Price Trends over the Product Life Cycle and the Optimal Inflation Target¹

Klaus Adam University of Oxford and CEPR

> Henning Weber Deutsche Bundesbank

> > May 2019

¹The opinions expressed in this presentation are those of the authors and do not necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem.

Introduction

Micro data from modern economies show high rates of product turnover

- Nakamura & Steinsson 2008: Micro data underlying U.S. CPI
- Broda & Weinstein 2010: Product data at barcode level

Work on endogenous growth emphasizes role of product turnover & life cycles in the *real economy* since long (e.g., Aghion & Howitt 1992)

This paper analyzes role of product life cycles in the monetary economy

- provides new facts on trends in relative prices over product life cycle
- 2 shows how "relative price trends" determine optimal inflation target Π^\star

New Evidence from U.K. Micro Price Data

- Product prices decline with product age, relative to average price in narrow expenditure category
 - *In relative terms*, newly entering products tend to be expensive, but become cheaper once they age
- Substantial heterogeneity in age trends across expenditure categories
 - E.g., strongly negative age trends in items with "news value" (fashion)
- Oownward trend in relative prices accelerated over past two decades

Normative Consequences – Optimal Inflation Target Π^*

- ullet Proposition: Estimated age trend in relative price P_{jt}/P_t is efficient
 - Holds in sticky price model with suboptimal inflation and shocks
 - Price stickiness distorts level, but not age trend, of relative price
- ∞ many ways to arrive at estimated age trend in P_{jt}/P_t
 - Declining P_{it} , increasing P_t , or any combination thereof
- ullet Optimal way to implement estimated age trend is positive Π^{\star}
 - ullet Changes in P_{jt} distortive $\Longrightarrow P_{jt}$ constant
 - $\implies P_t$ should *increase* at inverse rate of age trend

 P_t increases as newly entering products charge high relative prices. . .

Normative Consequences – Optimal Inflation Target Π^{\star}

- Monetary policy tradeoff underlying choice of Π^*
 - Estimated age trend in rel prices varies across expenditure categories \implies optimal inflation Π_{τ}^{\star} varies across categories
 - In sticky price model with prod life cycle, tradeoff optimally resolved as $\Pi^{\star} \approx \text{expenditure-weighted average of } \Pi_z^{\star}\text{'s}$
- Estimate Π^* using U.K. micro price data
 - Π^* estimate ranges from 2.6% to 3.2% in 2016
 - \bullet Π^{\star} estimate increases by around 1.2% between 1996 and 2016

Outlook

- 1 U.K. Evidence on Age Trends in Relative Product Prices
- Sticky Price Model with Product Life Cycles
- Stimation Results for Optimal Inflation Target

Estimating Age Trends in Relative Product Prices

Employ U.K. micro price data underlying official U.K. CPI

Each product j classified into one of pprox 1100 item (expenditure) categories

For each item category z, estimate linear panel regression

$$\ln \frac{\widetilde{P}_{jzt}}{P_{zt}} = f_{jz} + \ln (b_z) \cdot s_{jzt} + u_{jzt}$$
 (1)

- \widetilde{P}_{jzt} = nominal price of product j in item z
- $P_{zt} = quality \ adjusted \ price index for item z$
- s_{jzt} = in-sample product age (zero at entry date)
- $b_z =$ common age trend (w/o product turnover, must have $b_z = 1$)

U.K. Micro Price Data Underlying U.K. CPI

- Kryvtsov & Vincent 2017; Blanco 2018; Marencak & Hahn 2019
- Monthly sample from Feb 1996 Dec 2016, 29 million price quotes
- Drop "invalid" & "duplicate" (not uniquely identified) quotes Petails
- Replicate official item indices (q adj, weights) excl duplicates Details
- Follow same product over time to estimate age trends
 - Split price trajectory of uniquely identified product at (i) substitution flags and (ii) observation gaps larger than one month
- Baseline sample: Z = 1093 items, 21.2 million price quotes

Number of Products per Item				
Median	925			
Mean	1523.5			
Number of Price Quotes per Item				
Median	14846			
Mean	18739			
Length of Price Spell per Product (Months)				
Median	9			
Mean	14.5			

U.K. Evidence on Age Trends in Relative Prices Policies

Item Description	Relative Price Change	Exp. Weight			
	(in % per year)	(in %)			
Relative Price Increase					
HIFI - 2007	3.28	0.15			
WIDESCREEN TV - 2005	2.55	0.31			
CAMCORDER-8MM OR VHS-C	2.34	0.16			
WASHING MACHINE - 2008	1.82	0.16			
WASHING MACH NO DRYER MAX 1800	1.48	0.17			
LEISURE CENTRE ANNUAL MSHIP	1.34	0.16			
COOKED HAM PREPACKED/SLICED	0.84	0.17			
Relative Price Decline					
MENS SHOES TRAINERS	-7.84	0.18			
PRE-RECORDED DVD TOP 20	-8.14	0.23			
WOMENS SUIT	-8.95	0.17			
LADYS SCARF	-20.19	0.17			
COMPUTER GAME TOP 20 CHART	-21.69	0.31			
WOMENS DRESS-CASUAL 1	-25.55	0.17			
PRE-RECORDED DVD (FILM)	-35.03	0.16			

Other Dimensions of Heterogeneity across Items

Sticky Price Model with Product Life Cycles

Augmented version of one-sector model in Adam & Weber 2019

- Many expenditure items $z=1,\ldots Z_t$, exogenous item turnover
- Item-specific product life cycles driven by quality & productivity
 - Product quality "frontier" Q_{zt} evolves stochastically over time
 - Product quality Q_{jzt} set at entry and constant thereafter
 - **Productivity** G_{jzt} evolves dynamically over product life
- Idiosyn entry / exit shock yields stochastic product life time

Relative Price Trends over Product Life Cycle

Calvo-type pricing frictions

- At time of product entry, firm can freely choose product price
- Subsequently, firm faces item-specific price stickiness

Quality adj **optimal reset price** $P_{jzt}^{\star} \equiv \widetilde{P}_{jzt}^{\star}/Q_{jzt}$ has two components:

$$\frac{P_{jzt}^{\star}}{P_{zt}} = \underbrace{\left(\frac{Q_{jzt} \, \mathsf{G}_{jzt}}{Q_{zt}}\right)^{-1}}_{\text{Life cycle dynamics}} \times \underbrace{\left(\frac{\theta}{\theta-1} \frac{1}{1+\tau}\right) \frac{n_{zt}}{d_{zt} p_{zt}}}_{\text{stationary forward-looking comp}}$$

- ullet Price stickiness only distorts fwd-looking comp \implies level of P_{jzt}^{\star}/P_{zt}
- n_{zt} , d_{zt} are stationary exp disc marginal costs & revenues Details

Life Cycle Dynamics in Productivity

Output quantity of product j in item z

$$\widetilde{Y}_{jzt} = A_{zt} \frac{G_{jzt}}{G_{jzt}} \left(K_{zjt}^{1-\frac{1}{\phi}} L_{zjt}^{\frac{1}{\phi}} \right)$$

• Product-specific TFP ("experience"):

$$G_{jzt} = \overline{G}_{jzt} \cdot \epsilon_{jzt}^{G},$$
 $\epsilon_{jzt}^{G} \sim \Xi_{z}^{G}$ drawn at entry, then constant $\overline{G}_{jzt} = \begin{cases} 1 & \text{for age } s_{jzt} = 0, \\ g_{zt} \cdot \overline{G}_{jz,t-1} & \text{otherwise,} \end{cases}$ $g_{zt} = g_{z} \cdot \epsilon_{zt}^{g},$ $\epsilon_{zt}^{g} := \text{stationary with } E \ln \epsilon_{zt}^{g} = 0$

● Asspts Quality

Proposition

Consider a stochastic economy with potentially suboptimal inflation Π_t . In price adjustment periods, the **optimal reset price** satisfies

$$\ln \frac{P_{jzt}^{\star}}{P_{zt}} = f_{jz}^{\star} - \ln \left(\frac{g_z}{q_z}\right) \cdot s_{jzt} + u_{jzt}^{\star}, \tag{2}$$

where s_{jzt} is product age and u_{izt}^{\star} a stationary residual with $E[u_{izt}^{\star}] = 0$.

- Despite sticky prices, age trend only due to life cycle in productivity g_z and quality q_z
 - \implies Sticky-price firm has profit incentive to track **flex-price trend**
- Eqn (2) resembles previous regression (but: reset vs all prices, q adj)
 - \implies Estimated age trends in U.K. data are estimates of g_z/q_z !

Corollary

The optimal inflation rate that maximizes steady-state welfare is equal to

$$\Pi^* = \sum_{z=1}^{Z} \psi_z \left(\frac{\mathsf{g}_z}{\mathsf{q}_z} \frac{\gamma_z}{\gamma} \right) + O(2),$$

where ψ_{z} is spending share and γ_{z}/γ relative growth of item z. Prop

- **1 Optimality**: $P_{zt} = \text{inverse age trend} \implies \prod_{z}^{\star} = g_z/q_z$
- **New policy tradeoff**: One instrument Π^* but many different Π_z^* 's
 - Wolman 2011 studies related tradeoff in model with $g_z/g_z=1$
- **Estimation**: Age trends in relative prices in U.K. data inform Π^*
 - Allow for item turnover $Z_t \implies$ gradual time variation in Π^*

Baseline Results - Π^* Estimate Using All Prices

Π^* Estimate Using All Prices (Baseline) vs Reset Prices

Π^* Trend Decomposition (Melitz Polanec 2015)

Π^* Estimate For Alternative Treatment of Sales Prices

Conclusions

Provided new evidence from U.K. micro price data that

- relative product prices decline with product age
- age trends differ widely across expenditure categories

Showed that age trends determine optimal inflation target Π^* :

- ullet New monetary policy tradeoff underlying choice of Π^{\star}
- ullet For U.K. data, Π^{\star} estimates in 2016 range from 2.6% to 3.2%
- ullet T* estimate increased by 1.2% between 1996 and 2016

Relevance of Weighting Scheme for Estimated Π^*

Table: Number of Price Quotes and ONS Product Identifiers

Price quotes in raw data	28.995.064
ONS product identifiers	736078
Price quotes excluding duplicate quotes	24.525.632
ONS product identifiers	687212
Price quotes excluding duplicate & invalid quotes	22.825.052
ONS product identifiers	682747
Price quotes w/o duplicate & invalid quote for replicated items	21.215.430
ONS product identifiers	613031

Table: Substitution & Turnover Rates: Products and Product Identifiers

Substitution within ONS Product Identifiers	Monthly Rate in %		
Comparable substitutions	5.74		
Non-comparable substitutions	0.31		
Turnover for ONS Product Identifiers			
Entry rate	2.44		
Exit rate	2.44		

Age Trends in Relative Prices vs Nominal Prices

- Mean increases by 2.3% reflecting aggr inflation (2% in sample)
- Melser & Syed 2016: Mixed evidence for nominal product prices

	Relative Price	Exp. Weight	Number
Division Description	Trend	in 2016	of Items
	(in % per year)	(in %)	(full smpl)
Food & Non-Alcoholic Beverages	-1.00	18.07	282
Alcoholic Beverages & Tobacco	-0.41	8.03	66
Clothing & Footwear	-9.36	11.92	149
Housing, Water, Electricity & Gas	-0.83	0.75	38
Furniture, Equip. & Maintenance	-1.67	9.98	146
Health	-0.73	3.82	26
Transport	-0.79	6.99	41
Communications	-6.97	0.11	7
Recreation & Culture	-3.98	9.44	157
Restaurants & Hotels	-0.36	18.82	79
Miscellaneous Goods & Services	-1.68	12.54	90

Optimal Quality-Adjusted Reset Price

$$\frac{P_{jzt}^{\star}}{P_{zt}} = \left(\frac{Q_{jzt}G_{jzt}}{Q_{zt}}\right)^{-1} \left(\frac{\theta}{\theta - 1}\frac{1}{1 + \tau}\right) \frac{N_{zt}}{D_{zt}} \frac{P_t}{P_{zt}}$$

$$\begin{split} N_{zt} &= \frac{MC_t}{P_t A_{zt} Q_{zt}} \\ &+ \alpha_z (1 - \delta_z) E_t \left[\Omega_{t,t+1} \Pi_{z,t+1}^{\theta-1} \Pi_{t+1} \left(\frac{Y_{t+1}}{Y_t} \right) \left(\frac{q_{z,t+1}}{g_{z,t+1}} \right) N_{z,t+1} \right] \end{split}$$

$$\textit{D}_{\textit{zt}} = 1 + \alpha_{\textit{z}} (1 - \delta_{\textit{z}}) \textit{E}_{\textit{t}} [\Omega_{\textit{t},\textit{t}+1} \Pi_{\textit{z},\textit{t}+1}^{\theta-1} \left(\frac{\textit{Y}_{\textit{t}+1}}{\textit{Y}_{\textit{t}}} \right) \textit{D}_{\textit{zt}+1}]$$

with marginal costs MC_t ; discount factor $\Omega_{t,t+1}$; output subsidy $\tau \cap Back$

Life Cycle Dynamics in Product Quality

$$C_{zt} = \left(\int_0^1 \left(rac{Q_{jzt}}{C_{jzt}} \widetilde{C}_{jzt}
ight)^{rac{ heta-1}{ heta}} \mathrm{dj}
ight)^{rac{ heta}{ heta-1}}$$

Quality of a new product j entering in time t is

$$Q_{jzt} = Q_{zt} \cdot \epsilon^Q_{jzt}, \quad \epsilon^Q_{jzt} \sim \Xi^Q_z$$
 drawn at entry, then constant

Quality of product j stays constant over product life,

$$Q_{jzt} = Q_{jz,t-s_{jzt}}$$
 with $s_{jzt} :=$ product age

Quality "frontier" evolves as

$$Q_{zt} = q_{zt}Q_{zt-1}$$
 with $q_{zt} = q_z \epsilon_{zt}^q$

 ${m q_z}:=$ mean quality growth; ${m arepsilon_{zt}^q}:=$ stationary with $E\ln {m arepsilon_{zt}^q}=0$ Deck

Theorem

Assume $-1 < \tau \le 1/(\theta-1)$ and consider the limit $\beta(\gamma)^{1-\sigma} \to 1$. Then, the welfare maximizing steady-state inflation rate is given by

$$\Pi^{\star} = \sum_{z=1}^{Z} \omega_{z} \left(\frac{g_{z}}{q_{z}} \frac{\gamma_{z}}{\gamma} \right), \tag{3}$$

where $\gamma_z/\gamma=a_zq_z/\prod_{z=1}^Z(a_zq_z)^{\psi_z}$ and weights $\omega_z\geq 0$ are given by

$$\omega_{z} = rac{ ilde{\omega}_{z}}{\sum_{z=1}^{Z} ilde{\omega}_{z}}$$
, where

$$\tilde{\omega}_z = \frac{\theta \psi_z \alpha_z (1-\delta_z) (\frac{\gamma}{\gamma_z} \Pi^\star)^\theta (\frac{g_z}{q_z})^{-1}}{\left[1-\alpha_z (1-\delta_z) (\frac{\gamma}{\gamma_z} \Pi^\star)^\theta (\frac{g_z}{q_z})^{-1}\right] \left[1-\alpha_z (1-\delta_z) (\frac{\gamma}{\gamma_z} \Pi^\star)^{\theta-1}\right]}.$$

Robustness to Imperfect Quality Adjustment

• Define not quality adjusted item price level

$$\widetilde{P}_{zt} = \left(\int_0^1 (\widetilde{P}_{jzt})^{1- heta} \mathsf{dj} \right)^{rac{1}{1- heta}}$$

- ullet Show $\widetilde{\Pi}_z=q_z\Pi_z \implies \widetilde{\Pi}_z$ too high w/o quality adj if $q_z>1$
- ullet Estimate \emph{biased} age trend: $\ln(\widetilde{P}_{jzt}^{\star}/\widetilde{P}_{zt}) = \widetilde{f}_{jz}^{\star} \ln(g_z) \cdot s_{jzt}$
- Set optimal target w/o quality adj: $\ln \widetilde{\Pi}^\star = \sum_{z=1}^Z \psi_z \ln \left(g_z \frac{\gamma_z^e}{\gamma^e} \right)$
- This monetary policy achieves $\ln \Pi = \ln \Pi^*$