Rational Sunspots

Guido Ascari, *University of Oxford*
Paolo Bonomolo, *Sveriges Riksbank*
Hedibert F.Lopes, *INSPER*

Inflation: Drivers and Dynamics Conference
Cleveland, 29-30 September 2016

1The views expressed are solely the responsibility of the authors and should not to be interpreted as reflecting the views of Sveriges Riksbank.
Introduction

In this paper:
We propose a generalization of the Rational Expectations framework to estimate temporary unstable paths

Premise
RE generally implies multiple solutions

- Explosive
- Stable

How can we get uniqueness? (Sargent and Wallace, 1973; Phelps and Taylor, 1977; Taylor, 1977; Blanchard, 1979)

Stability Criterion: Transversality conditions
In saddle paths dynamics only one solution is stable

This became the standard in Macroeconomics (Blanchard and Kahn, 1980)
Example: U.S. Great Inflation period

Is it appropriate to rule out unstable paths from the empirical analysis?

Is there any evidence that inflation is described (at least for a while) by unstable equilibria?

Figure: CPI inflation, quarterly data. Sample: 1960Q1 - 1997Q4
Generalization of the RE framework: Rational Sunspots

A novel way to introduce sunspots in a RE model to take into account the possibility of unstable paths.

Drifting parameters and stochastic volatility.

Develop an econometric strategy suited for our framework to verify if unstable paths are empirically relevant.

Application: Example of U.S. Great Inflation (LS model and data). U.S. inflation dynamics in the 70’s are better described by unstable rational equilibrium paths. Unstable paths can be empirically relevant, also within the context of RE.
Generalization of the RE framework: Rational Sunspots

- A novel way to introduce sunspots in a RE model to take into account the possibility of unstable paths
1 Generalization of the RE framework: Rational Sunspots

- A novel way to introduce sunspots in a RE model to take into account the possibility of unstable paths
- Drifting parameters and stochastic volatility
Outline Paper / Talk

1. Generalization of the RE framework: Rational Sunspots
 - A novel way to introduce sunspots in a RE model to take into account the possibility of unstable paths
 - Drifting parameters and stochastic volatility

2. Develop an econometric strategy suited for our framework to verify if unstable paths are empirically relevant
1. Generalization of the RE framework: Rational Sunspots
 - A novel way to introduce sunspots in a RE model to take into account the possibility of unstable paths
 - Drifting parameters and stochastic volatility

2. Develop an econometric strategy suited for our framework to verify if unstable paths are empirically relevant

3. Application:
Outline Paper / Talk

1. Generalization of the RE framework: Rational Sunspots
 - A novel way to introduce sunspots in a RE model to take into account the possibility of unstable paths
 - Drifting parameters and stochastic volatility

2. Develop an econometric strategy suited for our framework to verify if unstable paths are empirically relevant

3. Application:
 - Example of U.S. Great inflation (LS model and data)
Generalization of the RE framework: Rational Sunspots

- A novel way to introduce sunspots in a RE model to take into account the possibility of unstable paths
- Drifting parameters and stochastic volatility

Develop an econometric strategy suited for our framework to verify if unstable paths are empirically relevant

Application:

- Example of U.S. Great inflation (LS model and data)
- U.S. inflation dynamics in the 70’s are better described by unstable rational equilibrium paths
1 Generalization of the RE framework: Rational Sunspots
 - A novel way to introduce sunspots in a RE model to take into account the possibility of unstable paths
 - Drifting parameters and stochastic volatility

2 Develop an econometric strategy suited for our framework to verify if unstable paths are empirically relevant

3 Application:
 - Example of U.S. Great inflation (LS model and data)
 - U.S. inflation dynamics in the 70’s are better described by unstable rational equilibrium paths
 - Unstable paths can be empirically relevant, also within the context of RE
A simple example: multiple RE solutions

Consider the following model inspired by Cochrane (2011), including the Fisher equation (1) and the Taylor rule (2):

\[i_t = r + E_t \pi_{t+1} \]
\[i_t = r + \phi \pi_t + \varepsilon_t \quad \varepsilon_t \sim N(0, \sigma^2_\varepsilon) \]
\[\pi_t = \frac{1}{\phi} E_t \pi_{t+1} + e_t, \quad e_t \sim i.i.d. N(0, \sigma^2_e) \]

Equation (3) has an infinite number of solutions:

\[E_t \pi_{t+1} = \phi \pi_t - \phi e_t \Rightarrow \pi_{t+1} = \phi \pi_t - \phi e_t + \eta_{t+1} \]

where \(E_t \eta_{t+1} = 0. \)
Multiple RE solutions

Muth (1961) and Blanchard (1979): UCM \Rightarrow All the solutions for π_t are described by

$$
\pi_t = \sum_{j=1}^{\infty} \phi^j (b - 1) e_{t-j} + be_t + \sum_{j=1}^{\infty} \frac{b}{\phi^j} E_t e_{t+j} \\
\pi_t = \phi \pi_{t-1} - \phi e_{t-1} + be_t
$$

- Degree of freedom: the solution is parameterized by $b \in (-\infty, +\infty)$
Multiple RE solutions

Muth (1961) and Blanchard (1979): UCM \implies All the solutions for \(\pi_t \) are described by

\[
\pi_t = \sum_{j=1}^{\infty} \phi^j (b - 1) e_{t-j} + be_t + \sum_{j=1}^{\infty} \frac{b}{\phi^j} E_t e_{t+j}
\]

(4)

\[
\pi_t = \phi \pi_{t-1} - \phi e_{t-1} + be_t
\]

- Degree of freedom: the solution is parameterized by \(b \in (-\infty, +\infty) \)
- Easy to recognize two particular cases:
Multiple RE solutions

Muth (1961) and Blanchard (1979): UCM ⇒ All the solutions for π_t are described by

$$
\pi_t = \sum_{j=1}^{\infty} \phi^j (b - 1) e_{t-j} + be_t + \sum_{j=1}^{\infty} \frac{b}{\phi^j} E_t e_{t+j}
$$

(4)

$$
\pi_t = \phi \pi_{t-1} - \phi e_{t-1} + be_t
$$

- Degree of freedom: the solution is parameterized by $b \in (-\infty, +\infty)$
- Easy to recognize two particular cases:
 - "pure" forward-looking ($b = 1$)
 $$
 \pi_t^F = \sum_{j=0}^{\infty} \left(\frac{1}{\phi} \right)^j E_t e_{t+j} = e_t
 $$
Multiple RE solutions

Muth (1961) and Blanchard (1979): UCM ⇒ All the solutions for π_t are described by

$$\pi_t = \sum_{j=1}^{\infty} \phi^j (b - 1) e_{t-j} + be_t + \sum_{j=1}^{\infty} \frac{b}{\phi^j} E_t e_{t+j}$$

$$\pi_t = \phi \pi_{t-1} - \phi e_{t-1} + be_t$$

- Degree of freedom: the solution is parameterized by $b \in (-\infty, +\infty)$
- Easy to recognize two particular cases:
 - "pure" forward-looking ($b = 1$)
 $$\pi^F_t = \sum_{j=0}^{\infty} \left(\frac{1}{\phi} \right)^j E_t e_{t+j} = e_t$$
 - "pure" backward-looking solution ($b = 0$)
 $$\pi^B_t = - \sum_{j=1}^{\infty} \phi^j e_{t-j} = \phi \pi^B_{t-1} - \phi e_{t-1}$$
The interpretation for b

- All the solutions can be written as a linear combination of the forward and the backward one (Blanchard, 1979):

$$\pi_t = (1 - b)\pi_t^B + b\pi_t^F$$
The interpretation for b

- All the solutions can be written as a linear combination of the forward and the backward one (Blanchard, 1979):

\[\pi_t = (1 - b)\pi_t^B + b\pi_t^F \]

- For $b \neq 0$, the expected value is an exponentially weighted average of the past observations (Muth, 1961)

\[E_t\pi_{t+1} = (b - 1)\sum_{i=1}^{\infty} \left(\frac{\phi}{b} \right)^i \pi_{t+1-i} \]

Natural interpretation for b: the way people form expectations
The interpretation for b

- All the solutions can be written as a linear combination of the forward and the backward one (Blanchard, 1979):

$$\pi_t = (1 - b)\pi_t^B + b\pi_t^F$$

- For $b \neq 0$, the expected value $=$ an exponentially weighted average of the past observations (Muth, 1961)

$$E_t\pi_{t+1} = (b - 1) \sum_{i=1}^{\infty} \left(\frac{\phi}{b}\right)^i \pi_{t+1-i}$$

Natural interpretation for b: the way people form expectations

- b defines the importance the agents give to the past data, both in *absolute* terms (b vs 1), and in *relative* terms.

Infinite solutions $=$ infinite way we can set that weights \Rightarrow how to choose?
The stability criterium (e.g., Blanchard, 79)

\[\pi_t = \phi \pi_{t-1} - \phi e_{t-1} + b e_t \]

Is the stability criterium sufficient to identify a unique path?

1. If \(\phi > 1 \quad YES \quad \) determinacy, by imposing \(b = 1 \) = f.l. solution
2. If \(\phi < 1 \quad NO \quad \) indeterminacy

=> "Sunspot equilibria can often be constructed by randomizing over multiple equilibria of a general equilibrium model, and models with indeterminacy are excellent candidates for the existence of sunspot equilibria since there are many equilibria over which to randomize."

Benhabib and Farmer (1999, p.390)
Introducing sunspot equilibria: any RE path

We have infinite equilibria because:

- there is an infinite number of ways of forming expectations
- all of them coherent with the Muth’s REH
- parametrized by b

$$\pi_t = (1 - b)\pi_t^B + b\pi_t^F$$
Introducing sunspot equilibria: any RE path

We have infinite equilibria because:

- there is an infinite number of ways of forming expectations
- all of them coherent with the Muth’s REH
- parametrized by b

$$\pi_t = (1 - b)\pi_t^B + b\pi_t^F$$

hence we introduce sunspots randomizing over b:

$$b_t = b_t(\zeta_t)$$ \hspace{2cm} (5)$$

where ζ_t i.i.d., orthogonal to the fundamental shocks e_s ($s = 1, 2, ...$), and $E_t\zeta_t = 0 \ \forall t$.

Sources of multiplicity

Solution UCM:

\[\pi_{t+1} = \phi \pi_t - \phi e_t + be_{t+1} \]

There are two sources of multiplicity \(\Rightarrow \) expectation error:

\[\eta_{t+1}(e_{t+1}, \zeta_{t+1}) = be_{t+1} + \zeta_{t+1} \]

where \(\zeta_{t+1} = \) sunspot or non-fundamental error.

This paper considers the FIRST term: intrinsic multiplicity of RE solutions
Introducing sunspot equilibria: drifting parameters and unstable paths

If \(b_t = b_{t-1} + \zeta_t \), and \(\zeta_t \sim i.i.d. N(0, \sigma^2_\zeta) \), then

\[
\pi_t = \theta_t \pi_{t-1} - \theta_t e_{t-1} + b_t e_t
\]

with \(\theta_t = \phi \frac{(1 - b_t)}{(1 - b_{t-1})} \) (with \(b_{t-1} \neq 1 \) otherwise FL solution).

- Same form as \(\pi_t = \phi \pi_{t-1} - \phi e_{t-1} + b e_t \)
Introducing sunspot equilibria: drifting parameters and unstable paths

If $b_t = b_{t-1} + \zeta_t$, and $\zeta_t \sim i.i.d. N(0, \sigma^2_\zeta)$, then

$$\pi_t = \theta_t \pi_{t-1} - \theta_t e_{t-1} + b_t e_t$$

with $\theta_t = \phi \frac{(1 - b_t)}{(1 - b_{t-1})}$ (with $b_{t-1} \neq 1$ otherwise FL solution).

- Same form as $\pi_t = \phi \pi_{t-1} - \phi e_{t-1} + b e_t$

- Drifting parameters and stochastic volatility within the rational expectations framework. Cogley and Sargent (2005), Primiceri (2005).
Introducing sunspot equilibria: drifting parameters and unstable paths

If $b_t = b_{t-1} + \zeta_t$, and $\zeta_t \sim i.i.d. N(0, \sigma^2_\zeta)$, then

$$\pi_t = \theta_t \pi_{t-1} - \theta_t e_{t-1} + b_t e_t$$

with $\theta_t = \phi \frac{(1 - b_t)}{(1 - b_{t-1})}$ (with $b_{t-1} \neq 1$ otherwise FL solution).

- Same form as $\pi_t = \phi \pi_{t-1} - \phi e_{t-1} + b e_t$
- Drifting parameters and stochastic volatility within the rational expectations framework. Cogley and Sargent (2005), Primiceri (2005).
- Intuition: agents can modify in every period the expectation formation process
Introducing sunspot equilibria: drifting parameters and unstable paths

If \(b_t = b_{t-1} + \zeta_t \), and \(\zeta_t \sim i.i.d. N(0, \sigma^2_\zeta) \), then

\[
\pi_t = \theta_t \pi_{t-1} - \theta_t e_{t-1} + b_t e_t
\]

with \(\theta_t = \phi \frac{(1 - b_t)}{(1 - b_{t-1})} \) (with \(b_{t-1} \neq 1 \) otherwise FL solution).

- Same form as \(\pi_t = \phi \pi_{t-1} - \phi e_{t-1} + b e_t \)

- Drifting parameters and stochastic volatility within the rational expectations framework. Cogley and Sargent (2005), Primiceri (2005).
- Intuition: agents can modify in every period the expectation formation process
- Reconsidering unstable paths: \(|\phi| > 1 \) and \(b_t \) temporarily different from one \(\Rightarrow \) estimate the process for \(b_t \) and check
Example: U.S. Great Inflation period

Is it appropriate to rule out unstable paths from the empirical analysis?

Figure: CPI inflation, quarterly data. Sample: 1960Q1 - 1997Q4
Example: Lubik and Schorfheide (2004) model

\[
\begin{align*}
\chi_t &= E_t(\chi_{t+1}) - \tau(R_t - E_t(\pi_{t+1})) + g_t \\
\pi_t &= \beta E_t(\pi_{t+1}) + \kappa(x_t - z_t) \\
R_t &= \rho_R R_{t-1} + (1 - \rho_R)(\psi_1 \pi_t + \psi_2(x_t - z_t)) + \epsilon_{R,t}
\end{align*}
\]

and

\[
\begin{align*}
g_t &= \rho_g g_{t-1} + \epsilon_{g,t}; \\
z_t &= \rho_z z_{t-1} + \epsilon_{z,t}
\end{align*}
\]

allow for non-zero correlation between the two shocks: \(\rho_{gz}\)

Compare two "models": \(M_S\) (stable solutions) and \(M_U\) (unstable solutions).
The estimation strategy

We use an econometric strategy to deal with the following issues:

i) the model has stochastic volatility, then the likelihood distribution is not Gaussian;

ii) we are interested in tracking the behavior of b_t, that can be considered as a stochastic latent process;

iii) we would like to study the fit of different models, and eventually compare them, during different periods.

Then, the econometric strategy is based on Bayesian methods, in particular on *Particle filtering*, and on *Sequential model monitoring*, based on Carvalho, Johannes, Lopes and Polson (2010)
Particle filter

Particle learning by Carvalho, Johannes, Lopes and Polson (2010)

1 Marginalization. \(\theta \): all latent states different from \(b \); \(y \): data

\[
p(\theta, b|y) = p(\theta|y, b) \cdot p(b|y)
\]

Kalman Filter Particle Filter

2 Parameter learning (Particle learning by CJLP 2010)
Priors and Distributions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Density</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_1</td>
<td>Gamma</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>ψ_2</td>
<td>Gamma</td>
<td>0.25</td>
<td>0.152</td>
</tr>
<tr>
<td>ρ_R</td>
<td>Beta</td>
<td>0.5</td>
<td>0.22</td>
</tr>
<tr>
<td>π^+</td>
<td>Gamma</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>π^-</td>
<td>Gamma</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>κ_1</td>
<td>Gamma</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>κ_2</td>
<td>Gamma</td>
<td>2</td>
<td>0.52</td>
</tr>
<tr>
<td>ρ_y</td>
<td>Beta</td>
<td>0.7</td>
<td>0.12</td>
</tr>
<tr>
<td>ρ_z</td>
<td>Beta</td>
<td>0.7</td>
<td>0.12</td>
</tr>
<tr>
<td>σ^2_R</td>
<td>Inverse Gamma</td>
<td>0.312</td>
<td>0.162</td>
</tr>
<tr>
<td>σ^2_y</td>
<td>Inverse Gamma</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariance</th>
<th>Density</th>
<th>Scale</th>
<th>Degrees of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma_{g\tau}$</td>
<td>Inverse Wishart</td>
<td>0.42</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Estimates Great Inflation sample

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pre-Volcker 1960:I - 1979:II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_S</td>
</tr>
<tr>
<td>ψ_1</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>[0.68 0.87]</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>[0.13 0.31]</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>[0.61 0.76]</td>
</tr>
<tr>
<td>π^*</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>[1.34 2.38]</td>
</tr>
<tr>
<td>r^*</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>[1.16 1.86]</td>
</tr>
<tr>
<td>κ</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>[0.09 0.17]</td>
</tr>
<tr>
<td>τ^{-1}</td>
<td>3.38</td>
</tr>
<tr>
<td></td>
<td>[2.54 4.21]</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>[0.70 0.77]</td>
</tr>
<tr>
<td>ρ_z</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>[0.78 0.85]</td>
</tr>
<tr>
<td>ρ_{gz}</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>[0.09 0.17]</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>[0.19 0.25]</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>[0.18 0.24]</td>
</tr>
<tr>
<td>σ_z</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>[0.69 1.00]</td>
</tr>
<tr>
<td>σ_ζ</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>[0.04 0.06]</td>
</tr>
</tbody>
</table>

90% credibility interval in brackets
Stable Model, Great Inflation

M_S: Comparison between the posterior distributions of the policy parameters and the probability intervals of LS

\Rightarrow Very similar results to LS
Estimated path for $b_{1,t}$ - stable model M_s - Great Inflation subsample (1^{st} panel); sequential inference on the parameter ψ_1 (2^{nd} panel).
Unstable Model, Great Inflation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pre-Volcker 1960:1 - 1979:II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_S</td>
</tr>
<tr>
<td>ψ_1</td>
<td>0.77</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.2</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.69</td>
</tr>
<tr>
<td>π^*</td>
<td>1.83</td>
</tr>
<tr>
<td>r^*</td>
<td>1.41</td>
</tr>
<tr>
<td>κ</td>
<td>0.12</td>
</tr>
<tr>
<td>τ^{-1}</td>
<td>3.38</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.74</td>
</tr>
<tr>
<td>ρ_z</td>
<td>0.82</td>
</tr>
<tr>
<td>ρ_{gz}</td>
<td>0.12</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.21</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.20</td>
</tr>
<tr>
<td>σ_z</td>
<td>0.82</td>
</tr>
<tr>
<td>σ_{ξ}</td>
<td>0.05</td>
</tr>
</tbody>
</table>

90% credibility interval in brackets
Unstable Model, Great Inflation

The behavior of $b_{1,t}$

Figure: Estimated path of $b_{1,t}$ for the unstable model M_U in the Great Inflation subsample
Comparing the relative fit of Ms/Mu

Sequential Bayes Factor West (1986): $2 \ln(W_t)$ and the inflation rate

The Bayes Factor strongly favours the unstable model
Estimates Great Moderation sample

<table>
<thead>
<tr>
<th>Parameter</th>
<th>M_S</th>
<th>M_U</th>
<th>L_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_1</td>
<td>2.18</td>
<td>0.42</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>[1.33 3.41]</td>
<td>[0.12 1.09]</td>
<td>[1.38 2.99]</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.33</td>
<td>0.44</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>[0.14 0.72]</td>
<td>[0.30 0.70]</td>
<td>[0.07 0.51]</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.85</td>
<td>0.78</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>[0.79 0.89]</td>
<td>[0.72 0.83]</td>
<td>[0.79 0.89]</td>
</tr>
<tr>
<td>π^*</td>
<td>3.73</td>
<td>2.86</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td>[3.20 4.32]</td>
<td>[2.19 3.50]</td>
<td>[2.84 3.99]</td>
</tr>
<tr>
<td>r^*</td>
<td>3.51</td>
<td>2.72</td>
<td>3.01</td>
</tr>
<tr>
<td></td>
<td>[2.88 3.22]</td>
<td>[1.94 3.49]</td>
<td>[2.21 3.80]</td>
</tr>
<tr>
<td>κ</td>
<td>0.53</td>
<td>0.18</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>[0.31 0.90]</td>
<td>[0.19 0.26]</td>
<td>[0.27 0.89]</td>
</tr>
<tr>
<td>τ^{-1}</td>
<td>1.47</td>
<td>2.46</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>[0.96 2.40]</td>
<td>[1.71 3.42]</td>
<td>[1.04 2.64]</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.85</td>
<td>0.75</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>[0.77 0.91]</td>
<td>[0.68 0.81]</td>
<td>[0.77 0.89]</td>
</tr>
<tr>
<td>ρ_z</td>
<td>0.77</td>
<td>0.74</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>[0.63 0.88]</td>
<td>[0.66 0.80]</td>
<td>[0.77 0.93]</td>
</tr>
<tr>
<td>ρ_{gz}</td>
<td>0.03</td>
<td>0.005</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>[0.01 0.06]</td>
<td>[0.01 0.07]</td>
<td>[0.06 0.07]</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.17</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>[0.14 0.21]</td>
<td>[0.10 0.14]</td>
<td>[0.14 0.21]</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.14</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>[0.11 0.18]</td>
<td>[0.11 0.17]</td>
<td>[0.14 0.23]</td>
</tr>
<tr>
<td>σ_z</td>
<td>0.57</td>
<td>0.52</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>[0.49 0.69]</td>
<td>[0.46 0.71]</td>
<td>[0.52 0.76]</td>
</tr>
<tr>
<td>σ_{ζ}</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>[0.03 0.06]</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Under $M_S \Rightarrow$ determinacy $\Rightarrow b = 1$
M_S: Comparison between the posterior distributions of the policy parameters and the probability intervals of LS.
Unstable model: Great Moderation

The behavior of $b_{1,t}$

Figure: Estimated path of $b_{1,t}$ for the unstable model M_U in the Post-82 subsample
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE
- **Econometric strategy** to allow for multiple REE: det, indet, expl.
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE
- **Econometric strategy** to allow for multiple REE: det, indet, expl.
- Great Inflation caused by drifting unstable expectations \Rightarrow different policy implications
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE

- **Econometric strategy** to allow for multiple REE: det, indet, expl.

- Great Inflation caused by drifting unstable expectations \Rightarrow different policy implications

- We should explore the possibility of (temporarily) unstable paths
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE
- **Econometric strategy** to allow for multiple REE: det, indet, expl.
- Great Inflation caused by drifting unstable expectations \Rightarrow different policy implications
- We should explore the possibility of (temporarily) **unstable paths**
 - Gourieroux et al. (1982): Asymptotically equal stationary path \Rightarrow bubble
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE
- **Econometric strategy** to allow for multiple REE: det, indet, expl.
- Great Inflation caused by drifting unstable expectations \Rightarrow **different policy implications**

- We should explore the possibility of (temporarily) **unstable paths**
 - Gourieroux et al. (1982): Asymptotically equal stationary path \Rightarrow bubble
 - Other possibilities: myopic agents, measurement errors
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE

- **Econometric strategy** to allow for multiple RE: det, indet, expl.

- Great Inflation caused by drifting unstable expectations \Rightarrow different policy implications

- We should explore the possibility of (temporarily) unstable paths
 - Gourieroux et al. (1982): Asymptotically equal stationary path \Rightarrow bubble
 - Other possibilities: myopic agents, measurement errors

- Next steps:
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE
- **Econometric strategy** to allow for multiple REE: det, indet, expl.
- Great Inflation caused by drifting unstable expectations \Rightarrow different policy implications
- We should explore the possibility of (temporarily) **unstable paths**
 - Gourieroux et al. (1982): Asymptotically equal stationary path \Rightarrow bubble
 - Other possibilities: myopic agents, measurement errors
- Next steps:
 - Markov Switching to disentangle the role of sunspot vs dynamics
Conclusions

- Generalization of RE approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE
- Econometric strategy to allow for multiple REE: det, indet, expl.
- Great Inflation caused by drifting unstable expectations \Rightarrow different policy implications

- We should explore the possibility of (temporarily) unstable paths
 - Gourieroux et al. (1982): Asymptotically equal stationary path \Rightarrow bubble
 - Other possibilities: myopic agents, measurement errors

- Next steps:
 - Markov Switching to disentangle the role of sunspot vs dynamics
 - Endogenising b
Conclusions

- **Generalization of RE** approach / novel way of introducing sunspots
- Unstable paths and drifting parameters in RE

- **Econometric strategy** to allow for multiple REE: det, indet, expl.

- Great Inflation caused by drifting unstable expectations \Rightarrow different policy implications

- We should explore the possibility of (temporarily) **unstable paths**
 - Gourieroux et al. (1982): Asymptotically equal stationary path \Rightarrow bubble
 - Other possibilities: myopic agents, measurement errors

- Next steps:
 - Markov Switching to disentangle the role of sunspot vs dynamics
 - Endogenising b
 - Asset prices and bubbles
Multiple RE solutions: Bubble literature

The solution can be rewritten as

\[
\pi_t = \sum_{j=1}^{\infty} \phi^j (b - 1) e_{t-j} + be_t + \sum_{j=1}^{\infty} b \phi^j E_t e_{t+j} = \\
= \sum_{j=0}^{\infty} \frac{1}{\phi^j} E_t e_{t+j} + (b - 1) \left[\sum_{j=1}^{\infty} \phi^j e_{t-j} + e_t + \sum_{j=1}^{\infty} \frac{1}{\phi^j} E_t e_{t+j} \right] \\
\]

see Burmeister, Flood and Gaber (1983)
\(\lambda_2 \) \begin{cases} b_2 = 1 & \text{stable} \\ b_2 \neq 1 & \text{unstable} \end{cases}
\[\begin{aligned}
\lambda_2 &= \begin{cases}
 b_2 = 1 & \text{stable} \\
 b_2 \neq 1 & \text{unstable}
\end{cases}
\end{aligned} \]
\[\begin{aligned}
\lambda_2 &= \begin{cases}
b_2 = 1 & \text{stable} \\
b_2 \neq 1 & \text{unstable}
\end{cases} \\
b_1 & \text{whatever}
\end{aligned} \]
\[\lambda_1 \begin{cases} b_2 = 1 & \text{stable} \\ b_2 \neq 1 & \text{unstable} \end{cases} \]

\[\lambda_2 \begin{cases} b_1 = 1 & \text{stable} \\ b_1 \neq 1 & \text{unstable} \end{cases} \]

\(b_1 \) whatever
Compare two "models": M_S (stable solutions) and M_U (unstable solutions).
Parameter learning

Particle learning by *Carvalho, Johannes, Lopes and Polson (2010)*

Assume that the posterior for some parameters ψ is function of a set of sufficient statistics s_t recursively updated

$$p(\psi | \theta_{0:t}, y_{0:t}) = p(\psi | s_t)$$

$$s_t = S(s_{t-1}, \theta_{0:t}, y_{0:t})$$

and consider s_t as a latent state with deterministic evolution.

- When it is not possible use Liu and West approach. Approximating the posterior distribution with mixtures of Normals.
Bayesian model monitoring (West 1986)

Compare two models: M_S and M_U.

For $t = 1 \ldots T$

- Compute the predictive likelihood: $p(y_t | y_{0:t-1}, M_i) \quad i = S, U$
- Compute the likelihood ratio

$$H_t = \frac{p(y_t | y_{0:t-1}, M_S)}{p(y_t | y_{0:t-1}, M_U)}$$

- Compute $W_t(k) = H_t H_{t-1} \ldots H_{t-k+1}$ (Kass and Raftery, 1995)

$W_t(k)$ is called the sequential Bayes factor and it assesses the fit of the most recent k observations.
Transmission mechanism of structural shocks: GIRF in the M_S model.
Stable Model, Great Inflation

Transmission mechanism of sunspot shock: GIRF in the M_S model:
solid line: $b_1 = 1.3$, dashed line: $b_1 = 1.5$.
Transmission mechanism of structural shocks: GIRF in the M_U model
Transmission mechanism of sunspot shock: GIRF in the M_U model: solid line: $b_1 = 1.3$, dashed line: $b_1 = 1.5$.
Asymptotically equal stationary path (AES)

Process for b

$$b_t = \begin{cases}
\theta b_{t-1} + 1 - \theta + u_t & \text{with probability } \frac{1}{\theta} \\
1 & \text{with probability } 1 - \frac{1}{\theta}
\end{cases}$$

where u_t is white noise, so that $E(u_t) = 0$, $\forall t. \Rightarrow E(b_t) = b_{t-1}$

This process converge to 1 with probability 1, but it is perturbed by u_t.

AES Model, Great Inflation

The behavior of $b_{1,t}$

Figure: Estimated path of AES $b_{1,t}$ for the unstable model M_U in the Great Inflation subsample
Comparing the relative fit of Ms/AESMu

Sequential Bayes Factor West (1986): $2 \ln(W_t)$ and the inflation rate

The Bayes Factor strongly favours the AES model
Comparing the relative fit of Ms/Mu: Great Moderation

Figure: Sequential Bayes Factor West (1986): $2 \ln(W_t)$ and the inflation rate