Price Selection

Carlos Carvalho
Central Bank of Brazil and PUC-Rio

Oleksiy Kryvtsov
Bank of Canada

May 2019

Cleveland Fed’s “Inflation: Drivers and Dynamics” Conference

The views expressed here are ours, and they do not necessarily reflect the views of Central Bank of Brazil or Bank of Canada
Inflation and micro price adjustments

- Challenge: reconciling price behavior at micro and macro levels
 - Macro: inflation is stable, persistent, little sensitive to shocks
 - Micro: product-level prices change frequently, volatile, transient

- Need large “contract multiplier”
 - Real rigidities and/or information
 - Micro price changes do not fully adjust to nominal shocks

- This paper: price selection
 - *which* prices adjust/do not adjust to shocks?
Price selection

- Prices that change are not representative of population
 - Theory: price selection makes inflation more sensitive to shocks
 - E.g., increases in inflation can be amplified because adjusting prices tend to originate from below-average levels
 - Heuristic example
Price selection in Golosov-Lucas (2007)

- \(p \) - firm's log price
- \(p^* \) - desired log price

Probability of adjustment \(\Lambda(p-p^*) \)

Probability of a price change increases with \(|p-p^*| \)
Price selection in Golosov-Lucas (2007)

Conditional on common nominal shock, probability higher for low prices, and lower for high prices

p - firm's log price
p^* - desired log price
$\Lambda(p-p^*)$ - Prob of adjustment

$+\Delta\%$ nominal shock

Carvalho-Kryvtsov
Zero price selection in Calvo (1983)

\[\text{Prob of adjustment } \Lambda(p-p^*) \]

- \(p \) - firm's log price
- \(p^* \) - desired log price

Probability of \(p \)-adjustment does not depend on \(|p-p^*| \)
Zero price selection in Calvo (1983)

p - firm's log price
p^* - desired log price

Conditional on common nominal shock, adjusting prices are representative of population

$\Lambda(p-p^*)$

Prob of adjustment

p^* $p^*+1\%$

Conditional on common nominal shock, adjusting prices are representative of population
This paper

- Study if up (down) movements in inflation in t tend to be associated with price changes that come from below (above) average in $t-1$
 - Model-free way to measure price selection (inflation decomposition)
 - Apply to micro data for the U.K., U.S. and Canada:
 - @Product: 28–36% of inflation variance over time
 - Price selection stronger with price durations and avg size of p-changes
 - @Aggregate: weaker than product price selection (except if price discounts are included)
 - Multi-sector models with selection qualitatively consistent with facts
 - Fit well sector-level selection, generate weaker aggregation selection
 - Predict tight relationship bw price selection and monetary non-neutrality
Existing work

1 **Models:** wide range of "estimates"

2 **Empirical studies of \(p^* \)-shocks:** hard to measure \(p^* \)

3 **Theoretical decompositions:** assumptions on \(p^* \)
Existing work

1 **Models:** wide range of "estimates"

2 **Empirical studies of \(p^* \)-shocks:** hard to measure \(p^* \)

3 **Theoretical decompositions:** assumptions on \(p^* \)
Existing work

1. **Models:** wide range of "estimates"

2. **Empirical studies of p^*-shocks:** hard to measure $p^$

3. **Theoretical decompositions:** assumptions on p^*
Price micro data

<table>
<thead>
<tr>
<th>Statistic</th>
<th>U.K.</th>
<th>Canada</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption coverage</td>
<td>Non-shelter goods and services</td>
<td>Non-shelter goods and services</td>
<td>Grocery products</td>
</tr>
<tr>
<td># of months</td>
<td>236</td>
<td>143</td>
<td>132</td>
</tr>
<tr>
<td># of obs/month</td>
<td>102,801</td>
<td>58,670</td>
<td>274,369</td>
</tr>
<tr>
<td># of categories</td>
<td>1152</td>
<td>705</td>
<td>31</td>
</tr>
<tr>
<td># of strata/category</td>
<td>22</td>
<td>13</td>
<td>50</td>
</tr>
<tr>
<td>Fraction of sales</td>
<td>5.6</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Fraction of subs</td>
<td>4.6</td>
<td>3.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.121</td>
<td>0.182</td>
<td>0.291</td>
</tr>
<tr>
<td>Freq of p-changes</td>
<td>0.127</td>
<td>0.217</td>
<td>0.223</td>
</tr>
<tr>
<td>Mean of p-spells</td>
<td>5.62</td>
<td>6.94</td>
<td>3.56</td>
</tr>
<tr>
<td>Std of p-spells</td>
<td>5.33</td>
<td>6.28</td>
<td>4.11</td>
</tr>
<tr>
<td>Abs. size of p-changes</td>
<td>12.22</td>
<td>8.25</td>
<td>8.43</td>
</tr>
</tbody>
</table>
Inflation decomposition using micro price data

\[\pi_{st} \equiv \frac{\sum_i (p_{is,t} - p_{is,t-1})}{N_{st}} \]

\[p_{is,t} \text{ log price of product } i \text{ in category-stratum } s \text{ in month } t \]
Inflation decomposition using micro price data

\[\pi_{st} \equiv \sum_i \frac{(p_{is,t} - p_{is,t-1})}{N_{st}} \]

\[\equiv \sum_i I_{is,t} \times \left\{ \frac{N_{st}}{N_{st}} \times Fr_{st} \right\} \]

\(I_{is,t} \) p-change indicator: \(I_{ist} = 1 \) if \(p_{is,t} - p_{is,t-1} \neq 0 \), and 0 otherwise

\(Fr_{st} \) fraction of price changes in category-stratum \(s \) in month \(t \)
Inflation decomposition using micro price data

\[
\pi_{st} \equiv \frac{\sum_i (p_{is,t} - p_{is,t-1})}{N_{st}}
\]

\[
\equiv \frac{\sum_i l_{is,t}}{N_{st}} \times \left[\frac{\sum_i l_{is,t} (p_{is,t} - P_{st-1})}{\sum_i l_{is,t}} - \frac{\sum_i l_{is,t} (p_{is,t-1} - P_{st-1})}{\sum_i l_{is,t}} \right]
\]

\(DP_{st}\) avg size of price changes in month \(t\), \(DP_{st} \equiv P_{st}^{res} - P_{st}^{pre}\)
\(P_{st}^{res}\) avg ending level of price changes
\(P_{st}^{pre}\) avg starting level of price changes
\(P_{st-1}\) category-stratum \(s\) mean log price level in month \(t\)
How much P_{st}^{pre} contributes to DP_{st} fluctuations?

- Price selection, category-stratum time series

$$\pi_{st} \equiv Fr_{st} \cdot \left[P_{st}^{res} - P_{st}^{pre} \right]$$

- Estimate weighted panel regression
 - δ_s – category-stratum fixed effects, δ_{cal} – calendar-month fixed effects

 $$P_{st}^{pre} = \beta DP_{st} + \delta_{cal} + \delta_s + error$$

- Estimated β is the measure of price selection
 - $|\beta|$ is the fraction of DP_{st} variance accounted for by P_{st}^{pre}
P_{st}^{pre} and DP_{st} for selected categories in the U.K.
Price selection, category-stratum time series

United Kingdom

<table>
<thead>
<tr>
<th></th>
<th>Regular prices, excluding subs</th>
<th>Unweighted</th>
<th>All prices</th>
<th>Incl. subs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Price selection</td>
<td>-0.371*** (0.002)</td>
<td>-0.371*** (0.002)</td>
<td>-0.369*** (0.002)</td>
<td>-0.357*** (0.002)</td>
</tr>
<tr>
<td>Calendar-month effects</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Stratum linear trend</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1,073,089</td>
<td>1,073,089</td>
<td>1,073,089</td>
<td>1,073,089</td>
</tr>
<tr>
<td>R^2</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Significant price selection

- Robust across datasets, treatments of sales, subs, seasonal effects, category-level linear and business-cycle (Baxter-King) trends
Price selection, category-stratum time series

Regular prices, excluding subs

<table>
<thead>
<tr>
<th></th>
<th>U.K.</th>
<th>Canada</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price selection</td>
<td>-0.371***</td>
<td>-0.285***</td>
<td>-0.360***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Calendar-month effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Stratum linear trend</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1,073,089</td>
<td>568,264</td>
<td>18,402,238</td>
</tr>
<tr>
<td>R^2</td>
<td>0.032</td>
<td>0.022</td>
<td>0.198</td>
</tr>
</tbody>
</table>

- Results consistent across country datasets
 - Weaker selection in Canada (coarser strata)
P_{st}^{pre} and DP_{st} for selected months in the U.K.
Price selection across product categories, U.K.

- Mean = –0.392 (all), –0.396 (non-zero); 91% weight bw 0 and –1
Price selection and price adjustment

- Modify the weighted panel regression

\[P_{st}^{pre} = \beta_1 D\!P_{st} + \beta_2 D\!P_{st} \times \Gamma_{st} + \delta_t + \text{error} \]

- Study how price selection varies with price adjustment moments

\[\beta = \beta_1 + \beta_2 \Gamma_{st} \]

- Price adjustment moments, \(\Gamma_{st} \):
 - Frequency and average size of price changes
 - Absolute size of individual price changes
 - Kurtosis of non-zero price changes
 - Standard deviation of price spell durations

- Focus on cross-section: \(\delta_t \) – time fixed effects
Price selection and price adjustment, U.K.

| Independent variables | U.K. | | | Canada | | |
|-----------------------|-----|-----|-----|--------|-----|
| | Baseline | Baseline | All prices | Incl. subs | Baseline | Baseline |
| | With interaction terms | With interaction terms |
| DP_{st} | -0.367*** (0.002) | -0.370*** (0.010) | -0.368*** (0.009) | -0.437*** (0.008) | -0.560*** (0.013) | -0.546*** (0.000) |
| Interaction terms | | | | | | |
| $DP_{st} \times Fr_{st}$ | 0.220*** (0.012) | 0.193*** (0.010) | 0.396*** (0.011) | | 0.566*** (0.011) | 0.668*** (0.001) |
| $DP_{st} \times DP_{st}$ | -0.003*** (0.000) | -0.003*** (0.000) | -0.001*** (0.000) | | -0.005*** (0.000) | -0.003*** (0.000) |
| $DP_{st} \times ADP_{st}$ | 0.001** (0.000) | 0.001*** (0.000) | -0.001*** (0.000) | | 0.003*** (0.000) | -0.001*** (0.000) |
| $DP_{st} \times Kurt$ | -0.006*** (0.001) | -0.005*** (0.001) | -0.004*** (0.000) | | 0.004** (0.002) | 0.001*** (0.000) |
| p-chgs$_s$ | | | | | | |
| $DP_{st} \times Std$ | -0.005*** (0.001) | -0.012*** (0.001) | -0.001 (0.001) | | 0.005*** (0.001) | 0.003*** (0.000) |
| p-spells$_s$ | | | | | | |

Number of obs 1,073,089 1,072,899 1,075,029 1,077,315 56 7,573 18,393,701

R^2 0.033 0.036 0.049 0.059 0.033 0.224

- Selection increases with price stickiness and size of price changes

Carvalho-Kryvtsov

Price Selection

Cleveland Fed May 2019 17/28
Price selection and price adjustment, U.K.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>U.K.</th>
<th></th>
<th></th>
<th></th>
<th>Canada</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Baseline</td>
<td>All prices</td>
<td>Incl. subs</td>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>With interaction terms</td>
<td>With interaction terms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP_{st}</td>
<td>-0.367*** (0.002)</td>
<td>-0.370*** (0.010)</td>
<td>-0.368*** (0.009)</td>
<td>-0.437*** (0.008)</td>
<td>-0.560*** (0.013)</td>
<td>-0.546*** (0.000)</td>
</tr>
<tr>
<td>Interaction terms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{DP}{st} \times \text{Fr}{st}$</td>
<td>0.220*** (0.012)</td>
<td>0.193*** (0.010)</td>
<td>0.396*** (0.011)</td>
<td>0.566*** (0.011)</td>
<td>0.668*** (0.001)</td>
<td></td>
</tr>
<tr>
<td>$\text{DP}{st} \times \text{DP}{st}$</td>
<td>-0.003*** (0.000)</td>
<td>-0.003*** (0.000)</td>
<td>-0.001*** (0.000)</td>
<td>-0.005*** (0.000)</td>
<td>-0.003*** (0.000)</td>
<td></td>
</tr>
<tr>
<td>$\text{DP}{st} \times \text{ADP}{st}$</td>
<td>0.001** (0.000)</td>
<td>0.001*** (0.000)</td>
<td>-0.001*** (0.000)</td>
<td>0.003*** (0.000)</td>
<td>-0.001*** (0.000)</td>
<td></td>
</tr>
<tr>
<td>$\text{DP}{st} \times \text{Kurt p-chgs}{s}$</td>
<td>-0.006*** (0.001)</td>
<td>-0.005*** (0.001)</td>
<td>-0.004*** (0.000)</td>
<td>0.004** (0.002)</td>
<td>0.001*** (0.000)</td>
<td></td>
</tr>
<tr>
<td>$\text{DP}{st} \times \text{Std p-spells}{s}$</td>
<td>-0.005*** (0.001)</td>
<td>-0.012*** (0.001)</td>
<td>-0.001 (0.001)</td>
<td>0.005*** (0.001)</td>
<td>0.003*** (0.000)</td>
<td></td>
</tr>
<tr>
<td>Number of obs</td>
<td>1,073,089</td>
<td>1,072,899</td>
<td>1,075,029</td>
<td>1,077,315</td>
<td>567,573</td>
<td>18,393,701</td>
</tr>
<tr>
<td>R^2</td>
<td>0.033</td>
<td>0.036</td>
<td>0.049</td>
<td>0.059</td>
<td>0.033</td>
<td>0.224</td>
</tr>
</tbody>
</table>

- Selection increases with price stickiness and size of price changes.
Aggregate price selection

- Aggregate time series:
 - $F_{rt} = \sum_s \omega_s F_{rst}$
 - $P_{t}^{res} = \sum_s \omega_s \frac{F_{rst}}{F_{rt}} P_{st}^{res}$, $P_{t}^{pre} = \sum_s \omega_s \frac{F_{rst}}{F_{rt}} P_{st}^{pre}$
 (frequency-weighted to account for heterogeneity across strata)

- Obtain same decomposition as before:
 \[
 \pi_t \equiv F_{rt} \cdot \left[P_{t}^{res} - P_{t}^{pre} \right]_{DP_{t}}
 \]

- Estimate time series OLS regression
 \[
P_{t}^{pre} = \beta DP_{t} + \delta_{cal} + error
 \]
Price selection, aggregate time series

<table>
<thead>
<tr>
<th>Level of aggregation</th>
<th>Number of groups</th>
<th>Regular prices, excluding subs</th>
<th>Incl. subs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. U.K.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratum</td>
<td>8941</td>
<td>-0.371***</td>
<td>-0.415***</td>
</tr>
<tr>
<td>Aggregate</td>
<td>1</td>
<td>-0.197*** (0.072)</td>
<td>-0.188*** (0.069)</td>
</tr>
<tr>
<td>B. Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratum</td>
<td>9165</td>
<td>-0.285***</td>
<td>-0.268***</td>
</tr>
<tr>
<td>Aggregate</td>
<td>1</td>
<td>-0.003 (0.021)</td>
<td>0.013 (0.020)</td>
</tr>
<tr>
<td>C. U.S.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratum</td>
<td>1550</td>
<td>-0.360***</td>
<td>N/A</td>
</tr>
<tr>
<td>Aggregate</td>
<td>1</td>
<td>0.061* (0.035)</td>
<td></td>
</tr>
</tbody>
</table>

- Price selection weakens with aggregation of the data
Price selection weakens with aggregation of the data

- Sales tend to strengthen aggregate price selection (consistent with cyclical sales behavior - Kryvtsov and Vincent, 2017)
Aggregate price selection, U.K.

<table>
<thead>
<tr>
<th>Level of aggregation</th>
<th>Number of groups</th>
<th>Regular prices, excluding subs</th>
<th>All prices</th>
<th>Incl. subs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. U.K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratum</td>
<td>8941</td>
<td>-0.371***</td>
<td>-0.333***</td>
<td>-0.415***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Category</td>
<td>1037</td>
<td>-0.385***</td>
<td>-0.359***</td>
<td>-0.404***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Basic class</td>
<td>66</td>
<td>-0.361***</td>
<td>-0.357***</td>
<td>-0.330***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.016)</td>
<td>(0.013)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Aggregate</td>
<td>1</td>
<td>-0.197***</td>
<td>-0.394***</td>
<td>-0.188***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.072)</td>
<td>(0.065)</td>
<td>(0.069)</td>
</tr>
</tbody>
</table>

- Aggregation across broad consumption sectors contributes the most
Price selection in multi-sector sticky-price models

 - Monopolistically competitive firms pay menu cost to adjust prices
 - Firms-specific AR(1) cost shocks, i.i.d. money growth shock
 - N consumption sectors differ by frequency of p-changes
 - U.K. data for 66 consumption sectors
 - Pick menu cost for each sector to match freq of p-changes in the data
 - Parameters for AR(1) shocks common across sectors
 - Strategic neutrality for p-changes across firms
Model results: sector-level price selection

Freq of p-changes accounts for around 20% of selection across sectors
Model results: sector-level price selection

- GL model fits fairly well sector-level selection
Monetary non-neutrality in nested Calvo-GL model

- Nested GL and Calvo model: weight ϕ on Calvo price adjustment
 - Tight relationship between price selection and monetary non-neutrality
Conditional selection: two aggregate shocks

- Selection: Unconditional in the data x conditional in the model
- Calvo-GL model with monetary and productivity shocks

Table 5. Calibration strategy: GL-Calvo 2 shocks model

<table>
<thead>
<tr>
<th>Calibration targets</th>
<th>Data</th>
<th>No Correlation</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of pch (%)</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Abs size of pch (%)</td>
<td>12.22</td>
<td>12.23</td>
<td>12.22</td>
</tr>
<tr>
<td>Ser. corr of reset prices</td>
<td>-0.03</td>
<td>-0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Inflation stdev (%)</td>
<td>0.002</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>Consumption ser. corr</td>
<td>0.85</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>Inflation mean (%)</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Consumption stdev (%)</td>
<td>0.89</td>
<td>0.88</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Price Selection: -0.20 -0.23 -0.22

Table 6. Price Selection

<table>
<thead>
<tr>
<th></th>
<th>All shocks</th>
<th>Monetary Shocks Only</th>
<th>Productivity Shocks Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Correlation</td>
<td>-0.23</td>
<td>-0.29</td>
<td>-0.29</td>
</tr>
<tr>
<td>Correlation</td>
<td>-0.22</td>
<td>-0.27</td>
<td>-0.28</td>
</tr>
</tbody>
</table>

Why not estimate conditional selection in the data?
Conclusions

- Multi-sector models with selection qualitatively consistent with facts
 - Generate sector-level selection, weaker aggregate selection
 - Still need: broader range of selection, weaker agg selection (e.g., information frictions, other features)
 - Measuring price selection allows more accurately identify determinants of monetary non-neutrality
 - “Model-free” measure, straightforward to apply to models/data
 - Models: tight relationship between price selection and non-neutrality
 - Can assess importance “real rigidities”, sufficient statistics, etc.
Price selection and real rigidities

Strategic complements, $\zeta=0.15$

Strategic neutrals, $\zeta=1$

Strategic substitutes, $\zeta=7$

Calvo

Nested

GL
Price selection and real rigiditites

![Graphs showing price selection and real rigidities](image-url)

Strategic complements, $\zeta=0.15$

- M
- Calvo
- Nested
- GL

Strategic neutrals, $\zeta=1$

- M
- Calvo
- Nested
- GL

Strategic substitutes, $\zeta=7$

- M
- Calvo
- Nested
- GL

![Graphs showing Calvo, Nested, and GL](image-url)
Price selection and size of aggregate shocks

![Graph showing price selection and standard deviation of log money growth](image)

- **Golosov-Lucas**
- **Taylor**

Figure: Graphs illustrating the relationship between price selection and the standard deviation of log money growth, as estimated by Golosov-Lucas and Taylor models. The graph shows the impact of price selection on the variability of log money growth across different levels of standard deviation.