DISCUSSION
“In search of a nominal anchor: What drives long-term inflation expectations?”
by Carvalho, Eusepi, Moench, and Preston

Elmar Mertens

Federal Reserve Board

The results presented here do not necessarily represent the views of the Federal Reserve System or the Federal Open Market Committee

September 29 2016
Key question

What drives long-run inflation expectations?

This paper

- State-dependent sensitivity of π_t to incoming data
- Learning with “SS bands” for updating behavior
- Induces *endogenous* variations in trend inflation
Key question

What drives long-run inflation expectations?

This paper

- State-dependent sensitivity of π_t to incoming data
- Learning with “SS bands” for updating behavior
- Induces *endogenous* variations in trend inflation

Great Paper!
AGENDA

1. The Problem (a.k.a. the motivation)
2. The Paper (a.k.a. the solution)
3. The Praise (a.k.a. my thoughts)
AGENDA

1. The Problem (a.k.a. the motivation)
2. The Paper (a.k.a. the solution)
3. The Praise (a.k.a. my thoughts)
• ...I use the term "anchored" to mean [long-run expectations that are] relatively insensitive to incoming data.
• ...the extent to which they are anchored can change, depending on economic developments and (most important) the current and past conduct of monetary policy.
• ...I use the term ”anchored” to mean [long-run expectations that are] relatively insensitive to incoming data.

• ...the extent to which they are anchored can change, depending on economic developments and (most important) the current and past conduct of monetary policy.

• If ...inflation [runs] higher than [expected], but ...expectation[s] ... change little ..., then inflation expectations are well anchored.
• ...I use the term "anchored" to mean [long-run expectations that are] relatively insensitive to incoming data.

• ...the extent to which they are anchored can change, depending on economic developments and (most important) the current and past conduct of monetary policy.

• If ...inflation [runs] higher than [expected], but ...expectation[s] ... change little ... , then inflation expectations are well anchored.

• If, ... the public reacts to ... higher-than-expected inflation by marking up their long-run expectation considerably, then expectations are poorly anchored.
SPF LONG-RUN EXPECTATIONS
Average PCE inflation over next 10 years, mean response

- 10
- 5
0
5
10

REALIZED INFLATION AND SPF

black: inflation, red: SPF-10Y, blue: 12m-inflation
REALIZED INFLATION AND SPF
black: inflation, red: SPF-10Y, blue: EWMA
TREND INFLATION 101

EWMA Trend is your Friend

\[\tau_{t|t} = (1 - K)\tau_{t-1|t-1} + K\pi_t \]

- simple filter for persistent component
- Muth (1961, ECA): Optimal filter in “local level model”!

Local level / UC model

\[\pi_t = \tau_t + \tilde{\pi}_t \quad \tau_t = \tau_{t-1} + \eta_t \quad \tilde{\pi}_t \sim m.d.s. \]

econometrician’s BN-trend: \[\tau_{t|t} = E(\pi_{t+\infty}|\pi^t, \ldots) \]

UC BN-trend: \[\tau_t = E(\pi_{t+\infty}|\tau^t, \ldots) \]
TREND INFLATION 101

EWMA Trend is your Friend

\[\tau_{t|t} = (1 - K_t)\tau_{t-1|t-1} + K_t\pi_t \]

- simple filter for persistent component
- Muth (1961, ECA): Optimal filter in “local level model”!

Local level / UCSV model

\[\pi_t = \tau_t + \tilde{\pi}_t \quad \tau_t = \tau_{t-1} + \sigma^\eta_t \eta_t \quad \tilde{\pi}_t \sim m.d.s. \]

- econometrician’s BN-trend: \[\tau_{t|t} = E(\pi_{t+\infty}|\pi^t, \ldots) \]
- UC BN-trend: \[\tau_t = E(\pi_{t+\infty}|\tau^t, \ldots) \]
TIME-VARYING EWMA WEIGHT: “UCSV”
Stock and Watson (2006, JMCB): $\partial \pi_{t+\infty}/\partial e_t = K_t$
MULTIVARIATE TREND ESTIMATES

$\tau_t | \text{(trimmed CPI etc.)}$, from Mertens (REStat, forth.)

MULTIVARIATE TREND ESTIMATES
\(\tau_t \mid (\text{trimmed CPI etc.}), \tau_t \mid (\text{SPF etc.}) \) from Mertens (REStat, forth.)

![Graph showing trend estimates from 1960 to 2015 with SRV and INFTRM lines.]
MULTIVARIATE TREND ESTIMATES

$\tau_t|$(trimmed CPI etc.), $\tau_t|$(SPF etc.) from Mertens (REStat, forth.)
AGENDA

1 The Problem (a.k.a. the motivation)

2 The Paper (a.k.a. the solution)

3 The Praise (a.k.a. my thoughts)
Ingredients

- DSGE model with NK-Phillips Curve
- Twist: Learning with “SS bands” for updating:

$$
\bar{\pi}_t = (1 - k_{t-1}^{-1}) \bar{\pi}_{t-1} + k_{t-1}^{-1} \left(\pi_t - (\hat{E}_{t-1} \pi_t - \bar{\pi}_{t-1}) \right)
$$

$$
k_t = \begin{cases}
 k_{t-1} + 1, & \text{if } |\Phi(\text{past FE})| < \nu \\
 \bar{g}^{-1}, & \text{otherwise}
\end{cases}
$$

Endogenous data feeds into learning behavior

- Endogenous trend
- State-dependent sensitivity of trend, $\bar{\pi}_t$, to data
- Once anchored, can tolerate deviations of inflation from trend up to a point
AGENDA

1. The Problem (a.k.a. the motivation)
2. The Paper (a.k.a. the solution)
3. The Praise (a.k.a. my thoughts)
“Exogenous” vs “endogenous” trend:

1. $\bar{\pi} = E_t\pi_{t+\infty}$ vs $\bar{\pi}_t = \hat{E}_t\pi_{t+\infty}$
2. τ_t vs $\tau_{t|t}$
SKETCH OF AN ALTERNATIVE MODEL

NK Phillips Curve

\[\tilde{\pi}_t = \beta \tilde{\pi}_{t+1|t} + \kappa x_t + u_t \]
\[\tilde{\pi}_t = \pi_t - ((1 - \gamma) \tau + \gamma \pi_{t-1}) \]

Monetary policy with inflation target \(\tau \)

\[i_t = \bar{r}_t + \tau + \phi_\pi (\pi_t - \tau) + \phi_x x_t + \varepsilon_t \]
SKETCH OF AN ALTERNATIVE MODEL
elements from Ireland (2000, JMCB)

NK Phillips Curve

\[
\tilde{\pi}_t = \beta \tilde{\pi}_{t+1|t} + \kappa x_t + u_t \\
\tilde{\pi}_t = \pi_t - ((1 - \gamma) \tau_t + \gamma \pi_{t-1}); \quad \tau_t = \tau_{t-1} + \eta_t
\]

Monetary policy with inflation target \(\tau_t \)

\[
i_t = \bar{r}_t + \tau_t + \phi_{\pi} (\pi_t - \tau_t) + \phi_x x_t + \varepsilon_t
\]
SKETCH OF AN ALTERNATIVE MODEL
elements from Ireland (2000, JMCB), Erceg & Levin (2003, JME), etc.

NK Phillips Curve

\[\tilde{\pi}_t = \beta \tilde{\pi}_{t+1|t} + \kappa x_t + u_t \]
\[\tilde{\pi}_t = \pi_t - ((1 - \gamma) \tau_t + \gamma \pi_{t-1}); \quad \tau_t = \tau_{t-1} + \eta_t \]

Monetary policy with inflation target \(\tau_t \)

\[i_t = \bar{r}_t + \tau_t + \phi_\pi (\pi_t - \tau_t) + \phi_x x_t + \varepsilon_t \]

Public has limited information

\[\pi_{t+1|t} = E(\pi_{t+1|Z^t} : Z_t = [\pi_t \ x_t \ i_t \ ...]) \]
\[\tau_{t|t} = \tau_{t-1|t-1} + K(Z_t - Z_{t|t-1}) \]
NK Phillips Curve

\[
\tilde{\pi}_t = \beta \tilde{\pi}_{t+1|t} + \kappa x_t + u_t \\
\tilde{\pi}_t = \pi_t - ((1 - \gamma) \tau_t + \gamma \pi_{t-1}); \quad \tau_t = \tau_{t-1} + \eta_t
\]

Monetary policy with inflation target \(\tau_t \)

\[
i_t = \bar{r}_t + \tau_t + \phi_\pi (\pi_t - \tau_t) + \phi_x x_t + \varepsilon_t
\]

Public has limited information

\[
\pi_{t+1|t} = E(\pi_{t+1|Z^t}: Z_t = [\pi_t \ x_t \ i_t \ \ldots]) \\
\tau_{t|t} = \tau_{t-1|t-1} + K(Z_t - Z_{t|t-1})
\]

Simulate with \(K \neq 0 \) while \(\text{Vol}(\eta_t) = 0? \)
SOME THOUGHTS

1. “Exogenous” vs “endogenous” trend:
 - $\bar{\pi} = E_t \pi_{t+\infty}$ vs $\bar{\pi}_t = \hat{E}_t \pi_{t+\infty}$
 - τ_t vs $\tau_t|t$

2. True end-point of inflation:
 - Does DGP satisfy $\frac{1}{T} \sum_t \pi_t \to E(\pi_t) = \bar{\pi}$?
 - What is your estimate?
SOME THOUGHTS

1. “Exogenous” vs “endogenous” trend:
 - $\bar{\pi} = E_t \pi_{t+\infty}$ vs $\bar{\pi}_t = \hat{E}_t \pi_{t+\infty}$
 - τ_t vs $\tau_{t|t}$

2. True end-point of inflation:
 - Does DGP satisfy $\frac{1}{T} \sum_t \pi_t \rightarrow E(\pi_t) = \bar{\pi}$?
 - What is your estimate?

3. State-dependent gain:
 Which size/kind of structural shock (and policy response) makes updating behavior switch?
SOME THOUGHTS

1. “Exogenous” vs “endogenous” trend:
 • \(\bar{\pi} = E_t \pi_{t+\infty} \) vs \(\bar{\pi}_t = \hat{E}_t \pi_{t+\infty} \)
 • \(\tau_t \) vs \(\tau_t|t \)

2. True end-point of inflation:
 • Does DGP satisfy \(\frac{1}{T} \sum_t \pi_t \to E(\pi_t) = \bar{\pi} \)?
 • What is your estimate?

3. State-dependent gain:
 Which size/kind of structural shock (and policy response) makes updating behavior switch?

4. Fitting long-term forecasts:
 Suppose survey forecasts and inflation are cointegrated. “Close” fit better than mimicking same low-frequency behavior?
Key question

What drives long-run inflation expectations?

This paper

- State-dependent sensitivity of π_t to incoming data
- Learning with “SS bands” for updating behavior
- Induces *endogenous* variations in trend inflation

Great Paper!