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INTRODUCTION 

Many commonly used “consistent” estimators – that is, estimators that are consistent for a 

particular model – are what Müller (2007) terms “highly fragile”: Small contaminations can make 

the estimator converge in probability to something arbitrarily divergent. For instance, the classical 

estimator of the covariance matrix is zero-breakdown: Sufficient corruption of a single data point 

– a negligible percentage of a large sample – can cause the estimator to break down, that is, to be 

driven arbitrarily far from the true population covariance matrix. The breakdown value is the 

minimum fraction of gross outliers that can completely spoil the estimate. A nonzero breakdown 

value is related to “qualitative robustness”; we define this term more formally below, but 

intuitively, an estimator is qualitatively robust if a small perturbation of the distribution of x – for 

example, the introduction of a small fraction of data drawn from a different distribution – leads to 

a small change in the asymptotic distribution of the estimator. Many consistent estimators are not 

qualitatively robust: Consider contaminating the sample with a small amount of data drawn from 

a standard Cauchy distribution. The mean is no longer defined! Standard techniques such as 

multivariate regression or principal components are based on multivariate means, covariance 

matrices, and least-squares fitting, all of which lack qualitative robustness, all of which can be 

profoundly influenced by even a few unusual data points (UDPs). Rousseeuw and Leroy (1987) 

provide many examples where the OLS estimator breaks down completely.1 Such phenomena do 

not disappear asymptotically.  

Often, economists ignore this issue. Sometimes researchers attempt to rectify such 

estimator sensitivity by removing “outliers,” or UDPs, where detection of such points may be done 

on the basis of being extreme in one dimension of the data (for example, income in excess of $1 

million), or perhaps on the basis of traditional outlier-detection techniques such as Cook’s d. 

However, such methods can easily fail in multivariate data, as we discuss below; multivariate 

outliers can be extremely challenging to identify, particularly in large data sets.  

Less commonly, analysts make use of robust regression in order to assess whether their 

findings are reliable. But in practice, most commonly used robust regression techniques are less 

robust than they appear. For instance, perhaps the most commonly used robust regression method 

in economics, median regression, is actually zero breakdown (!): A single outlying (x,y) pair can 

force all quantile regression hyperplanes to pass through it.2  

                                                                 
1 See also Zaman, Rousseeuw, and Orhan (2001) for further discussion and some small-sample examples using a least 
trimmed squares estimator. 
2 This is a known defect of the entire class of M-estimators, and this defect has motivated the search for robust quantile 
regression methods, such as that of Rousseeuw and Hubert (1999). 
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Other methods, such as the least median of squares (LMS) estimator (Hampel (1975)), the 

least trimmed squares (LTS) estimator (Rousseeuw (1984, 1985)), the least trimmed absolute 

deviations (LTA) estimator (Bassett (1991) and Hossjer (1991)), and the minimum covariance 

determinant estimator (MCD) (Rousseeuw (1984)), are impractical to compute except in small 

data sets, since they involve the combinatorial problem of determining the c best-fitting data points 

to include. As a result, so-called “practical” implementations – more accurately, approximations, 

such as “fast LTS” or “fast MCD”3 – are used. But these approximations do not necessarily share 

the good properties of the actual estimators. Why? Most commonly, such approximations involve 

“basic resampling,” where numerous random samples or “starts” of minimal size are drawn, on 

which basis distances or residuals can be estimated (and appropriate minimization can take place), 

generally after refinement steps.4 Effectively, these approaches attempt to stumble upon a subset 

of the data that is clean, which can then be used to identify problematic data points. However, 

Hawkins and Olive (2002) show that resampling algorithms that use a fixed number K of starts of 

bounded size produce inconsistent estimators.5 Furthermore, as those authors show (and as the 

simulations below reinforce), huge computations are needed for good approximations in large, 

high-dimensioned samples.6 When data are systematically contaminated, large sample sizes make 

things worse for these methods, not better, since they increase computational time without 

improving the performance of the individual starts.  

Fortunately, better methods that address the aforementioned deficiencies now exist. Our 

paper falls under an “MCD” general approach, one that shares some features with fast MCD, but 

rather than using numerous random starts, our approach instead uses a handful of “initial” robust 

estimates of the mean and covariance of the sample as the starts. These initial estimates are 

refined, after which an MCD criterion is applied to select the final robust estimate of the mean 

and covariance. Equipped with these robust estimates, it is straightforward to conduct subsequent 

                                                                 
3 See Rousseeuw, et al. (2004) for fast LTS and Rousseeuw, and Van Driessen (1999) for fast MCD. 
4 As Hawkins and Olive (2002) observe, refinement steps do not improve theoretical convergence rates, but they can 
often give dramatic practical improvement. 
5 These authors provide a dramatic example of failure using a real-world data set with only 276 observations and seven 
variables that had nine outliers: five infants and four toddlers. Even with 30,000+ starts, the final LMS and LTS fits 
accommodated the five infants. Note that if a random start contains one or more contaminated cases, that start will 
fail. Olive and Hawkins (2010) further establish that “If the algorithm needs to use many attractors to achieve outlier 
resistance, then the individual attractors have little outlier resistance. Such estimators include elemental concentration 
algorithms, heuristic and genetic algorithms, and projection algorithms.” Hawkins and Olive (2002) further 
demonstrate via simulation that finding six-standard-deviation outliers in a 50-dimensional regression is a nontrivial 
undertaking. They also note that even in theory, the exact LTS, LMS, and LTA estimators can pass through outliers. 
Yohai’s two-stage estimators, such as MM (Yohai (1987)), need an initial consistent high breakdown estimator – but 
are always implemented with inconsistent estimators such as the ones noted above. 
6 Similarly, the forward search – see Atkinson, Riani, and Cerioli (2004) – requires a valid start, such as an LTS-based 
start; furthermore, it requires long computation times for large data sets. 
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inference, such as multivariate regression (see below). Further, these estimates allow the 

straightforward detection of unusual data points, based on (now robustly-estimated) Mahalanobis 

distances. The analysis of UDPs can lead to a deeper understanding about the data-generating 

process (see also the discussion in Knez and Ready (1997)), and identification of such data is 

sometimes the point of an analysis (for example, detecting counterfeits or fraud, identifying 

superstars). Indeed, as Janson and Verbrugge (2020) discuss in more detail, tools like these can 

play a critical role in discovering heretofore unknown unobserved variables (or multiple data-

generating mechanisms) in the data. 

Our chief contribution is to extend previous work in this branch of the literature by 

integrating insights from a separate branch of the machine learning literature, clustering. This is a 

notable advance. UDPs that are distributed completely at random represent the least troublesome 

type of contamination, but contamination that is systematic, that is, contamination consisting of 

groupings of aberrant points, can be both far more problematic and far more challenging to detect. 

This is due to masking. As discussed in more detail in the Appendix, masking occurs when a cluster 

of anomalous points effectively disguise each other, compromising inference without there being 

any indication that something has gone wrong. Traditional approaches to outlier detection, such as 

Cook’s d, are rarely able to detect such outlier configurations. But these same configurations can 

also pose a challenge to most methods, as will be evident in our performance comparison. On the 

face of it, cluster analysis would seem well-suited to addressing this challenge, since its entire aim 

is to find partitions that best approximate the data. But conventional clustering methods tend to be 

non-robust and can fail in the presence of aberrant data.  

We make several contributions. We develop a novel robust clustering technique. We 

further employ this as a novel robust start in an MCD-based method, along with a second novel 

robust start that we develop. Are these significant contributions? Following the standard approach 

in this literature, we assess the relative performance of our new methods on the basis of classic 

real-world data sets (where the “answer” is “known”) and using artificial data that are 

“contaminated” in various ways. We demonstrate that our methods operate on par with, and in 

some cases dominate, the heretofore best methods. And we demonstrate that these tools “matter,” 

in that we demonstrate that in the economic study we investigate, UDPs drive the main results (and 

for most of the data, the opposite conclusions hold). This does not mean that the results are 

“wrong” — but it does mean that the story is (at least) more nuanced. 

Thus, we provide economists with powerful new tools for understanding the data they are 

confronted with. We believe that methods like ours should be routinely used as part of a scientific 
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(hands-off) robustness test of results – and may also be useful in machine learning applications, 

where contamination is a severe threat to inference. If evidence for UDPs is uncovered, a 

researcher then faces the important – though perhaps challenging – decision about what to do next. 

With knowledge of the set of UDPs in hand, she must determine the best course of action: further 

study to determine if there is an omitted categorical variable; developing or altering existing theory 

to take into account the now-richer understanding of the data; winsorizing, data cleaning, or simply 

focusing on one part of the sample, such as the majority; or perhaps something else. 

BACKGROUND 

Arguably the two best current practical estimators of multivariate location and dispersion are a 

reweighted version of the FCH (“fast, consistent, and highly outlier resistant”) estimator of Olive 

and Hawkins (2010), and the detMCD (“deterministic minimum covariance determinant”) 

estimator of Hubert, Rousseeuw, and Verdonck (2012). These are practical algorithms purported 

to approximate the MCD estimator of Rousseeuw (1984), although this claim is admittedly tenuous 

(see Olive and Hawkins (2010) and Olive (2017)). These “distance-based” methods are simple, 

fast, and non-parametric in that they do not require knowledge of the underlying data distribution. 

Zhang, Olive, and Ye (2012) demonstrate the solid performance of a reweighted FCH estimator 

entitled RMVN (so termed because it is reweighted and because it is useful for estimating the 

parameters of outlier-contaminated multivariate normal data.) Both the RMVN and detMCD 

estimators are practical in that they may be applied to large data sets and estimated relatively 

quickly; and both have been shown to work well for both simulated and real-world data, although 

they have never previously (to our knowledge) been compared in a single study. As we explain 

below, FCH-based estimators are backed by large-sample theory (described below), a rarity in this 

literature – though small sample performance with contaminated data may be of greater interest. 

Furthermore, in a sense to be made more precise below, the RMVN estimator is subsumed within 

the estimator introduced here. 

This study makes five contributions. First, it introduces a new multivariate outlier 

identification technique, simple cluster-based UDP identification (sCBUI), designed to partition 

data into components that were generated by different multivariate data-generating processes. In 

the data-mining field, clustering methods are often used for outlier detection (see, for example, 

Yu, Sheikholeslami, and Zhang (2002), Ghoting, Parthasarathy, and Otey (2006), Bhaduri and 

Matthews (2011), Pamula, Deka, and Nandi 2011), or Bansal and Chugh (2013)). In this literature, 

emphasis focuses on efficient anomaly detection, I/O costs, and computational burden. But despite 

the existence of some general procedures directly aimed at robust covariance matrix estimation 
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(for example, Wang and Raftery (2002)), cluster-based methods have not gained traction in the 

wider statistics field, nor have they previously been integrated into broader algorithms. This may 

be partly due to their complexity and/or instability (see Croux and Van Aelst (2002)). sCBUI uses 

a very simple clustering method, based on distance or density; yet despite this simplicity, it is 

powerful. For some outlier configurations, taken as a standalone method, sCBUI outperforms all 

the other methods considered in this study. Thus, it may be useful when there is reason to believe 

that the data are composed of distinct clusters. But it is also useful when used as a robust start to 

an MCD-based method, as we describe next. 

Second, this study introduces a new “hybrid” estimator of multivariate location and scatter. 

This multiple-start estimator shares many of the building blocks with RMVN and detMCD, 

although it has several distinctive features, including two distinctive starts. Since one of these starts 

is a cluster method, sCBUI, we call it a hybrid method. This method is relatively fast and 

straightforward to compute. Third, we introduce a second robust start that is completely new. 

Fourth, we present simulation evidence to compare the sCBUI method, the hybrid method, 

RMVN, detMCD, and three other notable methods. To our knowledge, this is the first study to 

directly compare the relative performance of RMVN and detMCD. The evidence presented here 

indicates that our hybrid method almost invariably performs on a par with, and in many cases 

outperforms, RMVN and detMCD, putting this method in good company indeed. 

Finally, this study demonstrates the applicability of the new estimators on some real-world 

data sets. Like the simulation evidence, these applications indicate that the methods perform well. 

In one case, involving forged currency, sCBUI has a 100 percent detection success rate, compared 

to rates of around 15 percent by the other methods examined. As a second example, a prominent 

economic study is re-examined, and we demonstrate that the main results are driven by UDPs.7 

Taken together, these applications indicate that our concerns about robustness are not hypothetical, 

and that a failure to adequately take into account the possibility of outliers can lead to distorted 

inference and to misleading conclusions. 

 We focus here on tasks that are central to many robust statistical procedures: identifying 

outliers and estimating location and scatter. We do not investigate whether various procedures 

benefit from “plugging in” these robust estimates. The study of robust methods for more general 

inference problems is interesting and left to future research. 

 

                                                                 
7 Previous versions of this paper examined three such studies. 
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FRAMEWORK 

Following Zhang, Olive, and Ye (2012), we describe the general framework as follows. A 

multivariate location and dispersion (MLD) model is a joint distribution for a k x 1 random vector 

x that is completely specified by a k x 1 population location vector  and a k x k symmetric positive 

definite population dispersion (or scatter) matrix . An important MLD model is the elliptically 

contoured distribution ECk(, , g) with probability density function 

( ) ( ) ( )1 2 1T

kf z g z zg m m
- -é ù= S - S -ê úë û

  

where z is a 1k´  dummy vector, 0Kg >  is some constant, and g is a known function. The 

multivariate normal Nk(, ) is a special case, with     2 22
k zg z e   , as is the elliptical k-

variate Student distribution with  degrees of freedom (0 <  < ). Further, x is “spherical about 

” if x has an ECk(, cI, g) distribution where c > 0 is some constant, and I is the conformable 

( )k k´  identity matrix. In this literature it is often assumed, explicitly or implicitly, that the 

distribution F of the uncontaminated (or clean, or regular) data is elliptical. For elliptical 

distributions: a) the contours of constant density are ellipsoids; b) if the mean and variances of X 

exist, then E(X) =  and Cov(X) = c for some constant c > 0 (for Normal distributions, c = 1); 

and c) X can be written as X = AZ + , with A satisfying  = AAT and Z a random variable with a 

spherical distribution about 0. As discussed in Olive (2008), many classical procedures originally 

meant for multivariate normal distributions are semi-parametric in that the procedures also perform 

well on a much larger class of EC distributions. (If the data-generating process is not elliptical – 

for instance, if it is log-normal – a suitable data transformation may be necessary. As will be 

evident below, selection of a data transformation inevitably requires judgment on the part of the 

practitioner: A cluster of outliers may suggest an asymmetric but unique data-generating process 

when, in fact, data are generated from two or more distinct processes. Note that the Box-Cox 

transformation is not a reliable guide in that it is sensitive to outliers. For a more thorough treatment 

of this topic and operational suggestions, see Janson and Verbrugge (2020)). 

For EC distributions, let constants d > 0 and cX > 0. Then a dispersion estimator estimates 

dΣ, and one such dispersion estimator, a covariance matrix estimator, estimates the covariance 

matrix Cov(x) = cXΣ. (To fix ideas, we remark that if the bulk of the data is Nk(, ), then the 

RMVN estimator will, for certain types of outlier configurations, give what Zhang, Olive and Ye 

(2012) term a “useful” estimate of (, ), while FCH itself would estimate (, d) for d > 1. These 

estimates are merely “useful” because consistency cannot generally be claimed when outliers are 
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present.) For multivariate analysis, the classical estimator (x, S) of (E(x), Cov(x)) is the sample 

mean and sample covariance matrix: 

1 1

1 1
: and : ( )( )

1

n n
T

i i i
i i

x x S x x x x
n n= =

= = - -
-

å å  

Let Hx  and HS  denote the classical estimators taken over the subset of the data whose indices are 

in H. Let the k×1 column vector LX be a multivariate location estimator, and let the k × k symmetric 

positive definite matrix CX be a dispersion estimator. The notation (L, C) will often be used, 

suppressing X. The ith squared sample Mahalanobis distance (from L) is the scalar 

 ( ) ( ) ( )2 2 1, :
T

i i i iD D L C x L C x L-º = - -  (1) 

for each observation xi. (This is sometimes termed the “statistical distance.”) The Euclidean 

distance of xi from L is Di(L, Ik). The classical Mahalanobis distance uses the classical estimates 

(L,C) = ( x , S). Wilks (1962) showed that under a multivariate normal distribution, 2
iD  follows a 

scaled Beta distribution: 

 
( )2

2 1 1
,

2 2i

n k n k
D Beta

n

æ ö- - - ÷ç ÷ç ÷çè ø
:   (2) 

(In practice, a chi-squared approximation is often used for simplicity.) For a nominal test of size 

, a data point j may be identified as an outlier if 2
jD  exceeds the (1-) quantile of the scaled Beta 

distribution (2). If there is only one outlier, this is an accurate and powerful test. But if based upon 

the classical Mahalanobis distance, this test can easily fail in the presence of more than one outlier, 

owing to masking. One effective way to avoid masking is to use high-breakdown estimators of L 

and C in (1), and this is the basis of many multivariate outlier tests, including those examined in 

this study. 

Wilks also conjectured that a Bonferroni bound could be used to test outlyingness without 

much loss of power, and this idea has been formalized as a means of controlling the false discovery 

rate in Cerioli (2010). However, our results (see Appendix A) indicate that the accompanying 

power loss is rather severe. 

The MCD subset (Rousseeuw (1984)) is defined to be the subsample of h observations, 

with 2n h n  , whose covariance matrix has the smallest determinant. Let { }1,...,MCD hy i i=  

denote the indices of the observations in this subset. The MCD estimate of location is the average 

of the MCD subset. The MCD estimate of scatter is proportional to the dispersion matrix of this 

subset,  ˆ , ,MCD MCD MCDh n k S  , where  , ,MCD h n k  is a proportionality constant that makes 
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the estimator consistent and unbiased for   when the data are iid ( ),N m S  (see Pison, Van Aelst, 

and Willems (2002)). Since finding the MCD is impractical on large data sets, “practical” 

approaches (or approximations) have been developed. 

Several of the most popular robust estimators generate K trial starts 

  0 0, , 1,..., ,j jL C j K then use the following concentration technique. Using start j, compute all 

Mahalanobis distances  2
0 0,i j jD L C  for all n data points. Let { }1 1 ,...,j j jy i ik=  denote the indices 

of the 2n   cases corresponding to the smallest distances (that is, distances less than or equal 

to the median distance). Then compute the classical estimators over those   points, so that at the 

next iteration,    1 11 1, ,
j jj j y yL C x S . This iteration is continued for s steps. This results in a 

sequence of estimators  0 0,j jL C , …,  ,sj sjL C . Each concentration step can only decrease the 

determinant of C. Hence, this procedure can either be iterated until “convergence,” or alternatively 

stopped after a predetermined number s of steps. For the estimators in this paper, following Zhang, 

Olive, and Ye (2012), 5s   concentration steps are used. In a small abuse of terminology, and to 

maintain contact with the literature, let  ,sj sjL C  denote the jth attractor. Using the MCD criterion, 

select the attractor with the smallest determinant  det sjC  as the basis for the final estimator. At 

this point, various reweighting steps are undertaken that improve the estimates. 

As noted above, many (most?) consistency results in the literature are “highly fragile” 

(Müller 2007): Small contaminations can make the estimator converge in probability to something 

arbitrarily divergent. The breakdown value of an estimator is closely related to qualitative 

robustness. Let F denote the distribution of x and let G denote the asymptotic distribution of an 

estimator  . The estimator  is said to be qualitatively robust at F if for every  > 0 there exists a 

 > 0, such that if ( , ) ( , )d F F d G G     , for a suitable metric d(.,.) (Hampel et al. (1986) 

suggest the Levy-Prokhorov metric), and for distribution function F  . The intuition is that if the 

distribution of x is perturbed only slightly, then the corresponding change in the asymptotic 

distribution of the estimator G should also be small. By letting  1F F F      for 0 1,   

and considering various distributions for F   such as Cauchy, we can see that many estimators are 

not qualitatively robust, and their consistency will break down given modest contamination. (See 

Zähle (2015) for a more general definition of qualitative robustness.) 

 It is known that multivariate regression is very sensitive to outliers in the data. But given 

identified outliers and/or a robust estimate of location and scatter, it is straightforward to undertake 
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robust multivariate regression (Rousseeuw et al., (2004)). This is a big deal, since the 

computational complexity of most “brand-name” robust estimators, such as least trimmed squares, 

makes them infeasible on large data sets. The least complicated robust regression method is to 

drop outlier observations at the outset, that is, treat these observations as missing, and proceed as 

usual. Indeed, finding a set of observations to drop is the approach of most algorithms (see Torti 

et al., (2012)), and in some situations, this approach is the best one can do. However, one may 

wonder if this might lead to underestimating estimator standard errors. 8  Accuracy may be 

enhanced if one makes use of the robust ˆˆ( , )L C  estimates. The multivariate regression model is 

given by y = B x +α + ε  where y  is a q-dimensional variable, x  is a p-dimensional set of 

predictors, B  is a ( )p q  slope matrix, α  is a q-dimensional intercept, and the errors ε  are q-

dimensional with mean 0 and  cov ε Σ . Let  T x xμ μ μ  denote the mean of the joint  x,y  

variables, and partition Σ  accordingly: 

 
  
 

xx xy

yx yy

Σ Σ
Σ

Σ Σ
 

The least squares estimators of B , α , and εΣ  can be written as functions of the estimators μ̂  and 

Σ̂  (see Rencher and Christensen (2012), p.362) 

1ˆ ˆ ˆ

ˆˆ ˆ ˆ

y

T



 

xx x

y y

B Σ Σ

α μ B μ
 

and it is straightforward to show that 

ˆ ˆ ˆ ˆ ˆT ε yy xxΣ Σ B Σ B . 

Hence, robust estimates ˆˆ( , )L C  of  x,y  may be used in the above expressions to undertake robust 

multivariate regression.  

Note that further improvements are possible, by focusing on the specifics of the regression 

context; see Rousseeuw et al. (2004) and Olive and Hawkins (2011). However, Blankmeyer (2016) 

provides evidence that four high-breakdown regression estimators —robust MM (Maronna, 

Martin, and Yohai (2006)), least trimmed squares (Rousseeuw and Leroy (1987) and Rousseeuw 

and Van Driessen (2006)), “hbr” (the high breakdown regression method of Olive and Hawkins 

(2011)), and “fwd” (the forward search regression method of Torti et al., (2012)) — may not 

                                                                 
8 Olive (2003) points out that if outliers form a recurring fraction of the data, analysis based on the cleaned data (with 
outliers deleted) will typically give rise to misleading inferences. In prediction, outliers will unavoidably be missed, 
but unadjusted hypothesis tests and interval coverage will only be sized at level  for a hypothetical: No more outliers 
appear. Thus, one must choose a a¢<  in order to achieve a size of a .  
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perform well when the true R2 is mediocre. As noted above, some of these methods are 

computationally intensive. Blankmeyer’s results support the use of the “raw” (non-reweighted, 

and less efficient) estimators from the MCD family. In his study, the efficient versions of these 

estimators, which are estimated over a larger fraction of the data, tend to retain unacceptably large 

biases in this circumstance. 

SCBUI (SIMPLE CLUSTER‐BASED UDP IDENTIFICATION) ALGORITHM 

GENERAL DESCRIPTION 

The sCBUI algorithm, as its name indicates, uses clustering of data to identify UDPs. In the initial 

stage, Euclidean or classical distance is used to locate candidate clusters, starting with a case in 

the highest density part of the data. Then its “neighbors,” that is, the nearby cases, are used to 

provide initial covariance estimates for the cluster. Next, data are allocated to this cluster on the 

basis of Mahalanobis distance. After removing those cases initially assigned to the first cluster, the 

process is then repeated multiple times, to find up to four clusters. Next, we test whether the 

clusters are statistically distinguishable. Finally, the largest cluster becomes the basis of the final 

estimates, with other clusters and excluded points identified as UDPs. Note that in contrast to all 

the other methods considered here, this method does not use iterated concentration steps. Related 

to this, the selection of final estimates does not depend in any way on minimizing a covariance 

determinant.  

PROCEDURE 

1. Let X be an n k  data matrix. If 2000n  , let X X   and n n  . Otherwise, select a 

simple random sample of size 2000 from the data, and denote this subset X  , with 

2000.n  9 

2. Let medX := MED(X), the coordinate-wise (column) median, and let madX := MAD(X),  the 

coordinate-wise median absolute deviation. Let meddistX := MED(Di(medX,Ik), the median 

Euclidean distance between each observation xi and medX. Note that medX as a center and 

meddistX as a radius define the median ball, which plays a role in the sequel. For each 

observation X ¢Îix , define the 1n  vector ei with the jth element ( ): , ,ij j i ke D x I=

;X ¢" Îjx  the vector ei is the Euclidean distance between the point xi and all the other 

                                                                 
9 We restrict the initial size of the sample, since the initial steps are time-consuming. Subsequent steps use the entire 
data.  



12 
 

points xj in X¢. Let ( )1
,10 ,252:i i iq qr = +  where ,i lq  denotes the lth order statistic of ei. 

Define ( )10 ,10: i
i

MED MED q= . As the median of the 10th percentile of all pairwise distances 

between points in X  , 10MED  is a global measure of closeness, while i  is a relative 

measure, the nearest neighbors in X   of a given observation i. 

3. Define the n n   neighbors matrix 1M   with elements 

   
10

10

1.5

1 but min ,

0

ji

ji ji ji X i

if e MED

m if e MED e meddist

otherwise




  



 .  

In other words: each column i of 1M  contains a 1.5 in position j if xj lies within distance 

MED10 of xi; (that is, it is close in a global sense to xi); otherwise column i contains a 1 in 

position j row if xj lies within distance i of xi (that is,, xj is one of the nearest neighbors of 

xi); otherwise entry j of column i equals zero (i.e., xj is not a near neighbor of xi).  

4. Let jm  denote row j of 1M , with elements mji. Define ( )sup jii
j

j* mÎ å . In words, j*x  is 

an observation that lies well within a dense cluster of points, since “many” other 

observations have j*x as a nearest neighbor. Let mj* denote the row of 1M  corresponding 

to j*, with elements *j im . Define a set of weights denoting all observations for which j*x  

is a nearest neighbor, as follows: 

*
*

1 0
:

0
j i

j i

if m
w

else

ì ¹ïï= íïïî
 

These define a subset of data points that are provisionary or founding members of the first 

cluster. Let 1 *: ,j i
i

h w= å  the cardinality of this subset. If 1h k> , then the initial cluster 1 

estimate of location, 1m̂ , is the average of this subset; that is, 

1

1
1 *

1

ˆ
n

j ih
i

wm
¢

=

= å ix , 

 while the initial cluster 1 estimate of scatter is the dispersion matrix of this subset: 

( )( )
1

1
1 1 1 11

1

ˆ ˆ ˆ
n

ih
i

C w m m
¢

-
=

¢= - -å i ix x  

Given these estimates, we define members of cluster 1 as all points Xix  whose squared 

Mahalanobis distance from 1m̂  lies within the 97.5th percentile of a chi-square distribution 
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with k degrees of freedom: that is, all cases i satisfying ( )2 2
1 1 ,0.975

ˆˆ ,i kD Cm c£ . Let 

{ }
11 1,..., hy i i ¢=  denote the indices of the observations belonging to cluster 1, with 1h¢ 

members in this set. (If 1h k£ , then the cardinality of the subset is too small to estimate a 

covariance matrix, and the sCBUI algorithm returns the empty set.) 

5. We search for up to three additional clusters of cases by repeating step 4, but each time 

creating a matrix rM  that is identical to 1rM   except that all columns of 1rM   whose 

indices have been identified as a member of a pre-existing cluster are replaced by columns 

of zeros. For example, in looking for a second cluster, we create the matrix 2M  by setting 

equal to a column of zeros all columns of 1M  whose indices are members of 1y . The search 

for clusters terminates once we reach four clusters, or once we identify a set of nearest 

neighbors in step 4 where the cardinality of the set is less than or equal to k. 

6. Let the clusters be indexed by l, where 1 l c   and 4c £ . Then the estimates of the 

location and dispersion matrix of each cluster is 

( )( )

1

1

1

l
l

l
l

l h
i y

l j jh
i y

C

m

m m

¢
Î

¢-
Î

=

¢= - -

å

å

(

( ( (

i

i i

x

x x
 

If jh k¢£ , then cluster j is eliminated. 

7. If 2c  , we now redefine clusters as follows. For each observation Xix  and for each 

cluster l, we compute ( )( )2 2: ,il k i l lp P D Cc m= £
((

 where ( )2
kP zc £  is the cumulative 

distribution function of a chi-square random variable with k degrees of freedom evaluated 

at z. When ilp  is a small number, point xi is in close proximity – in the Mahalanobis 

distance sense – to the center of cluster l, suggesting that this case is properly a member of 

cluster l. For each i, we consider only the two smallest pil; denote the smallest by 
1ilp  and 

the next smallest by
2ilp , with associated clusters 1l  and 2l . If 

1 2
0.10il ilp p- > , then xi is 

assigned to cluster 1l ; in other words, if xi  is “sufficiently closer” to the center of cluster 

1l  than to the center of cluster 2l , then xi is unambiguously a member of cluster 1l . Further, 

if xi  is “sufficiently close” to the center of cluster 1l , then this observation is granted 

“protected” status and can only be subsequently removed from cluster 1l  if cluster 1l  is 

absorbed into another cluster. We take “sufficiently close” to mean that 
1

0.80ilp < . (If 



14 
 

1c = , then for each observation ix  compute 1ip ; if 1 0.80ip < , then case xi  is granted 

“protected” status.) Proceed to step 9. 

8. The cardinality of each cluster is computed, and the cluster with the most members is 

denoted the “major cluster,” cluster m. For each other cluster l, l m , we compute the 

Mahalanobis distance from the location vector of cluster l to that of cluster m, first using 

dispersion matrix lC
(

 and then using the dispersion matrix mC
(

. In particular, we compute 

( )( )2 2: ,
mlm k l lp P D Cmc m= £ (

((
 and ( )( )2 2: ,

lml k m mp P D Cmc m= £ (
((

. If 0.975lmp £  – that is, if 

( )2 2
,0.975,

m l l kD Cm m c£(
((

 – then the location vector ˆmm  is within the 97.5 percent confidence 

region of cluster l. If 0.975lmp £ , 0.975mlp £ , and 0.90lm lmp p £ , we conclude that the 

centers of each cluster are sufficiently close, and cluster l is subsumed into cluster m. 

9. Let { }1,..., mm hy i i=  denote the indices of the observations belonging to the major cluster. 

If mh k> , we define 

( )( )

1

1

1

m

m

CBUI

i ym

sCBUI CBOI CBOI

i ym

h

C
h

m

m m

Î

¢

Î

=

¢= - -
-

å

å

i

i i

x

x x

 

10. UDPs or outliers consist of the union of all “protected” data points and all data points 

satisfying ( )2 2
,0.975,sCBUI sCBUI

i kD Cm c¢ > .  

11. Finally, the dispersion matrix is adjusted with a consistency factor: 

( )2 2
2 , m

sCBUI sCBOIm

k k h n

h n
C C

P c c
¢

+

=
<

 

Optionally, one may refine these estimates by undertaking five concentration steps and then 

undertaking refinements, such as those in steps 2 and 3 in the “Final selection and refinements” 

subsection below. (In the sequel, our refinements of this estimate followed those of the RMVN 

algorithm.) 

HYBRID MCD ALGORITHM 

INTRODUCTION 

The hybrid method borrows ideas from both RMVN and detMCD. With one or both methods, it 

shares some starts, iterated concentration steps, and reweighting steps upon final selection of a 
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subset of data. It differs from both along a number of dimensions. There are two starts unique to 

the hybrid method. Since one of these is sCBUI, this hybrid method effectively uses both schemes’ 

outliers  robust estimates, and robust estimates  outliers. While RMVN has two starts, and 

detMCD has six, the hybrid MCD method has eight. In contrast to both methods, initial rescaling 

of data is done for a strict subset of the starts, using median absolute deviation. Concentration 

occurs on raw (non-rescaled) data. In contrast to detMCD, final selection of the attractor makes 

use of the FCH distance-based test. Reweighting to produce final estimates and selection of outliers 

mainly follows methods developed for fMCD and detMCD. (Other options were investigated, but 

proved inferior.) While the hybrid method is not as fast as detMCD or RMVN, owing to its use of 

the sCBUI start, it is still quite fast and feasible to apply on very large data sets of high dimension, 

unlike fMCD and many other methods. 

 The hybrid method proceeds by constructing eight initial estimates ˆr  and ˆ
r   

(r = 1,...,8) for the center and scatter of X. Then five concentration steps are undertaken. Then as 

noted above, the selection of the attractor makes use of the FCH distance-based test. Finally, 

estimates are reweighted and refined, and outliers determined on the basis of the final estimates. 

DATA STANDARDIZATION: STARTS 1‐5 

The first five starts below are similar to the detMCD procedure in that these starts begin with 

standardized data, although unlike detMCD, standardization uses an alternative to Qn, and 

subsequent concentration takes place using non-rescaled (raw) data. To standardize the data, from 

each data point, we subtract medX, and then divide by madX. The standardized data set is denoted 

by Z with rows iz  (i = 1,...,n) and columns jZ  (j= 1,...,k).  

LOCATION AND SCATTER ESTIMATES FOR STANDARDIZED DATA STARTS 

For the standardized data starts, after computing a preliminary estimate rS


 of the covariance 

matrix of Z, the preliminary matrix immediately undergoes a sequence of operations based on 

eigenvalue manipulations that were introduced in Maronna and Zamar (2002). (When scatter 

matrices are constructed element-wise, these operations ensure that it is a positive definite [and 

reasonably accurate] covariance estimate.) In particular: 

1. Compute the matrix E of eigenvectors of rS


 and project Z onto E: B = ZE. 

2. Estimate the (positive definite) covariance of Z by   T
r Z ELE 


 where L, the “robust 

variance” vector, is given by  mad madT
B BL diag  . 
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3. To estimate the center of Z we sphere the data, apply the coordinate-wise median, and 

transform it back:     1 2 1 2ˆr r rZ MED Z   
 

  

4. Rescale all estimates:  ˆ ˆ medr r XZ    and ˆ mad madT
r X r X  


. 

DESCRIPTION OF EIGHT STARTS 

1. The first initial scatter matrix is obtained by computing the hyperbolic tangent (sigmoid) 

of each column of Z; that is,  tanhj jY Z  for (j= 1,...,k). This is a bounded function that 

substantially reduces large coordinate-wise outliers. The classical correlation matrix of Y 

yields  1S corr Y


. Location and scatter estimates are then constructed as in the previous 

subsection. 

2. The second initial scatter matrix is closely related to the first. As above,  tanhj jY Z  for 

(j= 1,...,k). Then the smallest 10thile, and largest 30thtile, of points are trimmed. Denote the 

subset of retained cases in Y by TH, the “trimmed hyperbolic” subset. The estimate of 

scatter is the classical correlation matrix of this subset, 2 THS S


. Location and scatter 

estimates are then constructed as in the previous subsection. 

3. Let jR  be the ranks of the column jZ , and set  3S corr R


. This is the Spearman 

correlation matrix of Z. Location and scatter estimates are then constructed as in the 

previous subsection. 

4. The fourth scatter matrix is based on the spatial sign covariance matrix (Visuri, Koivunen, 

and Oja, (2000)). Define i i it z z  for all i, where  med ,i i Z kz D I , and set 

 4 covS T


. Location and scatter estimates are then constructed as in the previous 

subsection. 

5. The fifth scatter matrix, novel to this paper, is the rom- correlation matrix. This correlation 

matrix is estimated using a variant of the high-breakdown rom- method introduced in 

Chakhchoukh et al. (2010); this method estimates a pairwise correlation r  on the basis of 

a ratio of medians of products (rom). While a closed-form relationship between rom and 

the correlation coefficient  does not seem to exist, the relationship between sample 

estimates of rom and  is stable (see the Appendix) and can be obtained numerically. Our 

variant begins with scaled data Z; recall that each column has an ostensible mean of zero 

and standard deviation of 1. We compute each pairwise ,l j (for columns l and j) as 



17 
 

( )( )ˆij i jf MED Z Zr =   

where f is a linear function of odd powers of its argument. (Parameter estimates for our 

function f are provided in the Appendix.) Diagonal elements of 5S


 are set equal to 1. rom-

 has a breakdown value of 25 percent because it computes medians of products. 5̂  and 

5̂  are constructed as in the previous subsection. 

6. The sixth and seventh starts correspond to the starts used in RMVN. In particular, the sixth 

location and scatter estimates are the classical estimators, taken over the entire data set X. 

7. The seventh start is the median ball estimator, which uses the classical estimators computed 

from the cases within the median ball. In particular, let the median ball (MB) subset consist 

of the 2m n     observations ix  with smallest norm, that is, the m cases satisfying 

   , ,i i Z k i Z kx D med I MED D med I     . Then  

7

1
ˆ

i MBm
m

Î

= å ix   and  ( )( )7 7 7

1ˆ ˆ ˆ
i MBm

m m
Î

¢S = - -å i ix x  

Note that the BACON algorithm of Billor, Hadi, and Velleman (2000) has a similar start, 

but with fewer observations. 

8. The eighth start consists of the sCBUI estimates, described above. We use ( ), .sCBUI sCBUICm ¢  

FINAL SELECTION AND REFINEMENTS 

After five concentration steps are undertaken, we obtain the concentrated estimates ˆ r  and ˆ
r  for 

r = 1,...,8. These are termed “raw” estimates. As described in step 1 below, the final raw estimator 

is selected from the eight raw estimates, based on the MCD criterion, but only after imposing a 

necessary condition. Then the estimator is refined. 

1. Covariance determinants are computed and ranked. Selection is based on the MCD 

criterion, but only after imposing a necessary condition taken from Olive and Hawkins 

(2010): For start i to be chosen, its location estimate must lie within the median ball, that 

is,  med ,i i Z kMED D I     . If all other starts fail this test, then, as in RMVN, the 

median ball start is selected. Denote the selected estimates ˆraw  and ˆ
raw . 

2. Following Cerioli (2010), two re-estimation and reweighting steps are undertaken. In the 

first stage, we select the 2m n      observations ix  with the smallest distance from ˆraw
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that is, the cases satisfying    ˆ ˆˆ ˆ, ,i i raw raw i raw rawraw
x D MED D          . Denote these 

cases the RAW subset. The refined raw estimate of location is 
1

ˆ final
raw i

i RAW

x
m

m
Î

=
¢ å , and the 

refined raw estimate of scatter is  

 ˆ , ,final
raw RAWrac k n m S   . 

 .rac  is a small-sample correction and consistency factor that makes the covariance 

matrix consistent for normal variables and unbiased in small samples, given by  

     12 2
2 ,

, , , ,
k k m n

m n
rac k n m s k n m

P   


 


 

where  1 , ,s k n m  is a small-sample calibration factor (see Croux and Haesbroeck (1999) 

and Pison, Van Aelst, and Willems (2002)). 

3. A final reweighting step is performed, which increases finite sample efficiency 

considerably (see Pison, Van Aelst, and Willems (2002)). In this case, we select all 

observations satisfying   2
,0.975

ˆˆ ,final final
i raw raw kD    , the 0.975 quantile of the 2

k  distribution. 

Suppose there are m cases satisfying this criterion; denote this subset HY, and its 

complement by OUT, denoting outliers. Then the reweighted estimates of location and 

scatter are given by  

1
ˆhybrid

i HYm ix


   

and 

    , ,ˆ ˆ ˆ
T

hybrid hybrid hybrid
i HY

rec k n m

m i ix x 


     

where the scaling rec(k, n, m) guarantees consistency of the reweighted estimator and 

improves its small-sample behavior; it is given by 

     22 2
2 ,0.975

, , , ,
k k

m n
rec k n m s k n m

P  




  

where  2 , ,s k n m  is a small-sample calibration factor (see Pison, Van Aelst, and Willems 

(2002) and Cerioli (2010)). 

DISCUSSION OF CERIOLI (2010) 
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We considered identifying UDPs based on the more accurate approximations given in Cerioli 

(2010), a study focused on controlling the false discovery rate. (Green and Martin (2014) discuss 

these approximations and also provide a modified approximation.) There are two relevant 

distributions: the distribution for cases in the subset HY, versus the distribution for cases in the 

subset OUT. The latter cases follow a different distribution because they were not used to estimate 

the scatter matrix. However, using the better approximations in Cerioli (2010) actually yielded 

somewhat inferior detection rates in our simulation study and led to somewhat inferior scatter 

matrix estimates. 

OTHER METHODS EXAMINED 

We provide a summary of the other methods here; they are described in more detail in the cited 

articles. 

FMCD 

The fMCD estimator uses the classical estimator applied to K = 500 randomly drawn elemental 

subsets of size k+1 as starts. The 10 starts with the smallest covariance determinants are then 

concentrated. Final selection is determined by minimum covariance determinant. Reweighting 

steps differ across implementations, but often occur as in the hybrid method. Cases satisfying 

 2 2
,0.975

ˆˆ ,i fMCD fMCD kD L C   are identified as outliers. For details, see Rousseeuw and Van Driessen 

(1999). Note that the simulation results of Hawkins and Olive (2002) indicate that, in large 

multivariate data sets, 500 could well be too small by several orders of magnitude. We will see 

below that fMCD fails dramatically in some cases. 

DETMCD 

The detMCD algorithm begins by standardizing X by subtracting the component-wise median 

medX and dividing by the Qn scale estimator (Rousseeuw and Croux, (1993)). All computations 

are carried out on standardized data. All six starts undertake the steps outlined in the subsection 

“Location and scatter estimates for standardized data starts.” Four of the starts are identical to the 

hybrid method: the hyperbolic tangent, the Spearman correlation matrix, the spatial sign 

covariance matrix, and the median ball estimator. The fifth start is derived from the ranks matrix 

used in the Spearman correlation estimates; in particular, normal scores are derived from a simple 

transformation of the ranks, and the scatter estimate is the correlation matrix of these scores. The 

sixth start is the raw OGK estimator based on the method of Maronna and Zamar (2002) applied 

to the robust covariance estimate of Gnanadesikan and Kettenring (1972), although the location 
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estimator is the component-wise median and the dispersion estimator is Qn. detMCD iterates 

concentration steps to convergence, and selection is based on MCD. Cases satisfying 

 2 2
,0.975,i detMCD detMCD kD L C   are identified as outliers. For details, see Hubert, Rouusseeuw, and 

Verdonck (2012). 

RMVN 

All FCH estimators, including RMVN, use the same two starts: the classical estimator and the 

median ball estimator. Its large sample theory (for uncontaminated data) is as follows. Cator and 

Lopuhaä (2010, 2012) show that MCD is consistent provided that the MCD functional is unique. 

Distributions where the functional is unique are termed “unimodal” and rule out, for example, a 

spherically symmetric uniform distribution. FCH estimators are consistent if the data ,...,1 nx x   

are drawn iid from a “unimodal” ECk(μ,, g) distribution with a nonsingular covariance matrix 

Cov( ix ) and g is continuously differentiable with a finite 4th moment (see Olive and Hawkins, 

(2010)).  

Zhang, Olive, and Ye (2012) use five concentration steps. For FCH estimators, selection is 

based on MCD, but with the necessary condition that for the classical start to be chosen, its 

concentrated location estimate must lie within the median ball. RMVN uses several reweighting 

steps. First, if ( )1 1,L C  is the location and scatter estimate selected after concentration, then 

2 1L L=  and ( )( )2 2
2 1 1 2 ,0.5,i kC C MED D L C cé ù= ×ê úë û. Now let ( )3 3,L C  be the classical estimators 

applied to the 1n  cases satisfying  2 2
2 2 ,0.975,i kD L C  . Let ( )1 1min 0.5 0.975 ,0.995q n né ù= ë û, 

4 3L L= , and ( )( )
1

2 2
4 3 3 3 ,,i k qC C MED D L C cé ù= ×ê úë û. Let ( )5 5,L C  be the classical estimators applied 

to the 2n  cases satisfying  2 2
4 4 ,0.975,i kD L C  . Let ( )2 2min 0.5 0.975 ,0.995q n né ù= ë û, 5RMVNL L=

, and ( )( )
1

2 2
5 5 5 ,,RMVN i k qC C MED D L C cé ù= ×ê úë û . Cases satisfying  2 2

,0.975,i RMVN RMVN kD L C   are 

identified as outliers. 

MEDIAN BALL (MB) 

The median ball estimator is the post-concentration location and scatter estimate ( )1 1,L C  

corresponding to the median ball start in RMVN. Cases satisfying  2 2
,0.975,i MB MB kD L C   are 

identified as outliers. 

 



21 
 

 

REFINED MEDIAN BALL (RMB) 

The refined median ball estimator corresponds to the RMVN estimate, with the restriction that 

only the median ball start is used. Cases satisfying  2 2
,0.975,i RMB RMB kD L C   are identified as 

outliers. 

SOFTWARE 

We use the Matlab implementation of detMCD and fMCD from LIBRA (available at 

https://wis.kuleuven.be/statdatascience/robust/software.) We make use of the official Matlab 

2016b implementation of RMVN (“Olive-Hawkins method” in robustcov), except that we alter the 

Matlab code to follow the refinement details in David Olive’s R implementation (available at 

http://lagrange.math.siu.edu/Olive/Personal.html). MB and RMB, along with the hybrid and CBUI 

methods, are implemented in RATS code, available from the authors.  

LARGE‐SAMPLE THEORY 

As noted above, RMVN is the only method backed by large-sample theory. But two things are 

worth noting. First, nothing is guaranteed in small samples or when UDPs are present. Second, 

both of the RMVN starts are incorporated into our hybrid method, and an MCD criterion is used 

to select the final estimator. It is difficult to believe that a start leading to a refined estimator whose 

covariance determinant is smaller than those of the two RMVN starts would lead to inferior 

estimates; putting this differently, the hybrid estimator “should” share the same asymptotic 

properties as RMVN. 

 

SIMULATION EVIDENCE 

We first use Monte Carlo simulation of data sets to assess reliability. The first simulation exercise 

examines the size of the various methods, using Gaussian data. The second simulation exercise 

involves clean or regular data that are contaminated with various data from a different data-

generating process (yielding UDPs, or outliers); the forms for clean data and for each outlier 

configuration are Gaussian and taken from the literature. We compare the ability of the methods 

to identify the clean data versus the outliers, and to accurately estimate the mean and covariance 

matrix of the clean data. These tasks are not synonymous, since reasonably accurate outlier 

detection does not guarantee the accuracy of parameter estimates in small samples. Accuracy is 
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enhanced by appropriate rescaling and reprocessing, once a subset of the data has been selected to 

be the basis of parameter estimation. 

SIZE, OR FALSE DISCOVERY RATE 

Following Zhang, Olive, and Ye (2012), size estimation is performed by generating data sets from 

k-variate normal distributions, where data are iid Nk(0,k) where k = diag(1,2,3,…,k). The 

estimated size of each rule is the proportion of data points falsely identified as outliers, averaged 

over 500 simulations. As is conventional in this literature, we use  = 0.025. Table 1 is entitled 

False Discovery Rate because each entry indicates the fraction of cases falsely identified as 

outliers. 

 The RMB exhibits an extremely small false discovery rate; at the other end of the spectrum 

is the sCBUI method, which might be referred to as paranoid. (Such paranoia is useful in some 

contexts, as will be clear below.) The MB also has a very high false discovery rate. RMVN has an 

edge over detMCD and the hybrid method along this dimension. The false discovery rate of the 

hybrid method, if equipped with FDR control following Cerioli (2010), is 0.000 (see Appendix). 

But as our results in the Appendix indicate, when data are contaminated, this control over FDR 

comes at the cost of missing a substantial fraction of the outliers under some outlier configurations. 

 

 

 

 

 

 

 

 

 

Table 1: False Discovery Rate on Clean Data 

 

DETECTION OF UDPS AND ACCURACY OF PARAMETER ESTIMATES 

SIMULATION DESIGN 

A simulation study is used to assess the relative performance of the seven methods in a) identifying 

clean data versus UDPs or outliers, and b) accurately estimating the covariance matrix and mean 

of the clean data. The simulations use 500 runs, and   is the total percentage of outliers. The 

False Discovery Rate ( = 0.025) 

         
N k RMVN FMCD detMCD Hybrid MB sCBUI RMB 
100 5 0.043 0.092 0.067 0.087 0.375 0.463 0.002 

100 10 0.087 0.181 0.123 0.142 0.427 0.517 0.003 

100 20 0.287 0.333 0.358 0.255 0.479 0.749 0.035 

200 5 0.031 0.051 0.045 0.053 0.320 0.399 0.000 

200 10 0.041 0.067 0.058 0.076 0.353 0.332 0.001 

200 20 0.091 0.148 0.122 0.131 0.433 0.728 0.001 

1000 5 0.026 0.035 0.035 0.030 0.262 0.333 0.000 

1000 10 0.027 0.035 0.034 0.033 0.239 0.167 0.000 

1000 20 0.030 0.038 0.037 0.040 0.246 0.148 0.000 
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parameter   governs the mean of the outlier distribution and, in some cases, the mean of the clean 

data. Four outlier configurations were taken from the literature. Each configuration specifies the 

distributions of both clean data and of outliers.  

The first and second configurations follow Zhang, Olive, and Ye (2012) and specify clean 

cases as multivariate normal:   ~ , 1,2,...,kx N diag k0 . The first configuration specifies outliers 

as multivariate normal:   ~ 0,..., 0, , 0.0001
T

k kx N I , a near point mass at the major axis. The 

second configuration specifies outliers as multivariate normal:   ~ , 1,2,...,kx N diag k1  where 

 1,...,1
T1 , a mean shift. The near point mass and mean shift outlier configurations are often 

used in the literature.  

The third and fourth configurations are taken from García-Escudero et al. (2008). These 

involve two groups of outliers (rather than one), and the outlier configurations are considered quite 

challenging, in that the covariance matrices differ across groups and often display what the authors 

term “severe overlap”: The clean data are generated from a rather diffuse distribution (as is one of 

the groups of outliers), so that outlier groups are relatively close (in a statistical sense) to the 

location of the clean data. This can be seen in Figure 1, which plots the first two dimensions of a 

simulation with N = 1000 and 8   using the fourth outlier configuration. Indeed, while 8   

in all of the simulations in García-Escudero et al. (2008), in the present study this parameter setting 

was often too difficult for many choices of k and N, and we had to set 12   or 16   in order 

to observe appreciable performance differences across methods. 
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Figure 1: Type 4 Outlier Configuration, taken from García-Escudero et al. (2008) 

In these configurations, clean cases are multivariate normal: 

    ~ ,0,..., 0, , , ,1,...,1
T

kx N diag a b ; the first “tight cluster” outlier group is multivariate 

normal:   ~ 0, , 0,..., 0, ,
T

kx N  I ; and the second “nonspherical” outlier group is multivariate 

normal:   2~ , , 0,..., 0, ,
T

kx N      with  

2

15 10

10 15

 
    
 
 

0

0 I

. 

The constants a and b control the dispersion of the clean data, hence the differences between the 

third and fourth configurations. In the third “moderately diffuse” clean data configuration, 

   , 20,5a b  , while in the fourth “very diffuse” clean data configuration,    , 45,30a b  . 

Outlier groups always have equal proportions; that is, each is of proportion 2 . 

For each outlier configuration, we selected  100,300,1000N  ,  5,10,20,30k , and 

various values of   and  , guided by the choices in the articles cited, but with the additional goal 

of choosing combinations that would generate performance differences across methods. In each 

table or figure, each entry is the average of the particular metric over 500 simulation runs.  

IDENTIFICATION OF CLEAN CASES AND OUTLIERS 

To assess each method’s ability to identify the clean data versus the outliers, we make use of two 

very straightforward metrics: the proportion of clean cases identified as clean, and the proportion 

of outliers identified as outliers (sometimes termed the detection rate). These results are presented 

in Tables 2 and 3. Discussion follows those tables. 

ASSESSING THE ACCURACY OF ESTIMATES 

To assess the accuracy of the estimated scatter matrices, we make use of three metrics. In each 

simulation run j, we compute the classical estimator Sj from the clean cases, and the scatter 

matrices ˆ
jrC  corresponding to each method r, and perform two comparisons. First, we computed 

the sum of the absolute differences of the diagonal elements of Sj and ˆ
jrC : 

1

ˆ
k

jr j jrs c 





 
. 

For a given simulation configuration, the average over 500 simulations is denoted r . In Figure 

2, we plot r  against detMCD  for  detMCD,fMCDr  . In interpreting the figure, it is important 
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to note that three observations corresponding to very large detMCD  had to be dropped. Inclusion of 

fMCD  removes the information content from the figure, as these terms are frequently very large . 

(The full data underlying this figure are presented in the Appendix.)  

While this metric is intuitive, it may not adequately summarize the importance of the 

differences between two scatter matrices. As pointed out by, for example, Soofi and Dadpay 

(2002), since many statistical techniques rely on nonlinear functions of estimated covariance 

matrices, it is useful to investigate error measures that include the inverse and the determinant of 

the estimated matrix. Hence, we also consider an alternative metric, a likelihood-ratio test of 

equality of two covariance matrices. To test H0: C = S for simulation j, we form the test statistic 

(see Rencher and Christensen (2012), pp. 260-261): 

 1ln lnu u S C tr CS k            

where   is the degrees of freedom of C, and   is a first-order Bartlett correction, given by 

1 2
1 2 1

6 1 1
k

k



          

. 

The test statistic u  is approximately 2  distributed with k(k+1)/2 degrees of freedom. It is worth 

noting that u is related to the eigenvalues 1,..., k   of 1CS  ; in particular,  

 
1

ln
k

i i
i

u k  


     
 . 

We test ˆ
jrC  = Sj for each method r, at the 10 percent level of significance, and record the fraction 

of simulation runs for which equality is not rejected. These results are presented in Table 4. (In the 

appendix, we present the corresponding results based on the test ˆ
jrC = 0 ).  

For location estimates, our metric is 
1

ˆ
k

j jrx l 


  where  1
ˆ ˆˆ ,...,jr jr jrkL l l  is the location 

estimate for method r for simulation run j. These results are presented in Table 5. 
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Outlier type N k  pm RMVN fMCD detMCD Hybrid MB sCBUI RMB 

Type 1 

100 5 0.25 10 0.84 0.53 0.67 0.97 0.76 0.68 0.99 
100 5 0.25 20 0.97 0.52 0.97 0.97 0.76 0.67 0.98 
100 20 0.20 100 0.80 0.44 0.77 0.83 0.64 0.34 0.94 
100 20 0.20 4000 0.80 0.45 0.77 0.83 0.64 0.33 0.94 
300 5 0.25 20 0.98 0.76 0.97 0.99 0.82 0.77 0.99 
300 10 0.25 20 0.97 0.66 0.72 0.98 0.80 0.81 0.99 
300 20 0.20 100 0.96 0.62 0.96 0.95 0.71 0.55 0.99 
300 30 0.20 100 0.92 0.45 0.91 0.92 0.67 0.21 0.98 
300 20 0.20 4000 0.96 0.64 0.95 0.95 0.71 0.56 0.99 

1000 20 0.20 100 0.98 0.81 0.97 0.98 0.83 0.88 0.99 
1000 10 0.10 100 0.97 0.97 0.97 0.98 0.80 0.86 0.99 
1000 30 0.20 100 0.97 0.74 0.97 0.97 0.80 0.72 0.99 

Type 2 

100 5 0.02 10 0.95 0.91 0.93 0.92 0.63 0.55 1.00 
100 5 0.45 10 0.98 0.98 0.98 0.98 0.92 0.65 0.99 
100 10 0.25 3 0.94 0.88 0.92 0.92 0.70 0.63 0.99 
100 20 0.25 5 0.79 0.71 0.82 0.85 0.68 0.42 0.94 
100 20 0.25 10 0.83 0.73 0.82 0.87 0.68 0.49 0.94 
100 20 0.35 10 0.85 0.68 0.93 0.93 0.78 0.74 0.95 
300 5 0.25 10 0.98 0.97 0.97 0.99 0.82 0.79 0.99 
300 10 0.25 10 0.97 0.97 0.97 0.98 0.80 1.00 0.99 
300 10 0.25 3 0.98 0.97 0.97 0.98 0.80 0.84 0.99 
300 20 0.25 5 0.96 0.95 0.96 0.96 0.74 0.68 0.98 
300 20 0.25 10 0.96 0.96 0.96 0.96 0.74 0.74 0.98 
300 20 0.35 10 0.98 0.93 0.98 0.97 0.81 0.85 0.98 

1000 10 0.25 10 0.98 0.97 0.97 0.99 0.85 0.90 0.99 
1000 10 0.05 10 0.97 0.97 0.97 0.97 0.78 0.85 1.00 

Type 3 

100 5 0.20 8 0.97 0.95 0.96 0.96 0.72 0.56 0.99 
100 5 0.40 8 0.97 0.94 0.96 0.96 0.81 0.73 0.99 
100 5 0.40 16 0.98 0.98 0.98 0.99 0.87 0.74 0.98 
300 5 0.24 8 0.98 0.98 0.98 0.99 0.81 0.73 0.99 
300 10 0.24 8 0.98 0.97 0.97 0.98 0.79 0.82 0.99 
300 20 0.24 8 0.96 0.95 0.95 0.95 0.73 0.78 1.00 
300 20 0.40 8 0.96 0.95 0.95 0.95 0.74 0.82 0.99 

1000 5 0.40 8 0.98 0.97 0.97 0.98 0.89 0.91 0.99 
1000 5 0.40 12 0.98 0.98 0.98 1.00 0.92 0.91 0.98 
1000 5 0.40 16 0.98 0.98 0.98 1.00 0.92 0.91 0.98 
1000 10 0.40 16 0.98 0.98 0.98 1.00 0.92 0.95 0.98 
1000 5 0.20 16 0.98 0.97 0.97 0.99 0.82 0.85 0.99 
1000 10 0.20 16 0.98 0.97 0.97 0.98 0.83 0.89 0.99 
1000 20 0.40 8 0.98 0.97 0.98 0.98 0.83 0.92 0.99 
1000 20 0.40 12 0.97 0.97 0.97 0.99 0.93 0.91 0.99 
1000 20 0.40 16 0.98 0.97 0.97 0.99 0.91 0.93 0.98 

Type 4 

100 5 0.40 8 0.96 0.92 0.95 0.92 0.63 0.60 0.99 
100 5 0.24 8 0.97 0.93 0.95 0.93 0.68 0.50 1.00 
100 5 0.40 16 0.97 0.93 0.96 0.97 0.87 0.74 0.99 
300 5 0.24 8 0.98 0.97 0.97 0.97 0.74 0.66 1.00 
300 10 0.24 8 0.97 0.96 0.96 0.96 0.73 0.78 1.00 
300 20 0.40 8 0.95 0.93 0.94 0.93 0.66 0.83 1.00 

1000 5 0.40 8 0.98 0.96 0.97 0.95 0.72 0.75 1.00 
1000 5 0.40 12 0.97 0.96 0.96 0.97 0.77 0.90 0.99 
1000 5 0.40 16 0.97 0.96 0.97 0.98 0.92 0.92 0.99 
1000 5 0.20 16 0.98 0.98 0.98 0.99 0.82 0.80 0.99 
1000 5 0.24 8 0.98 0.97 0.97 0.97 0.77 0.76 1.00 
1000 10 0.40 16 0.98 0.97 0.97 0.99 0.92 0.94 0.99 
1000 10 0.20 16 0.98 0.97 0.97 0.98 0.83 0.92 1.00 
1000 10 0.10 16 0.98 0.97 0.97 0.98 0.80 0.93 1.00 
1000 20 0.40 8 0.97 0.97 0.97 0.97 0.80 0.92 1.00 
1000 20 0.40 16 0.98 0.97 0.97 0.98 0.83 0.81 0.99 

Table 2: Percentage of Clean Cases Identified 

Note that both sCBUI and MB often miss a substantial percentage of clean cases. Having 

said that, these methods generally outperform fMCD for the type 1 outlier configuration. Of all 

the methods examined, RMB has a very slight edge. In a handful of cases, the hybrid method 

clearly dominates detMCD or RMVN or both; but otherwise these three methods have generally a 

quite similar performance, and that performance is usually excellent. 
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 N k  pm RMVN FMCD detMCD Hybrid MB sCBUI RMB 

Type 1 

100 5 0.25 10 0.49 0.00 0.03 0.84 1.00 1.00 0.67 
100 5 0.25 20 1.00 0.00 1.00 1.00 1.00 1.00 1.00 
100 20 0.2 100 1.00 0.00 1.00 1.00 1.00 1.00 1.00 
100 20 0.2 4000 1.00 0.02 1.00 1.00 1.00 1.00 1.00 
300 5 0.25 20 1.00 0.00 1.00 1.00 1.00 1.00 1.00 
300 10 0.25 20 0.97 0.00 0.00 1.00 1.00 1.00 1.00 
300 20 0.2 100 1.00 0.00 1.00 1.00 1.00 1.00 1.00 
300 30 0.2 100 1.00 0.00 1.00 1.00 1.00 0.91 1.00 
300 20 0.2 4000 1.00 0.06 1.00 1.00 1.00 1.00 1.00 

1000 20 0.2 100 1.00 0.00 1.00 1.00 1.00 1.00 1.00 
1000 10 0.1 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1000 30 0.2 100 1.00 0.00 1.00 1.00 1.00 0.99 1.00 

Type 2 

100 5 0.02 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
100 5 0.45 10 1.00 1.00 1.00 1.00 1.00 0.79 1.00 
100 10 0.25 3 0.45 0.64 0.52 0.70 0.90 0.97 0.29 
100 20 0.25 5 0.80 0.47 0.99 0.91 1.00 1.00 0.99 
100 20 0.25 10 0.99 0.54 1.00 1.00 1.00 1.00 1.00 
100 20 0.35 10 0.87 0.37 1.00 0.95 1.00 1.00 1.00 
300 5 0.25 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
300 10 0.25 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
300 10 0.25 3 0.39 0.75 0.60 0.86 0.96 0.97 0.17 
300 20 0.25 5 1.00 0.79 1.00 1.00 1.00 1.00 1.00 
300 20 0.25 10 1.00 0.98 1.00 1.00 1.00 1.00 1.00 
300 20 0.35 10 1.00 0.09 1.00 1.00 1.00 1.00 1.00 

1000 10 0.25 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1000 10 0.05 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Type 3 

100 5 0.2 8 0.81 0.88 0.84 0.88 1.00 1.00 0.74 
100 5 0.4 8 0.50 0.54 0.52 0.62 0.84 0.99 0.49 
100 5 0.4 16 1.00 1.00 1.00 1.00 1.00 0.99 1.00 
300 5 0.24 8 0.70 0.80 0.78 0.87 1.00 1.00 0.64 
300 10 0.24 8 0.52 0.61 0.57 0.78 0.99 1.00 0.50 
300 20 0.24 8 0.35 0.48 0.40 0.61 0.97 0.99 0.28 
300 20 0.4 8 0.36 0.32 0.11 0.46 0.69 0.99 0.37 

1000 5 0.4 8 0.50 0.50 0.51 0.57 0.86 0.97 0.50 
1000 5 0.4 12 1.00 1.00 1.00 1.00 1.00 0.98 1.00 
1000 5 0.4 16 1.00 1.00 1.00 1.00 1.00 0.99 1.00 
1000 10 0.4 16 1.00 0.91 1.00 1.00 1.00 0.92 1.00 
1000 5 0.2 16 1.00 1.00 1.00 1.00 1.00 0.93 1.00 
1000 10 0.2 16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1000 20 0.4 8 0.29 0.42 0.12 0.51 0.59 0.98 0.42 
1000 20 0.40 12 0.65 0.51 0.41 0.98 0.98 1.00 0.59 
1000 20 0.4 16 1.00 0.52 0.53 1.00 1.00 1.00 1.00 

Type 4 

100 5 0.4 8 0.19 0.31 0.15 0.37 0.55 0.93 0.11 
100 5 0.24 8 0.13 0.28 0.19 0.31 0.64 0.93 0.02 
100 5 0.4 16 0.52 0.53 0.53 0.60 0.99 0.97 0.51 
300 5 0.24 8 0.06 0.18 0.13 0.29 0.58 0.91 0.00 
300 10 0.24 8 0.05 0.09 0.07 0.16 0.57 0.82 0.00 
300 20 0.24 8 0.07 0.10 0.09 0.12 0.57 0.65 0.00 
300 20 0.4 8 0.06 0.08 0.07 0.09 0.54 0.57 0.00 

1000 5 0.4 8 0.07 0.29 0.23 0.48 0.53 0.94 0.01 
1000 5 0.4 12 0.51 0.51 0.51 0.50 0.55 0.88 0.50 
1000 5 0.4 16 0.51 0.51 0.51 0.51 1.00 0.85 0.50 
1000 5 0.2 16 0.63 0.74 0.72 0.88 1.00 0.97 0.59 
1000 5 0.24 8 0.04 0.13 0.11 0.30 0.56 0.78 0.00 
1000 10 0.4 16 0.46 0.51 0.51 0.53 0.91 0.72 0.49 
1000 10 0.20 16 0.53 0.57 0.56 0.72 1.00 0.98 0.51 
1000 10 0.10 16 0.60 0.67 0.67 0.78 1.00 0.86 0.51 
1000 20 0.4 8 0.03 0.04 0.04 0.04 0.36 0.51 0.00 
1000 20 0.4 16 0.51 0.51 0.09 0.50 0.59 0.88 0.50 

Table 3: Detection Rate: Percentage of Outliers Detected 

While sCBUI and MB have difficulty correctly identifying clean cases, the situation is 

reversed with respect to correctly identifying outliers. For this task, sCBUI offers the best 

performance, outperforming MB, a method that in turn outperforms all other methods, with only 

a handful of exceptions. The hybrid method outperforms both RMVN and detMCD. Generally 

speaking, detMCD has a bit of a performance edge over RMVN, but occasionally it is notably 
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worse; and generally speaking, RMVN outperforms RMB. Finally, once again it is evident that 

fMCD has difficulty with outlier configuration type 1.  

 

 

Figure 2: Absolute Differences: C - S 

As noted above, for each  ,j detMCD fMCD , we plot 
jr  against 

jdetMCD , for each simulation configuration. A 

45° line is included for comparison purposes. Three cases in which detMCD returned enormously larger sums are 
dropped, and in two of the remaining cases, outliers from sCBUI are dropped. The entirety of the data is presented in 
Table A1 in the Appendix. 

Three things are worth noting in Figure 2. First, the performance of sCBUI (“CBOI” in the 

legend) and MB is generally inferior to that of detMCD, with a handful of exceptions. Second, 

RMVN, RMB, detMCD, and the hybrid method all offer very similar performance when judged 

by this metric. (We emphasize again that three large detMCD outliers were dropped.) Third, fMCD 

cannot even be depicted, as its performance is frequently abysmal according to this metric. 
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H0: C = S (at  = 10%) 

 N k  pm RMVN FMCD detMCD Hybrid sCBUI MB RMB 

Type 1 

100 5 0.25 10 0.41 0.00 0.01 0.83 0.87 0.00 0.87 
100 5 0.25 20 0.98 0.00 0.99 0.99 0.99 0.00 0.98 
100 20 0.20 100 0.81 0.00 0.60 0.96 0.33 0.00 0.82 
100 20 0.20 4000 0.79 0.02 0.66 0.96 0.33 0.00 0.81 
300 5 0.25 20 1.00 0.00 1.00 1.00 1.00 0.00 1.00 
300 10 0.25 20 0.99 0.00 0.00 1.00 1.00 0.00 1.00 
300 20 0.20 100 1.00 0.00 1.00 1.00 1.00 0.00 1.00 
300 30 0.20 100 1.00 0.00 1.00 1.00 0.89 0.00 1.00 
300 20 0.20 4000 1.00 0.07 1.00 1.00 1.00 0.00 1.00 

1000 20 0.20 100 1.00 0.00 1.00 1.00 1.00 0.00 1.00 
1000 10 0.10 100 1.00 1.00 1.00 1.00 1.00 0.00 1.00 
1000 30 0.20 100 1.00 0.00 1.00 1.00 0.99 0.00 1.00 

Type 2 

100 5 0.02 10 0.95 0.55 0.83 0.91 0.97 0.01 0.97 
100 5 0.45 10 0.99 1.00 1.00 1.00 0.75 0.00 0.99 
100 10 0.25 3 0.34 0.52 0.36 0.54 0.58 0.00 0.38 
100 20 0.25 5 0.59 0.08 0.95 0.86 0.56 0.00 0.87 
100 20 0.25 10 0.85 0.22 0.98 0.99 0.69 0.00 0.87 
100 20 0.35 10 0.80 0.00 1.00 0.93 0.92 0.00 0.98 
300 5 0.25 10 1.00 1.00 1.00 1.00 1.00 0.00 1.00 
300 10 0.25 10 1.00 1.00 1.00 1.00 1.00 0.00 1.00 
300 10 0.25 3 0.20 0.71 0.43 0.69 0.32 0.00 0.18 
300 20 0.25 5 1.00 0.77 1.00 1.00 0.00 0.00 1.00 
300 20 0.25 10 1.00 0.97 1.00 1.00 0.00 0.00 1.00 
300 20 0.35 10 1.00 0.00 1.00 1.00 1.00 0.00 1.00 

1000 10 0.25 10 1.00 1.00 1.00 1.00 1.00 0.00 1.00 
1000 10 0.05 10 1.00 1.00 1.00 1.00 1.00 0.00 1.00 

Type 3 

100 5 0.20 8 0.60 0.75 0.70 0.66 0.67 0.00 0.67 
100 5 0.40 8 0.02 0.04 0.02 0.08 0.05 0.00 0.04 
100 5 0.40 16 0.99 1.00 1.00 1.00 0.99 0.00 0.99 
300 5 0.24 8 0.29 0.51 0.43 0.45 0.37 0.00 0.36 
300 10 0.24 8 0.04 0.35 0.17 0.37 0.05 0.00 0.07 
300 20 0.24 8 0.08 0.06 0.03 0.38 0.16 0.00 0.16 
300 20 0.40 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1000 5 0.40 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1000 5 0.40 12 1.00 1.00 1.00 1.00 1.00 0.00 1.00 
1000 5 0.40 16 1.00 1.00 1.00 1.00 1.00 0.00 1.00 
1000 10 0.40 16 1.00 0.82 1.00 1.00 1.00 0.00 1.00 
1000 5 0.20 16 1.00 1.00 1.00 1.00 1.00 0.00 1.00 
1000 10 0.20 16 1.00 1.00 1.00 1.00 1.00 0.00 1.00 
1000 20 0.40 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1000 20 0.40 12 0.17 0.00 0.01 0.93 0.11 0.00 0.12 
1000 20 0.40 16 1.00 0.00 0.03 1.00 1.00 0.00 1.00 

Type 4 

100 5 0.40 8 0.11 0.12 0.12 0.07 0.07 0.00 0.10 
100 5 0.24 8 0.41 0.37 0.59 0.42 0.36 0.00 0.40 
100 5 0.40 16 0.03 0.03 0.02 0.07 0.06 0.00 0.05 
300 5 0.24 8 0.08 0.37 0.34 0.12 0.06 0.00 0.07 
300 10 0.24 8 0.28 0.54 0.47 0.49 0.22 0.00 0.27 
300 20 0.24 8 0.99 0.90 0.96 0.96 1.00 0.00 1.00 
300 20 0.40 8 0.01 0.00 0.01 0.00 0.02 0.00 0.02 

1000 5 0.40 4 0.10 0.00 0.00 0.09 0.28 0.00 0.21 
1000 5 0.40 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1000 5 0.24 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1000 5 0.40 12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1000 5 0.40 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1000 5 0.20 16 0.17 0.25 0.21 0.35 0.19 0.00 0.23 
1000 10 0.40 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1000 10 0.20 16 0.00 0.01 0.00 0.01 0.00 0.00 0.00 
1000 10 0.10 16 0.07 0.71 0.66 0.66 0.07 0.00 0.14 
1000 20 0.40 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1000 20 0.40 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 4: Test of Equality of Scatter Matrices, S = C  

(Percentage of Non-Rejections at 10% level) 

Once again, it is evident that fMCD experiences great difficulty coping with outlier 

configuration 1. Outlier configuration type 4 is evidently extremely challenging for all methods. 

The hybrid method and detMCD are fairly evenly matched for outlier types 2 and 4. The hybrid 
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method has a clear edge for outlier configuration three; in that case, both detMCD and fMCD can 

get blown away in high dimensions. 

Sum of Absolute Differences: L versus x   
(expressed as percentage of median across methods) 

 N v gamma pm RMVN FMCD detMCD hybrid sCBUI MB RMB 

Type 1 

100 5 0.25 10 1.18 2.31 2.01 1.00 0.29 0.43 0.29 
100 5 0.25 20 0.96 39.49 1.00 0.17 1.05 3.94 1.00 
100 20 0.2 100 0.91 10.22 1.00 0.05 1.54 1.32 0.92 
100 20 0.2 4000 0.92 358.08 1.00 0.06 1.49 1.33 0.92 

1000 20 0.2 100 1.01 61.04 0.85 0.62 1.00 4.42 1.00 
1000 10 0.1 100 1.00 0.98 0.97 0.82 1.02 4.98 1.03 

300 5 0.25 20 0.99 57.18 0.68 0.43 1.01 4.33 1.00 
300 10 0.25 20 1.00 19.67 18.59 0.39 0.79 3.16 0.76 
300 20 0.2 100 0.99 31.89 0.98 0.30 1.09 3.30 1.00 
300 30 0.2 100 0.97 15.25 1.00 0.11 2.32 2.29 0.96 
300 20 0.2 4000 1.00 1091.00 1.01 0.31 0.99 3.25 0.98 

1000 30 0.2 100 0.99 35.23 0.87 0.51 1.26 4.27 1.00 

Type 2 

100 5 0.02 10 1.00 1.72 1.34 0.44 1.00 3.46 0.94 
100 5 0.45 10 1.36 0.81 0.05 0.00 40.33 3.41 1.00 
100 20 0.25 5 2.00 4.40 0.75 1.00 0.91 1.11 0.70 
100 20 0.25 10 1.18 9.92 0.91 0.07 1.00 1.53 0.91 
100 20 0.35 10 3.15 13.63 0.45 1.00 0.59 1.01 0.56 
100 10 0.25 3 1.26 1.00 1.09 0.85 0.65 0.72 1.05 

1000 10 0.25 10 1.00 0.65 0.64 0.61 1.01 4.46 1.02 
1000 10 0.05 10 0.99 1.04 1.03 0.85 1.00 5.06 1.00 

300 5 0.25 10 1.00 0.76 0.73 0.44 1.01 4.33 1.00 
300 10 0.25 10 1.00 0.89 0.84 0.43 1.01 4.19 1.01 
300 10 0.25 3 1.59 0.59 0.99 1.00 1.05 0.61 1.50 
300 20 0.25 5 1.06 7.17 0.93 0.31 1.00 3.50 1.00 
300 20 0.25 10 1.00 2.48 0.93 0.24 1.00 3.63 1.00 
300 20 0.35 10 0.99 94.33 0.74 0.16 1.00 3.66 1.00 

Type 3 

100 5 0.2 8 1.12 0.88 1.00 2.23 0.98 1.52 0.95 
100 5 0.4 8 1.02 1.00 1.02 1.08 0.94 0.55 0.98 
100 5 0.4 16 1.00 0.49 0.31 0.14 1.32 4.42 1.06 
300 5 0.24 8 1.08 0.64 0.73 1.05 1.00 0.56 1.00 
300 10 0.24 8 1.10 0.75 0.90 1.01 1.00 0.44 1.00 
300 20 0.24 8 1.04 1.00 1.04 1.10 0.87 0.52 0.87 
300 20 0.4 8 1.01 1.03 1.10 1.00 0.96 0.84 0.95 

1000 5 0.4 8 1.02 0.98 1.02 0.90 1.00 0.33 1.00 
1000 5 0.4 12 1.00 0.17 0.19 0.25 1.05 3.04 1.05 
1000 5 0.4 16 1.00 0.10 0.09 0.23 1.01 2.93 1.01 
1000 10 0.4 16 1.00 13.98 0.17 0.31 1.00 2.92 1.00 
1000 5 0.2 16 1.00 0.74 0.73 0.69 1.02 4.81 1.03 
1000 10 0.2 16 1.00 0.77 0.76 0.69 1.04 4.64 1.05 
1000 20 0.4 8 1.04 1.01 1.14 0.99 1.00 0.98 0.99 
1000 20 0.4 12 1.00 2.11 2.20 0.31 1.06 0.16 0.98 
1000 20 0.4 16 1.00 52.78 52.19 0.38 0.99 3.08 0.99 
1000 5 0.4 4 1.04 0.99 1.00 0.00 0.00 0.00 0.00 

Type 4 

100 5 0.4 8 1.00 1.00 1.04 0.97 0.99 1.48 0.97 
100 5 0.24 8 1.01 1.00 1.00 0.98 1.00 1.17 0.99 
100 5 0.4 16 1.01 1.06 1.06 0.95 1.00 0.17 0.98 
300 5 0.24 8 1.03 0.94 0.97 0.96 1.01 1.22 1.00 
300 10 0.24 8 1.01 0.98 1.00 0.98 1.00 1.09 1.00 
300 20 0.4 8 1.00 1.01 1.01 0.99 0.98 1.26 0.98 

1000 5 0.4 4 0.90 1.05 1.00 1.01 0.88 1.60 0.90 
1000 5 0.4 8 1.05 0.98 1.00 0.96 1.06 1.51 0.99 
1000 5 0.24 8 1.02 0.93 0.94 0.90 1.01 1.23 1.00 
1000 5 0.4 16 1.00 1.01 1.01 0.99 1.03 0.04 1.00 
1000 5 0.2 16 1.68 0.93 1.00 1.00 1.57 0.41 1.41 
1000 10 0.1 16 1.27 0.83 0.87 1.00 1.25 0.66 1.19 
1000 10 0.2 16 1.32 0.91 0.96 1.00 1.33 0.25 1.32 
1000 10 0.4 16 1.01 1.00 1.00 0.97 1.14 0.10 1.00 
1000 20 0.4 8 1.00 1.00 1.00 1.00 0.99 1.10 0.99 
1000 20 0.4 16 1.00 1.00 1.17 1.00 1.09 0.87 1.00 

 

Table 5: Absolute Differences between Location Estimates: L/Lmedian 

Each difference is recorded relative to the median across methods for each simulation configuration. 
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When considering the accurate estimation of the mean, the hybrid method offers the best 

overall performance: Its estimate is either close to the median or else achieves the minimum 

deviation, with rare exceptions (such as the first configuration for the type 3 outlier configuration). 

Also notable is RMB, which is very consistent and never far above the median. It is also worth 

noting that detMCD is also very consistent, with one big miss, and sCBUI is also reasonably 

accurate (though it has two big misses). RMVN is not far behind. 

 In sum, simulation evidence leads us to the following conclusions about relative 

performance. Overall, the hybrid method offers performance that is on a par with, or modestly 

superior to, detMCD, which in turn has a slight edge over RMVN. Each of these three methods is 

attractive: Each is practical to implement, each easily outperforms classical methods, and the 

overall performance of these estimators appears to be comparable. Conversely, fMCD should not 

be considered a reliable method. If the task is outlier detection, sCBUI is the best, followed by 

MB. If the task is accurate scatter estimation, both hybrid and detMCD are generally good choices, 

though RMVN is nearly on par; MB and sCBUI offer sub-par performance for this task. If the task 

is the accurate estimation of location, the hybrid method or RMB is perhaps the best choice. 
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REAL‐WORLD DATA ANALYSIS 

In this section we first apply our new methods to some data sets that have been used as benchmarks 

in the literature. Finally, we re-examine a prominent economic study. We ask the question: Are 

the results in this study driven by unusual cases?  

SWISS BANKNOTES DATA 

Flury and Riedwyl (1988) introduced a Swiss forgeries data set that has become a standard 

benchmark in the field for cluster analysis and for principal components analysis (see, for example, 

Salibian-Barrera, Van Aelst, and Willems (2006)), and a standard example for logistic regression 

(see Olive 2012). But these data are not generally used to assess outlier detection methods, for 

reasons that will become clear. (An exception is Atkinson, Riani, and Cerioli (2004), who use it to 

demonstrate the forward search, starting from 20 notes believed to be genuine. This analysis finds 

two distinct groups of forgeries.) Flury and Riedwyl investigated whether one could use simple 

linear dimensions obtained from genuine versus forged 1000-franc  Swiss banknotes to enable the 

detection of other forgeries without the use of sophisticated equipment. They obtained 200 Swiss 

banknotes withdrawn from circulation, which experts classified as either genuine or forged. They 

took six measurements on each note: length, height on left side, height on right side, width of 

bottom margin, width of top margin, and diagonal length of the inner frame. In this data set, the 

first 100 observations are believed to be genuine, while the next 100 observations were identified 

as forgeries. However, some of the notes in either category may have been misclassified. Ritter 

(2014) remarks that, although small, this data set is “not easy.” For instance, the forged notes may 

not have all been produced in the same manner, and, by construction, outliers comprise 50 percent 

of the data. 

sCBUI identifies all 100 forgeries, in addition to flagging 14 notes from the genuine pool 

as being outliers. But this data set is “not easy.” RMVN locates just 15 forgeries (with an additional 

7 notes from the genuine pool identified as outliers), and the hybrid method locates only 16 

forgeries (with an additional 9 notes from the genuine pool identified as outliers).  

BUXTON HEIGHT DATA 

Buxton (1920, p. 232-35) gives various measurements on 591 men, including height, head length, 

nasal height, bigonial breadth, and cephalic index. The fourth group of observations, taken from 

men in proximity to the village of Levkoniko on Cyprus, consists of 88 cases; we remove one of 

these cases because of missing values. Five of these individuals appear to be somewhat unusual, 

in that their heights were recorded to be about 19mm, in conjunction with massive head lengths 
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that exceeded five feet. These five cases are outliers with enormous leverage, as will be evident 

below. For illustrative purposes, we follow Olive (2017) and predict stature on the basis of an 

intercept and four variables: head length, nasal height, bigonial breadth, and cephalic index.  

 N Constant Head 
Length 

Nasal Height Bigonial 
Breadth 

Cephalic 
Index 

𝑅തଶ 

OLS: 
Full Data 

87 
1546 
(8.00) 

-1.12 
(-58.9) 

6.11 
(4.01) 

-0.59 
(-0.54) 

1.13 
(0.74) 

0.98 

OLS: 
Remove 
Outliers 

76 
808 

(1.70) 
1.69 

(1.04) 
4.83 

(3.10) 
0.15 

(0.10) 
3.75 

(1.60) 
0.10 

Table 6. OLS and Robust Regression Results, Buxton Height Data 

When the five cases are included in the regression, 𝑅തଶ is 98 percent, suggesting an excellent fit to 

the data. Estimates suggest that head length is a powerful predictor; men with longer heads are 

evidently shorter, on average. Residuals appear to be well-behaved (see Figure 3). Masking is on 

display: Cases 61-65 are the tiny men outliers, and they are invisible in Figure 3. 

 

Figure 3: OLS Residuals from Buxton Height Data 

Only three cases are identified as outliers according to conventional studentized residual methods 

(either internal or external) – and none of these is one of the five “tiny men” cases! Cook’s d fares 

slightly better, but still only correctly identifies two of the five tiny men cases. When these two 

cases are removed, regression results are nearly unaffected. Our hybrid method identifies 11 cases 

as outliers, including all five of the tiny men. (The other six are men with extremely short noses 

or narrow jaws, in conjunction with unusual height.) When these cases are removed, the estimated 

coefficient on head length switches sign and loses statistical significance. The regression 𝑅തଶ drops 

to 10 percent.  
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REEXAMINATION OF COSTINOT, OLDENSKI, AND RAUCH (2011) 

In this subsection, we re-examine a prominent study in the economics literature.10 We seek to 

determine whether central results in this study are sensitive to, or perhaps driven by, unusual 

observations. If a group of UDPs appear to play a central role in coefficient estimates, they merit 

further investigation.11 Our intention is not to sully these authors. We have great respect for them, 

as they have demonstrated their commitment to impartial scientific analysis by making their data 

and code available. These researchers were undoubtedly unaware of the existence of tools like the 

ones presented here. 

Cosinit, Oldenski, and Rauch (2011) (COR) rank 77 goods-producing industries on the 

basis of the routineness of tasks involved in the production process. Their subsequent regression 

analysis suggests that, after controlling for various other sector-level characteristics, the degree of 

sector routineness is a significant predictor of the sector share of intrafirm imports; specifically, 

the higher the routineness of the sector, the lower the share of intrafirm imports. Sector-level 

regression controls include capital intensity, the log of the ratio of capital to labor; skill intensity, 

the log of the ratio of nonproduction workers to production workers in a given industry; R&D 

intensity, the log of the ratio of R&D spending to sales; relationship specificity, the importance of 

relationship-specific investments; intermediation, the industry-specific ease of contracting out 

parts of the production process; and dispersion, the distribution of firm size within an industry on 

the basis of variation of sales by firms. 

We find that the results in the paper are not robust. Our method indicates that a significant 

percentage of these data is drawn from a different distribution than the bulk of the data. In the 

baseline regressions, after removing these unusual observations using our hybrid method, we find 

uniformly weaker evidence that routineness plays an important role. Across specifications, 

coefficient magnitudes decline, and statistical significance often disappears. Furthermore, once we 

include all the relevant sector controls, the evidence for an important role of dispersion strengthens 

considerably, at the expense of the routineness and R&D intensity variables: Coefficient estimates 

on both are no longer statistically different from zero. We emphasize that these stark differences 

hinge on 7,000 observations that are drawn from a different distribution than the bulk of the data. 

                                                                 
10 In a previous version, we also examined Card and Krueger (1994) – where we find that the result is driven by UDPs 
(verifying a finding in Neumark and Wascher (2000)) – and Mian and Sufi (2014), where we find that the result is 
strengthened if we remove UDPs. 
11 We again draw attention to Knez and Ready (1997), who investigate the effects of outliers in the famous Fama and 
French (1992, 1993) studies. These authors state: “We find that the risk premium on size that was estimated by Fama 
and French (1992) completely disappears when the 1 percent most extreme observations are trimmed each month. We 
also show that the negative average of the monthly size coefficients reported by Fama and French can be entirely 
explained by the 16 months with the most extreme coefficients.” 
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Table 7: Costinot, Oldenski, and Rauch Table 7, With and Without UDPs 

 

To probe this result further, we repeat the robustness exercises of COR for model 5, which 

includes all the controls. These checks include re-running the regression on four different 

subgroups of countries: OECD and non-OECD countries, as well as countries where “at least two-

thirds of intrafirm U.S. imports from that country are imported by U.S.-owned firms” (what the 

authors call the “restricted set of countries”), and countries where that share is less than two-thirds 

(what we will refer to as the “unrestricted set of countries”). 12  After removing unusual 

observations, we find that routineness is a significant predictor of intrafirm imports only in the 

non-OECD country group, whereas dispersion remains strongly significant across all subgroups. 

This of course contrasts sharply with the finding of COR: that the coefficient on routineness is 

statistically significant across all four subgroups. Further, this finding removes support for the 

authors’ theoretical framework, the basis of which is the behavior of intrafirm imports specifically 

by U.S.-owned multinationals, which the restricted set of countries is intended to capture.  

Finally, as in COR, model 5 is re-run including only firms with nonzero intrafirm import 

share. Here too we fail to find any strong evidence in favor of the effect of routineness after 

removing unusual observations. Meanwhile, dispersion still plays a significant, albeit substantially 

smaller role, than in our previous results. This regression also suggests that this group of firms 

                                                                 
12 We note that Costinot, Oldenski, and Rauch (2011) do not report regression results for the unrestricted countries. 
We report them here, along with the results after removing data outliers using our hybrid method.  

Model:

Original Robust Original Robust Original Robust Original Robust Original Robust

N: 29645 20600 29645 20034 29645 19612 29645 20546 27775 20707

Routine ‐0.1826*** ‐0.0749** ‐0.0829** ‐0.0568 ‐0.0858** ‐0.0611 ‐0.0903*** ‐0.0895** ‐0.0829**  ‐0.0293

(‐6.75) (‐2.243) (‐2.21) (‐1.205) (‐2.47) (‐1.266) (‐2.59) (‐2.088) (‐2.48) ( ‐0.652)

Ln(K/L) 0.0117 ‐0.1038*** 0.0576* ‐0.1289** 0.0703* ‐0.0717  0.0645* ‐0.0301

(0.38) (‐2.669) (1.66) (‐2.017) (1.75) (‐1.207) (1.65) (‐0.467)

Ln(S/L) 0.0160 0.0437 0.0026 0.0361 0.0048 0.0662 ‐0.0242 ‐0.0097

(0.42) (1.078) (0.08) (0.770) ( 0.13) (1.485) ( ‐0.67) (‐0.213)

Ln(R&D) 0.1646*** 0.0479  0.1270*** 0.0547 0.1357*** 0.0791 0.1105*** 0.0637

(4.22) (1.073) (2.88) (  1.034) (3.06) ( 1.505) (2.70) (1.215)

Specificity 0.0816** ‐0.0419 0.0838** ‐0.0090  0.0673 0.0174

(2.17) (‐0.687) (2.13) (‐0.154) (1.63) (0.250)

Intermediation 0.0324 0.1134** 0.0151 0.012

(0.88) (2.587) (0.41) (0.220)

Dispersion 0.0730* 0.1578***

(1.92) (4.047)

Fixed effects

R
2

0.261 0.275 0.281 0.277 0.285 0.287 0.286 0.311 0.292 0.345

Table 7 ‐ Baseline Regressions

1 2 3 4 5

Ctry‐year Ctry‐year Ctry‐year Ctry‐year Ctry‐year
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drives the positive and significant impact of R&D intensity on intrafirm imports that COR found 

across all of the regressions in their original work.  

 

Table 8: Costinot, Oldenski, and Rauch Tables 8-11, With and Without Outliers 

 

We again emphasize that we have great respect for these authors, and we suspect that it 

would not be difficult to discover that the findings of many prominent studies were driven by 

UDPs. This is a cautionary note for all of us. Indeed, we ourselves have not always made use of 

the best available methods, to see if our own results are robust!  

  

Model:

Original Robust Original Robust Original Robust Original Robust Original Robust

N: 10100 8057 17675 9848 14140 7447 14140 10399 20339 15483

Routine ‐0.1254** ‐0.0928 ‐0.0654* ‐0.0898* ‐0.0639*  ‐0.0649  ‐0.1059** ‐0.0370 ‐0.0734** ‐0.0551

(‐2.47) ( ‐1.482) (‐1.92) (‐1.654) (‐1.95) ( ‐1.136) (‐2.55) ( ‐0.862) (‐2.23) (‐1.394)

Ln(K/L) 0.0989 ‐0.0116  0.0501 ‐0.0978 0.0415 ‐0.0649 0.0907* 0.0579 0.1150** 0.0474

(1.39) (‐0.150) (1.24) (‐1.469) ( 1.15) (‐0.965) ( 1.69) (0.807) (2.10) (0.938)

Ln(S/L) ‐0.0659 ‐0.0326  ‐0.0014  ‐0.0216 ‐0.0097 ‐0.0403 ‐0.0399 ‐0.0751 ‐0.0637 ‐0.0556

( ‐1.09) ( ‐0.516) ( ‐0.04) ( ‐0.534) ( ‐0.28) (‐1.085) ( ‐0.85) (‐1.264) (  ‐1.31) ( ‐1.089)

Ln(R&D) 0.1264** 0.1121 0.1120** ‐0.0083  0.1062** ‐0.0292 0.1203*** 0.1038* 0.1336*** 0.1219***

(2.16) ( 1.495) (2.37) ( ‐0.164) (2.32) (‐0.594) (2.67) (1.896 ) ( 3.51) ( 2.759)

Specificity 0.0914 0.0448 0.0594 ‐0.0324 0.0504 ‐0.0140 0.0875 0.0658 0.1122* 0.0923

(1.32) (0.516) ( 1.30) (‐0.494) (1.24) (‐0.221) (1.65) (0.825) (1.95) (1.594)

Intermedi ‐0.018 ‐0.0268 0.0368 0.1134** 0.0427 0.1043* ‐0.0115 0.0093 ‐0.0664* ‐0.0496

(‐0.30) (‐0.360) (0.94) (2.079 ) (1.26) (1.864) (‐0.24) (0.157) (‐1.92) (‐1.084)

Dispersion 0.0644 0.1266** 0.0857 0.1481*** 0.0829 0.1492*** 0.0669** 0.1792*** 0.0213 0.0802*

(1.32 ) (2.456) (1.34 ) (4.084) (1.51) (3.739) (1.99) (3.762) ( 0.69) (1.890)

Fixed effe

R
2

0.185 0.185 0.217 0.255 0.251 0.221 0.251 0.274 0.2425 0.251

Ctry‐year Ctry‐year Ctry‐year Ctry‐year

5: All Other Countries 5: Restricted Set of Countries 5: All Other Countries 5: Nonzero Intrafirm Import Shares

Ctry‐year

Tables 8 and 9: Regressions for OECD and All Other Countries Table 10 Table 11

5: OECD Countries
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CONCLUSION 

We present two new methods for multivariate outlier identification and robust estimation of 

multivariate location and dispersion. We provide evidence indicating that these methods perform 

on a par with, or better than, two of the currently best available methods. We also demonstrate, by 

re-examining a prominent economic study, that results can be sensitive to a modest percentage of 

atypical cases in the data. This is information worth knowing. A finding like this will challenge 

the conclusions drawn from the full sample and force the researcher to investigate further, to 

determine what characterizes the atypical cases, and to reach deeper conclusions about the 

relationships being studied. We therefore suggest that researchers should routinely run a quick 

check to see if the results are robust along this dimension. Our tools make this straightforward to 

accomplish. 

 Many methods, such as factor analysis, directly or indirectly rely on an accurate estimate 

of the covariance matrix. These may benefit from a step that undertakes a robust estimation of the 

covariance matrix using the hybrid method. 

 This study has not addressed special topics related to outliers that arise in the time series 

context. While outliers have long been a central issue in seasonal adjustment (see, for example, 

Findlay et al. (1998)) and in estimating inflation trends (see, for example, Bryan and Cecchetti 

(1994) or Higgins and Verbrugge (2015)), they are often ignored in time series analysis more 

broadly – despite the fact that outliers will have the same distorting effects on classical estimators 

in that context. We do, however, note that both LTS-based and MM-based robust estimation 

procedures for vector autoregressions have been developed; see Croux and Joossens (2008) and 

Muler and Yohai (2013). 

All of the methods in this study apply only to continuous variables. However, the attributes 

in a data set are often a mixture of categorical and continuous types. Categorical attributes 

generally take on few values, and these values may not have an ordering. This makes it difficult to 

define distance metrics for such data points. Work on this area has begun (see, for example, Otey, 

Ghoting, and Parthasarathy (2006)), but we leave the development of meaningful distance metrics 

in mixed-type attribute spaces for future work. 
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APPENDIX 

A.1 SUM OF ABSOLUTE DIFFERENCES 

 

Table A1: Absolute differences between scatter matrix estimates 

 

Sum of Absolute Differences: C vs. S 

 N k  pm RMVN FMCD detMCD Hybrid SCBUI MB RMB 

Type 
1 

100 5 0.25 10 16.26 27.13 25.49 4.38 3.48 6.51 3.55 
100 5 0.25 20 1.08 98.53 0.83 1.19 1.11 6.46 1.10 
100 20 0.20 100 30.86 2301.49 25.12 19.67 85.48 56.13 28.99 
100 20 0.20 4000 31.01 3494712.20 25.63 19.64 85.48 56.13 28.99 
300 5 0.25 20 0.60 89.18 0.39 0.68 0.64 5.29 0.64 
300 10 0.25 20 3.23 103.12 100.18 2.20 1.90 14.60 1.77 
300 20 0.20 100 6.51 2015.29 7.16 7.65 12.54 37.68 6.19 
300 30 0.20 100 19.12 2242.64 21.67 17.50 261.23 81.04 18.31 
300 20 0.20 4000 6.53 2898167.17 7.58 7.58 10129.50 37.84 6.29 

1000 20 0.20 100 2.91 1773.79 3.43 3.60 2.91 27.33 2.91 
1000 10 0.10 100 0.96 1.72 1.69 0.91 0.94 5.28 0.95 
1000 30 0.20 100    7.53 22.33 54.29 5.73 

Type 
2 

100 5 0.02 10 1.23 2.23 1.81 1.23 1.24 3.69 1.22 
100 5 0.45 10 1.46 0.51 0.02 1.39 33.32 20.12 1.32 
100 20 0.25 5 41.43 63.45 23.16 30.35 39.24 65.97 27.25 
100 20 0.25 10 35.57 253.82 22.36 19.44 29.73 66.04 27.18 
100 20 0.35 10 98.48 420.41 12.89 54.25 25.19 91.51 23.26 
300 5 0.25 10 0.61 0.43 0.41 0.69 0.65 5.43 0.65 
300 10 0.25 10 1.81 1.51 1.40 2.05 1.84 14.78 1.83 
300 10 0.25 3 7.44 2.42 3.52 3.52 5.26 14.98 7.31 
300 20 0.25 5 6.37 22.43 5.95 7.86 6.14 46.24 6.21 
300 20 0.25 10 6.19 15.88 5.98 7.81 6.14 46.44 6.15 
300 20 0.35 10 5.78 437.64 3.42 8.42 5.68 69.52 5.71 

1000 10 0.25 10 1.01 0.79 0.78 1.27 0.98 12.70 0.98 
1000 10 0.05 10 0.93 2.05 2.01 1.27 1.43 5.85  

 
Type 

3 

100 5 0.20 8 5.24 3.49 4.05 4.83 4.60 8.34 4.49 
100 5 0.40 8 20.97 16.91 18.41 18.43 23.64 30.45 20.44 
100 5 0.40 16 2.00 0.35 0.23 2.57 3.06 24.07 2.11 
300 5 0.24 8 7.59 3.95 4.63 4.39 6.91 7.85 6.92 
300 10 0.24 8 12.82 8.36 10.25 7.47 10.78 6.78 10.52 
300 20 0.24 8 23.67 15.80 19.63 17.86 20.50 14.13 7.77 
300 20 0.40 8 35.29 38.59 57.94 28.29 30.89 26.83 23.01 

1000 5 0.40 8 20.33 18.32 17.37 17.70 19.82 28.35 19.21 
1000 5 0.40 12 0.81 0.10 0.10 1.43 0.80 22.61 0.80 
1000 5 0.40 16 0.76 0.06 0.06 1.44 0.77 22.45 0.77 
1000 10 0.40 16 0.68 15.90 0.08 1.09 0.70 17.26 0.70 
1000 5 0.20 16 0.64 0.71 0.69 0.86 0.66 5.53 0.66 
1000 10 0.20 16 0.59 0.64 0.62 0.69 0.58 4.79 0.58 
1000 20 0.40 8 29.20 22.62 53.97 20.29 24.48 29.74 20.79 
1000 20 0.40 12 26.03   3.94 29.98 15.29 25.87 
1000 20 0.40 16 0.69 90.57 88.18 1.22 0.71 15.30 0.71 

Type 
4 

100 5 0.40 8 30.95 18.80 28.69 24.32 35.04 43.68 26.66 
100 5 0.24 8 27.34 14.37 17.06 22.41 27.87 29.16 26.56 
100 5 0.40 16 80.69 70.63 73.52 78.31 93.57 69.45 82.50 
300 5 0.24 8 29.92 12.21 15.28 19.86 31.63 27.44 30.53 
300 10 0.24 8 31.80 22.62 25.90 27.90 33.64 19.64 33.17 
300 20 0.40 8 45.24 40.81 41.39 48.54 44.80 24.22 44.24 

1000 5 0.40 4 10.95 19.40 17.73 15.27 9.32 29.76 10.16 
1000 5 0.40 8 19.29 7.53 12.36 9.31 39.60 32.47 19.12 
1000 5 0.24 8 32.22 12.08 14.00 18.01 34.49 26.70 33.68 
1000 5 0.40 12 36.47 31.54 32.12 38.02 89.70 107.65 36.24 
1000 5 0.40 16 80.40 74.32 74.79 83.68 105.66 62.75 80.87 
1000 5 0.20 16 30.99 13.61 14.71 13.77 28.90 16.15 25.95 
1000 10 0.40 16 97.81 76.49 76.69 83.48 209.44 48.34 82.94 
1000 10 0.20 16 43.20   28.65 43.10 12.14 42.86 
1000 10 0.10 16 17.29   11.34 17.31 6.38 16.32 
1000 20 0.40 8 45.11 42.06 42.14 46.45 46.33 27.42 46.18 
1000 20 0.40 16 82.52 77.79 224.59 84.23 112.08 160.43 80.21 
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A.2 ROM‐ APPROXIMATION 

 

Figure A1. Plot of rom and  computed in each of 10,000 simulations of a zero mean bivariate Gaussian sample with 

10,000 observations.  

 

Figure A2. Plot of rom and  computed in each of 10,000 simulations of a zero mean bivariate Gaussian sample with 

100 observations.  

Let ( )îj i jr MED Z Z= . Then  

ˆ ijr   = 3.6960356 îjr  – 34.0331641 3
îjr  + 285.1035280 5

îjr  – 768.8966090 7
îjr  
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A.3 HYBRID SIZE AND POWER COMPARISON VERSUS CERIOLI (2010) FDR CONTROL METHOD 

 
False Discovery Rate 

N  v  Hybrid Method 
Hybrid  Method  with 
Cerioli FDR Control 

100  5  0.087  0.000 

100  10  0.142  0.000 

100  20  0.255  0.000 

200  5  0.053  0.000 

200  10  0.076  0.000 

200  20  0.131  0.000 

1000  5  0.030  0.000 

1000  10  0.033  0.000 

1000  20  0.040  0.000 

 
Applying Cerioli (2010) FDR control method to the outlier detection in the hybrid method yields 
an FDR of 0.000. 
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Power 

 
N k  pm Hybrid 

Hybrid Method with 
Cerioli FDR Control 

Type 1 

100 5 0.25 10 0.84 0.18 
100 5 0.25 20 1 1 
100 20 0.2 100 1 1 
100 20 0.2 4000 1 1 
300 5 0.25 20 1 1 
300 10 0.25 20 1 0.98 

1000 20 0.2 100 1 1 
1000 10 0.1 100 1 1 

300 20 0.2 100 1 1 
300 30 0.2 100 1 1 
300 20 0.2 4000 1 1 

1000 30 0.2 100 1 1 

Type 2 

100 5 0.02 10 1 1 
100 5 0.45 10 1 1 
100 20 0.25 5 0.91 0.69 
100 20 0.25 10 1 1 
100 20 0.35 10 0.95 0.93 
100 10 0.25 3 0.70 0.02 
300 5 0.25 10 1 1 
300 10 0.25 10 1 1 
300 10 0.25 3 0.86 0.10 

1000 10 0.25 10 1 1 
1000 10 0.05 10 1 1 

300 20 0.25 5 1 1 
300 20 0.25 10 1 1 
300 20 0.35 10 1 1 

Type 3 

100 5 0.2 8 0.88 0.32 
100 5 0.4 8 0.62 0.29 
100 5 0.4 16 1 1 
300 5 0.24 8 0.87 0.53 
300 10 0.24 8 0.78 0.28 
300 20 0.24 8 0.61 0.01 
300 20 0.4 8 0.46 0.06 

1000 5 0.4 8 0.57 0.50 
1000 5 0.4 12 1 1 
1000 5 0.4 16 1 1 
1000 10 0.4 16 1 1 
1000 5 0.2 16 1 1 
1000 10 0.2 16 1 1 
1000 20 0.4 8 0.51 0.28 
1000 20 0.4 12 0.98 0.67 
1000 20 0.4 16 1 1 

Type 4 

100 5 0.4 8 0.37 0.01 
100 5 0.24 8 0.31 0.00 
100 5 0.4 16 0.60 0.37 
300 5 0.24 8 0.29 0.00 
300 10 0.24 8 0.16 0.00 
300 20 0.4 8 0.09 0.00 

1000 5 0.4 8 0.48 0.01 
1000 5 0.4 12 0.50 0.50 
1000 5 0.4 16 0.51 0.50 
1000 5 0.2 16 0.88 0.53 
1000 5 0.24 8 0.30 0.00 
1000 10 0.2 16 0.72 0.50 
1000 10 0.1 16 0.78 0.51 
1000 10 0.4 16 0.53 0.49 
1000 20 0.4 8 0.04 0.00 
1000 20 0.4 16 0.50 0.49 
1000   0.4 4 0.02 0.00 

 
Applying Cerioli (2010) FDR control method to the outlier detection in the hybrid method results 
in a notable loss of power. 
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A.4 MASKING AND INVALID KNOWLEDGE DISCOVERY 

Aberrant or anomalous points, if they are not randomly distributed, may so influence parameter 
and covariance estimates that nothing seems amiss, a phenomenon known as masking. As noted 
above, masking occurs when a cluster of anomalous points effectively disguise each other, 
compromising inference without there being any indication that something has gone wrong. 
Importantly, masking can spoil inference even if the aberrant points are not extreme along any 
dimension; see Figure 1, an example from a bivariate data set in Rousseeuw and Leroy (1987) 
containing the body weight and brain weight of 28 animal species. Because the data are bivariate, 
in this example it is easy to detect three unusual observations, which are dinosaurs. We plot the 
classical OLS fitting line, and a robust OLS fitting line; the “effect” of body weight is (quite 
precisely) estimated to be either 0.5 or 0.75. Under masking, regression residuals appear well 
behaved, and widely used “leave-one-out” diagnostics are incapable of detecting the aberrant data. 
In this example, none of the dinosaur observations is identified as an outlier by Cook’s d. It is easy 
to generate more extreme examples. For more discussion, see Appendix A.4, Rousseeuw and van 
Zomeren (1990), or Olive (2008).  

 

 

Figure 1. Log brain weight versus log body weight for 28 animals with classical OLS fit (dashed 
green line) and robust OLS fit (solid red line). 
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An even more dramatic illustration 
of masking comes from the field of 
astronomy. The figure at right is 
taken from Hadi, Imon, and 
Werner (2009), in turn based on a 
data set presented and discussed by 
Rousseeuw and Leroy (1987). This 
example illustrates how classical 
statistical analysis, which assumes 
that the data are homogeneous and 
free from outliers, can even lead a 
researcher to a conclusion that is 
opposite of the truth. The data were 
taken from the Hertzsprung-
Russell diagram of the star cluster 
CYG OB1 and consist of the 
measurements for 47 stars, 
including the logarithms of surface 
temperature and light intensity. 
The figure shows a scatter plot of 
these data. For simplicity, consider 
constructing a confidence interval 
for this bivariate distribution, 
assuming bivariate normality. The figure plots the 99th quantile of a 2 distribution. Two ellipses 
with the same confidence level are depicted. The large ellipse is computed using the classical 
estimates (sample mean and sample covariance matrix); it indicates two outliers. The smaller 
ellipse is computed using robust estimates of the mean and covariance; it indicates six outliers. In 
this small two-dimensional data set, it is easy to identify unusual points using a plot of the data. 
Four of these points are clearly different from the rest of the distribution. In fact, those four are all 
giants. Although the outliers constitute a small percentage of the data, the effect on the confidence 
region is dramatic. A researcher who wished to construct a linear model predicting the light emitted 
by a star as a function of its temperature, but who ignored the potential for outliers, would falsely 
conclude that the two variables are inversely related (in particular, the coefficient estimate is –0.4); 
but upon dropping just the four giants from the data, the coefficient estimate is positive (+2.0). 
These authors state: “This example underlines the idea that accurate identification of outliers 
before performing statistical analysis is absolutely necessary, if reliable conclusions are to be 
drawn...Unfortunately, because of the insidious nature of the masking effect, the identification of 
outliers in multivariate data is not an easy task.” 
 
 
 

 




