# Discussion of "The Granular Origins of Inflation and Its International Comovement"

Saroj Bhattarai

UT Austin

Federal Reserve Bank of Cleveland and ECB Conference on Inflation Sept 29-30, 2022

### **Paper Summary**

- Very nice paper on determinants of retail inflation!
- Uses a rich, multi-country scanner level data
  - Both advanced and emerging economies
- Empirically disentangles the role of granularity
  - With a focus on granularity of firms
- Assesses implications for cross-country correlations in inflation
  - Multi-national firms selling in multiple countries

### **Discussion Outline**

- Motivation and comparison with Neilsen–GS1 data
- Summarize and comment on empirical method and key results
- Possible model mechanisms and interpretation of results
  - Nominal/informational rigidities
  - Models with oligopoly
  - Open-economy dimensions

#### **Motivation**

|    | Manufacturer    |                      |      | Category               |                      |      |  |  |
|----|-----------------|----------------------|------|------------------------|----------------------|------|--|--|
|    | Name            | $\operatorname{Exp}$ | Obs  | Name                   | $\operatorname{Exp}$ | Obs  |  |  |
| 1  | Manufacturer 1  | .05                  | .02  | FROZEN FOOD            | .07                  | .06  |  |  |
| 2  | Manufacturer 2  | .04                  | .01  | SODAS                  | .04                  | .02  |  |  |
| 3  | Manufacturer 3  | .04                  | .01  | PET FOOD AND SUPPLIES  | .04                  | .04  |  |  |
| 4  | Manufacturer 4  | .04                  | .01  | PARAPHARMACY PRODUCT   | .04                  | .04  |  |  |
| 5  | Manufacturer 5  | .03                  | .01  | CHEESE                 | .04                  | .03  |  |  |
| 5  | Manufacturer 6  | .03                  | .01  | $\mathbf{MEAT}$        | .03                  | .02  |  |  |
| 7  | Manufacturer 7  | .02                  | .02  | COLD CUTS AND SAUSAGES | .03                  | .02  |  |  |
| 3  | Manufacturer 8  | .02                  | 0    | CEREALS AND MUESLI     | .03                  | .02  |  |  |
| )  | Manufacturer 9  | .02                  | 0    | DIETARY SUPPLEMENT     | .03                  | .02  |  |  |
| 10 | Manufacturer 10 | .02                  | 0    | OTHER HOUSEHOLD GOODS  | .03                  | .05  |  |  |
|    | Cumulated       | 0.31                 | 0.09 |                        | 0.38                 | 0.32 |  |  |

#### Table 5: Top 10 manufacturers and categories (US) Output

#### Motivation-Comparison with Nielsen/GS1 Data

#### Table: US Sales Share by Firms, 2010-2018

|    | Manufacturer Name | Share |
|----|-------------------|-------|
| 1  | Manufacturer 1    | 5.40  |
| 2  | Manufacturer 2    | 3.52  |
| 3  | Manufacturer 3    | 2.08  |
| 4  | Manufacturer 4    | 2.03  |
| 5  | Manufacturer 5    | 1.97  |
| 6  | Manufacturer 6    | 1.86  |
| 7  | Manufacturer 7    | 1.70  |
| 8  | Manufacturer 8    | 1.57  |
| 9  | Manufacturer 9    | 1.45  |
| 10 | Manufacturer 10   | 1.40  |
| 11 | Manufacturer 11   | 1.11  |
| 12 | Manufacturer 12   | 1.10  |
| 13 | Manufacturer 13   | 1.08  |
| 14 | Manufacturer 14   | 1.04  |
| 15 | Manufacturer 15   | 0.96  |
|    | Cumulated         | 28.24 |

#### Motivation-Comparison with Nielsen/GS1 Data

#### Table: US Sales Share by Product Group & Product Module, 2010-2018

|    | Product Group                   | Share | Product Module                   | Share |
|----|---------------------------------|-------|----------------------------------|-------|
| 1  | CARBONATED BEVERAGES            | 4.15  | CIGARETTES                       | 3.23  |
| 2  | SNACKS                          | 3.93  | SOFT DRINKS - CARBONATED         | 2.64  |
| 3  | TOBACCO & ACCESSORIES           | 3.71  | WINE-DOMESTIC DRY TABLE          | 1.72  |
| 4  | BEER                            | 3.08  | SOFT DRINKS - LOW CALORIE        | 1.51  |
| 5  | CANDY                           | 3.05  | CEREAL - READY TO EAT            | 1.39  |
| 6  | FRESH PRODUCE                   | 3.00  | LIGHT BEER (LOW CALORIE)         | 1.35  |
| 7  | JUICE, DRINKS - CANNED, BOTTLED | 2.76  | FRUIT DRINKS-OTHER CONTAINER     | 1.29  |
| 8  | PAPER PRODUCTS                  | 2.74  | CANDY-CHOCOLATE                  | 1.27  |
| 9  | BREAD AND BAKED GOODS           | 2.71  | GROUND AND WHOLE BEAN COFFEE     | 1.26  |
| 10 | PACKAGED MEATS-DELI             | 2.57  | BAKERY - BREAD - FRESH           | 1.25  |
| 11 | WINE                            | 2.55  | BEER                             | 1.21  |
| 12 | MEDICATIONS                     | 2.49  | TOILET TISSUE                    | 1.20  |
| 13 | PREPARED FOODS-FROZEN           | 2.28  | DETERGENTS - HEAVY DUTY - LIQUID | 1.12  |
| 14 | PET FOOD                        | 2.07  | YOGURT-REFRIGERATED              | 1.09  |
| 15 | DRESSINGS SALADS                | 1.99  | WATER-BOTTLED                    | 1.03  |
|    | Cumulated                       | 43.07 | Cumulated                        | 22.57 |

### **Empirical Approach**

• Price change of product *i* in country *c* as a function of shocks:

$$\Delta p_{ifgct} = \delta_{ct} + \lambda_{gc} \eta_{ct}^G + \lambda_{fc} \eta_{ct}^F + \delta_{gct} + \delta_{fct} + \varepsilon_{igfct}$$

where g is category and f is firms

• Decompose aggregate inflation:

$$\Delta p_{ct} = U_{ct} + \Gamma^g_{ct} + \Gamma^f_{ct} + \Gamma^\varepsilon_{ct}$$

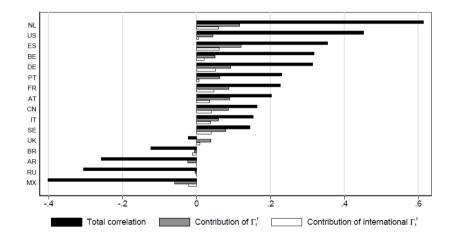
where  $U_{ct}$  is the aggregate component;  $\Gamma_{ct}^{f}$  is the firm granular residual

- Comments:
  - Dynamics? (Past shocks)
  - Persistence of inflation important (ARMA)

### Key Results-I

|                        |                          | Obs. | Mean  | Corr  | St. Dev | Relative St. Dev |
|------------------------|--------------------------|------|-------|-------|---------|------------------|
| AE                     | Inflation                | 529  | .0063 | 1     | .0188   | 1                |
|                        | $U_t$                    |      | .0023 | .7877 | .0141   | .7521            |
|                        | $\Gamma^g_t$             |      | .003  | .3206 | .0059   | .3138            |
|                        | $\Gamma^{f}_{t}$         |      | .001  | .6216 | .0093   | .4939            |
|                        | $\Gamma_t^{\varepsilon}$ |      | .0003 | .7325 | .0053   | .2814            |
| $\mathbf{E}\mathbf{M}$ | Inflation                | 180  | .0739 | 1     | .106    | 1                |
|                        | $U_t$                    |      | .0637 | .9908 | .0984   | .9287            |
|                        | $\Gamma_t^g$             |      | .0013 | .1791 | .0085   | .0805            |
|                        | $\Gamma_t^{f}$           |      | .009  | .5407 | .0128   | .1211            |
|                        | $\Gamma_t^{\varepsilon}$ |      | .0021 | .6963 | .008    | .0754            |

Table 8: Summary statistics and correlations of total inflation and different components


Notes: AE values computed pooling all advanced economies and EM all emerging markets. Correlation is of the component with total inflation and relative standard deviation is wrt to total inflation.

#### Key Results-I

- Nice result on difference between Advanced and Emerging economies
- Interpretation: The aggregate component dominant in Emerging economies because of bigger aggregate shocks
- Comments:
  - Pass-through of shocks to inflation also higher in emerging markets
  - Less nominal rigidities (endogenously)
  - Systematic response of monetary policy missing/not credible

#### Key Results-II

Figure 8: Aggregated retail inflation and granular components



### Key Results-II

• Very intriguing result on potential role of firm component and international firm component in explaining international correlation in inflation

• Comments:

- Quantitative importance might not be very high
- More likely to have a bigger effect on open advanced economies (import share)
- Bigger effect on import inflation?
- Emerging economies have negative correlation with rest of the world (exchange rate effects, producer pricing, monetary policy differences, etc..)

### Key Results II-Comparison with US Regions

| Metropolitan Area                            | Headline | Energy | Food and beverages | Housing | Recreation | Services |
|----------------------------------------------|----------|--------|--------------------|---------|------------|----------|
| Atlanta-Sandy Springs-Roswell, GA            | 0.9285   | 0.9720 | 0.8860             | 0.7865  | 0.5799     | 0.6910   |
| Baltimore-Columbia-Towson, MD                | 0.9047   | 0.8653 | 0.8975             | 0.5584  | 0.6283     | 0.6826   |
| Boston-Cambridge-Newton, MA-NH               | 0.8928   | 0.9705 | 0.8852             | 0.7128  | 0.0728     | 0.7033   |
| Chicago-Naperville-Elgin, IL-IN-WI           | 0.9496   | 0.9412 | 0.9209             | 0.7368  | 0.2262     | 0.7018   |
| Dallas-Fort Worth-Arlington, TX              | 0.9388   | 0.9765 | 0.8746             | 0.7344  | 0.3066     | 0.7225   |
| Detroit-Warren-Dearborn, MI                  | 0.9193   | 0.9622 | 0.8184             | 0.7876  | 0.2617     | 0.7517   |
| Houston-The Woodlands-Sugar Land, TX         | 0.8885   | 0.9491 | 0.9447             | 0.5315  | 0.4846     | 0.6106   |
| Los Angeles-Long Beach-Anaheim, CA           | 0.9214   | 0.9321 | 0.9257             | 0.7581  | 0.7349     | 0.8060   |
| Miami-Fort Lauderdale-West Palm Beach, FL    | 0.9508   | 0.9697 | 0.6965             | 0.8487  | 0.4745     | 0.8651   |
| New York-Newark-Jersey City, NY-NJ-PA        | 0.8959   | 0.9822 | 0.9427             | 0.6225  | 0.5073     | 0.6757   |
| Philadelphia-Camden-Wilmington, PA-NJ-DE-MD  | 0.9067   | 0.9834 | 0.8855             | 0.6806  | 0.2779     | 0.6976   |
| San Francisco-Oakland-Hayward, CA            | 0.6443   | 0.9544 | 0.7957             | 0.3452  | 0.2951     | 0.4845   |
| Seattle-Tacoma-Bellevue WA                   | 0.8845   | 0.9527 | 0.9026             | 0.7257  | 0.4409     | 0.7083   |
| Washington-Arlington-Alexandria, DC-VA-MD-WV | 0.9100   | 0.9823 | 0.8783             | 0.6139  | 0.2594     | 0.6239   |

#### Table: Correlations of US MSA inflation with the rest of US inflation

## **Theoretical Framework(s)**

- Some theoretical predictions from relevant models might be useful for empirical method (to motivate or test)
- Granularity that is clear in the data calls for an oligopoly model
- Price rigidities most likely relevant empirically (data is quarterly)
- Endogenous price rigidity (e.g, through information frictions) to help interpret the Emerging vs. Advanced economies differences
- Ideally, a multi-country set-up

#### Theoretical Framework(s)-Afrouzi (2022)

• Prices in a static version

$$p_i = \lambda_i [(1 - \alpha_i)(q + s_i) + \alpha_i p_{-i}]$$

where  $\lambda_i$  is endogenous rigidity and  $\alpha_i$  is strategic complementarity

• Aggregate shock pass-through and dependence on competitors (K)

$$PT(q) = \lambda_i [(1 - \alpha_i) + \alpha_i \frac{\partial p_{-i}}{\partial q}]; \frac{dPT(q)}{dK} > 0$$

• Firm-specific shock pass-through and dependence on competitors (K)

$$PT(s_i) = \lambda_i (1 - \alpha_i); \frac{\partial PT(s_i)}{\partial K} = (1 - \alpha_i) \frac{\partial \lambda_i}{\partial K} + \lambda_i \frac{\partial (1 - \alpha_i)}{\partial K}$$

#### Conclusion

- Really enjoyed reading this excellent paper!
- Intriguing results from a rich and unique multi-country dataset
- Potential to resolve some key issues in international inflation dynamics
  - Role of firm granularity in inflation behavior
  - Advanced vs. emerging economy differences
  - Cross-country correlation (or lack thereof) in inflation
- Future project: Could use some insights from theory for estimation