>
</tr>
<tr>
<td>Z^{NC}_B</td>
<td>Non-college prod in B</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>Z^{C}_B</td>
<td>College prod in B</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>δ^A</td>
<td>Price adj. cost in A</td>
<td>190</td>
<td>Nakamura and Steinsson (2008)</td>
</tr>
<tr>
<td>δ^B</td>
<td>Price adj. cost in B</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Baseline with 1 household type, 1 sector
Introducing sectoral price rigidity heterogeneity

Clayton - Jaravel - Schaab

Heterogeneous Price Rigidities and Monetary Policy 3 / 13
Comparison calibration: *add symmetric productivity differences*
Full calibration: asymmetric productivity differences and tastes
Differenced IRFs (Full – Comparison)

Household Consumption (% ss)

Labor Supply Sector A (% ss)

Labor Supply Sector B (% ss)

Sectoral PPI Inflation (\%)

Sectoral Production (% ss)

Sectoral Wages (College) (% ss)

Relative Price (% ss)

Nominal Interest Rate (% l)

Real Interest Rate (% l)

- Back.

Clayton - Jaravel - Schaab

Heterogeneous Price Rigidities and Monetary Policy 6 / 13
Marginal propensities to consume (MPC)
Asset holdings and borrowing constraints
Disposable income and its decomposition

Disproportionate income (College) (% ss)

Disproportionate income (Non-College) (% ss)

Disproportionate (College) (d ss)

Disproportionate (Non-College) (d ss)

Back.
Households’ recursive optimization problem

- We collect households’ state variables in the vector $x_{i,t}$ with law of motion

$$
\begin{pmatrix}
(da_{i,t}) \\
(dz_{i,t})
\end{pmatrix} = \begin{pmatrix}
rt a_{i,t} + \sum_s z_{i,t}^s n_{i,t}^s w_{i,t}^s p_t^{\alpha^i} - p_t^{\alpha^i} c_{i,t} + \frac{T_{i,t}}{P_t^A} \\
\mu(z_{i,t}^s)
\end{pmatrix} dt + \begin{pmatrix}
0 \\
\sigma(z_{i,t}^s)
\end{pmatrix} dB_t.
$$

- This gives us the recursive, continuous-time Bellman equation

$$\rho v_{i,t}(x_{i,t}) = \partial_t v_{i,t}(x_{i,t}) + \max_{c_{i,t},n_{i,t}} u(c_{i,t}, n_{i,t}) + \theta_i \left(v_{-i,t}(x_{-i,t}) - v_{i,t}(x_{i,t}) \right)$$

$$+ \partial_a v_{i,t}(x_{i,t}) \left(r_t a_{i,t} + \sum_s z_{i,t}^s n_{i,t}^s w_{i,t}^s p_t^{\alpha^i} - p_t^{\alpha^i} c_{i,t} + \frac{T_{i,t}}{P_t^A} \right)$$

$$+ \mu(z_{i,t}^s) \partial_z v_{i,t}(x_{i,t}) + \frac{1}{2} \sigma(z_{i,t}^s)^2 \partial_{zz} v_{i,t}(x_{i,t})$$

- FOCs:

$$c_{i,t}^{-\gamma} = p_t^{\alpha^i} \partial_a v_{i,t}(x_{i,t})$$

$$c_{i,t}^{\gamma}(n_{i,t}^s)^{\phi} = z_{i,t}^s w_{i,t}^s.$$
The Taylor rule

- Assumptions on the Taylor rule are important
- For now, we assume equal weighting:

\[i_t = i_t^* + \sum_s \left(\phi_s \pi_t^s + \phi_y (Y_t^s - Y) \right) + \xi_t, \]

(1)
Aggregation in our model

- We write Kolmogorov forward (KF) equations separately for each household type.

- The KF equations characterizing the evolution of these density functions are given by

\[
\partial_t g_{i,t}(x_{i,t}) = - \partial_a \left(\left[r_t a_{i,t} + \sum_s z_{i,t}^s n_{i,t} w_{i,t}^s p_{i,t}^{\alpha_i} - p_{i,t}^{\alpha_i} c_{i,t} + \frac{T_{i,t}}{P_{A,t}} \right] g_{i,t}(x_{i,t}) \right) \\
- \partial_z \left(\mu(z_{i,t}^s) g_{i,t}(x_{i,t}) \right) + \frac{1}{2} \partial_{zz} \left(\sigma(z_{i,t}^s)^2 g_{i,t}(x_{i,t}) \right) \\
- \theta_i g_{i,t}(x_{i,t}) + \theta_{-i} g_{-i,t}(x_{-i,t}).
\]
Channel decompositions

- Consider a perturbation $\{\xi_t\}$ that corresponds to a 100bps MP shock.
- We can decompose the effect on consumption as follows.

For College:

$$C_{C,0} (\{r_t, w_{C,t}, p_{C,t}, T_{C,t}\}_{t \in [0, \infty)}, g_0)$$

$$= \int_0^\infty \int_{\mathbb{Z}} c_C (a, z, \{r_t, w_{C,t}, p_{t}, T_{C,t}\}_{t \in [0, \infty)}) g_0 d(z, a)$$

$$dC_{C,0} = \int_0^\infty \frac{\partial C_{C,0}}{\partial r_t} dr_t + \frac{\partial C_{C,0}}{\partial w_{C,t}} dw_{C,t} + \frac{\partial C_{C,0}}{\partial p_{t}} dp_{t} + \frac{\partial C_{C,0}}{\partial T_{C,t}} dT_{C,t} dt$$