"Price Trends over the Product Life Cycle and the Optimal Inflation Target," by Klaus Adam and Henning Weber

Discussion by Alexander L. Wolman¹

Federal Reserve Bank of Richmond

May 16, 2019
Inflation: Drivers and Dynamics Conference, Cleveland Fed

¹The views expressed here do not represent the views of the Federal Reserve Bank of Richmond or the Federal Reserve System.

- 1. One-slide summary of paper
- 2. Features of model than can make zero inflation suboptimal
- 3. Miscellaneous comments

- prices of individual products tend to fall over product lifetime
- differential price trends across items (terminology: many products per item)
- Calvo model with Z items (Cobb-Douglas agg.),
 Dixit-Stiglitz products for each item
 - random lifetime of a product (poisson)
 - productivity growth varies across items
 - productivity grows with product age
 - quality (demand-side) is constant with age, is higher for each entering cohort of products
- Optimal inflation:
 - want concentrate nominal price adjustment in new items; new items can choose price unconstrained, Calvo thereafter
 - calibration implies π^* between 2.6% and 3.2%

Deep Background

- In simplest sticky price models, zero inflation eliminates distortions associated with price stickiness
 - With zero inflation, no need for any prices to adjust, so price stickiness irrelevant
- Reasoning breaks down if there are multiple "objects" (goods, labor) whose relative price needs to change over time and whose nominal prices are sticky. For example:
 - Erceg, Henderson and Levin (2000): labor and single consumption aggregate
 - Benigno (2004): 2 regions with distinct consumption goods in a currency union
 - Huang and Liu (2005): final goods and intermediate goods
 - Wolman (2011): multiple consumption goods, trends in relative productivity

Immediate Background

- Adam and Weber (2019 AER), one-good Calvo model with 3 components to productivity:
 - aggregate (A)
 - factor that increases with age of product (Z)
 - factor that increases with cohort of product (Q)
- Optimal inflation concentrates price adj. in new cohorts, where it's "free," keeps product price constant with age
 - If productivity increases with age, but not cohort (Z grows, Q constant), inflation is optimal, because want relative price to decline with age
 - If productivity increases with cohort, but not age (Q grows, Z constant), deflation is optimal, want relative price to increase with age.
- Although optimal inflation not zero, with only one sticky-price "good" optimal inflation does eliminate distortions associated with price stickiness (like Aoki)

This paper

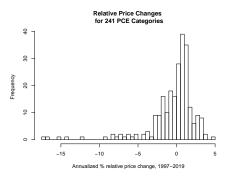
- Loosely, Wolman (2011) + Adam and Weber (2019)
 - Multiple items with trending relative productivity

 relative price trends across items
 - Random product entry and exit within sectors
 - productivity increases with age
 - quality increases with cohort (slight change from prev. paper)
- Three reasons for nonzero inflation
 - item-level relative prices might need to change because of productivity differences
 - product-level relative prices might need to fall with age because of rising productivity with age
 - product-level relative prices might need to rise with age because of quality rising with cohort
- Optimal inflation balances these three considerations

Inflation or deflation?

- Productivity growth differs across items
 - If items with stickier prices have relative high (low) productivity growth, this favors inflation (deflation): let the other prices increase (decrease)
- Productivity increases with age
 - as in AW (2019), this favors inflation: let the new items' prices rise
- Quality increases with cohort
 - this favors deflation: let the new items' prices fall
- Optimal inflation balances these three considerations (elegant but complicated nonlinear equation on p. 26)

Optimal inflation

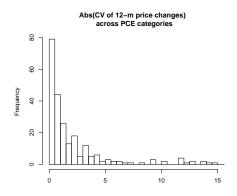

Approximation:

$$\Pi^* = \sum_{z=1}^{Z} \overbrace{\psi_z}^{\text{CD weights}} \times \underbrace{\frac{\gamma_z^e}{\gamma_z^e}}_{\text{inv.rel. price trend (time)}} \times \underbrace{\frac{g_z}{q_z}}_{\text{inv.rel. price trend (time)}} + O\left(2\right)$$

- notable that heterogeneity in price stickiness does not appear, whereas central in Wolman (2011)
- however, note that the approximation is taken around a point without trends in item level relative prices...

Misc. comments

Suggestive picture from U.S. PCE



 Variation in trends resurrects variation in price stickiness as relevant consideration for optimal inflation

Fluctuations around trends in item-level relative prices

Misc. comments

 There are trends in category-level relative prices (previous picture), but also significant price-change variation around those trends. Histogram for absolute value of coefficient of variation of price changes:

Why care about the noise in relative price changes?

- The two pictures showed that there are trends in relative prices and volatility around those trends. For the optimal rate of inflation, only the trends matter (I think).
- HOWEVER, the presence of idiosyncratic fluctuations (in the paper, the ϵ variables) has implications for the welfare cost of suboptimal inflation:
 - ϵ represent reasons for desired price changes independent of trends.
 - to the extent that these factors dominate the trends in driving price adjustment behavior (figure 2 suggest so, at least in some sectors), then varying inflation rate may have small welfare implications
 - this is speculation, but authors can calculate welfare cost of deviating from Π*

Concluding thoughts

- As a policy advisor, I will not YET be actively promoting this paper's findings and mechanisms to my superiors.
- As a researcher, I will definitely be promoting the paper.
 - It was a pleasure to read and it is an impressive accomplishment
 - The mechanisms it introduces (along with the authors' AER 2019) deserve further study.
 - The paper represents an excellent use of micro price data, as the mechanisms require micro data for 'identification.'