Neighborhood Choices, Neighborhood Effects, and Housing Vouchers

Morris A. DavisA, Jesse GregoryB, Daniel A. HartleyC, Kegon TanB

A Rutgers University
B University of Wisconsin
C Federal Reserve Bank of Chicago

Federal Reserve Banks of Cleveland, Minneapolis, and Philadelphia
2017 Policy Summit on Housing, Human Capital, and Inequality

June 23, 2017
The views expressed are those of the authors and do not necessarily represent the views of the Federal Reserve Bank of Chicago, the Board of Governors of the Federal Reserve System, or its staff.
Can we design a housing voucher program to improve child ability?

Why link vouchers to child ability?
- Households receiving voucher choose a neighborhood
- Some neighborhoods better for children than others
- Why not restrict vouchers to neighborhoods good for children?

Idea behind the MTO program:
- Vouchers can only be used in neighborhoods < 10% poverty
- 10 years later, no improvement in child outcomes

Can we design a program that works better? Corollary: Why wasn't MTO more successful?
Suppose vouchers are designed to move households from bad neighborhoods to good neighborhoods for the benefit of children.

Notation:
- V: The dollar amount of a voucher a household receives.
- B: The net benefit to children of moving from a bad to a good neighborhood.
- $P(V)$: The parental “take-up” rate for a voucher of size V.

Social surplus from voucher program: $P(V)B - P(V)V$

How large should vouchers be?
Need to measure $P(V)$ and B to think about optimal vouchers.
Our Paper: Los Angeles County

- **Step 1: Infer** $P(V)$
 Use information on where renters live and how they move over time (Census tract = “neighborhood”)

- Size of voucher needed when targeting certain neighborhoods is related to willingness of households to move to those neighborhoods

- Panel data with 1.75 million person-year observations from Federal Reserve Bank of NY Consumer Credit Panel / Equifax

- Allows us to consider lots of “types” of people. Example:
 - African American households with low credit score
 - Hispanic households with low to medium credit score
Example 1: Neighborhoods Most Frequently Chosen

Type 133: 2-adult African Amer. household w/ a < 580 Equifax Risk Score

Neighborhood Effects
June 23, 2017 5 / 16
Example 2: Neighborhoods Most Frequently Chosen

Type 20: 2-adult Hispanic household w/ a 590-656 Equifax Risk Score

- <10% Poverty
- >10% Poverty

Map showing areas with different poverty levels and the most chosen areas.
Benefits of Neighborhoods in Los Angeles

- **Step 2: Infer** B
 Focus on Woodcock-Johnson (WJ) math score
 1 S.D. improvement in score \rightarrow $4,000$ per year adult earnings

- Use new LA FANS dataset
 - Samples households with children at the Census tract level
 - 2 waves of data: 2001 and 2007
 - Observe WJ math scores, demographics, income, assets

- We estimate the direct impact of neighborhoods on the WJ

- We find neighborhoods vary substantially:
 There may be significant benefits from moving children
Neighborhood Benefits Vary with Poverty (on avg.)

Plotted: Estimate of average value added within each poverty-rate bin
Good Neighborhoods are more Expensive (on avg.)

Val.-added/rent gradient is steepest in low-poverty tracts
Households living in Poor Areas are price Sensitive

Alpha = Sensitivity to Rents

Average Value of Alpha vs. Tract Poverty Rate

DGHT ()
Neighborhood Effects
June 23, 2017
What’s going on?

- Residents of high-poverty tracts are highly price sensitive

- Hedonic price of value-added is high in low-poverty tracts

- Non-random selection among low-poverty tracts drives MTO results
 - Households tend to move to the low poverty neighborhoods with low value-added, thus no impact on children
“Bang-for-Buck” of Highly Targeted Vouchers

- With models of $P(V)$ and B, we can simulate voucher programs

- Could impacts on children’s adult earnings exceed voucher costs?

- Consider vouchers that may only be used in top-5% V.A. tracts

- Compare costs and benefits over a range of voucher generosities
 - +1 S.D. in the W.J. scores → +$4,000 annual adult earnings
For voucher of size V targeting a given census tract with a known benefit B and an associated take-up rate as $P(V)$, define voucher net surplus as

$$P(V)B - P(V)V$$

- **Surplus-maximizing voucher:**

 $$V^* = B - \frac{P(V^*)}{P'(V^*)}$$

- **Break-even voucher:**

 $$P(V)B = P(V)V$$
“Bang-for-Buck” of Highly Targeted Vouchers
“Bang-for-Buck” of Highly Targeted Vouchers

<table>
<thead>
<tr>
<th></th>
<th>Surplus-Maximizing Voucher</th>
<th>Break-Even Voucher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monthly Voucher Amount</td>
<td>Steady-state Net</td>
</tr>
<tr>
<td></td>
<td>Take-up (%)</td>
<td>Benefit per policy year</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>All Public Housing Types</td>
<td>$300 28%</td>
<td>$1,144</td>
</tr>
<tr>
<td></td>
<td>$700 46%</td>
<td>$700 46%</td>
</tr>
<tr>
<td>Subgroups:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black:</td>
<td>$200 47%</td>
<td>$3,320</td>
</tr>
<tr>
<td></td>
<td>$750 68%</td>
<td>$750 68%</td>
</tr>
<tr>
<td>Hispanic:</td>
<td>$400 18%</td>
<td>$152</td>
</tr>
<tr>
<td></td>
<td>$500 22%</td>
<td>$500 22%</td>
</tr>
<tr>
<td>Other:</td>
<td>$500 52%</td>
<td>$1,481</td>
</tr>
<tr>
<td></td>
<td>$750 84%</td>
<td>$750 84%</td>
</tr>
</tbody>
</table>
Summary of the Evidence

- Some neighborhoods (Census tracts) impact test scores. 18 years exposure to top 5% of neighborhoods:
 - +1.3 S.D. to test scores
 - +$5,300/year in adult earnings $\times 2.5 = $13,250 per hh / year

- On average, the best neighborhoods are the most expensive

- Household preferences vary across type regarding
 - Where to live
 - How much rents affect utility

- “Smart” voucher programs should consider both
 - What households care about and how this varies by type of household
 - Which neighborhoods provide impacts on child outcomes