Monetary Policy & Anchored Expectations An Endogenous Gain Learning Model

Laura Gáti¹

ECB Research Department

FRB Cleveland & ECB - Inflation: Drivers and Dynamics 2022 September 29, 2022

¹The views expressed are solely the views of the author and do not necessarily reflect the views of the European Central Bank or the Eurosystem.

Anchoring

"Essential to anchor inflation expectations at some low level."

"We don't see a de-anchoring."

"Failure of the Fed to stably achieve its 2 percent target could de-anchor inflation expectations."

"Long-run inflation expectations [...] are not perfectly anchored in real economies; moreover, the extent to which they are anchored can change."

Anchoring

"Essential to anchor inflation expectations at some low level."

"We don't see a de-anchoring."

"Failure of the Fed to stably achieve its 2 percent target could de-anchor inflation expectations."

"Long-run inflation expectations [...] are not perfectly anchored in real economies; moreover, the extent to which they are anchored can change."

1. A model of unanchored expectations:

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations (Carvalho et al 2022)

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations (Carvalho et al 2022)

2. Interaction between monetary policy and unanchored expectations

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations (Carvalho et al 2022)

- 2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations (Carvalho et al 2022)

- 2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model
 - Quantify unanchoring using data on inflation expectations

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations (Carvalho et al 2022)

- 2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model
 - Quantify unanchoring using data on inflation expectations
 - Derive optimal monetary policy

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations (Carvalho et al 2022)

- 2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model
 - Quantify unanchoring using data on inflation expectations
 - Derive optimal monetary policy

3. Key takeaway: optimal monetary policy

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations (Carvalho et al 2022)

- 2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model
 - Quantify unanchoring using data on inflation expectations
 - Derive optimal monetary policy

- 3. Key takeaway: optimal monetary policy
 - anchors expectations to inflation target

- 1. A model of unanchored expectations:
 - \hookrightarrow sensitivity of long-run expectations to short-run fluctuations (Carvalho et al 2022)

- 2. Interaction between monetary policy and unanchored expectations
 - Embed anchoring theory in general equilibrium New Keynesian model
 - Quantify unanchoring using data on inflation expectations
 - Derive optimal monetary policy

- 3. Key takeaway: optimal monetary policy
 - anchors expectations to inflation target
 - responds aggressively to movements in long-run expectations

Related literature

• Optimal monetary policy in the New Keynesian model Clarida, Gali & Gertler (1999), Woodford (2003)

• Adaptive learning

Evans & Honkapohja (2001, 2006), Sargent (1999), Adam (2005), Primiceri (2006), Lubik & Matthes (2018), Bullard & Mitra (2002), Preston (2005, 2008), Evans & McGough (2015), Ferrero (2007), Molnár & Santoro (2014), Mele et al (2019), Eusepi & Preston (2011), Milani (2007, 2014), Marcet & Nicolini (2003), Eusepi, Giannoni & Preston (2020), Slobodyan & Wouters (2011)

• Anchoring and the Phillips curve

Goodfriend (1993), Svensson (2015), Afrouzi & Yang (2020), Reis (2020), Hebden et al 2020, Hazell et al (2021), Gobbi et al (2019), Carvalho et al (2022)

Laura Gáti (ECB)

MODEL OF ANCHORING EXPECTATIONS

QUANTIFICATION OF ANCHORING

OPTIMAL MONETARY POLICY

Laura Gáti (ECB)

Monetary Policy & Anchored Expectations

Households: standard up to $\hat{\mathbb{E}}$

Maximize lifetime expected utility

$$\hat{\mathbb{E}}_t^i \sum_{T=t}^\infty \beta^{T-t} \left[U(C_T^i) - \int_0^1 v(h_T^i(j)) dj \right]$$

Budget constraint

$$B_t^i \le (1+i_{t-1})B_{t-1}^i + \int_0^1 w_t(j)h_t^i(j)dj + \Pi_t^i(j)dj - T_t - P_tC_t^i$$

Firms: standard up to $\hat{\mathbb{E}}$

Maximize present value of profits

$$\hat{\mathbf{E}}_{t}^{j} \sum_{T=t}^{\infty} \alpha^{T-t} Q_{t,T} \left[\Pi_{t}^{j}(p_{t}(j)) \right]$$

subject to demand

$$y_t(j) = Y_t \left(\frac{p_t(j)}{P_t}\right)^{-\theta}$$

Aggregate relationships

• New Keynesian core: standard IS and Phillips curves

$$\begin{aligned} x_t &= \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} \beta^{T-t} ((1-\beta)x_{T+1} - \sigma(\beta i_T - \pi_{T+1}) + \sigma r_T^n) \\ \pi_t &= \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} (\kappa \alpha \beta x_{T+1} + (1-\alpha)\beta \pi_{T+1} + u_T) \end{aligned}$$

Aggregate relationships

• New Keynesian core: standard IS and Phillips curves

$$\begin{aligned} x_t &= \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} \beta^{T-t} ((1-\beta)x_{T+1} - \sigma(\beta i_T - \pi_{T+1}) + \sigma r_T^n) \\ \pi_t &= \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} (\kappa \alpha \beta x_{T+1} + (1-\alpha)\beta \pi_{T+1} + u_T) \end{aligned}$$

Observables: (π, x, i) inflation, output gap, interest rate

Aggregate relationships

• New Keynesian core: standard IS and Phillips curves

$$\begin{aligned} x_t &= \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} \beta^{T-t} ((1-\beta) x_{T+1} - \sigma(\beta i_T - \pi_{T+1}) + \sigma r_T^n) \\ \pi_t &= \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} (\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T) \end{aligned}$$

Observables: (π, x, i) inflation, output gap, interest rate Exogenous states: (r^n, u) natural rate and cost-push shock

• Need a model of: fluctuating long-run inflation expectations

- Need a model of: fluctuating long-run inflation expectations
- \rightarrow Main info assumption: $\hat{\mathbb{E}}^{i} = \hat{\mathbb{E}}^{j} = \hat{\mathbb{E}}$ captures

- Need a model of: fluctuating long-run inflation expectations
- \rightarrow Main info assumption: $\hat{\mathbb{E}}^{i} = \hat{\mathbb{E}}^{j} = \hat{\mathbb{E}}$ captures
 - Firms and households do not know mean inflation

- Need a model of: fluctuating long-run inflation expectations
- \rightarrow Main info assumption: $\hat{\mathbb{E}}^i = \hat{\mathbb{E}}^j = \hat{\mathbb{E}}$ captures
 - Firms and households do not know mean inflation
 - They learn it from observed data

- Need a model of: fluctuating long-run inflation expectations
- \rightarrow Main info assumption: $\hat{\mathbb{E}}^i = \hat{\mathbb{E}}^j = \hat{\mathbb{E}}$ captures
 - Firms and households do not know mean inflation
 - They learn it from observed data
 - \rightarrow Forecasts of inflation tomorrow centered around long-run expectation:

$$\hat{\mathbb{E}}_t \pi_{t+1} = \bar{\pi}_t + \mathbb{E}_t \pi_{t+1}$$

E: rational (model-consistent) expectations

- Need a model of: fluctuating long-run inflation expectations
- \rightarrow Main info assumption: $\hat{\mathbb{E}}^i = \hat{\mathbb{E}}^j = \hat{\mathbb{E}}$ captures
 - Firms and households do not know mean inflation
 - They learn it from observed data
 - \rightarrow Forecasts of inflation tomorrow centered around long-run expectation:

$$\hat{\mathbb{E}}_t \pi_{t+1} = \bar{\pi}_t + \mathbb{E}_t \pi_{t+1}$$

 \mathbb{E} : rational (model-consistent) expectations

 \rightarrow short-run surprises informative about long-run inflation expectations $\bar{\pi}_t$

Yesterday's one-period ahead inflation forecast:

$$\hat{\mathbb{E}}_{t-1}\pi_t = \bar{\pi}_{t-1} + \mathbb{E}_{t-1}\pi_t$$

Yesterday's one-period ahead inflation forecast:

$$\hat{\mathbb{E}}_{t-1}\pi_t = \bar{\pi}_{t-1} + \mathbb{E}_{t-1}\pi_t$$

One-period ahead inflation forecast error:

$$f_{t|t-1} = \pi_t - \hat{\mathbb{E}}_{t-1}\pi_t$$

Yesterday's one-period ahead inflation forecast:

$$\hat{\mathbb{E}}_{t-1}\pi_t = \bar{\pi}_{t-1} + \mathbb{E}_{t-1}\pi_t$$

One-period ahead inflation forecast error:

$$f_{t|t-1} = \pi_t - \hat{\mathbb{E}}_{t-1}\pi_t$$

 \rightarrow Update for long-run inflation expectations:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t f_{t|t-1}$$

Yesterday's one-period ahead inflation forecast:

$$\hat{\mathbb{E}}_{t-1}\pi_t = \bar{\pi}_{t-1} + \mathbb{E}_{t-1}\pi_t$$

One-period ahead inflation forecast error:

$$f_{t|t-1} = \pi_t - \hat{\mathbb{E}}_{t-1}\pi_t$$

 \rightarrow Update for long-run inflation expectations:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t f_{t|t-1}$$

 $k_t \in (0, 1)$ learning gain as sensitivity to surprises

Alternatives for the gain

1. Decreasing gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}$$

2. Constant gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}$$

Alternatives for the gain

1. Decreasing gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}$$

2. Constant gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}$$

3. Endogenous gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$

Alternatives for the gain

1. Decreasing gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}$$

2. Constant gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}$$

3. Endogenous gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$

Carvalho et al (2022): endogenous gain as a metric for unanchoring

- Low gain: anchored regime
- High gain: unanchored regime

Smoothly varying degrees of unanchoring

$$k_t = \mathbf{g}(f_{t|t-1}), \qquad \mathbf{g}'' > 0$$

Smoothly varying degrees of unanchoring

$$k_t = \mathbf{g}(f_{t|t-1}), \qquad \mathbf{g}'' > 0$$

 $\rightarrow \textbf{g}(\cdot)$ smooth and continuous for optimal policy problem, convex

Smoothly varying degrees of unanchoring

$$k_t = \mathbf{g}(f_{t|t-1}), \qquad \mathbf{g}'' > 0$$

 $\rightarrow \boldsymbol{g}(\cdot)$ smooth and continuous for optimal policy problem, convex

Convexity:

• Large surprises unanchor more than smaller ones

Smoothly varying degrees of unanchoring

$$k_t = \mathbf{g}(f_{t|t-1}), \qquad \mathbf{g}'' > 0$$

 $\rightarrow \boldsymbol{g}(\cdot)$ smooth and continuous for optimal policy problem, convex

Convexity:

- Large surprises unanchor more than smaller ones
- Pay more attention to inflation when it *really* surprises you

Smoothly varying degrees of unanchoring

$$k_t = \mathbf{g}(f_{t|t-1}), \qquad \mathbf{g}'' > 0$$

 $\rightarrow \boldsymbol{g}(\cdot)$ smooth and continuous for optimal policy problem, convex

Convexity:

- Large surprises unanchor more than smaller ones
- Pay more attention to inflation when it *really* surprises you (rational inattention, expectations data, experimental studies)

1. Decreasing gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}$$

2. Constant gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}$$

3. Endogenous gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$

1. Decreasing gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}$$

Optimal monetary policy: Mele et al (2019)

2. Constant gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}$$

3. Endogenous gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$

1. Decreasing gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}$$

Optimal monetary policy: Mele et al (2019)

2. Constant gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}$$

Optimal monetary policy: Molnár & Santoro (2014)

3. Endogenous gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$

1. Decreasing gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}$$

Optimal monetary policy: Mele et al (2019)

2. Constant gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}$$

Optimal monetary policy: Molnár & Santoro (2014)

3. Endogenous gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$

Marcet & Nicolini (2003), Carvalho et al (2022)

1. Decreasing gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \frac{1}{t} f_{t|t-1}$$

Optimal monetary policy: Mele et al (2019)

2. Constant gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k f_{t|t-1}$$

Optimal monetary policy: Molnár & Santoro (2014)

3. Endogenous gain:

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$

Marcet & Nicolini (2003), Carvalho et al (2022) Optimal monetary policy: -

MODEL OF ANCHORING EXPECTATIONS

QUANTIFICATION OF ANCHORING

OPTIMAL MONETARY POLICY

Laura Gáti (ECB)

Monetary Policy & Anchored Expectations

Estimating form of gain function

• Calibrate parameters of New Keynesian core to literature

Estimating form of gain function

- Calibrate parameters of New Keynesian core to literature
- Estimate flexible form of expectations process via simulated method of moments (Duffie & Singleton 1990, Lee & Ingram 1991, Smith 1993)

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$

Estimating form of gain function

- Calibrate parameters of New Keynesian core to literature
- Estimate flexible form of expectations process via simulated method of moments (Duffie & Singleton 1990, Lee & Ingram 1991, Smith 1993)

$$\bar{\pi}_t = \bar{\pi}_{t-1} + \mathbf{g}(f_{t|t-1}) f_{t|t-1}$$

• Moments: autocovariances of inflation, output gap, federal funds rate and 1-year ahead Survey of Professional Forecasters (SPF) inflation expectations at lags 0, ..., 4

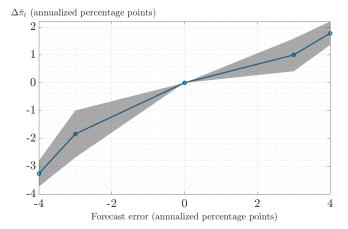
Calibration - parameters from the literature

0	0.00	
β	0.98	stochastic discount factor
σ	1	intertemporal elasticity of substitution
α	0.5	Calvo probability of not adjusting prices
κ	0.0842	slope of the Phillips curve
ψ_{π}	1.5	coefficient of inflation in Taylor rule
ψ_x	0.3	coefficient of the output gap in Taylor rule
σ_r	0.01	standard deviation, natural rate shock
σ_i	0.01	standard deviation, monetary policy shock
σ_u	0.5	standard deviation, cost-push shock
\bar{g}	0.145	initial value of the gain

Chari et al (2000), Woodford (2003), Nakamura & Steinsson (2008) Carvalho et al (2022)

Estimated expectations process

 $\bar{\pi}_t - \bar{\pi}_{t-1} = \hat{\mathbf{g}}(f_{t|t-1}) f_{t|t-1}$



Estimated change in long-run inflation expectations for various forecast errors

MODEL OF ANCHORING EXPECTATIONS

QUANTIFICATION OF ANCHORING

OPTIMAL MONETARY POLICY

Laura Gáti (ECB)

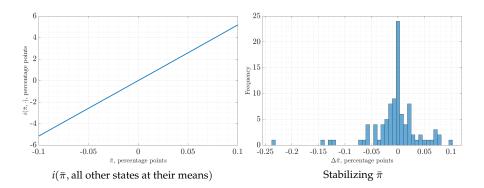
Monetary Policy & Anchored Expectations

Ramsey problem

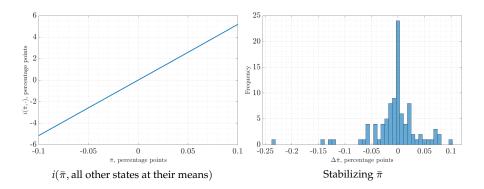
$$\begin{split} \min_{\{y_t,\bar{\pi}_{t-1},k_t\}_{t=t_0}^{\infty}} \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} (\pi_t^2 + \lambda_x x_t^2) \\ \text{s.t. model equations} \\ \text{s.t. evolution of expectations} \end{split}$$

- \mathbb{E} is the central bank's (CB) expectation
- Assumption: CB observes private expectations and knows the model

Optimal policy - responding to unanchoring

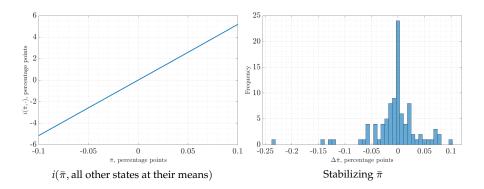


Optimal policy - responding to unanchoring



 $\uparrow \bar{\pi} \text{ by 5 bp} \Rightarrow \uparrow i \text{ by 250 bp}$

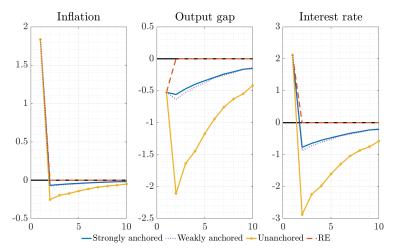
Optimal policy - responding to unanchoring



 $\uparrow \bar{\pi} \text{ by 5 bp} \Rightarrow \uparrow i \text{ by 250 bp}$

Mode: 0.3 bp movement in $\bar{\pi}$

Unanchoring amplifies shocks



Impulse responses after a cost-push shock when policy follows a Taylor rule

First theory of monetary policy for potentially unanchored expectations

First theory of monetary policy for potentially unanchored expectations

Model-based notion of unanchoring

• Sensitivity of long-run expectations to short-run fluctuations

First theory of monetary policy for potentially unanchored expectations

Model-based notion of unanchoring

• Sensitivity of long-run expectations to short-run fluctuations

Optimal monetary policy

• Anchors expectations by responding aggressively to long-run expectations