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Sticky prices are an integral component of most macroeconomic models that generate 

considerable periods of monetary nonneutrality.  Understanding the mechanisms that produce 

price rigidity is therefore an essential task for building proper micro foundations of these macro 

models.  Following a long tradition dating to Barro (1972) and Mankiw (1985), the most 

commonly modeled structural impediments to price adjustment are menu costs—the costs 

associated with literally changing the price of an item.  In this paper, I show that estimates of 

menu costs are highly sensitive to the inclusion of other relevant frictions in the price-setting 

process. 

Using multiple scanner price data sets—covering billions of observations, multiple retail 

outlet types via grocery stores and drugstores, many retail chains, different time periods, and 

broad national coverage across the United States—I document and discuss two stylized facts.  

First, approximately two-thirds of prices end in the digit nine, a highly prominent price point.  

Second, at the conclusion of sales (i.e., temporary price mark-downs), post-sale prices exhibit 

considerable memory and return exactly to their pre-sale levels more than three-fourths of the 

time, and nine-ending prices play a role in this latter fact as well. 

I build a simple state-dependent pricing model that embeds two potential frictions.  First, 

I allow for a canonical menu cost: When the firm wishes to change its nominal price, it must pay 

a fixed, nonconvex adjustment cost to do so.  Second, I allow a role for price points in the firm’s 

decision problem: The firm may potentially receive a benefit—either real or perceived—from 

setting prices that end in the digit nine.   

This model yields several noteworthy effects.  First, depending on the parameterization, it 

can generate an overreliance on prices that end in the digit nine.  Second, the use of these price 

points can result in both price rigidity—because the firm may be reluctant to change its price 
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away from a nine ending—and relatively large price changes when it does adjust even in 

response to small changes in its costs—because it may jump to nearby nine-ending prices.  

Third, to the extent that price points matter to the firm, they also naturally create an incentive for 

a firm to return post-sale prices precisely back to their pre-sale levels if the pre-sale price was a 

price point. 

I estimate the model’s parameters using scanner data from Dominick’s Finer Foods, a 

grocery store chain.  Excluding the above facts and constraining the estimation to assume that 

price points are irrelevant, as in canonical menu cost models, I estimate a statistically and 

economically significant menu cost to match commonly cited moments related to price rigidity.  

However, the model cannot match the two above facts.  Jointly estimating the sizes of the menu 

cost and price point frictions and incorporating the above facts changes the results.  The size of 

the estimated menu cost drops markedly, suggesting that menu cost estimates using grocery store 

data that do not consider price points—such as Slade (1998), Nakamura and Zerom (2010), and 

Stella (2013)—suffer from an omitted variable bias that attributes too much stickiness to menu 

costs as a structural impediment to changing prices.  The estimated price point sensitivity is 

roughly two orders of magnitude larger than menu costs in this model.  In this setting, the price 

point model can match the two stylized facts, but menu costs are effectively too small to generate 

substantial price rigidity.  These results suggest that relying on menu costs as a structural 

explanation for price rigidity—which is arguably their most attractive feature in macro models 

featuring state-dependent pricing—may be spurious. 

Extending the model to illustrate its implied aggregate behavior, I show that the choice of 

a mechanism for price rigidity matters for macroeconomic dynamics.  Using the estimated 

parameters, the price point model generates movements in output distinct from those of the 
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simple menu cost model.  In the price point model, the initial distribution of prices plays a 

central role in determining whether monetary shocks generate more or less monetary 

nonneutrality than in a canonical menu cost model. 

The marketing and retailing literatures have long recognized the importance of price 

points and price endings, especially the digit nine.  Despite the explosion of interest in sticky 

prices since Bils and Klenow (2004), the sticky price literature has largely avoided the issue of 

price points, with the notable exceptions of U.S. empirical work by Kashyap (1995), Blinder et 

al. (1998), and Levy et al. (2011).1  While most macro models assume some form of price 

rigidity, those that model firm optimizing behavior in state-dependent pricing models usually 

rely on menu costs to generate price rigidity, as in Golosov and Lucas (2007), among many 

others.  The innovation of this paper is to integrate price points and menu costs into a single 

framework and jointly estimate the parameters of the model. 

This paper also contributes to the sticky price literature and the debate about the 

importance of sales.  Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008), and Kehoe 

and Midrigan (2008, 2015) show that including or excluding sales has a dramatic impact on 

estimated average durations between price changes, which, in turn, affects the results of macro 

models calibrated to one or the other duration.2  The fact that most sales are “undone”—in that 

the firm’s post-sale price usually exhibits memory by returning to its pre-sale level—lends some 

support to the view that sales should be treated as special or as a nuisance to abstract from in 

macro models.  Instead, I argue that the behavior of prices around sales provides important 

                                                 
1 For example, recent surveys by Klenow and Malin (2011) and Nakamura and Steinsson (2013) omit references to 

price points as a source of price rigidity.  For international evidence on price points and price rigidity, see, e.g., 

Dhyne et al. (2006), Hoffmann and Kurz-Kim (2006), and Knotek, Sayag, and Snir (2019). 
2 Coibion, Gorodnichenko, and Hong (2015) focus on the cyclical behavior of sales, which is beyond the scope of 

this paper. 
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information about structural price-setting models.  Ultimately, this behavior is more supportive 

of price point models than canonical menu costs. 

An additional drawback of menu cost models is their inability to generate small price 

changes: The presence of a menu cost that is sufficiently large to deter too-frequent adjustment 

also prevents many small price changes.  As noted by Midrigan (2011), while the average 

absolute size of price changes tends to be relatively large in the empirical data, there are also 

many small changes in absolute value.  While not a part of the estimation, the price point model 

closely matches the frequency of very small price changes (less than 2.5 percent and less than 1 

percent in absolute value) in the Dominick’s data.   

Price points rationalize why prices for a given product tend to come from a small set of 

choices, described as “discreteness” in Matějka (2016) or “coarseness”  in Stevens 

(forthcoming), which in turn is related to the inertia that Eichenbaum, Jaimovich, and Rebelo 

(2011) find in reference prices—i.e., the most commonly used prices within a quarter.  

Intuitively, price points help to channel firms’ prices to certain nominal levels.  In this 

framework, there is no longer a need to assume that firms are restricted to choosing from a small 

set of prices prescribed by a “price plan” that is costly to adjust, as in Eichenbaum, Jaimovich, 

and Rebelo (2011), or that information frictions play a central role in constraining firms to select 

from among a small set of prices, as in Matějka (2016) and Stevens (forthcoming).   
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I. Stylized Facts on Price Endings and Sales in Retail Scanner Data Sets 

 

Scanner data sets enable the study of price dynamics using massive numbers of observations 

across many goods, stores, and even retail chains.  This paper uses data from two such data sets 

that have been widely studied in the price rigidity literature.   

The first is the scanner dataset of prices for Dominick’s Finer Foods, a Chicago-area 

supermarket chain, which contains more than 3,500 items with UPC labels.  The data are 

available at a weekly frequency, beginning in September 1989 and running for 400 weeks 

through May 1997.  The data set contains nearly 99 million observations and is publicly 

available through the James M. Kilts Center at the University of Chicago Booth School of 

Business.   

The second data set is from IRI and is documented in Bronnenberg, Kruger, and Mela 

(2008).  The data are available at a weekly frequency, beginning in January 2001 and ending in 

December 2011.  I use the store sales data covering the complete set of UPC codes in 30 product 

categories.  This data set has more than 2.3 billion observations from grocery stores and nearly 

164 million observations from drugstores in the same categories.  The IRI data come from more 

than 100 different chains and 47 of IRI’s 64 markets, implying broad national coverage of retail 

chain pricing behavior. 

This paper focuses on several facts related to price endings, price behavior around sales, 

and the interaction between them.  The first fact is that prices ending in the digit nine dominate 

these retail scanner datasets.  Figure 1 shows that approximately two-thirds of retail scanner 

prices end in the digit nine: 63.6 percent of Dominick’s prices, 63.7 percent of the IRI grocery 
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store prices, and 75.0 percent of the IRI drugstore prices have a nine in the final cents digit.3  

These frequencies of nine-ending prices are incredibly far from the 10.0 percent that would occur 

if price endings were chosen at random and uniformly distributed.   

Because Dominick’s is a single chain while the IRI data contain many grocery store and 

drugstore chains, Figure 2 shows the distribution of the frequency of nine-ending prices across 

chains.  In these scanner datasets, 86.9 percent of grocery store chains and drugstore chains set 

more than half of their prices to nine endings; the vast majority set between 50 percent and 80 

percent of their prices to nine endings.  With few exceptions, most retail chains’ price-setting 

behaviors produce a frequency of nine-ending prices similar to Dominick’s. 

Price endings correlate with typical measures of interest in the price rigidity literature.  

For example, the top part of Table 1 shows that the unconditional frequency of price changes is 

25.2 percent in the Dominick’s data.  The conditional frequency of a price change for item i at 

time t is lower if the previous period’s price, p(i,t−1), ended in a nine (22.1 percent) than if it 

ended in any other digit (30.2 percent).  Levy et al. (2011) present a more detailed empirical 

analysis relating to nine endings in the Dominick’s data but do not explore the relationship 

between nine endings and memory around sales.4  The IRI data for grocery stores and drugstores 

                                                 
3 Price is generated in the IRI datasets by dividing weekly dollar sales (revenue) by unit sales (quantity), producing 

an average weekly retail price.  Restricting attention only to the prices of goods for which unit sales equal 1 in a 

given week—so that revenue equals price—yields frequencies of nine-ending prices of 78.3 percent in IRI grocery 

store data and 85.6 percent in IRI drugstore data.  While this procedure guards against erroneously rounding prices 

to nine-endings, it potentially overweights products with low volumes: In the IRI datasets, 21.7 percent of grocery 

store observations and 45.6 percent of drugstore observations have a quantity sold equal to 1 in a given week.  In the 

Dominick’s dataset, retail prices are provided, but a small number of price observations are for a bundle of more 

than 1 unit; e.g., a reported retail price of $1.00 and a bundle of 2 units.  In these cases, price for the bundle is 

divided by the number of units in the bundle to derive a per-unit price; continuing the example, the price would be 

$0.50 for that observation.  The bundle size is equal to 1 for 98.7 percent of Dominick’s observations.  Restricting 

attention to the Dominick’s observations for which the bundle size is equal to 1 yields a frequency of nine-ending 

prices of 64.4 percent. 
4 Studies of micro data underlying consumer price indices from the Eurosystem’s Inflation Persistence Network also 

usually find a statistically significant role for “attractive prices”—i.e., price points, including nine endings—in 

regressions on the frequency of price changes; see Dhyne et al. (2006) for a review of this evidence.   
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show the same pattern: Nine-ending prices change less frequently than other price endings.  

Indeed, the frequency of a price change for non-nine-ending prices is more than double the 

frequency for nine-ending prices in the IRI data.  The same patterns hold if we exclude prices 

that were part of a sale at time t−1 and time t.   

While nine-endings are the most frequent price point in scanner data, what constitutes a 

relevant “price point” can and does vary by firm.  Using micro level price data underlying the 

Israeli consumer price index, Knotek, Sayag, and Snir (2019) document differences across 

establishment types in terms of their favored price endings, with establishments carrying many 

goods—such as the retail chains in the scanner datasets—favoring nine-ending prices while 

establishments that carry few items favor round, zero-ending prices.  In the sample in Knotek, 

Sayag, and Snir (2019), 94.0 percent of establishments have a favored ending that is used by 

more than 50.0 percent of their prices.  Among all stores with a favored price ending, 85.6 

percent of their prices use the favored-ending digit.  Using changes in the value-added tax (VAT) 

rate as exogenous cost shocks that affect all prices regardless of ending, Knotek, Sayag, and Snir 

(2019) find that favored price endings play a causal role in generating price rigidity around these 

shocks. 

Considerable attention has recently been focused on the behavior of prices around sales 

and implications for the study of price rigidity.  Sales, or temporary price markdowns, feature 

prominently in these retail scanner data sets.  As documented below, conditional on an item not 

being on sale in the previous period, the frequency of beginning a sale is approximately double 

the frequency of a non-sale price change in each data set.  Because sales involve not only a price 

decrease but also a price increase, they comprise the majority of all price adjustments.5   

                                                 
5 The Dominick’s data contain a variable indicating whether a good was on sale for the week or not, but the sale 

codes were not applied in a consistent manner and thus are not used in this analysis.  Sale flags are available in the 
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Furthermore, prices exhibit considerable memory around sales.  The bottom part of Table 

1 shows that, at the conclusion of a sale, prices return precisely to their level from immediately 

prior to the sale more than three-fourths of the time across retail scanner datasets.  Similar 

findings have been documented by Levy, Dutta, and Bergen (2002), Eichenbaum, Jaimovich, 

and Rebelo (2011), Guimaraes and Sheedy (2011), and Kehoe and Midrigan (2015).  Such a 

finding is not unique to supermarkets.  Using data underlying computation of the U.S. consumer 

price index, Klenow and Kryvtsov (2008) and Nakamura and Steinsson (2008) find broadly 

similar patterns.   

What is unique to this study is that memory around sales is related to price endings: The 

frequency with which post-sale prices return to their pre-sale levels differs depending on the pre-

sale price ending.  Across grocery stores and drugstores, memory around sales is stronger when 

the last pre-sale price ended in a nine than when it ended in another digit.  Table 1 shows that the 

frequency of a post-sale price differing from its pre-sale level is at least three times larger in all 

the retail scanner data sets if the pre-sale price ended in a non-nine digit than it is when the pre-

sale price ended in a nine.  Abstracting from nine-ending prices would generate far less memory 

around sales than what is observed in the data, primarily because so many prices at the 

conclusion of a sale return to their pre-sale, nine-ending level.  

At a high level, these statistics suggest that, across multiple retail chains and different 

time periods, retail firms treat the final price digit nine differently from other digits in setting or 

adjusting prices.  This paper considers a model in which prices that end in the digit nine are 

                                                 
IRI data.  However, for consistency across scanner datasets and in the model simulations below, the appendix 

provides details on the sales filter used to determine the start and end dates of sales.  It is worth noting that the sales 

filter does not require that post-sale prices return to their pre-sale level.  
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“price points” with special properties and estimates the size of this friction vis-à-vis the more 

traditional menu cost friction that impacts firm price setting. 

 

II.   A Model of Price Points and Menu Costs  

 

The model I consider has the following features.  Within a given period, the firm determines the 

nominal price p it would like to charge for an item i.  As in the canonical Dixit-Stiglitz 

framework, in a frictionless world the firm would always wish to set p equal to a desired markup 

μ over its nominal marginal cost, denoted mc.   

The firm potentially faces two consequential frictions, the size of which require 

estimation.  The first friction allows for the possibility that price changes are costly: There is a 

menu cost to changing a price, because of the physical costs of literally adjusting the price of an 

item.6  Each price change reduces profits by a fixed amount, Φ≥0.  The same menu cost is paid 

for every price change, whether it is expected to be “permanent” or “temporary,” based on the 

rationale that the physical costs of price adjustment are the same for both such changes.7  Such 

nonconvex adjustment costs follow a long tradition in the sticky price literature. 

The second friction comes from the possibility that price points may factor into the firm’s 

pricing problem.  While price points may vary by firm as documented in Knotek, Sayag, and 

Snir (2019), when focusing on the retail chain sector, as in the empirics above, the marketing and 

retailing literatures have proposed a number of mechanisms through which nine-ending price 

                                                 
6 Some interpretations of “menu costs” subsume a variety of frictions that make price adjustment less frequent; e.g., 

Gorodnichenko and Weber (2016) use a broad definition of menu costs when studying individual prices underlying 

the U.S. producer price index. 
7 This notably differs from Kehoe and Midrigan (2015), where a firm pays a fixed cost (κ in their terminology) to 

change the list or permanent price, and a different fixed cost (ϕ in their terminology) to charge a different price—

e.g., a sale or temporary price—for only one period.  I discuss the difference in more detail below.  Midrigan (2011) 

explores economies of scale in changing prices, which are beyond the scope of this paper.   
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points may provide a benefit to sellers.  Typically, these mechanisms involve a departure from 

pure rationality by consumers, who associate price points with sales (potentially erroneously), or 

who truncate or underestimate nine-ending prices because of rational inattention or the desire to 

simplify price comparisons across items by mentally coding using left-to-right, digit-by-digit 

comparisons while shopping until the first difference is noted.8   

As a result, price points can result in kinks, discontinuities, or nonconvexities in the 

demand curve that are present in the firm’s profit function as well, with the effect that the price 

points are local profit maxima.  For example, suppose consumers truncate the final cents’ digit.  

This would transform an otherwise linear (log-linear, etc.) demand curve into a step function.9  

Because demand would be identical for a price of $1.50 and $1.59, the firm would earn higher 

revenues and profits from setting the $1.59 price.  Moving from $1.59 to $1.60 would result in a 

disproportionately large decline in demand and, under general circumstances, a lower level of 

profits.  For the sake of tractability and estimation feasibility, and to remain agnostic on the 

precise mechanism at play, this paper posits that firms may benefit directly from the use of prices 

ending in the digit nine via κ≥0, which captures the profit implications of setting a price point.10 

The above concepts can be parsimoniously represented as affecting a firm’s profits for 

good i at time t through a quadratic loss function  

                                                 
8 There is an extensive literature on consumer underestimation, truncation, and mental coding processes; see, e.g., 

Georgoff (1970), Brenner and Brenner (1982), Schindler and Kirby (1997), Schindler and Kibarian (1993), and 

Thomas and Morwitz (2005).  Schindler (1991) provides one example of the association between nine-ending prices 

and sales. 
9 Nonlinearities in demand related to nine-ending prices may take other, more complicated forms as well; e.g., 

Schindler and Kibarian (1996) and Anderson and Simester (2003) provide evidence that demand is higher for nine-

ending prices than for proximate non-nine-ending prices.  
10 Gedenk and Sattler (1999) show that firms may set nine-ending prices when faced with uncertainty over whether a 

threshold exists between nine-ending prices and round prices.  Thus, firms in the model may perceive a benefit κ 

from setting nine-ending prices whether it truly exists or not. 
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   
 

      
 

.  (1) 

In the absence of any frictions (κ=0 and Φ=0), the firm would set its nominal price p equal to its 

desired markup µ over nominal marginal cost mc, earning some normalized level of profits χ.   

In the presence of frictions, deviations of the actual price p from its frictionless optimal 

level (equal to mc×μ) entail a reduction in profits via the curvature of the profit function.  These 

deviations can arise in the presence of a menu cost Φ>0 that must be paid when changing the 

price of good i, because, in this case, the firm may not always pay the menu cost in order to keep 

its price at its desired markup over marginal cost.  They can also arise when κ>0, because in this 

case a firm’s profits will depend on whether p is set to a nine-ending price point—and hence the 

indicator variable ( {price points}) 1I p  —or not.  As a result, under some circumstances 

profits may be higher from setting a nine-ending price point than from setting p=mc×μ. 

Within a given period t, the firm observes its contemporaneous marginal cost mc and 

desired markup μ—both of which evolve exogenously to the firm—and decides whether to keep 

its price p or change it.  The firm discounts the future at rate β.  The value to the firm of keeping 

its price p is 

 ( , , ) ( , , ) ( , , )KV p mc p mc EV p mc      ,  (2) 

with E(·) the expectations operator as of time t over next period’s unknown marginal costs and 

desired markups, which are denoted with a ′.  The value to the firm of changing its price is  

 ( , , ) max ( , , ) ( , , )C

p
V p mc p mc EV p mc       ,  (3) 

which captures the menu cost Φ needed to change the price to p .  The firm decides whether to 

change its price or not based on 

 ( , , ) max{ ( , , ), ( , , )}K CV p mc V p mc V p mc   .  (4) 
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Intuitively, menu costs generate price rigidity by creating a range of inaction around the 

most recently set price, because the firm had re-optimized its price when it last paid the menu 

cost.  In response to small shocks, a firm facing a menu cost will wish to maintain the previous 

price.  Once the shocks cumulatively push the firm to the edge of its Ss bands, it will pay the 

menu cost and select a new price.  By contrast, price points can create incentives for the firm to 

select from a set of prices (in this case, those with nine endings) depending on the size of the 

benefit from using a price from that set.  This can cause prices from this set to be used 

disproportionately.  In addition, price rigidity will depend on the characteristics of the current 

price itself (i.e., situational price rigidity).  If the current price is a price point, this again 

generates a range of inaction in response to small shocks and hence price rigidity.  But if the 

current price is not a price point, prices may be more flexible.   

 

III.   Calibration and Estimation Strategy 

 

Central to this paper are the sizes of the menu cost, Φ, and the price point effect, κ, in the firm’s 

profits.  Estimating these parameters requires calibrating other parameters where possible and 

specifying the exogenous processes for marginal costs mc and markups μ.  

The data in the retail scanner datasets are weekly, which is the relevant time frame for the 

firm’s decisions.  As such, the discount rate is β=0.961/52.  Without loss of generality, χ is 

normalized to ensure that the value function is not near zero. 
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In keeping with the spirit of the sticky price literature, nominal marginal costs for good i 

have two components: a common “price” component P across goods and an idiosyncratic “real” 

component ci for good i, such that mci=P×ci.
11  The price component evolves according to 

 1ln lnP P     , (5) 

with ζ an i.i.d. normal random variable with mean zero and standard deviation  .  The 

idiosyncratic real component of marginal costs evolves according to 

 
, 1ln lni i ic c   . (6) 

As in Gertler and Leahy (2008), the idiosyncratic cost shock has two components: εi=γi×ηi.  The 

random variable γi governs the arrival of cost shocks, with Pr(γi=1)=λ and Pr(γi=0)=1−λ.  The 

random variable ηi determines their size, with ηi distributed uniformly on [−θ,θ].   

Taking the model to the scanner data requires a prominent role for sales.  While various 

theories have been proposed to explain sales, this paper models sales as arising in response to 

time variation in the firm’s exogenous desired markup for good i, μi, which follows  

 i i    .  (7) 

In a New Keynesian framework using Dixit-Stiglitz preferences, exogenous time variation in the 

desired markup could arise through time variation in demand elasticities; see Pesendorfer (2002) 

and Kehoe and Midrigan (2015).   The random variable ξi captures the desired sales state.  If 

ξi=0, the firm wishes to set its price equal to its steady-state desired markup   over marginal 

cost.  If ξi>0, the potential for a sale occurs because the firm wishes to set a lower markup and 

hence a lower price for good i.  Whether the firm actually changes its price and has a sale in 

                                                 
11 That is, sticky price models typically use the firm’s real price p/P as the relevant state.  Since profits in equation 

(1) depend on p/mc, this interpretation of nominal costs is equivalent to having (p/P)/c in the profit function.  The 

component c then captures the idiosyncratic productivity shocks that have become standard in state-dependent 

pricing models based on menu costs (see, e.g., Golosov and Lucas 2007), along with other aggregate disturbances.   
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response to a positive realization of ξi or not depends on its optimization problem.  The desired 

sales state is given by {0, , }i s b   , which affords the opportunity for “big” and “small” sales 

( 0)b s   .  The desired sales state follows a Markov process with transition matrix, 

 ξ′=0 ξ′=ξs ξ′=ξb 

ξ=0 δ0 δ0s 1−δ0−δ0s 

ξ=ξs δs 1−δs 0 

ξ=ξb δb 0 1−δb 
 

(8) 

 

which rules out the possibility of transitions from one desired sale state to another for tractability.   

To take the model to the scanner data, I select a single retail chain: Dominick’s Finer 

Foods.  The Dominick’s data set has among the largest number of observations for a single 

chain, and while Nakamura, Nakamura, and Nakamura (2011) document important heterogeneity 

in pricing dynamics across retail chains, the earlier results suggest that Dominick’s pricing 

behaviors with respect to the use of price points and memory around prices are broadly 

representative.  Furthermore, the Dominick’s data have been used in estimating menu costs in 

other studies, including Nakamura and Zerom (2010) and Stella (2013).  Marginal cost is not 

well-measured in the Dominick’s data and cannot be used to inform the parameters of the cost 

process in equation (6) (see, e.g., Peltzman 2000); however, I do use the median markup of non-

sale prices over average acquisition cost—which can be inferred from the measure of gross profit 

margins in the Dominick’s data set, and which I assume proxies for marginal cost in steady 

state—to calibrate the steady-state desired markup   to 1.42.  I calibrate the parameters in 

equation (5) to match monthly inflation for the non-seasonally adjusted consumer price index for 

food and beverages over the Dominick’s sample period by setting  =5.68×10−4 and 

31.73 10
  .   
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Thus, the complete model has 10 parameters to estimate: (1) the sensitivity of profits to 

nine-ending price points, κ; (2) the menu cost, Φ; (3) the probability of a marginal cost shock, λ; 

(4) the support of the marginal cost shocks, θ; (5–6) the “big” and “small” sales states, ξb and ξs, 

respectively; and (7–10) four parameters from the transition matrix, δ0, δ0s, δs, and δb.  Two 

moments from the Dominick’s data reduce the computational burden and inform δ0s and δb.  

First, 59.8 percent of sales are smaller than average, implying δ0s=0.598(1−δ0).  Second, the 

average duration of a “big” sale is 71.8 percent of the average duration of a “small” sale, 

implying δb=1.393δs.  This leaves eight parameters for estimation. 

The model is estimated via simulated method of moments (SMM); see McFadden (1989).  

Let Z denote the complete vector of parameters to be estimated: Z=[κ, Φ, λ, θ, ξb, ξs, δ0, δs]′.  The 

estimates Ẑ  minimize the weighted difference between a vector of estimated moments from the 

data, ̂ , and a vector of moments produced via model panel simulations using parameters Z, 

( )Z :   

 
1 1

1 1ˆ ˆ ˆarg min ( ) ( )
S S

s s
Z s s

Z Z Z
S S

   
 

   
      

   
  ,  (9) 

where S=25 is the number of replications of the simulated panel data set over I=1,000 items and 

T=80 time periods, which is the approximate average number of observed weeks per item in the 

Dominick’s data.  This combination implies that each parameter vector Z is evaluated over a total 

of 2 million simulated observations.  The positive definite weighting matrix Ω is the inverted 

variance-covariance matrix of bootstrapped moments, based on bootstrapping the Dominick’s 

data 1,000 times and estimating a new vector of moments ˆ
b  for each b=1,…,1000 bootstrapped 

dataset.  Estimation of Ẑ  is conducted via a combination of grid search and simulated annealing 

(Goffe, Ferrier, and Rogers 1994), with 15 separate simulated annealing estimations performed 
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to ensure that Ẑ  produces the global minimum for equation (9).  I report 90 percent confidence 

bands around the parameter estimates based on re-estimating Ẑ  1,000 times, each time drawing 

a new seed for the shocks underlying the model to account for stochastic simulation variability 

and a different vector from the set of bootstrapped moments ˆ{ }b  to account for sampling 

variability in the empirical data. 

I select moments to identify the model’s parameters based on common moments in the 

sticky price literature reflecting information on the frequency of price changes, their size, and the 

standard deviation of their size, along with moments related to sales behavior.  I consider: (1) the 

frequency of non-sale price changes; (2) the average absolute size of non-sale price changes; (3) 

the standard deviation of the size of non-sale price changes; (4) the frequency of beginning a 

sale, conditional on not having a sale in the previous period; (5) the frequency of ending a sale, 

conditional on a sale in the previous period; (6) the average size of price changes associated with 

the start of sales; and (7) the standard deviation of the size of price changes associated with the 

start of sales.  The final two moments are the facts from Section I: (8) the percentage of prices 

that end in the digit nine; and (9) the frequency with which post-sale prices differ from their pre-

sale levels. 

The inclusion of price points in the model requires keeping track of nominal prices as a 

state variable, because of the indicator function ( {price points})I p  in equation (1).  Because 

the time required to solve, simulate, and estimate the model increases exponentially with the 

number of nodes in each state, I restrict attention to nominal prices in the range of $0.50 to $3.00 

inclusive.12  The vast majority of Dominick’s prices—74.6 percent—are within this range, as 

                                                 
12 Estimation of the parameters and confidence intervals below takes approximately six months using optimized 

Fortran code and a high-performance computing cluster. 
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shown in Figure 3.13  Table 2 shows the moments used in the estimation.  The moments from this 

subset of the Dominick’s data set are very similar to those from the entire data set, and they are 

similar to the same moments computed using the IRI data sets as well. 

 

IV. Estimation Results 

 

I estimate two variants of the model.  The first is a typical menu cost model omitting price 

points, as is common in the sticky price literature.  Attempts to estimate these types of menu 

costs in supermarket data include time-use surveys, as in Levy et al. (1997), or structural 

estimations, as in Slade (1998), Nakamura and Zerom (2010), and Stella (2013).  Next, I 

consider the complete model, estimating both the role of price points and menu costs jointly.  

While the former exercise finds a significant statistical and economic role for menu costs, the 

latter exercise shows that menu costs are essentially irrelevant as a source of price rigidity after 

incorporating a role for price points into the analysis.   

 

A Typical Menu Cost Model 

 

To estimate the model with only menu costs (i.e., constrained estimation with κ=0), I 

discretize the actual markup state, p/mc, in 0.1 percent intervals over the relevant regions of the 

markup state space and constrain actions to this grid.14  With the nine-ending price point effect κ 

                                                 
13 Because of positive trend inflation among many goods categories between the timing of the Dominick’s sample 

(1989-1997) and the IRI sample (2001-2011), the shares of IRI prices between $0.50 and $3.00 are somewhat lower: 

55.3 percent of IRI grocery store observations and 44.9 percent of IRI drugstore observations.  
14 By the assumptions of the previous section, the other relevant state variable, μ, can take on three values in each of 

the model variants: { , , }s b        . 



19 

 

set to zero by assumption, this leaves the menu cost Φ and six other parameters related to the 

frequency and size of the shocks in the model.  Consequently, the model is just-identified by 

using the first seven moments listed in Table 2. 

Table 3 presents the parameter estimates and the corresponding simulated moments.  The 

bottom panel shows that the model closely matches the seven targeted moments at the estimated 

parameters.  The point estimate of the menu cost for this case is 7.24×10−3, with a 90 percent 

confidence interval from 6.94×10−3 to 7.72×10−3.  Cost shocks arrive (λ) in approximately 7.6 

percent of periods, and the maximum absolute size of a cost shock (θ) is 6.9 percent.  Matching 

the large standard deviation of the size of sale-related price changes requires allowing for 

multiple sales states.  Thus, the big sale estimate (ξb) implies a desired markup of 0.908, while 

the desired markup during an estimated small sale (ξs) is 1.32.  These estimates are consistent 

with large sales being “loss leaders,” as in Chevalier, Kashyap, and Rossi (2003), which are 

more transient than other sales.   

The final two parameters relate to the transition matrix that governs the evolution of 

desired markups.  The estimate of δ0 implies approximately a 10 percent probability that the 

desired markup will switch from its steady-state level to a lower, sale level in any given period.  

The estimate of δs implies that, conditional on the desired markup being 1.32s     , the 

desired markup will stay at that level in the next period with about a one-half probability. 

While the menu cost model closely matches the moments used in the estimation, it is 

incapable of matching the two facts set out in Section I: More than 60 percent of prices end in 

the digit nine, and post-sale prices return to their pre-sale levels more than three-quarters of the 
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time.  As shown in the bottom of Table 3, the menu cost model produces nine-ending prices 

approximately 10 percent of the time—the probability of drawing this digit by chance.15   

The inability to match the second fact is due to the forward-looking nature of menu cost 

models.  In a menu cost model in which the adjustment cost is narrowly modeled and interpreted 

as the cost needed to physically change a price, when a firm decides to pay the fixed cost and 

adjust its price, the new price it sets should incorporate all relevant information since its last 

change.16  This implies that, under even extremely low rates of inflation similar to what 

Dominick’s experienced, post-sale prices will rarely exhibit memory and return to their pre-sale 

levels.  Figure 4 illustrates this pattern, using simulated price data around one sale realization 

from the menu cost model with the estimated parameters above.  Such a pattern is pervasive in 

the simulated menu cost model: As Table 3 shows, the menu cost model would predict that post-

sale prices differ from their pre-sale levels more than 90 percent of the time.  By contrast, the 

Dominick’s data put this figure at 11 percent, while the IRI data put this figure at no more than 

28 percent.17 

 

                                                 
15 Since p/mc is the relevant state in this model and essentially all menu cost models, the notion of a nominal price is 

not constrained to the traditional grid of prices, $1.00, $1.01, $1.02, etc.  This figure is found by rounding to two 

digits.  
16 To the extent that other frictions—such as information frictions—are the structural factors behind price rigidity, 

these factors should be explicitly modeled.  I discuss this point below. 
17 The state space of the menu cost model was finely discretized to conform to standard practice.  Discretizing the 

state variables of the menu cost model in successively finer increments would push this moment arbitrarily close to 

100 percent, though it would also render the estimation impractical because of time considerations.  Collocation 

methods would similarly raise simulation times and render estimation infeasible given the large number of 

parameters to estimate; see Knotek and Terry (2008).  Conversely, requiring this model to use whole cent nominal 

price increments would produce a higher incidence of memory around sale prices, but the model would still not be 

able to match this particular moment. 
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Price Points and Menu Costs  

 

The second exercise considers the unconstrained estimation of the model by jointly 

estimating the menu cost parameter Φ and the price point effect κ.  This estimation requires 

keeping track of the nominal price as a state, because of the indicator function 

( {price points})I p  in equation (1).  I assume that prices adhere to those feasible under the 

available monetary denominations.18  To this end, I discretize the nominal price p and nominal 

marginal cost mc states in one cent increments.  The range for the marginal cost process is 

endogenously determined by the assumption that nominal prices reside in the range of $0.50 to 

$3.00 combined with the values of the markup process, which are estimated.  To estimate the 

model with price points and menu costs, I use all nine of the moments set out above. 

The estimated model continues to be consistent with the moments commonly associated 

with the sticky price literature, but it is also now consistent with the two facts from Section I.  

The estimated nine-ending price point effect is 6.80×10−4, with a 90 percent confidence interval 

from 6.49×10−4 to 6.83×10−4.  Thus, the estimation rejects the nested menu-cost-only 

specification for the larger set of moments.  The estimate of the menu cost falls to 3.29×10−6, 

with a 90 percent confidence interval from 6.5×10−7 to 1.98×10−5.  That is, when both frictions 

are estimated jointly, the estimated nine-ending price point effect is roughly two orders of 

magnitude greater than the estimated menu cost in this model.  Even though the menu cost is 

statistically estimated to be greater than zero, it is effectively irrelevant as a source of price 

rigidity.  For instance, setting the menu cost Φ to zero and keeping the other estimated 

parameters has a trivial effect: To two decimal places, the resulting moments are unchanged.  

                                                 
18 This rules out pricing in fractions of a cent, or pricing patterns such as two for $0.99.  Less than 1 percent of 

prices in the Dominick’s database violate this assumption.  
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While other studies have estimated the size of menu costs in supermarkets for individual 

products—including Slade (1998), Nakamura and Zerom (2010), and Stella (2013)—those 

analyses have omitted price points.  The results of this paper suggest that omitting price points 

upwardly biases structural estimates of menu costs by a considerable magnitude.   

In terms of other parameters, the estimated arrival rate of cost shocks falls to 2.8 percent 

from 7.6 percent in the menu cost model.  In spite of this, the frequency of non-sale price 

changes remains just below 6 percent, in line with the data.  Implicitly, this means that some 

variation in regular (non-sale) prices is now being generated through desired markup shocks that 

last longer than the sales window, and that some non-sale price changes are also caused by drift 

in the price component of marginal cost.  Indeed, markup shocks are slightly more likely to occur 

under this case than under the menu-cost-only model, as implied by the lower estimate of δ0.  

The sizes of the big and small sales states and the absolute size of cost shocks are comparable 

between the model with both price points and menu costs, and the model with only menu costs.   

 

Interpreting the Menu Cost and Nine-Ending Frictions 

 

Equation (1) does not have a role for revenues or profits per se, which complicates the 

interpretation of the estimated parameters of the model; e.g., Levy et al. (1997) and Dutta et al. 

(1999) compare menu costs to revenues and profits.   

However, via equation (1), one can compare the percentage deviation between the actual 

markup, p/mc, and the steady-state desired markup,  , that is equivalent to the estimated menu 

cost.  In the model with only a menu cost, paying the menu cost has the same contemporaneous 

negative effect on profits as allowing the actual markup to differ from the desired markup by 
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5.81 percent for one period.  In the model that jointly estimates the roles of price points and 

menu costs, paying the menu cost now has the same contemporaneous negative effect on profits 

as allowing the actual markup to differ from the desired markup by 0.13 percent.  Fully 

translating the effects of these frictions on price setting requires evaluating the complete 

optimization problem from Section II, but the size of the latter estimate implies that, in isolation, 

all but the smallest shocks to marginal costs would be big enough to justify a price change based 

on menu costs alone.   

By contrast, the price point effect is equivalent to a 1.81 percent difference between 

actual and desired markups.  The estimation suggests that this is a much bigger impediment to 

price changes than menu costs. 

 

Ability to Match Additional Moments 

 

It is also possible to consider how well the model matches moments not used in the 

estimation.  Table 4 presents additional moments from the Dominick’s data and the same 

moments from model simulations generated using the estimated parameters from Table 3. 

Midrigan (2011) notes that the Dominick’s data contain many small price changes.  Table 

4 shows that more than half of non-sale price changes are smaller than 5 percent in absolute 

value, 26.1 percent are smaller than 2.5 percent, and 6.7 percent are smaller than 1 percent.  

These facts typically pose a challenge for menu cost models to match, because a menu cost large 

enough to prevent too-frequent price adjustments also prevents the firm from making many very 

small price changes; the value to the firm from making a small price adjustment and paying the 

menu cost is too often smaller than the value of keeping the old price.  This problem is shared by 
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the estimated menu cost model considered in this paper: There are too few small price changes 

compared with the empirical data, and zero price changes smaller than 2.5 percent in absolute 

value.  Heterogeneity in menu costs—as in, e.g., Dotsey, King, and Wolman (1999) and 

Midrigan (2011)—helps to generate small price changes alongside larger price changes, because 

the firm will make a small adjustment when it is faced with a small menu cost.  The model with 

price points and menu costs enjoys greater success in generating small price changes, because 

the menu cost need not be as large to generate price rigidity in the first place. 

Section I documented that the frequency of price changes in the Dominick’s data varies 

depending on the previous period’s price ending.  While the frequency of all price changes was 

not used in the estimations, the models produce frequencies comparable to but slightly less than 

those in the empirical data.19  More important, in the empirical data, the frequency of price 

change is higher conditional on the previous period’s price having ended in a non-nine digit than 

it is conditional on the previous period’s price having ended in nine.  Such a pattern is 

qualitatively present in the model that allows a role for price points.20 

Section I also documented that the frequency with which post-sale prices differ from their 

pre-sale level varies with the pre-sale price ending: In the empirical data, post-sale prices are far 

more likely to exhibit “memory” and return exactly to the pre-sale price if the pre-sale price 

ended in a nine than if the pre-sale price ended in a different digit.  Such a pattern is once again 

generated endogenously by the model if one allows for a nine-ending price point effect.  Taken 

                                                 
19 The Dominick’s data contain changes from one sale to another sale that were ruled out for the sake of tractability 

in the model in Section II; this explains most of the discrepancy between the models and the data. 
20 Qualitatively, the same pattern exists in both the Dominick’s data and the model with a role for price points when 

considering the frequency of price changes conditional on neither the previous period’s price nor the current 

period’s price being part of a sale. 
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together, these facts and the above results provide strong evidence that price points play an 

important role in the memory that prices exhibit around sales. 

 

V. Discussion 

 

Developing models in which prices return to their pre-sale levels has proven challenging.  

In one approach, Kehoe and Midrigan (2015) present a model featuring multiple menu costs: a 

large menu cost for non-sale price changes, a smaller menu cost for price changes associated 

with the start of a sale, and a de facto zero menu cost to change from the sale price back to the 

regular price.21  Because of the latter zero menu cost, this framework generates many prices that 

return exactly to their pre-sale levels.  However, it arguably departs from the notion of a menu 

cost as the literal cost of implementing a price change, because no changes in such a setting 

should be costless.  Further, it is not clear a priori that the physical costs of implementing a price 

change associated with a sale are lower than those associated with making a non-sale price 

change, especially if the former involves special tags, signs, promotional materials, and the like.  

When information acquisition is a costly activity, firms may optimally choose to acquire more 

information when they anticipate that they are making a “permanent” price change as opposed to 

making a “temporary” price change associated with the start of a sale, implying that perceived ex 

ante permanent price changes would entail a larger cost than temporary price changes.  But the 

information acquisition or observation costs that are driving these cost differentials are distinct 

from menu costs per se; see, e.g., Gorodnichenko (2010) or Alvarez, Lippi, and Paciello (2011).  

                                                 
21 Kehoe and Midrigan (2015) focus on “regular” and “temporary” price changes, where the latter include both sales 

and temporary price increases above the regular level.  For comparison with this paper, I reframe the issue in terms 

of only sales. 
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For these reasons, this paper posits a single menu cost that the firm incurs to change any and all 

prices. 

In a second approach, Eichenbaum, Jaimovich, and Rebelo (2011) present a model in 

which a firm chooses a “price plan,” which consists of a set of two prices.  Firms can costlessly 

change between prices in the plan, but altering the plan requires paying a fixed cost.  Intuitively, 

limiting the number of prices in the plan to two—for instance, to one regular and one sale 

price—and requiring a cost to changing the plan prevent firms from making the types of small 

adjustments seen in Figure 4 that plague menu cost models around sales.  However, it is less 

clear why a profit-maximizing firm would select a plan with only two prices; specifically, when 

facing drift in the price level, the firm should optimally wish to have a cluster of “regular” prices 

to choose from, along with at least one sale price.  Matějka (2016) and Stevens (forthcoming) 

show that a relatively limited set of pricing options can be optimal in the presence of information 

costs, absent menu costs to changing prices.  The existence of price points and the benefits that 

accrue thereto can explain why firms would endogenously choose to use relatively few prices.  In 

addition, the trivial size of the estimated menu costs is not too far from the assumption in 

Eichenbaum, Jaimovich, and Rebelo (2011) of costless price changes within a plan.22 

Clearly, price changes per se are not costless.  Levy et al. (1997) provide direct evidence 

from time-use studies on the costs of changing prices for supermarkets: Cumulatively, they 

                                                 
22 Limiting the set of prices to those between $0.50 and $3.00 may increase the estimated importance of nine-ending 

prices if these are used to a greater extent for lower prices, or if they are a bigger factor in effecting price rigidity at 

lower levels simply because—in percentage terms—the distance between consecutive nine-ending prices is a 

decreasing function of the price level itself.  However, price changes tend to be large in percentage terms (greater 

than 15 percent across all price changes); above $0.69, the distance between any two consecutive nine-ending prices 

is smaller than the average price change, suggesting that this is not likely a binding constraint.  In addition, firms 

may actually be more apt to focus on nine-ending prices at higher price levels, especially if they are used to simplify 

firms’ pricing decisions by limiting the realm of possible prices to one-tenth of the feasible pricing set.  This latter 

point appears to be more likely: Between $0.50 and $3.00, 62.2 percent of prices end in the digit nine, whereas 63.6 

percent of all prices use this digit, signifying that they are more heavily used outside of the range of prices that are 

the focus of the estimation.   
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average more than $100,000 per year per store, or about 0.70 percent of firm revenues.  The 

results above suggest that the estimated nine-ending price point effect is roughly two orders of 

magnitude larger than the cost associated with a single price change.  Another way to compare 

these estimates is to combine them with the actual Dominick’s pricing data across stores, items, 

and time to form the ratio: 
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  (10) 

In words, equation (10) computes the ratio of the benefits that Dominick’s received from setting 

nine-ending prices to the costs incurred from paying the menu cost for every price change.  

Using the ̂  and ̂  estimates above, this ratio is 505.4, with a 90 percent confidence interval of 

[83.4, 2516.9].  Assuming that Dominick’s is similar to the supermarket chains in the study by 

Levy et al. (1997) and pays 0.70 percent of revenues in the form of menu costs on average each 

year, this ratio would imply that Dominick’s received a benefit from setting nine-ending prices 

of 353.8 percent of revenues per year.23 

This number is implausibly large.  An alternative interpretation of the evidence is that 

Dominick’s views menu costs differently from the standard menu cost setup outlined above.  

Two previously modeled possibilities include economies of scale in changing prices (Midrigan 

2011) and time variation in menu costs (Dotsey, King, and Wolman 1999).  But Dominick’s may 

                                                 
23 The model in Section II posited that the firm receives a benefit κ—either actual or perceived—from setting a nine-

ending price for good i, independent of the number of units sold, and the ratio in equation (9) is consistent with the 

model.  The extant literature provides little guidance and cannot rule out such an approach.  An alternative 

possibility is that the firm may receive a nine-ending benefit κʹ on each unit sold of good i, in which case the 

numerator of equation (9) would include the number of units sold.  In either case, the menu cost should be 

independent of the number of units sold.   
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also simply view menu costs as a fixed cost of doing business rather than an impediment to price 

changes, as they are modeled in state-dependent pricing frameworks. 

This paper’s finding that menu costs are largely irrelevant as a source of price rigidity per 

se is in keeping with several recent lines of research that have looked to other explanations for 

sticky prices.  In a case study of a large industrial manufacturer, Zbaracki et al. (2004) document 

that physical menu costs associated with changing prices were an order of magnitude smaller 

than the costs associated with collecting information and negotiating with customers.  Blinder et 

al. (1998, p. 179) document that 15 of the 17 retailers in their survey identified price points as a 

significant source of price rigidity; by contrast, menu costs were cited by a below-average 

proportion of these same firms (p. 233).  Overall in the Blinder et al. (1998) survey, the fear of 

antagonizing customers ranked very high as a primary reason behind firms’ desires to keep their 

prices unchanged.  Anderson and Simester (2010) and Rotemberg (2005, 2011) consider 

customer antagonization, anger, and perceptions of fairness over firms’ prices as mechanisms 

that can generate price rigidity, even in the absence of menu costs.  Related to antagonization, 

Knotek (2008, 2011) shows that under certain circumstances firms may choose to set convenient 

prices, which simplify and expedite transactions and result in price rigidity in a manner similar to 

price points.  Gorodnichenko, Sheremirov, and Talavera (2018) find evidence that price points 

are associated with price rigidity in online markets, which should face smaller menu costs than 

those faced by traditional stores. 
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VI. Aggregate Implications 

 

Deriving a structural explanation for price points and embedding this within a general 

equilibrium framework to generate macroeconomic dynamics are beyond the scope of this paper.  

As an approximation to the aggregate implications arising from the model with price points and 

menu costs, I consider the following exercise in the spirit of Cooper and Haltiwanger (2006). 

I assume that the quantity equation with unit velocity holds, t t tM P Y  .  The money 

supply follows the dynamics previously assumed for the common “price” component of nominal 

marginal cost in equation (5),  

 
2

1ln ln ,  ~ i.i.d. N(0, )t t t tM M       ,  (11) 

with   and   calibrated as in Section III.  Individual prices pit aggregate to the price index Pt 

via 
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with the number of prices given by N. 

The model in Section III assumed that the nominal marginal cost for a good was 

mcit=Pt×cit, where Pt was the common “price” component and cit was the idiosyncratic “real” 

component of marginal cost.  If monetary shocks are neutral, then 
tY Y  and recasting nominal 

marginal cost as mcit=Mt×cit differs from its earlier incarnation by a constant factor, which I omit 

to focus on dynamics.  If monetary shocks are not neutral, however, then a price setter would 

more accurately need to take aggregate dynamics into account when making pricing decisions 

because movements in output would affect marginal cost.  In keeping with the partial 

equilibrium nature of the model above, I assume no strategic complementarity (or real rigidity) 
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among price setters and that individual price setters’ problems are not affected by the decisions 

of other price setters. 

To compare and contrast the behavior of the typical menu cost model with the model 

with price points and menu costs, I simulate and aggregate a large panel of N=1,000,000.  Both 

models use the parameter estimates from Section IV and are simulated under the conjecture that 

monetary shocks are neutral, in keeping with the partial equilibrium model above.  In the model 

with price points, the distribution of nominal prices at the time of a shock is important because 

price points generate situational price rigidity, so I provide impulse responses under two cases.  

In the first case, I assume that nominal marginal costs at time t=−1 were uniformly distributed 

such that—before taking into account sales behavior due to time-varying markups—the 

frictionless optimal prices were uniformly distributed on the interval $1.00 to $2.00.24  In the 

second case, I assume that marginal costs at time t=−1 were degenerate such that all frictionless 

optimal prices—again before taking into account sales behavior due to time-varying markups—

were collapsed to $1.99, a price point.   

Figure 5 shows the impulse responses for output to a positive one standard deviation 

shock to the money supply in equation (11) at time t=0.25  The output responses differ markedly 

                                                 
24 Assuming M−1=1 without loss of generality, then values of ci,−1 are uniformly distributed on the interval 

[$1.00 / ,$2.00 / ]  .  The actual distribution of desired markups at time t=−1 is given by the ergodic distribution of 

the Markov process in equation (8).  Thus, the actual nominal prices in time t=−1 can fall outside of the $1.00 to 

$2.00 range because of sales motives or optimization motives—e.g., the firm may prefer to set a price of $0.99 

rather than $1.00. 
25 The same shock seeds were used for the other stochastic processes.  However, because of the different parameter 

estimates from the typical menu cost model compared with the model with price points and menu costs for the 

arrival rate and size of idiosyncratic real marginal cost shocks, and for the frequency and size of sales shocks, the 

actual shocks hitting the individual goods would naturally vary between the two models.  As developed above, the 

models constrain all movements and actions to the grid of relevant discretized state variables—p/mc in 0.1 percent 

intervals in the standard menu cost model, and p and mc in one cent increments in the price point model.  To impose 

the exact same money process on both models in these exercises, I simulate equation (11) directly and store M for 

both models; simulate c directly for each price setter via equation (6) and the estimated values of λ and θ for each 

model separately; then use these simulated values for nominal marginal cost mc to find the nearest relevant 

discretized state variable, which is used in the price setter’s decision problem.   
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depending on the model and the initial distribution of prices in the model with price points.  With 

a uniform initial distribution of prices in Figure 5(a), output is essentially unchanged in the price 

point model in response to a monetary innovation—i.e., the model ex post largely confirms the 

ex ante conjecture that money is neutral.  This result is reminiscent of Caplin and Spulber 

(1987): Despite considerable price rigidity at the individual level, in this case the attraction of 

price points causes the adjusting firms to make relatively larger price adjustments than they 

would otherwise, thereby offsetting the inaction of the many, which renders the money shock 

neutral.  By contrast, under the degenerate initial distribution of prices in Figure 5(b), a monetary 

shock initially generates an extremely persistent expansion in output in the price point model, 

precisely because most prices are already at a price point and there is great reluctance to move 

away from that price point.26  Now, the price point model delivers considerably more monetary 

nonneutrality in response to a money shock than the model with only menu costs.  However, 

about 30 weeks after the shock occurs, enough trend growth in the money supply has occurred 

such that the remnants of the degenerate distribution seek to move up to a higher price point en 

masse.  But in doing so, prices rise by more than the money supply because the attractiveness of 

price points causes price setters to raise prices by more than they otherwise would do in the 

absence of this friction, generating a temporary but notably sharp decline in output.  In either 

case, the dynamics of the model with price points and menu costs differ markedly from those 

coming from the otherwise typical menu-cost-only model.  

In a second exercise, I extend these results to a stochastic setting to consider a single, 

simulated two-year (104-week) period.  I compare and contrast the estimated model with price 

points and menu costs to the standard model with only menu costs, subjecting the models to the 

                                                 
26 In reality, some prices are constantly moving away from this price point because of the arrival of idiosyncratic 

marginal cost shocks, but the small estimate of λ implies that this process takes time. 
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same money growth process and shocks, though the arrival rate of idiosyncratic cost shocks and 

markup shocks is determined by the parameter estimates above.  Figure 6 shows the deviations 

of output from steady state in the models, under the assumption that the initial distribution of 

frictionless optimal nominal prices (before accounting for sales) is uniform in the range of 

[$1.00,$2.00] in panel (a) and that the initial distribution is degenerate at $1.99 in panel (b).  

Consistent with the impulse response analysis, output in the model with price points and menu 

costs when the initial distribution of prices is uniform in panel (a) is very nearly equal to its trend 

value throughout the simulation—the largest absolute deviation is 0.01 percent.  By contrast, the 

typical menu cost model produces larger movements in output related to changes in money, with 

the largest absolute deviation being 0.45 percent.  Output fluctuations are larger still in the model 

with price points and menu costs under a degenerate initial distribution as in panel (b), reaching a 

maximum absolute deviation of 0.65 percent—but the model is also subject to cycling behavior 

in output that is not necessarily related to money growth, as was illustrated in the impulse 

response analysis.27   

These results show that the aggregate dynamics of the price point model can be quite 

distinct from those of the menu cost model.  Therefore, the choice of a mechanism for generating 

price rigidity matters.  To more rigorously quantify the differences, it would be necessary to 

incorporate movements in Yt into marginal cost in the price-setting problem, and to more fully 

model the strategic interactions among price setters in general equilibrium.  For the latter, the 

impulse responses and simulations highlight the central role played by the distribution of firms’ 

                                                 
27 In this aggregated partial equilibrium exercise, the absence of real rigidities or strategic complementarities implies 

that the distribution of frictionless optimal prices moves away from the degenerate starting point and toward a more 

uniform distribution as price setters face idiosyncratic cost and markup shocks, which explains why output 

fluctuations tend to subside toward the end of the simulation in the model with price points and menu costs in Figure 

6(b). 
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frictionless optimal prices in the model with price points and menu costs.  Real rigidities that 

collapse the frictionless optimal distribution of prices could thus help to produce considerable 

monetary nonneutrality in the price point model.  As further evidence that such a path is 

promising, Knotek, Sayag, and Snir (2019) show that changes in the VAT rate in Israel were 

passed through, virtually entirely and immediately, among prices with nonfavored endings (i.e., 

those not at establishments’ favored price points), whereas it took almost a year for the prices 

that were at favored-ending price points to catch up.  Thus, sluggish adjustment to the shock in 

the aggregate came from individual price endings. 

The addition of other frictions could further affect the results.  For example, Dupor, 

Kitamura, and Tsuruga (2010), Gorodnichenko (2010), Klenow and Willis (2007), and Knotek 

(2010) consider dual-stickiness models in which information frictions combine with frictions in 

the price-setting process through either a Calvo mechanism or menu costs.  Building on the 

results in this paper, Hahn and Marenčák (2018) incorporate price points into a model of sticky 

information as in Mankiw and Reis (2002).  In that framework, monetary nonneutrality comes 

entirely through the sticky information channel, while price points alone are unable to generate 

real effects.   

 

VII. Conclusion 

 

This paper considers the extent to which menu costs—interpreted literally as the physical costs 

of changing a price—provide a structural explanation for price rigidity.  Using scanner data, I 

show that in a simple menu cost model, one would estimate a statistically and economically 

significant menu cost based on moments commonly used in the sticky price literature.  The 
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results change dramatically when expanding the model to allow a role for price points, using 

additional empirical data in the estimation, and jointly estimating the frictions coming from both 

menu costs and price points.  In this case, the price point model can match the additional 

empirical facts, but menu costs themselves are now effectively irrelevant as a source of price 

rigidity.  These results suggest that treating menu costs as a structural explanation for sticky 

prices may be spurious. 

This paper has made a number of simplifying assumptions for the sake of estimation 

feasibility.  Most notably, in this paper prices that end in the digit nine raise the level of profits, 

while all other prices do not have any special effects.  This tractable approach only adds one 

additional parameter to the estimation, but the exact manner in which price points enter the 

firm’s problem is a subject of contention.  While the marketing and retailing literatures have 

suggested many alternative theories to explain the prevalence of price points, further work is 

necessary to justify a structural interpretation of how they affect firms’ decision-making and 

therefore produce price rigidity.  Embedding this structural framework into a fully dynamic 

stochastic general equilibrium model featuring strategic interactions among price setters is left 

for future research. 
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VIII. Appendix: The Sales Filter 

 

For the sake of compatibility and comparability between the Dominick’s data, the IRI data, and 

the simulated price data, I construct a sales filter that is applied to all data sets.  In any given 

period, the filter determines whether a price observation is a “sale” or not by comparing the 

current price with an inferred “regular” price for the item.  In short, if the price today has fallen 

below the “regular” price and increases within the next F periods, then it is a sale price; 

otherwise, it is not a sale price.  The window size, F, is set to four weeks in this paper; moments 

computed using a window size of three or five weeks are similar. 

Formally, the following steps were used for a given item i. 

1. Initially set “regular” prices {rt} to their observed values {pt} for all t. 

2. Compare the current price with the previous period’s regular price: if 1t tp r  , the 

observation is not a sale; move to the next period; if 1t tp r  , then continue to step 3. 

3. Over the next F periods, does the price increase?  If so, then time t was part of a sale and 

the previous “regular” price needs to be carried forward to this period ( 1t tr r  ); if not, 

there was not a sale at time t. 

4. Move to the next period ( 1)t t   and return to step 2. 

Note that the “regular” prices are only used in the sales filter; none of the moments 

presented in the paper rely on these “regular” prices per se. 
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Figure 1. The Distribution of Price Endings 

 
Notes: Observations: 98.9 million for Dominick’s (grocery stores), 2.3 billion for IRI: grocery stores, and 163.7 

million for IRI: drugstores.  Author’s calculations based on scanner data from Dominick’s Finer Foods and IRI. 
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Figure 2. The Distribution of the Frequency of 9-ending Prices across Chains 

 
Notes: There are a total of 160 chains in the scanner data sets.  Each chain receives equal weight.  Author’s 

calculations based on scanner data from Dominick’s Finer Foods and IRI. 
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Figure 3. The Distribution of Prices in the Dominick’s Data Set 

 
Notes: The red bars denote observations between $0.50 and $3.00.  Observations: 98.9 million.  Author’s 

calculations based on scanner data from Dominick’s Finer Foods. 
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Figure 4. Sales and the Problem with Menu Cost Models 

 
Notes: The frictionless optimal price in each period is given by the product of nominal marginal costs mc times the 

desired markup μ.  The figure shows the simulated price and the simulated frictionless optimal price from the menu 

cost model with the parameter estimates in Table 3, for periods 44 through 52 of product 2 in simulated panel 1.  
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Figure 5. Output Impulse Responses to Money Shocks 
(a) Uniform initial distribution 

 
(b) Degenerate initial distribution 

 
Notes: The model with price points and menu costs and the typical menu cost model were simulated using the 

parameter estimates from Section IV.  A positive one standard deviation shock to money growth occurs at time t=0.  

Before taking into account time-varying markups, frictionless optimal prices are either uniformly distributed on the 

interval $1.00 to $2.00 in panel (a) or degenerate at $1.99 in panel (b). 
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Figure 6. Simulated Output Deviations from Steady State 
(a) Uniform initial distribution 

 
(b) Degenerate initial distribution 

 
 

Notes: The model with price points and menu costs and the typical menu cost model were simulated using the 

parameter estimates from Section IV.  The models were subjected to the same money growth processes and shocks.  

Before taking into account time-varying markups, frictionless optimal prices are either uniformly distributed on the 

interval $1.00 to $2.00 in panel (a) or degenerate at $1.99 in panel (b). 
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Table 1. Frequency of Adjustment, Sales Behavior, and Price Endings 
 Dominick’s IRI: Grocery Stores IRI: Drugstores 

Frequency of all price changes 25.2 31.9 36.2 

   Frequency | p(i,t−1) ended in 9 22.1 20.0 25.8 

   Frequency | p(i,t−1) did not end in 9 30.2 51.2 63.2 

Frequency of change | no sale at t−1 or t 5.7 8.0 7.4 

   Frequency | p(i,t−1) ended in 9, no sale at t−1 or t 4.3 5.3 4.9 

   Frequency | p(i,t−1) did not end in 9, no sale at t−1 or t 8.3 15.2 19.7 

Frequency, no memory (post-sale p ≠ pre-sale p) 10.8 28.2 21.0 

   No memory frequency | last pre-sale p ended in 9 6.2 15.9 10.6 

   No memory frequency | last pre-sale p did not end in 9 21.2 47.7 65.8 

Notes: All numbers are expressed as percentages.  Author’s calculations based on scanner data from Dominick’s 

Finer Foods and IRI. 
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Table 2. Empirical Moments of Interest across Scanner Data Sets 

 

Dominick's: 

$0.50-$3.00 

Dominick's 

(all prices) 

IRI: Grocery 

stores 

IRI: 

Drugstores 

1. Frequency of non-sale price changes 5.6 5.7 8.0 7.4 

2. Avg. absolute size of non-sale price changes 7.7 7.8 11.3 14.4 

3. St. dev. of absolute size of non-sale price changes 9.0 9.8 13.5 18.1 

4. Frequency of beginning a sale 10.0 10.0 11.1 14.0 

5. Frequency of ending a sale 50.5 51.1 44.2 56.0 

6. Avg. size of price changes at start of sales -22.0 -22.5 -24.5 -27.7 

7. St. dev. of size of price changes at start of sales 18.7 19.1 20.8 30.5 

8. Percentage of all prices that end in 9 62.2 63.6 63.7 75.0 

9. Frequency, post-sale price differs from pre-sale level 11.0 10.8 28.2 21.0 

Notes: All numbers are expressed as percentages.  The IRI columns use all prices.  Author’s calculations based on 

scanner data from Dominick’s Finer Foods and IRI. 
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Table 3. Parameter Estimates and Simulated Moments 

 

Dominick's 

data 

Menu cost  

model 

Price point and 

menu cost model 

Estimates    

Nine-ending price point effect: κ  -- 6.80×10−4 

   [6.49,6.83]×10−4 

Menu cost: Φ  7.24×10−3 3.29×10−6 

  [6.88,7.73]×10−3 [0.65,19.2]×10−6 

Arrival probability of cost shocks: λ  0.076 0.028 

  [0.072,0.080] [0.027,0.030] 

Absolute bound on cost shocks: θ  0.069 0.070 

  [0.065,0.071] [0.068,0.081] 

No sale to no sale transition probability: δ0  0.880 0.877 

  [0.875,0.881] [0.874,0.881] 

Small sale to no sale transition probability: δs  0.478 0.398 

  [0.470,0.484] [0.394,0.412] 

Size of big sale: ξb  0.516 0.499 

  [0.513,0.521] [0.491,0.518] 

Size of small sale: ξs  0.101 0.099 

  [0.097,0.104] [0.098,0.107] 

Moments    

1. Frequency of non-sale price changes 5.6 5.7 5.7 

2. Avg. absolute size of non-sale price changes 7.7 8.1 9.0 

3. St. dev. of absolute size of non-sale price changes 9.0 9.8 11.8 

4. Frequency of beginning a sale 10.0 10.4 10.3 

5. Frequency of ending a sale 50.5 52.0 54.3 

6. Avg. size of price changes at start of sales -22.0 -22.5 -22.2 

7. St. dev. of size of price changes at start of sales 18.7 18.6 17.9 

8. Percentage of all prices that end in 9 62.2 9.6 † 63.2 

9. Frequency, post-sale price differs from pre-sale level 11.0 93.5 † 9.8 

Notes: Moments computed from the Dominick’s data were for prices between $0.50 and $3.00 inclusive.  All 

moments are expressed as percentages. The models were estimated using simulated method of moments.  For the 

parameter estimates, 90 percent confidence intervals are reported in square brackets [-], as detailed in the text.  † 

denotes that the simulated moment was not used to estimate the model parameters.  Author’s calculations based on 

scanner data from Dominick’s Finer Foods and model simulations. 
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Table 4. Additional Moments of Interest 

 

Dominick's 

data 

Menu cost  

model 

Price point and 

menu cost model 

Small Price Changes    

Percentage of non-sale changes < |5%| 52.3 38.3 43.1 

Percentage of non-sale changes < |2.5%| 26.1 0 19.6 

Percentage of non-sale changes < |1%| 6.7 0 3.6 

Frequency Measures    

Frequency of all price changes 25.0 23.4 22.8 

Frequency | last price ended in 9 21.5 23.7 21.8 

Frequency | last price did not end in 9 30.5 23.4 24.6 

Prices around Sales    

Frequency of post-sale prices differing from pre-sale levels 11.0 93.5 9.8 

Frequency | last non-sale price ended in 9 6.1 93.4 8.4 

Frequency | last non-sale price did not end in 9 22.4 93.5 12.2 

Notes: All numbers are expressed as percentages.  Moments computed from the Dominick’s data were for prices 

between $0.50 and $3.00 inclusive.  Moments coming from the models use the estimated parameters.  Author’s 

calculations based on scanner data from Dominick’s Finer Foods and model simulations. 


