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1 Introduction

Starting from the seminal work of Bloom (2009), the business cycle relationship between

uncertainty and output growth and the transmission mechanism from one to the other have

received substantial attention in the literature; see Bloom (2014) for an exhaustive survey.

Various measures of uncertainty have been put forward, and several efforts have been made

to study the macroeconomic effects and broader importance of uncertainty shocks. A non-

exhaustive list of studies in this area includes Bloom (2009), Bloom, et al. (2012), Bachmann,

Elstner, and Sims (2013), Caggiano, Castelnuovo, and Groshenny (2014), Jurado, Ludvig-

son, and Ng (2015, JLN), Rossi and Sekhposyan (2015), Baker, Bloom, and Davis (2016),

Shin and Zhong (2018), Basu and Bundick (2017), Carriero, Clark, and Marcellino (2017,

CCM), Cesa-Bianchi, Pesaran, and Rebucci (2017), and Caldara, et al. (2016).

While the definitions and measurements of uncertainty differ in all these contributions,

the common denominator in this line of research is the way in which the effects of uncertainty

shocks are identified and assessed. Specifically, most econometric studies typically estimate

the effects of uncertainty on economic variables by using structural VARs with some recursive

identification scheme, which all inevitably assume some type of causal direction between

uncertainty and economic variables. The assumption typically made is that uncertainty (be

it macroeconomic or financial) is exogenous; i.e., it does not react contemporaneously to

economic variables, while economic variables react contemporaneously to uncertainty.1

However, as is well known in the profession, recursive schemes have the advantage of

simplicity of implementation and interpretation, but in some cases, they can be hard to

defend as a credible identification strategy. This is particularly true when economists have

very little a priori, generally accepted, and theoretically grounded reasons to believe that a

specific recursive ordering is valid. The study of uncertainty shocks is such a case, since the

existing evidence and economic wisdom make us unable to take a stand on the direction of

the causality between uncertainty and economic variables such as GDP growth. In line with

this reasoning, Ludvigson, Ma, and Ng (2018, LMN) pointed out that most of these previous

results could be biased by an endogeneity problem, and using an identification procedure

based on external information, they concluded that macro uncertainty is mostly endogenous;

i.e., it mainly reacts to growth conditions rather than being an exogenous source of business

cycle fluctuations, while financial uncertainty is mostly exogenous.

In this paper we show that macroeconomic uncertainty can be considered as mostly

exogenous when assessing its effects on the U.S. economy. Instead, financial uncertainty can

at least in part arise as an endogenous response to some macroeconomic developments, and

1Exogenous as used here and in the rest of the paper is not meant to mean strict exogeneity. Rather, we

use it as shorthand for uncertainty being predetermined within the period.
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overlooking this channel leads to a distorted estimate of the effects of financial uncertainty

shocks on the economy. We obtain these empirical findings with an econometric model in

which current and past values of uncertainty affect the current levels of economic variables,

and uncertainty is in turn also affected by them contemporaneously.

We achieve identification by means of a novel procedure hinging on the time-varying

volatility of macroeconomic variables. Differently from the approaches based on recursive

schemes, our identification strategy permits both the causal channel going from uncertainty

to the macroeconomy and the opposite causal channel going from the macroeconomy to

uncertainty (which we will refer to as the “feedback channel”) to be potentially relevant and

quantifiable.

The existing literature has indeed shown that both of these channels can be relevant. For

example, the case has been made that uncertainty has effects on the economy through firms’

behavior. Firms’behavior can be influenced by uncertainty for several reasons, e.g., because

of the real option value of waiting before taking investment decisions (e.g., Bernanke (1983),

McDonald and Siegel (1986)); because of the postponement of hiring and capital investment

decisions (e.g., Leduc and Liu (2012), Bloom (2009), Bloom, et al. (2012)); and because of

the interaction with financial frictions constraining firms’decisions (e.g., Arellano, Bai, and

Kehoe (2011), Gilchrist, Sim, and Zakrajsek (2014)). From the consumers’side, the effects

of uncertainty on the macroeconomy are possible via precautionary savings (e.g., Basu and

Bundick (2017) and Fernandez-Villaverde, et al. (2011)). Equivalently, it is reasonable to

conjecture that lower growth, typically associated with higher unemployment, tighter credit

conditions, and larger volatility in financial markets, in turn can increase uncertainty. One of

the first papers to stress the possible endogeneity of uncertainty is Bachmann, Elstner, and

Sims (2013). Using an identification strategy in which uncertainty shocks have no long-run

effects on aggregate economic activity, they find that the uncertainty shocks then also have

no effects in the short run. Instead, various measures of uncertainty substantially increase

after a negative shock to aggregate economic activity (see, e.g., Bachmann and Moscarini

(2011) and Fajgelbaum, Schaal, and Taschereau-Dumouchel (2014)).

In our framework, identification is obtained by a particular heteroskedasticity structure

in which the time-varying conditional variances of the variables are driven by an uncertainty

measure plus a stochastic idiosyncratic component. In this sense, our identification method

belongs to the heteroskedasticity-based identification tradition (see, e.g., Rigobon (2003),

Sentana and Fiorentini (2001), and the review in Kilian and Lütkepohl (2017, chapter

14)). However, differently from this tradition, our methodology is based on modeling the

conditional variances via stochastic volatility. This difference is nontrivial, because it allows

much more flexibility in the evolution of the conditional variances than regime switching
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or GARCH specifications, since the time-varying volatilities have their own shocks that are

independent from the shocks hitting the level of the variables. As we shall see, the use of

stochastic volatility also impacts the type and number of identifying restrictions, which are

different from those implied by other heteroskedasticity-based identification methods.

It is also worth mentioning that the presence of stochastic volatility makes the errors

of our model non-Gaussian, so that another way to interpret our identification procedure

is that it exploits the information in higher-order moments, rather than only in the second

moments as in traditional Gaussian VARs. In this sense, our approach also belongs to the

strand of the literature on identification in non-Gaussian models; see, for example, Lanne,

Meitz, and Saikkonen (2017).

Methodologically, the model developed in this paper is a structural VAR with time-

varying volatility in which one of the variables (the uncertainty measure) impacts both the

mean and the variance of the other variables. We provide conditional posterior distributions

for this model, which is a substantial extension of the leverage model of Jacquier, Polson,

and Rossi (2004), a widely used model in the finance literature. These distributions are

nontrivial because, with respect to the model of Jacquier, Polson, and Rossi (2004), our

model entails an additional layer of complication insofar as the stochastic volatility factor

also enters the conditional mean of the process. The effi ciency and reliability of the algorithm

are established in Monte Carlo experiments with simulated data, prior to use with monthly

and quarterly U.S. datasets.

Our empirical application, based on both monthly and quarterly U.S. data over the

period 1960-2017, leads to three main findings. First, when allowing for the simultaneous

feedback effect, shocks to macro and financial uncertainty have a depressive effect on output

growth, investment, and consumption, in line with previous empirical studies such as JLN

and CCM and the theoretical contributions mentioned above. Second, when looking at

macro uncertainty, we find strong evidence that coeffi cients related to the feedback channel

are close to zero, which means that treating macroeconomic uncertainty as exogenous is

likely harmless. Third, we find that some of the coeffi cients measuring the feedback effect

of macroeconomic variables on financial uncertainty are significantly different from zero,

thereby indicating that financial uncertainty can be endogenous to some extent. This pattern

is particularly evident in the monthly dataset, with variables such as consumer spending,

inflation, industrial production, and the federal funds rate all featuring negative feedback

coeffi cients, implying that an increase in these indicators leads to a reduction in financial

uncertainty. The endogeneity of financial uncertainty is in contrast to the findings of LMN,

who find less endogeneity in financial uncertainty with respect to macro uncertainty, but

more in line with the treatment of financial indicators as “fast” variables that can react
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contemporaneously to macroeconomic shocks; see, e.g., Bernanke, Boivin, and Eliasz (2005).

The paper is structured as follows. Section 2 presents the model and the identification

approach. Section 3 develops the estimation algorithm. Section 4 provides an illustrative

application and Monte Carlo experiments based on a small-scale version of the model. Sec-

tion 5 presents the main empirical results. Section 6 summarizes our main findings and

concludes. The appendix contains derivations and algorithm diagnostics.

2 A model of endogenous uncertainty

2.1 Model specification

Our interest is in modeling the relationship between a set of economic variables, which

we collect in the n-dimensional vector process yt, and an observable scalar measure of

uncertainty, which we label mt.2 We specify the following model:

yt = Π0 + Πy(L)yt−1 + Πm(L) lnmt−1 + φ lnmt +A−1Λ0.5
t ε∗t (1)

lnmt = α+ δy(L)yt−1 + δm(L) lnmt−1 + ψε∗t + ũt, (2)

where Πy(L) is an n× n matrix polynomial, Πm(L) is an n× 1 vector polynomial, Π0 and

φ are n× 1 vectors, δy(L) and δm(L) are 1× n vector polynomials, ψ is a 1× n vector, and
α is a scalar. The matrix A−1 is a lower triangular n × n matrix with ones on the main
diagonal, which describes the contemporaneous relationships across the economic variables,

and Λt is an n × n diagonal matrix. The shocks are ε∗t ∼ iid N(0, In), ũt ∼ iid N(0, σ2
ũ),

and are mutually independent.

The model (1)-(2) is a structural VAR for the (n + 1)-dimensional vector (y′t lnmt)
′.

There are three features that differentiate this model from the VARs typically used in the

uncertainty literature (e.g., in studies such as Bloom (2009) and JLN).

The first major feature is that the model allows for bilateral simultaneity between eco-

nomic variables and uncertainty. Specifically, the model allows for both i) the contem-

poraneous effects of a shock to uncertainty on the economic variables, as measured by

∂yt/∂ũt = φ, and ii) the contemporaneous effect of a shock to economic variables on uncer-

tainty, as measured by ∂ lnmt/∂ε
∗
t = ψ (we will refer to this as the “feedback effect”). This

bilateral simultaneity is typically not present in the traditional implementations of uncer-

tainty VARs, and is in general not achievable within the class of Gaussian models, since the

2The uncertainty measure could also be treated as unobservable. In this case, an additional step in

the MCMC sampler would be needed in order to draw from its conditional posterior distribution. For an

example of this approach in a model that does not allow for endogenous uncertainty, see Carriero, Clark,

and Marcellino (2017).
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number of reduced-form coeffi cients available in such a class of models is insuffi cient to pin

down all of the contemporaneous relations across variables.

The second major feature of the model proposed here is that the disturbance term to the

first block of equations (i.e., A−1Λ0.5
t ε∗t ) is heteroskedastic, as opposed to the large majority

of uncertainty VARs which are specified as homoskedastic. The assumption of heteroskedas-

ticity in a VAR of macroeconomic variables has overwhelming support in the recent literature

(see, e.g., Chan and Eisenstat 2018), and many uncertainty measures are constructed on

the basis of some variant of a time-varying volatility model (e.g., the measures put forward

by JLN and LMN). Therefore, having a model featuring time-varying volatility is key in

assessing the effects of uncertainty. In this paper we show that – besides providing a better

description of the data – the assumption of heteroskedasticity allows us to simultaneously

identify the coeffi cient vectors φ and ψ. Indeed this assumption implies that the VAR is

unconditionally not Gaussian, which provides additional identifying information in the form

of additional reduced-form moments.

The third feature of the model is that the measure of uncertainty is allowed to impact

not only the conditional mean of the economic variables but also their conditional vari-

ance. More specifically, we assume that uncertainty is a common factor influencing the

time-varying volatilities of all of the variables in the system. This feature is embedded in

our specification of the matrix Λt, which collects on the main diagonal the time-varying

volatilities of the structural shocks to the economic variables. We assume a factor structure

for these volatilities. Specifically the volatilities on the diagonal of Λt are defined as:

λjt = mthjt, j = 1, ..., n, (3)

where mt is the measure of uncertainty (and is common to all the volatilities), and hjt are

idiosyncratic volatilities each following:

lnhjt = αj + δj lnhjt−1 + η̃jt, j = 1, ..., n, (4)

where η̃jt ∼ iid N(0, σ2
η̃j

) is independent from η̃it, i 6= j, ε∗t , ũt. Therefore, the time-

varying conditional variance of each variable is decomposed into a component common to

all variables and given by the observable uncertainty measure mt, plus a variable-specific,

unobservable stochastic component, given by hjt. Equations (2) and (4) are specified in log-

arithms, as is common in stochastic volatility models to implicitly implement non-negativity

constraints, and imply that mt and (the elements of) ht have log-normal distributions. For

future reference, we collect the hjt’s in the n× 1 vector process ht, and we define:

Λt = mtHt, (5)
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where Ht is a diagonal matrix with diag(Ht) = ht.

At a first inspection, the model in (1)-(2) might look somewhat asymmetric, in the sense

that while the first equation contains the contemporaneous value of uncertainty (φ lnmt) as a

regressor, the second equation contains the shock to yt (ψε∗t ) as a regressor. It is important to

stress that this choice does not impact the key feature of the model, namely the simultaneity

in the conditional means of yt and lnmt. Indeed the model in (1)-(2) is obviously a re-

parameterization of a model in which both shocks ε∗t and ũt appear in both the equations for

yt and the equation for lnmt.3 However, the parameterization of (1)-(2) greatly simplifies

estimation, while having the level of yt as a regressor in (2) would introduce a second

channel of simultaneity between the conditional variance of yt and lnmt. Such a model

would be highly nonlinear, increasing substantially the computational complexity without

providing any major insights into the simultaneity in the conditional means with respect to

the specification in (1)-(2).

The model in (1)-(4) nests some other models that previously appeared in the literature.

Setting n = 1, Ht = I, φ = 0 provides the model of Jacquier, Polson, and Rossi (2004).

Setting ψ = 0 provides the model of Carriero, Clark, and Marcellino (2017). Finally, setting

ψ = 0 and shutting down time variation in volatilities (Λt = Λ) provides the homoskedastic

VAR specification of Jurado, Ludvigson, and Ng (2015). All these contributions set either

φ or ψ to a vector of zeros. As we shall see in the next subsection, this is equivalent to

achieving identification by means of a triangular recursive structure in which uncertainty is

ordered first (ψ = 0) or last (φ = 0) in a VAR.

2.2 Identification

In this section we illustrate our identification strategy. To fix the ideas, we start from an

illustrative example based on a simple bivariate version of the model, which we describe in

Section 2.2.1. Then, we generalize the discussion to the general model in Section 2.2.2.

2.2.1 An illustrative example

Consider the special case of the model defined by (1)-(4), with n = 1:

yt = Π0 + Πyyt−1 + Πm lnmt−1 + φ lnmt +
√
mthtε

∗
t (6)

lnmt = α+ δyyt−1 + δm lnmt−1 + ψε∗t + ũt (7)

lnht = αh + δh lnht−1 + η̃t, (8)

3This can be easily seen by inserting the expression for lnmt shown in (2) into the right-hand side of (1),

which provides a reduced-form representation in which both equations contain both shocks ε∗t and ũt.
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with ε∗t ∼ iid N(0, 1), ũt ∼ iid N(0, σ2
ũ), η̃t ∼ iid N(0, σ2

η̃)mutually independent (structural)

shocks. Here, yt is a scalar economic variable of interest, for example, GDP growth, while

mt denotes an observable uncertainty measure. The conditional mean of yt depends on the

contemporaneous (log) uncertainty through the term φ lnmt. Uncertainty is endogenous,

as it depends on the contemporaneous value of yt through the term ψε∗t . We now relate the

simultaneous equation model (6)-(8) with a standard VAR and show how identification is

achieved. To do so, first consider the simpler homoskedastic model obtained by replacing

(6) with:

yt = Πyyt−1 + Πm lnmt−1 + φ lnmt +
√
σ2
εε
∗
t , (9)

which also makes equation (8) redundant. The heteroskedasticity from the shock to the first

equation has been removed and this shock now has a fixed variance σ2
ε . We also disregarded

the intercepts, as they are irrelevant to discussing identification.

We will now derive the reduced form of this simpler model. Using equation (9) we can

derive an expression for ψε∗t :

ψε∗t = ψ
1√
σ2
ε

(yt −Πyyt−1 −Πm lnmt−1 − φ lnmt), (10)

which can be fed into equation (7) so that we can write the following system: 1 −φ
− ψ√

σ2
ε

1 + ψφ√
σ2
ε

( yt

lnmt

)
=

 Πy Πm

δy − ψΠy√
σ2
ε

δm − ψΠm√
σ2
ε

( yt−1

lnmt−1

)
+

( √
σ2
εε
∗
t

ũt

)
.

(11)

The system above is a simultaneous equation model of output and uncertainty. By inverting

the matrix on the left-hand side of (11), we obtain the reduced form:(
yt

lnmt

)
=

[
c11 c21

c12 c22

](
yt−1

lnmt−1

)
+

(
εt

ut

)
; V ar

(
εt

ut

)
=

[
Σ11 Σ12

Σ12 Σ22

]
(12)

where: [
c11 c21

c12 c22

]
=

 1 + φ ψ√
σ2
ε

φ

ψ√
σ2
ε

1

 Πy Πm

δy −Πy
ψ√
σ2
ε

δm −Πm
ψ√
σ2
ε

 , (13)

and [
Σ11 Σ12

Σ12 Σ22

]
=

 1 + φ ψ√
σ2
ε

φ

ψ√
σ2
ε

1

[ σ2
ε 0

0 σ2
ũ

] 1 + φ ψ√
σ2
ε

ψ√
σ2
ε

φ 1

 . (14)

The reduced-form model contains 7 coeffi cients (c11, c21, c12, c22,Σ11,Σ12,Σ22), but there

are 8 parameters in the structural form (φ, ψ,Πy,Πm, δy, δm, σ
2
ε , σ

2
ũ); therefore, the model is

not identified. In the standard approach, identification is usually achieved by setting ψ = 0,

which gives exactly 7 coeffi cients in both the reduced and the structural form.
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Instead, in model (6)-(7) identification is achieved because in place of σ2
ε the term mtht

appears, which can be treated as known since mt is observable and ht is separately identified

through equation (8). In other words, substituting mtht for σ2
ε in (13) allows us to estimate

both φ and ψ. Indeed – at any given time t– we have:[
c11t c21t

c12t c22t

]
=

 1 + φ ψ√
mtht

φ

ψ√
mtht

1

[ Πy Πm

δy −Πy
ψ√
mtht

δm −Πm
ψ√
mtht

]
(15)

[
Σ11t Σ12t

Σ12t Σ22t

]
=

 1 + φ ψ√
mtht

φ

ψ√
mtht

1

[ mtht 0

0 σ2
ũ

][
1 + φ ψ√

mtht

ψ√
mtht

φ 1

]
, (16)

which – for any fixed t – has 7 coeffi cients in both the reduced form and the structural

form. Computing the products in the right-hand side of (15) and (16), and vectorizing these

matrix equations by row, leads to the following system of equations:

c11 = Πy + φδy

c21 = Πm + φδm

c12 = δy

c22 = δm

Σ11t = φ2(ψ2 + σ2
ũ) + htmt + 2φψ

√
mtht

Σ12t = φ(ψ2 + σ2
ũ) + ψ

√
mtht

Σ22 = ψ2 + σ2
ũ

. (17)

Note that the parameters of the conditional means in the reduced form are not time-varying,

while the reduced-form equation for yt has time-varying conditional variance (and covari-

ance), but such time variation is entirely driven by mt and ht. It follows that the solution

for (φ, ψ,Πy,Πm, δy, δm, σ
2
ũ) of the system in (17) is the same for any t. In order to find such

a solution, first note that under knowledge of φ one can obtain (Πy,Πm, δy, δm) using the

first four equations of the system in (17). Similarly, under knowledge of ψ one can obtain

σ2
ũ by using the last equation. The last equation can also be substituted in the equations

for Σ11t and Σ12t, and the problem reduces to solving:{
Σ11t = φ2Σ22 +mtht + 2φψ

√
mtht

Σ12t = φΣ22 + ψ
√
mtht

(18)

for φ and ψ. To verify the existence of a unique local solution, we follow Hamilton (1994,

p.334) and compute the Jacobian:

J =

(
2φΣ22 + 2ψ

√
mtht 2φ

√
mtht

Σ22

√
mtht

)
. (19)
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Since |J | = 2ψmtht, it is rank(J) = 2, unless ψ = 0, but in this case we would have over-

identification, as we would have Σ11t = φ2σ2
ũ + mtht, Σ12 = φσ2

ũ, Σ22 = σ2
ũ, which would

give φ = Σ12/Σ22 and φ2 = (Σ11t −mtht)/σ
2
ũ, which over-identifies φ. Note that as |J | 6= 0

unless ψ = 0, we actually have global identification.

The identifying information comes from the time-varying volatility term mtht. Indeed,

note that if instead of mtht – which is identified by (and can be estimated through) the

transition equation (8) – we had an unknown parameter σ2
ε , then the two-equation system

in (18) would contain three unknowns and therefore the model would be unidentified.4 To

further clarify this point, suppose that σ2
η̃ = 0. In this case, ht will no longer be a random

state variable, but rather it will be a fixed constant (ht = h for any t), and this will make

this case similar to the standard one (that is, there is one more parameter to be estimated,

the constant level of ht, i.e. h), and the model would again be unidentified. Hence, the

question arises: why is the situation so different when σ2
η̃ > 0?

The intuition behind this result can be explained in two ways: by looking at either the

conditional or the unconditional moments of the shocks. Starting with the intuition based

on conditional moments, when σ2
η̃ > 0, more moments become available from the reduced

form, because time variation in ht means that we have more reduced-form error-variance

matrices (each corresponding to a different point in time t). The simplest way to think

about this is within the simple textbook example But = et, where et is the structural shock

(with an identity variance matrix) and ut the reduced-form shock, with variance Σ. The

matrix B is a full matrix with ones on the main diagonal (for a normalization) describing

the contemporaneous relationships among the variables. Since Σ has only n(n − 1)/2 free

parameters, while B has n(n − 1) free parameters, there is no identification. Now, let us

assume we have two regimes: one in which Σ = Σ(h1) and the second in which Σ = Σ(h2).

This doubles the number of parameters we have from the reduced form, which become

n(n−1). Instead, the number of parameters in the B matrix remains n(n−1), and therefore,

the order condition for identification is satisfied.5 This approach to identification makes the

4A version of the model with only ht appearing in the conditional variance would be identified as well

(it would be |J | = 2ψht). However, such a model would not allow for an impact of uncertainty on the

conditional variance of yt. Similarly, a version of the model with only mt appearing in the conditional

variance would be identified as well (it would be |J | = 2ψmt). However, such a model would impose the

rather strong assumption that the shocks to the first equation have variance exactly equal to the variable mt.

Using both mt and ht allows us to have a second moment effect of the uncertainty measure while avoiding

misspecification.
5This argument is similar to that in Rigobon (2003), even though it is important to stress that in our

approach ht is a state variable and not a vector of parameters. As discussed below, this implies that we have

a sequence of conditional variance matrices that are restricted by the fact that they must obey the laws of

motion specified in (2) and (4).
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implicit assumption that the contemporaneous relationships among the variables (those

described by the matrix A) are constant over time.

The intuition based on unconditional moments is related to Gaussianity. A Gaussian

random variable is entirely defined by its first two moments (which are suffi cient statistics).

In the case of shocks, the first moment is 0 so we are left with the second moments (variances)

only. The problem of identification precisely arises because the variance-covariance matrix

of the Gaussian shocks has only n(n− 1)/2 free coeffi cients, which often are not enough to

identify all the contemporaneous relations we would like to (which are typically n(n − 1)).

Instead, a non-Gaussian random variable has many more moments, and these additional

moments can provide the additional information one needs for identification. In the case

at hand, if σ2
η̃ = 0, then the shocks are Gaussian, and therefore, we have the identification

problem. Instead, if σ2
η̃ > 0, the shocks are not Gaussian (they are a mixture of Gaussians

with mixture weights
√
mtht), and therefore, we have identification.

The previous discussion clarifies that our method belongs to the family of methods

for heteroskedasticity-based identification, considered in papers such as Rigobon (2003),

Sentana and Fiorentini (2001), and Lanne and Lütkepohl (2008).6 The use of a continuously

changing volatility is studied in a more general context by Lewis (2017), who also considers

the case of heteroskedasticity of arbitrary and unknown form. Another related strand of

research considers identification in non-Gaussian models; see, for example, Lanne, Meitz,

and Saikkonen (2017).7 Kilian and Lütkepohl (2017) provide an excellent survey.

There is, however, a key difference between our approach and those in the existing

literature: our approach is based on stochastic volatility. This difference is not trivial,

because the stochastic volatilities are state variables, driven by their own shocks rather

than being either deterministic or driven by (functions of) the same shocks driving the

variables in level. This adds flexibility to the model, and it has implications for identification.

Indeed the number of additional restrictions provided by the presence of stochastic volatility

is different from that in other heteroskedasticity-based approaches to identification. For

example, consider the case in which ht is not a state variable, but a parameter that can

change across two regimes, so that the model can have only two alternative values for the

error variance, Σ(h1) and Σ(h2). Clearly, because of the reasoning made in the paragraphs

above, this two-regime model would provide exact identification. If we were to extend this

6Angelini, Bacchiocchi, and Fanelli (2017) extend this approach to identify the effects of uncertainty

shocks allowing for endogeneity. In line with our results, they find that the uncertainty shocks can be treated

as exogenous.
7The Lanne, Meitz, and Saikkonen (2017) approach nests a number of other identification procedures

based on conditional heteroskedasticity, including Normandin and Phaneuf (2004), Lanne, Lütkepohl, and

Maciejowska (2010), and Lütkepohl and Netšunajev (2014).
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approach to T regimes, we would have the sequence of error variances Σ(h1), ...,Σ(hT ) and

this would obviously lead to over-identification. Instead, in our approach h1, ..., hT are not

(mutually independent) parameters that need to be estimated; they are state variables that

must obey the laws of motion in (4). This implies that the model is just-identified.

Finally, our identification strategy differs from the procedure introduced by LMN. The

latter complements the usual restrictions on the covariance matrix with additional restric-

tions on the identified shocks. These are “event constraints,” in the terminology of LMN,

requiring the identified shocks to be coherent with economic reasoning when some extraordi-

nary events happen, and “correlation constraints,”which restrict the identified uncertainty

shocks to minimize their correlation with the stock market; see LMN for details.

2.2.2 Identification in the general model

The logic illustrated in Section 2.2.1 can be extended to the general multivariate case.

Consider the reduced form associated with the general model (1)-(2):(
yt

lnmt

)
=

[
C11 C21

C12 C22

](
yt−1

lnmt−1

)
+

(
εt

ut

)

with:

V ar

(
εt

ut

)
=

[
Σ11t Σ12t

Σ12t Σ22t

]
.

In the appendix we show that the reduced-form coeffi cients and the structural coeffi cients

are related through the following equations:

C11 = Πy + κBφδy

C21 = Πm + κBφδm

C12 = δy

C22 = δm

Σ11t = BΣtr,tΣ
′
tr,tB

′ + κ2σ2
ũBφφ

′B′

Σ12t = BΣtr,tψ
′ + κσ2

ũBφ

Σ22 = σ2
ũ + ψ′ψ

(20)

where

Σtr,t = A−1Λ0.5
t , B = (In − φκψΣ−1

tr,t)
−1, κ = (1 + ψΣ−1

tr,tφ)−1.

As in the bivariate case, δy and δm are immediately identified through C12 and C22. More-

over, under knowledge of Σtr,t, ψ, and φ, the first two equations and the last equation in

the system can be solved for Πy, Πm, and σ2
u. Therefore, we can reduce the system linking
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reduced and structural coeffi cients to:{
Σ11t = BΣtr,tΣ

′
tr,tB

′ + κ2σ2
ũBφφ

′B′

Σ12t = BΣtr,tψ
′ + κσ2

ũBφ
, (21)

which needs to be solved for Σtr,t, ψ and φ. Since Σtr,t = A−1Λt, where Λt is identified and

A contains a total of (n2 − n)/2 coeffi cients, the total number of structural coeffi cients we

need to obtain is (n2 − n)/2 + 2n = 1
2n

2 + 3
2n. The elements in the two matrices Σ11t and

Σ12t are (n2 + n)/2 + n = 1
2n

2 + 3
2n, and therefore the order condition for identification is

satisfied.

We then turn to the issue of whether the rank condition for ψ and φ is also satisfied. To

address this issue, let us introduce the orthonormal matrix P , such that PP
′

= P
′
P = I

and Σtr,tPP
′Σ′tr,t = Σt. Let φ and ψ and Σtr,t be the solution of (21). Then of course they

also solve: 
Σ11t = BΣtr,tPP

′Σ′tr,tB
′ + κ2σ2

uBφφ
′B′

Σ12t = BΣtr,tPP
′ψ′ + κσ2

uBφ

B = (In − φκψPP ′Σ−1
tr,t)
−1

κ = (1 + ψPP ′Σ−1
tr,tφ)−1

. (22)

If we now define Σtr,tP = Σ̃tr,t and ψP = ψ̃, then Σ̃tr,t and ψ̃ are the solutions of the rotated

system. This means that the elements of the vector φ do not change at the solution, while

any rotation P of the elements in ψ is still a solution. This can be immediately seen also

by simply noting that (a rotation of) ψ can be derived by projecting lnmt on (a rotation

of) ε∗t .

Importantly, though, if one limits the possible identification schemes to recursive schemes

with alternative variable orderings, then the only admissible rotation matrices P are permu-

tation matrices.8 This in turn implies that alternative orderings of the variables will only

re-shuffl e the elements of the vector ψ, which in the new ordering will become ψ̃, but will

not change the impact response of lnmt to – say – a generic j-th macroeconomic shock

8This set of identification schemes coincides with the set of “triangular” VARs as defined by Rubio-

Ramirez, Waggoner, and Zha (2010), Definition 6.
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of interest ε∗jt.
9 ,10 Indeed, define the permuted error

ε∗∗t = Pε∗t ,

which is the error of the permuted model:

yt = Πy(L)yt−1 + Πm(L) lnmt−1 + φ lnmt + Σtr,tε
∗∗
t , (23)

lnmt = δy(L)yt−1 + δm(L) lnmt−1 + ψε∗∗t + ũt, (24)

where ψε∗∗t = ψPε∗t = ψ̃ε∗t . Let us say that the permutation moves the variable of interest

from position j to position i; that is, the i-th row of P is given by Pi = e′j where e
′
j is a

basis row vector featuring a 1 in position j. This means that ε∗∗it = e′jε
∗
t = ε∗jt. The value of

∂ lnmt/∂ε
∗
jt is obviously unchanged, and:

ψj =
∂ lnmt

∂ε∗jt
=
∂ lnmt

∂ε∗∗it
= ψ̃i,

which means we could look at either the i-th element of ψ̃ or the j-th element of ψ to find

the (same) impulse response of interest.

A relevant qualification to the previous statement concerns the estimation stage. In fact,

since priors are elicited separately for the elements of A and Λt, the implied prior for the error

variance of the economic shocks (i.e., A−1ΛtA
−1′) will change when changing the equation

ordering, and therefore, different orderings would result in different prior specifications and

then, potentially, different joint posteriors. This problem is not specific to our model, but

rather it is inherent to all stochastic volatility VARs using the specification A−1ΛtA
−1′ for

the error variance. As noted by Sims and Zha (1998) and Primiceri (2005), this problem

is mitigated in the case (as the one considered in this paper) in which the covariances in

A−1 do not vary with time, because the likelihood will quickly dominate the prior as the

sample size increases.11

9This argument applies to the impact response of uncertainty to the macroeconomic shocks ε∗t , and the

reason is that there are no zero restrictions on the vector of coeffi cients multiplying ε∗t in the equation for

lnmt (i.e., the vector ψ). This is similar to what happens to the last variable in a Cholesky scheme: also

for such variables the ordering of the preceding variables is immaterial to the responses, precisely because

the variable comes last in the recursive system. However, this of course does not mean that lnmt is being

implicitly ordered last in our model, since this would also require imposing the condition φ = 0.
10 Instead the response of the macroeconomic variables yt to the macroeconomic shocks ε∗t will of course

change with different orderings in the usual way.
11This problem can be entirely avoided by eliciting a prior on the whole error variance matrix rather than

on the individual elements of the matrices A and Λt; see, for example, Shin and Zhong (2018) and Bognanni

(2017). The online appendix of Carriero, Clark, and Marcellino (2018b) provides a discussion and some

empirical results on this problem, which they label the “prior ordering problem.”
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3 Model estimation

In this section we describe the Markov Chain Monte Carlo (MCMC) algorithm for the esti-

mation of the model in (1)-(4). The model is a structural VAR with time-varying volatility

in which one of the regressors (the uncertainty measure) impacts both the mean and the

variance of the others. This model nests as a special case the leverage model of Jacquier,

Polson, and Rossi (2004). The conditional posterior distributions of this model are nontrivial

because, with respect to the model of Jacquier, Polson, and Rossi (2004), our model entails

an additional layer of complication insofar as the stochastic volatility factor also enters the

conditional mean of the process. Next, Sections 3.2 and 3.3 discuss, respectively, the priors

used in the empirical application and the computation of impulse response functions.

3.1 MCMC algorithm

We collect the model coeffi cients in three sets. First, θ1 groups all the coeffi cients of the yt

equation: Π0, φ, A, Πy(L), Πm(L). Second, θ2 groups all the coeffi cients of the uncertainty

equation: α, δy(L), δm(L), ψ, σ2
ũ. Third, θ3 groups all the coeffi cients of the latent volatility

processes: αj , δj , σ2
η̃j
, j = 1, ..., n. The vector θ contains θ1, θ2 and θ3. Both yt and mt are

observable, while ht is a vector of state variables.

The data density of data and states is given by:

p(yt,mt, ht|θ) = m−1−0.5n
t Πn

j=1h
−1.5
jt × pG(ε∗t , ũt, η̃t)

= m−1−0.5n
t Πn

j=1h
−1.5
jt pG(ε∗t )︸ ︷︷ ︸

eq. (1)

× pG(ũt)︸ ︷︷ ︸
eq. (2)

× pG(η̃t)︸ ︷︷ ︸
eq. (4)

, (25)

where it is clear which pieces are coming from equations (1), (2), and (4). A derivation can

be found in the appendix. The data density (25) will be the basis of a Gibbs sampler that

will draw from:

1. h1:T |θ,y1:T ,m1:T

2. θ|h1:T ,y1:T ,m1:T ,

where h1:T , y1:T , and m1:T are the matrices containing the states and variables for

t = 1, ..., T . Step (2) of the algorithm will be further partitioned into three blocks:

2a θ1|θ2, θ3,h1:T ,y1:T ,m1:T ,

2b θ2|θ1, θ3,h1:T ,y1:T ,m1:T ,

2c θ3|θ1, θ2,h1:T ,y1:T ,m1:T .
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While steps (2b) and (2c) are straightforward, step (1) and step (2a) are nontrivial due

to the simultaneity inherent in our model. We now proceed to analyze these steps in more

detail.

3.1.1 Drawing h1:T |θ,y1:T ,m1:T

Under the assumption that the processes hjt are idiosyncratic volatilities with independent

shocks η̃it, the density p(ht|ht−1, ht+1, θ,y1:T ,m1:T ) can be decomposed into the product

of Πn
j=1p(hj1:T |θ,y1:T ,m1:T ,h6=j1:T ) and drawn in blocks j = 1, ..., n. The generic block

hj1:T |θ,y1:T ,m1:T ,h 6=j1:T is Markov and can be simulated via a sequence of:

p(hjt|hjt−1, hjt+1, θ,y1:T ,m1:T ,h 6=j1:T )

∝ h−0.5
jt exp

(
−
e2
jt

2hjt

[
1 +

ψ2
j

σ2
ũ

]
+

ejt√
hjt

ψj
σ2
ũ

[ut − ψ 6=jε∗6=jt]
)

×h−1
jt exp

−
(

lnh2
jt − µjt

)2

σ2
η̃

 . (26)

The derivation of the conditional posterior in (26) is detailed in the appendix. Using an

independence chain Metropolis step with the transition equation as proposal, i.e., q ∝
exp(−

(
lnh2

t − µt
)2
/σ2

η̃),
12 we can accept/reject with acceptance probability a = min (1, ι),

where

ι =

1√
hcandjt

exp

(
− et2

2hcandit

[
1 + ψ2/σ2

ũ

]
+ et√

hcandjt

ψj
σ2
ũ

[ut − ψ 6=jε∗6=jt]
)

1√
hpresjt

exp

(
− et2

2hpresit

[
1 + ψ2/σ2

ũ

]
+ et√

hpresjt

ψj
σ2
ũ

[ut − ψ 6=jε∗6=jt]
) . (27)

3.1.2 Drawing θ|h1:T ,y1:T ,m1:T

Consider again the kernel in (25), which depends on ε∗t , ũt, and η̃jt, where:

ε∗t = m−0.5
t H−0.5

t A(yt −Π0 −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt) (28)

ũt = lnmt − α− δy(L)yt−1 − δm(L) lnmt−1 − ψε∗t (29)

η̃jt = lnhjt − αj − δj lnhjt−1, j = 1, ..., n. (30)

We need to express (25) as a function of the data, the states, and the coeffi cients θ only (i.e.,

there must be no unobservable shocks). We can derive an expression for the first equation

coeffi cients θ1 by using (28). An expression for the second equation coeffi cients θ2 can also

be derived using the expression for ũt in (29). However, this is not suffi cient to get to an

12The proposal density is slightly different at the beginning and the end of the sample.
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expression without any unobservable shocks appearing, because the term ψε∗t would still

be there, and therefore a further substitution for ε∗t using (28) is required. This happens

because, conditional on θ2, the shock ut is observable, but the shock ũt = ut − ψε∗t is not
observable. These considerations lead to:

p(yt,mt, ht|θ) =

m−1−0.5n
t Πn

j=1h
−1.5
jt × exp

{
−(yt −ΠXt − φ lnmt)

′H−1
t (yt −ΠXt − φ lnmt)

2mt

}
(31)

× 1√
σ2
ũ

exp

− 1

2σ2
ũ

(
lnmt − α− δy(L)yt−1 − δm(L) lnmt−1

−ψm−0.5
t H−0.5

t (yt −ΠXt − φ lnmt)

)2
 (32)

×Πn
j=1

1√
σ2
η̃i

exp

{
−(lnhjt − αj − δj lnhjt−1)2

2σ2
η̃i

}
, (33)

where

ΠXt = Π0 −Πy(L)yt−1 −Πm(L) lnmt−1.

Note that in the density above, the coeffi cients of the second equation, θ2, only appear in

the kernel (32), and the coeffi cients of the third equation, θ3, only appear in the kernel (33).

This means that – conditionally on θ1 (and on the states and data) – (32) can be used as

the posterior kernel for θ2 and (33) as the posterior kernel for θ3.

In particular, since (32) is a Gaussian kernel, we have that θ2|yt,mt, ht, θ1, θ3 can be

drawn via a Gibbs step based on using equation (2) as a linear regression model. Also, note

that p(θ2|yt,mt, ht, θ1, θ3) ∝ p(θ2|yt,mt, ht, θ1). Similarly, since (33) is a (product of) inverse

Gamma kernel(s), it follows that θ3|yt,mt, ht, θ1, θ2 can be drawn via a Gibbs step based

on using equation (4) as a linear regression model. Also note that p(θ3|yt,mt, ht, θ1, θ2) ∝
p(θ3|ht).

We are now left with the coeffi cients θ1. These coeffi cients are challenging because –

when ψ 6= 0 – they appear in both (31) and (32). The posterior density p(θ1|yt,mt, ht, θ1, θ2)

is proportional to the product of the kernels (31) and (32):

p(θ1|yt,mt, ht, θ2, θ3) ∝ 1√
σ2
ũ

(34)

× exp

{
−(yt −ΠXt − φ lnmt)

′H−1
t (yt −ΠXt − φ lnmt)

2mt

}

× exp

− 1

2σ2
ũ

(
lnmt − α− δyyt−1 − δm lnmt−1

−ψm−0.5
t H−0.5

t (yt −ΠXt − φ lnmt)

)2
 p(θ1),

which is not a known distribution. Therefore, this calls for a Random Walk Metropolis step
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with acceptance probability

a = min

(
1,
p(θcand1 |y1:T ,m1:T ,h1:T , θ2, θ3)

p(θpres1 |y1:T ,m1:T ,h1:T , θ2, θ3)

)
. (35)

3.1.3 Effi ciency and convergence of the algorithm

We have verified the properties of the estimation algorithm in our empirical applications.

Figure 13 in Appendix 7.4 reports a summary set of diagnostics that all support convergence

and good mixing of the MCMC algorithm. Section 4 further tests the algorithm using

simulated data.

3.2 Priors

In the empirical application, we demean the variables and drop the intercepts, to reduce the

dimensionality of the parameter space. The priors on all the coeffi cients of the equations

for yt, θ1, are flat. For the equation for mt, we elicit an independent Gaussian prior for

each coeffi cient in the polynomials δy(L) and δm(L), with standard deviation 1 and mean

zero, with the only exception being the parameter associated with lnmt−1 whose prior mean

is set at 0.5. We assume a conjugate prior for ψ and σ2
ũ, following Jacquier, Polson, and

Rossi (2004), with ψ|σ2
ũ ∼ N(0, σ2

ũIn) and σ2
ũ ∼ IG(1× 0.052, 2). Finally, for the equations

for ht, we elicit an independent Gaussian inverse gamma prior, with δh,j ∼ N(0.99, 0.12),

αh,j ∼ N(0, 0.12), j = 1, ..., n, and σ2
η̃i
∼ IG(2× 0.0052, 3).

3.3 Impulse responses

We will use the model to compute the impulse response functions (IRFs) to an uncertainty

shock of size
√
σ2
ũ. Responses over a horizon of t+ 1, . . . , t+ h are obtained by simulating

the model under a baseline and a shocked scenario.

The baseline scenario is constructed as follows. Let i = 1, ...,M be the index of the

posterior draws from the MCMC algorithm. We generate M = 1000 random paths of

the shocks ε∗t+1:t+h and η̃jt+1,t+h, j = 1, ..., n, by drawing from ε∗it ∼ iid N(0, 1) and

η̃ijt+1,t+h ∼ iid N(0, (σ2
η̃j

)i) where (σ2
η̃j

)i is the i-th draw from the simulated posterior of

σ2
η̃j
. Instead, the shock ũt+1:t+h is set to 0 in all of the M paths. As initial conditions, we

set yt−1 = lnmt−1 = 0. Then, for i = 1, ...,M we can simulate the model:

yit = Πi
yy
i
t−1 + Πi

m lnmi
t−1 + φi lnmi

t + (A−1)iΛ0.5,i
t ε∗it (36)

lnmi
t = δiyy

i
t−1 + δim lnmi

t−1 + ψiε∗it + ũit, (37)

where Λ0.5,i
t has diagonal entries mi0.5

t hi0.5jt , j = 1, ..., n, and

lnhijt = αih,j + δih,j lnhijt−1 + η̃ijt, j = 1, ..., n. (38)
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The shocked scenario is built in the same way,13 except that in all i = 1, ...,M simulations

we set ũt+1:t+h = (
√
σ2
ũ; 0
h−1×1

)′, i.e., an h-dimensional vector with all elements set to zero,

with the exception of the first one, which is set to
√
σ2
ũ.
14

The generalized impulse response functions (GIRF) for each draw are then computed as

the difference between the shocked and the baseline scenario:
{
yit,shocked

}M
i=1
-
{
yit,baseline

}M
i=1
.

4 Illustrative example and Monte Carlo evaluation

This section contains an illustrative application and a Monte Carlo evaluation based on the

simple model (6)-(8). Empirical results based on the general model can be found in Section

5.

4.1 Illustrative empirical example

We start with evaluating empirically the relationship between GDP growth and uncertainty

in the U.S. This relationship is interesting by itself and it has been studied in precedents

such as Campbell, et al. (2001). We include it here partly for illustrative purposes, to help

set ideas in a relatively simple framework.

We define yt as the quarter-on-quarter GDP growth rate and lnmt as the JLN measure

of macro uncertainty, with quarterly data ranging from 1960Q3 to 2017Q2. Details on the

data and will be provided in Section 5.1. The posterior means of the parameters (with 5%

and 95% percentiles in square brackets) are:

yt = 2.3872
[1.6239, 3.1101]︸ ︷︷ ︸

Π0

+ 0.2372
[0.1270, 0.3446]︸ ︷︷ ︸

Πy

yt−1 + 3.2571
[0.3720, 6.8014]︸ ︷︷ ︸

Πm

lnmt−1

+ −6.1050
[−9.8013, −3.1023]︸ ︷︷ ︸

φ

lnmt +
√
mthtε

∗
t

lnmt = 0.0449
[0.0098, 0.0810]︸ ︷︷ ︸

α

+ −0.0020
[−0.0073, 0.0031]︸ ︷︷ ︸

δy

yt−1 + 0.9341
[0.8826, 0.9843]︸ ︷︷ ︸

δm

lnmt−1

+ −0.0036
[−0.0093, 0.0023]︸ ︷︷ ︸

ψ

ε∗t + ũt; σ
2
ũ = 0.0013

[0.0011, 0.0015]

13Note that – importantly – this means that the sequences ε∗it and η̃ijt+1,t+h used for the baseline case

are also used for the alternative case.
14Since we are only evaluating first-order effects, it could also make sense to compute the responses shut-

ting down the simulation of ε∗t+1:t+h and η̃jt+1,t+h. The IRFs obtained by setting both ε
∗
t+1:t+h = 0 and

η̃jt+1,t+h = 0 are very similar to those obtained as described.
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Figure 1: Squared GDP growth rates, uncertainty, idiosyncratic volatility states, and

reduced-form volatilities.

lnht = −0.0576
[−0.1340, −0.0010]︸ ︷︷ ︸

αh

+ 0.9653
[0.9179,1.0006]︸ ︷︷ ︸

δh

lnht−1 + η̃t; σ
2
η̃ = 0.0303

[0.0112,0.0636]
.

Therefore, the impact effect of uncertainty on growth as measured by φ is negative, and

also the effect of growth on uncertainty as measured by ψ is negative, but the value of zero

is included in the 5-95% percentiles of the posterior of ψ.

Figure 1 reports the (exp of the) JLN uncertainty measure, mt, the posterior mean of

the latent state ht, and the overall stochastic volatility term in the GDP growth equation,

mtht. The figure highlights the importance of having the ht term, whose main roles are

to further increase the volatility during the recessionary periods of the ’70s and early ’80s,

and to capture the Great Moderation episode. Note that the overall conditional volatility of

growth, mtht, does not present a major peak in coincidence with the recent financial crisis.
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Figure 2: Posterior distributions of φ and ψ when ψ is unrestricted (blue solid line) and

when ψ is restricted to 0 (red dashed line). Model with JLN macro uncertainty.

This is in line with the behavior of the squared growth rates, also reported in Figure 1, and

it is also partly due to the conditioning on mt, and its lag, in the growth equation, which

further dampens the conditional volatility of yt during the crisis period.

We now focus on what would happen if we assumed exogeneity of uncertainty, in the

sense of setting ψ = 0. The results become:

yt = 2.4689
[ 1.7293, 3.2063]︸ ︷︷ ︸

Π0

+ 0.2325
[0.1242, 0.3410 ]︸ ︷︷ ︸

Πy

yt−1 + 4.7887
[2.0953, 7.5872]︸ ︷︷ ︸

Πm

lnmt−1

+ −7.7577
[−10.3891, −5.0950]︸ ︷︷ ︸

φ

lnmt +
√
mthtε

∗
t

lnmt = 0.0443
[0.0098, 0.0809]︸ ︷︷ ︸

α

+ −0.0019
[−0.0071, −0.0032]︸ ︷︷ ︸

δy

yt−1 + 0.9345
[0.8828, 0.9844]︸ ︷︷ ︸

δm

lnmt−1

+ 0︸︷︷︸
ψ

ε∗t + ũt; σ
2
ũ = 0.0013

[0.0011, 0.0015]

lnht = −0.0591
[−0.1363, −0.0015 ]︸ ︷︷ ︸

αh

+ 0.9645
[0.9160, 1.0005]︸ ︷︷ ︸

δh

lnht−1 + η̃t; σ
2
η̃ = 0.0302

[0.0113, 0.0641 ]

Compared to the case with unrestricted ψ, the posterior of φ shifts toward more negative

values: the posterior mean goes from −6.1050 to −7.7577 (a decrease of 1.6527, more than

25%) and the 5%-95% range goes from [−9.8013, −3.1023] to [−10.3891, −5.0950]. Figure
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Figure 3: Posterior distributions of φ and ψ when ψ is unrestricted (blue solid line) and

when ψ is restricted to 0 (red dashed line). Model with VXO financial uncertainty.

2 shows the entire posterior distributions of φ when ψ is either unrestricted or set to zero.

Setting ψ = 0 leads to an over-estimate of the negative impact of uncertainty on growth.

This happens because, in the more general model with ψ 6= 0, following an uncertainty

shock there is a decrease in growth, and this in turn increases uncertainty, which further

decreases growth, increases uncertainty, and so on. If we shut down the feedback effect of

growth on uncertainty by setting ψ = 0, the overall impact effect of uncertainty on growth,

as measured by φ, must increase (in absolute value).

Note also that, since the reduced-form parameter c21 = Πm+φδm in (17) cannot change,

and lnmt and lnmt−1 are highly correlated (δm is about 0.93), to compensate for the

distortion in φ, the parameter Πm increases by roughly the same amount of the decrease

in φ. Indeed, the median of the posterior of Πm becomes much larger, increasing from

3.2571 to 4.7887 (by 1.5316), almost entirely offsetting the 1.6527 decrease in φ. This

means that the sum φ + Πm does not change much when imposing ψ = 0, and that under

this restriction the model confounds the contemporaneous (φ) and the lagged effect (Πm)

of uncertainty on growth.

Moreover, from the first equation of (17), the coeffi cient on lagged y in the equation

for y is c11 = Πy + φδy. Since the product φδy is very small, as δy is very low relative to

φ, about −0.002 versus −6.1050, the coeffi cient Πy is virtually unaffected by the exclusion

of the feedback channel. Finally, there are virtually no effects on the parameters of the

equation for lnmt when setting ψ = 0. This is not attributable to the insignificance of ψ

but rather is a consequence of the fact that ε∗t is uncorrelated with the other regressors, so
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that its omission does not introduce a distortion.

To assess the bivariate relationship between GDP growth and financial (rather than

macroeconomic) uncertainty, we now repeat the analysis using the Chicago Board Options

Exchange (CBOE) S&P 100 Volatility Index, known as VXO, instead of the JLN measure

of uncertainty, over the same sample, 1960Q3 to 2017Q2.

Figure 3 reports the entire posterior distributions of φ and ψ under the two alternative

cases ψ = 0 and ψ 6= 0 in the estimated model. Starting with the case ψ 6= 0, the distribution

of φ is centered around zero, which implies that financial uncertainty has virtually no effects

on growth. As we shall see this result is likely due to omitted variables since it will change

in the multivariate setting of Section 5. Setting ψ = 0 shifts to the left the posterior

distribution of φ, and it also reduces its variance substantially. These results show that if

financial uncertainty is treated as exogenous in this simple bivariate model, it can lead to an

overestimation of its negative effects on growth, a result found for example in Campbell, et

al. (2001), who suggested that the volatility of individual stock prices negatively co-moves

with (detrended) GDP.

4.2 A Monte Carlo evaluation

The empirical results we have obtained with bivariate specifications lead us to conjecture

that there can be an omitted variable bias in φ when ψ is set at zero by mistake, though

not a large one, but to confirm this statement we need a Monte Carlo evaluation where the

true model is known. The Monte Carlo is also useful to evaluate the performance of the

estimation algorithm.

We use the following data generating process (DGP) based on the model (6)-(8):

yt = 0.1︸︷︷︸
Π0

+ 0.25︸︷︷︸
Πy

yt−1−0.2︸︷︷︸
Πm

lnmt−1−0.25︸ ︷︷ ︸
φ

lnmt +m0.5
t h0.5

t ε∗t

lnmt = 0︸︷︷︸
α

+ 0.1︸︷︷︸
δy

yt−1 + 0.95︸︷︷︸
δm

lnmt−1−0.55︸ ︷︷ ︸
ψ

ε∗t + ũt; σ
2
ũ = 0.05

lnht = 0︸︷︷︸
αh

+ 0.999︸ ︷︷ ︸
δh

lnht−1 + η̃t; σ
2
η̃ = 0.005

With this DGP, we simulate 1000 time series for yt, mt, and ht with t = 1, ..., 250. We then

estimate the model in (6)-(8) with MCMC methods with 60,000 draws for each set of time

series, and compute the average across replications of the mean of the posterior distribution

for each parameter, together with the RMSE across replications.
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Figure 4: Monte Carlo results. Empirical distribution of the point estimates of the model

coeffi cients across the Monte Carlo replications. Estimated model with ψ 6= 0 and ψ = 0.

DGP with ψ 6= 0.

Table 1. Monte Carlo results: effects of imposing ψ = 0 when in the DGP ψ 6= 0.

Π0 Πy Πm φ ψ α δm δy σ2
ũ αh δh σ2

η̃

DGP 0.1 0.25 -0.2 -0.25 -0.55 0 0.95 0.1 0.05 0 0.999 0.005

A: Unrestricted ψ

Mean 0.098 0.244 -0.195 -0.253 -0.545 -0.001 0.938 0.100 0.050 -0.003 0.932 0.020

RMSE 0.066 0.053 0.097 0.077 0.028 0.040 0.045 0.028 0.007 0.036 0.079 0.016

B: ψ = 0

Mean 0.007 0.320 0.766 -1.262 NaN -0.004 0.929 0.097 0.312 -0.081 0.918 0.100

RMSE 0.117 0.092 1.021 1.070 NaN 0.049 0.069 0.042 0.263 0.091 0.088 0.123
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Figure 5: Monte Carlo results. Empirical distribution of the point estimates of the model

coeffi cients across the Monte Carlo replications. Estimated model with ψ 6= 0 and ψ = 0.

DGP with ψ = 0.

Table 2. Monte Carlo results: effects of imposing ψ = 0 when in the DGP ψ = 0.

Π0 Πy Πm φ ψ α δm δy σ2
ũ αh δh σ2

η̃

DGP 0.1 0.25 -0.2 -0.25 0 0 0.95 0.1 0.05 0 0.999 0.005

A: Unrestricted ψ

Mean 0.098 0.237 -0.235 -0.249 -0.55 0.001 0.940 0.100 0.048 0.001 0.907 0.029

RMSE 0.079 0.119 0.928 0.966 0.553 0.016 0.029 0.013 0.006 0.043 0.101 0.025

B: ψ = 0

Mean 0.099 0.236 -0.246 -0.240 NaN 0.001 0.940 0.100 0.050 -0.003 0.908 0.029

RMSE 0.075 0.072 0.345 0.322 NaN 0.016 0.029 0.013 0.005 0.043 0.101 0.026
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We start by considering a Monte Carlo design in which in the true DGP, the coeffi cient

ψ is different from 0 (and specifically ψ = −0.55), and the researcher either does or does

not impose the restriction ψ = 0. The results for this MC design are shown in Table 1

and Figure 4. As is clear from panel A of Table 1, when the researcher chooses to leave the

coeffi cient ψ unrestricted, the estimated model does not suffer from misspecification, and the

resulting posterior densities are entirely in line with the true DGP. A similar conclusion can

be drawn by looking at the empirical distributions of the point estimates of the coeffi cients

across the Monte Carlo replications, which are drawn in blue in Figure 4.15 These results

also provide evidence of the effectiveness of the MCMC algorithm we use to simulate from

the joint posterior of the model (which was described in Section 3)

However, if the researcher imposes the restriction ψ = 0, the resulting posterior distribu-

tions would be markedly distorted and would fail to recover the true values of the coeffi cients

in the DGP. This can be seen in panel B of Table 1 and by an inspection of the empirical

distributions of the point estimates in red in Figure 4. It is interesting to note that such

distortions resemble the pattern we have found in the empirical application. Specifically,

the posterior mean of the distribution of φ moves from −0.253 to −1.262, while that for

Πm shifts from −0.195 to 0.766, so that the sum φ + Πm is little changed, from −0.448

to −0.496. As we have already emphasized, this is because the reduced-form parameter

c21 = Πm + φδm in (17) cannot change, and – since δm is equal to 0.95 – the parameter

Πm must increase by roughly the same amount of the decrease in φ. There are no biases

in the coeffi cients of the lnmt equation. However, the error variance of this equation (mea-

sured by σ2
ũ) becomes much larger when the restriction ψ = 0 is imposed, which is a natural

consequence of omitting the regressor ε∗t (this was not evident in the empirical application

because in that case ψ was very small). Finally, imposing ψ = 0 also has a distortionary

effect on the estimated coeffi cients of all equations, as seen from the distributions reported

in Figure 4.

Next, we consider a Monte Carlo design in which ψ = 0 in the DGP. This means that

there is no contemporaneous feedback effect of macro variables on uncertainty; that is,

uncertainty is exogenous. As before, the researcher can either impose the restriction or not.

This case resembles the case of redundant variables in the estimated model, which typically

leads to ineffi cient – but yet unbiased – estimators. This is precisely what happens, as

illustrated in Table 2 and Figure 5. In this case, both the model in panel A and that in

panel B of the table recover the correct values for the coeffi cients, but the model in panel

B attains more precise estimates, thanks to the fact that it imposes the correct restriction

ψ = 0. The more general model leads to unbiased but ineffi cient estimates of the coeffi cients

15The point estimate for a given Monte Carlo replication is defined as the posterior mean of that replication.
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of the first equation, because the steps of the sampler that draws these coeffi cients condition

on the draws of ψ, which instead should be set to 0. This pattern can also be observed in

Figure 5, where both the blue and red distributions are centered in the correct values for the

coeffi cients, but the red distributions attain a smaller variance than the blue distributions.

The coeffi cients of the second equation are not impacted, because the regressor to which ψ

is attached is orthogonal to the other regressors in this equation. Finally, there is obviously

no effect on the third equation.

Finally, we consider the effects of erroneously imposing the restriction φ = 0, namely, no

contemporaneous effects of uncertainty on yt, while in the true DGP such a restriction does

not hold. Results from this design are presented in Table 3 and Figure 6. The results in

panel A of Table 3 show that by estimating the full model one can recover the true values of

the coeffi cients.16 Instead, as shown in panel B, imposing the restriction φ = 0 distorts the

results. In particular, the contemporaneous effect of uncertainty on output (as measured

by φ) is underestimated (set at φ = 0 rather than φ = −0.25), and since the reduced-

form parameter c21 = Πm + φδm cannot change, the lagged effect Πm gets over-estimated,

by roughly −0.25. Moreover, the distortion in φ implies a distortion in ε∗t (it no longer

features zero mean), and therefore, ψ gets overestimated (in absolute value) and σ2
ũ gets

underestimated.

To conclude this section it is worth comparing the results obtained when imposing φ = 0

or ψ = 0 under the DGP in which both of these parameters are nonzero, and relate them

with identification. These are the results contained in panels B of Table 1 and Table 3 (and

the respective graphs in Figures 4 and 6). The identification problem faced by the standard

approach can be rephrased as follows. In the reduced form we have the parameter c21 =

Πm + φδm, which is uniquely identified in the likelihood. Recursive identification schemes

impose either φ = 0 or ψ = 0, which both amount to a potential omitted variable problem.

We have that:

• If ψ = 0 (uncertainty ordered first), then the estimated φ will be more negative than

it is in the DGP, and we have an overestimate of Πm. In this case the identification

scheme attributes too much of the impact variation to uncertainty and too little to

lagged uncertainty.

• If φ = 0 (uncertainty ordered last), then the estimated φ will be less negative than it

is in the DGP, and we have an underestimate of Πm. In this case the identification

scheme attributes too little of impact variation to uncertainty and too much to lagged

uncertainty.

16Note that these results coincide with those of panel A of Table 1, by construction.
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Figure 6: Monte Carlo results. Empirical distribution of the point estimates of the model

coeffi cients across the Monte Carlo replications. Estimated model with φ 6= 0 and φ = 0.

DGP with φ 6= 0.

Table 3. Monte Carlo results: effects of imposing φ = 0 when in the DGP φ 6= 0.

Π0 Πy Πm φ ψ α δm δy σ2
ũ αh δh σ2

η̃

DGP 0.1 0.25 -0.2 -0.25 -0.55 0 0.95 0.1 0.05 0 0.999 0.005

A: Unrestricted φ

Mean 0.098 0.244 -0.195 -0.253 -0.545 -0.001 0.938 0.100 0.050 -0.003 0.932 0.020

RMSE 0.066 0.053 0.097 0.077 0.028 0.040 0.045 0.028 0.007 0.036 0.079 0.016

B: φ= 0

Mean 0.157 0.238 -0.420 NaN -0.556 -0.016 0.946 0.096 0.037 0.018 0.923 0.022

RMSE 0.090 0.064 0.231 NaN 0.029 0.041 0.046 0.032 0.014 0.039 0.086 0.019
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The approach we propose in this paper solves these issues, since it allows one to estimate

a model for uncertainty and macroeconomic variables that does not put any restrictions on

either ψ or φ. The results of the Monte Carlo evaluation confirm the quality of the estimation

algorithm, highlight the importance of properly modeling the endogeneity of uncertainty,

and support the interpretation of the empirical findings about the relationship between

GDP growth and either macro or financial uncertainty. In addition, there is no tendency

to spuriously estimate a significant contemporaneous dependence of uncertainty on macro

conditions when none exists in the DGP.

5 The economic effects of (endogenous) uncertainty

We now study the relationship between macroeconomic and financial uncertainty and eco-

nomic variables. We do so using both quarterly and monthly data for the U.S. The data

are described in Section 5.1. Section 5.2 provides the results of macro uncertainty shocks.

Section 5.3 provides the results of financial uncertainty shocks. Section 5.4 provides a sum-

mary.

5.1 Data

To study the relationship between uncertainty and economic variables, we use two models,

specified at different frequencies, since both monthly and quarterly data have been used

in previous empirical analyses. We draw on commonly-used measures to capture macro-

economic uncertainty with the series of JLN, and financial uncertainty with the Chicago

Board Options Exchange (CBOE) S&P 100 Volatility Index, known as VXO. In unreported

results, we obtained similar results with the uncertainty measures of Carriero, Clark, and

Marcellino (2017).

The first model is a VAR that includes seven quarterly indicators in addition to the

uncertainty measure. We will refer to this model as the quarterly VAR. The variables

included in the model are reported in Table 4.

The seven indicators are essentially those covered in the widely used DSGE model of

Smets and Wouters (2007) and in many related analyses, such as Justiniano, Primiceri, and

Tambalotti (2011). The set of indicators is also similar to that used by JLN (in their 8

variable VAR specification) to assess the effects of uncertainty shocks (setting ψ = 0). We

use four lags and the sample covers the period 1960Q3 to 2017Q2, for a total of T = 228

observations. As mentioned, all variables are demeaned prior to estimation to reduce the

computational burden. We obtained the raw macroeconomic data from the FAME database

of the Federal Reserve Board of Governors. We obtained the JLN measure of uncertainty
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from the website of Professor Ludvigson, defining our quarterly series as the within-quarter

average of the source monthly series. To obtain the long series on the VXO measure, we

followed the precedents of other studies in the literature and spliced realized volatility of

S&P 500 returns (monthly standard deviations of daily returns) for 1960-1985 to the monthly

VXO series for 1986-2017 from the St. Louis Fed’s FRED database. Our quarterly VXO

series uses within-quarter averages of the monthly series.

Table 4: Variables in the baseline quarterly model

GDP (100*∆ ln) GDP

Consumption (100*∆ ln) CONS

Private Investment (100*∆ ln) INVES

Hours (100*∆ ln) HOURS

Compensation of employees (100*∆ ln) COMPE

GDP deflator (100*∆ ln) PRICE

Federal funds rate (∆) FFR

JLN or VXO uncertainty uncertainty

Table 5: Variables in the monthly model

All employees: total nonfarm (100*∆ ln) PAYEM

Industrial production index (100*∆ ln) IP

Weekly hours: goods-producing (100*∆ ln) HOURS

Real consumer spending (100*∆ ln) SPEND

Orders (index/100) ORDER

Earnings (100*∆ ln) EARNI

PCE price index (100*∆ ln) PCEPI

Federal funds rate (∆) FFR

S&P 500 (∆ ln) S&P

JLN or VXO uncertainty uncertainty

The second model is a monthly VAR that includes nine monthly indicators in addition

to the uncertainty measure. We will refer to this model as the monthly VAR. The variables

included in the model are reported in Table 5.

This specification of variables is very similar to those considered in JLN and Bloom

(2009), and contains many of the same variables in the VAR of Caldara, et al. (2016).17

We use four lags and estimate over the sample 1961m7 to 2016m11, for a total of T = 659

17We obtained very similar results with a model augmented to include a credit spread.
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observations. As with the quarterly VAR, all variables are demeaned prior to estimation

to reduce the computational burden. We obtained the monthly macroeconomic data from

the MD-FRED database developed in McCracken and Ng (2016) and made available on the

website of the Federal Reserve Bank of St. Louis.

Although the model is estimated with data transformed as indicated in Table 4 and

Table 5, for comparability to previous studies, the impulse responses are cumulated and

transformed back to the units typical in the literature. Accordingly, the units of the reported

impulse responses are percentage point changes (based on 100 times log levels for variables

in logs or rates for variables not in log terms). The fact that the model is estimated using

some variables differenced for stationarity (e.g., GDP, consumption, and investment) implies

that, for some of these variables, the long-run effects of transitory shocks do not die out.

5.2 Macroeconomic uncertainty shocks

Figure 7 shows the posterior distributions of the standard effect coeffi cients φ and the

feedback coeffi cients ψ under both the quarterly VAR (upper panels) and the monthly VAR

(lower panels).

Focusing first on the standard effect coeffi cients φ, which are on the left-hand side panels

of Figure 7, they appear to be largely in line with previous findings about the effects of un-

certainty on macroeconomic variables. In particular uncertainty has a large depressive effect

on investment, output, consumption, hours, employment, industrial production, consumer

spending, and earnings. A shock to uncertainty also leads to a loosening of the FFR, and

an increase in inflation as measured by wages, the GDP deflator, and the PCE price index.

These results confirm those of several other studies such as Baker, Bloom, and Davis (2016),

Bloom (2009), Gilchrist, Sim, and Zakrajsek (2014), Jurado, Ludvigson, and Ng (2015), Jo

and Sekkel (2017), and Carriero, Clark, and Marcellino (2017). They are also in line with

the international evidence in Carriero, Clark, and Marcellino (2018a).

Turning our focus to the feedback coeffi cients ψ, which are on the right-hand side of

Figure 7, it is striking that these coeffi cients do not appear to be statistically different from

0. This is especially true for the quarterly dataset, while some slight departure from 0

can be seen in the monthly dataset. The sign of the posterior means in this latter case

is in line with what macroeconomic reasoning would expect, for example variables such

as hours and industrial production tend to reduce uncertainty, whereas the FFR increases

macroeconomic uncertainty. However, even in the monthly dataset, the overall picture is

clearly one in which the contemporaneous effect of macroeconomic variables on uncertainty

is feeble, if not entirely absent. It is also worth mentioning that these results are somewhat

different from those reported in Figure 2. We attribute this difference to the fact that the
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Figure 7: Posterior distribution of the φ and ψ parameters. VARs with macro (JLN)

uncertainty. Quarterly VAR in the upper panels, monthly VAR in the lower panels.

simple bivariate model omits several relevant variables, which leads to distortions in the

estimated effects of uncertainty on output.

We now consider the consequences that shutting down the feedback coeffi cients ψ (which

capture the immediate response of uncertainty to economic conditions) has on the coeffi cients

φ (which capture the immediate response of economic conditions to uncertainty) and on the

impulse responses. This amounts to ordering uncertainty first in a VAR identified through

a recursive Cholesky scheme. In light of both the results depicted in Figure 7 for the

coeffi cients ψ and the results we obtained with the MC design in which ψ = 0 in the DGP,

we expect the distortion arising from shutting down the feedback effect to be small.

Figure 8 shows the time series path of the (posterior median of the) impulse responses

to a macroeconomic uncertainty shock. Graphs in the first two rows provide results for the

quarterly dataset, while graphs in the last two rows provide results for the monthly dataset.
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Figure 8: Impulse responses to a macro uncertainty shock with ψ = 0 and ψ 6= 0. Rows 1

and 2: quarterly dataset. Rows 3 and 4: monthly dataset

In the figure, the unrestricted model is denoted by the solid blue lines, while the model

with the feedback effects restricted to zero (ψ = 0) is denoted by red dashed lines. It turns

out that the differences between the two models are very small. An exception seems to be

the path of quarterly prices, but it is important to note that this effect is estimated very

imprecisely in both models, and that the resulting error bands around these responses (not

shown for chart readability) are so wide that any difference between the posterior means is

largely insignificant.

The fact that the differences in Figure 8 are barely noticeable, especially for the monthly

dataset, might be due to a scaling effect, since the charts plot the time series evolution of the

median, or might conceal differences in higher moments, rather than the posterior median.

In order to check that this is not the case, Figure 14 and Figure 15 (in the Figure Appendix)

display the entire posterior distribution of the impulse responses at some selected horizons.

These figures show that setting ψ = 0 has only a slight effect on impact and in the very

short run. After that, the differences between the two models quickly die out, and the
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Figure 9: Impulse responses to a macro uncertainty shock with φ = 0 and φ 6= 0. Rows 1

and 2: quarterly dataset. Rows 3 and 4: monthly dataset

distributions of the impulse responses become virtually identical.

It is interesting to also consider the case of shutting down the standard uncertainty

effect (the contemporaneous effect of uncertainty on economic conditions), i.e., to set φ = 0.

This amounts to ordering uncertainty last in a VAR identified through a recursive Cholesky

scheme. Since – as seen in Figure 7 – the coeffi cients φ are broadly different from zero,

and considering also the results we obtained with the MC design in which the researcher

erroneously imposes φ = 0, we expect the effect from shutting down this channel to be large.

Figure 9 shows the time series path of the (posterior median of the) impulse responses to

a macroeconomic uncertainty shock, for the quarterly and monthly datasets, while Figure

16 and Figure 17 (in the Figure Appendix) display the entire posterior distribution of the

impulse responses at some selected horizons. Clearly, shutting down the standard channel

produces largely different impulse responses, which do not completely die out even at the

12-quarter- (or 36-month-) ahead horizons. These results, combined with the Monte Carlo

evidence we discussed above (in particular, the design in which the researcher erroneously
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Figure 10: Posterior distribution of the φ and ψ parameters. VARs with financial (VXO)

uncertainty. Quarterly VAR in the upper panels, monthly VAR in the lower panels.

imposes φ = 0), imply that setting φ = 0 – or equivalently ordering macroeconomic

uncertainty last in a recursive VAR – would very likely lead to distorted estimation of the

effects of macro uncertainty shocks on macroeconomic variables, and a confusion between

its contemporaneous and lagged effects.

5.3 Financial uncertainty shocks

We now focus on the effects of financial uncertainty shocks. Figure 10 shows the posterior

distributions of the standard effect coeffi cients φ (contemporaneous response of economic

activity to uncertainty) and the feedback coeffi cients ψ (contemporaneous response of uncer-

tainty to economic activity) under both the quarterly VAR (upper panels) and the monthly

VAR (lower panels).

Focusing first on the standard effect coeffi cients φ, which are on the left-hand side panels
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Figure 11: Impulse responses to a financial uncertainty shock with ψ = 0 and ψ 6= 0. Rows

1 and 2: quarterly dataset. Rows 3 and 4: monthly dataset

of Figure 10, they appear to be largely in line with previous findings about the effects

of financial uncertainty on macroeconomic variables. In particular, financial uncertainty

has a large depressive effect on investment, output, consumption, hours, employment, and

orders. Differently from what happened for macroeconomic uncertainty shocks (see Figure

7), financial uncertainty shocks do not seem to have a significant effect on the FFR, nor on

prices as measured by wages, the GDP deflator, and the PCE price index. Instead, financial

uncertainty shocks have a strong negative effect on the S&P500 index, while macroeconomic

uncertainty shocks do not.

Turning to the feedback effect coeffi cients ψ, it is interesting to note that in the case of

financial uncertainty there is more evidence that these coeffi cients are nonzero, i.e., that fi-

nancial uncertainty might be endogenous. This pattern is particularly evident in the monthly

dataset, with variables such as consumer spending, inflation, industrial production, and the

FFR all featuring negative feedback coeffi cients, which shows that an increase in these indi-

cators leads to a reduction in financial uncertainty. Some other variables show significantly
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Figure 12: Impulse responses to a financial uncertainty shock with φ = 0 and φ 6= 0. Rows

1 and 2: quarterly dataset. Rows 3 and 4: monthly dataset

positive ψ coeffi cients; in particular, increases in employment and the S&P index seem to

increase uncertainty. The latter effect could be related to a risk-return relationship, but the

former is somewhat less clear, perhaps linked to worries about a possible overheating of the

economy and a monetary policy response. It is worth noting that the effect of the S&P500

on financial uncertainty is opposite to that on macro uncertainty. Also, nearly all of the

probability mass of the posterior distribution of the parameter associated with the S&P500

is on positive values, which clearly suggests endogeneity of financial uncertainty, in contrast

with the findings of LMN, who find less endogeneity in financial uncertainty with respect

to macro uncertainty.18

Since for financial uncertainty we do find some evidence of endogeneity (i.e., ψ 6= 0) in

the monthly dataset, we do expect (also in light of the Monte Carlo exercise) to find that

imposing ψ = 0 (i.e., ordering uncertainty first in a recursive VAR) would cause some dis-

18We have also added the S&P500 to the quarterly VAR model with VXO uncertainty. The posterior

distribution of the ψ parameter associated with the S&P500 in this case is centered around zero, and there

are virtually no differences in the other posterior densities.

36



tortions in the estimated coeffi cients φ (the contemporaneous response of economic activity

to uncertainty) and therefore in the impulse responses.

Figure 11 shows the time series path of the (posterior median of the) impulse responses

to a financial uncertainty shock. As before, the two top rows of charts provide results for the

quarterly dataset, while the two bottom rows provide results for the monthly dataset. In the

figure, the unrestricted model is denoted by the solid blue lines, while the model with the

feedback effects restricted to zero (ψ = 0) is denoted by red dashed lines. As is clear from

the figure, there are indeed some differences between the two models, particularly for those

variables for which the coeffi cients ψ are far from zero, such as the FFR and the S&P index.

Figure 18 and Figure 19 (in the Figure Appendix) report the entire posterior distribution

of the impulse responses at some selected horizons for, respectively, quarterly and monthly

data. With monthly data, shutting down the feedback effect by setting ψ = 0 leads to

a noticeable difference in the posterior distribution of the impulse responses, a difference

that for some variables (employees and S&P500) lasts up to 12 periods (i.e., one year).

These results indicate that financial uncertainty can at least in part arise as an endogenous

response to some macroeconomic conditions, and that overlooking this channel would lead

to a distorted estimate of the effects of financial uncertainty shocks on the economy.

Finally, we have repeated the exercise of shutting down the standard channel of trans-

mission, i.e. setting the φ coeffi cients to zero. This amounts to ordering financial uncertainty

last in a VAR identified through a recursive Cholesky scheme. Since – as seen in Figure 10

– the coeffi cients φ are broadly different from zero, we find that shutting down this channel

has a large distortionary effect on the impulse responses, which does not completely die out

even at the 12-quarter- (or 36-month-) ahead horizons. Therefore, just as happened with

macroeconomic uncertainty, setting φ = 0 – or equivalently ordering financial uncertainty

last in a recursive VAR – would very likely lead to a distorted estimate of the effects of

financial uncertainty shocks on macroeconomic variables, and a confusion between its con-

temporaneous and lagged effects. This is indeed the case, as shown in Figure 12 above, and

Figure 20 and Figure 21 in the Figure Appendix.

5.4 Summary

Our empirical results point to the conclusion that there is only mild evidence for the endo-

geneity of uncertainty, and this evidence is limited to financial uncertainty and, mainly, to

the monthly dataset. When looking at macro uncertainty, we found strong evidence that

the feedback coeffi cients ψ are likely close to zero, which means that imposing exogenous

macroeconomic uncertainty does not do much harm. We found that some ψ coeffi cients

are nonzero in the case of financial uncertainty, which points toward the conclusion that
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financial uncertainty seems endogenous to some extent.

Our modeling approach does not put any restrictions on either ψ or φ. Still, if a re-

searcher wanted to use a recursive VAR, our results provide two important suggestions for

identification. First, ordering macroeconomic uncertainty first is likely to be harmless, not

necessarily so for financial uncertainty. Second, ordering either type of uncertainty last is

likely to produce misleading results. These findings imply that, to reliably assess financial

uncertainty and its macroeconomic effects, it is necessary to depart from a simple recursive

ordering and use a more sophisticated approach to identification, such as the one we develop.

6 Conclusions

Uncertainty is a key variable to understanding economic dynamics, rather overlooked in

the academic literature but attracting growing interest recently, partly following the Great

Recession. Several theoretical and empirical papers are by now available on the effects

of uncertainty on key economic variables. A general finding from the empirical studies is

that uncertainty leads to a deterioration in economic conditions. However, this outcome

could be at least partly due to an endogeneity problem. If economic conditions have a

contemporaneous effect on uncertainty, ruling it out a priori could result in overestimation

of the effects of uncertainty.

In this paper we have developed an econometric model where current and past values

of uncertainty affect the current levels of economic variables, and uncertainty is in turn

affected by them also contemporaneously. We achieve identification by means of a novel

procedure that relies on a particular heteroskedasticity structure, which allows the time-

varying conditional variances of the variables to be driven by an uncertainty measure plus

an idiosyncratic component. We provide the relevant conditional posteriors for the states

and coeffi cients of the model, which can be used to estimate the model using a Gibbs

sampler.

Our results show that while macroeconomic uncertainty can be broadly considered ex-

ogenous, financial uncertainty can at least in part arise as an endogenous response to some

macroeconomic developments, and that overlooking this channel would lead to a distorted

estimate of the effects of financial uncertainty shocks on the economy.
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7 Appendices

7.1 Details on identification

Starting from the model in (1) and (2), and following the notation in, e.g., Granziera, Moon,

and Schorfheide (2017) define A−1Λ0.5
t = Σtr,t, which is a lower triangular Cholesky factor

of Σt = A−1ΛtA
−1′. We also remove the intercepts, since they are not needed to discuss

identification. The model becomes:

yt = Πy(L)yt−1 + Πm(L) lnmt−1 + φ lnmt + Σtr,tε
∗
t (39)

lnmt = δy(L)yt−1 + δm(L) lnmt−1 + ψε∗t + ũt. (40)

Solving (39) for ε∗t = Σ−1
tr,t(yt−Πy(L)yt−1−Πm(L) lnmt−1−φ lnmt) and feeding it into (40)

gives:

yt = Πy(L)yt−1 + Πm(L) lnmt−1 + φ lnmt + Σtr,tε
∗
t

lnmt = δy(L)yt−1 + δm(L) lnmt−1 + ψΣ−1
tr,t(yt −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt) + ũt,

or, In − φ
n×1

−ψΣ−1
tr,t

1×n
1 + ψΣ−1

tr,t
1×1

φ

( yt

lnmt

)
=

 Πy Πm
n×1

δy − ψΣ−1
tr,tΠy

1×n
δm − ψΣ−1

tr,tΠm
1×1

( yt−1

lnmt−1

)

+

[
Σtr,t 0

0 1

](
ε∗t

ũt

)
, (41)

which represents the structural form.

The inverse of the matrix appearing in the left-hand side of (41) can be obtained by

inverting the partitioned matrix: In − φ
n×1

−ψΣ−1
tr,t

1×n
κ−1


−1

=

[
(In − φκψΣ−1

tr,t)
−1 (In − φκψΣ−1

tr,t)
−1φκ

(κ−1 − ψΣ−1
tr,tInφ)−1ψΣ−1

tr,tIn (κ−1 − ψΣ−1
tr,tInφ)−1

]

=

[
B Bφκ

ψΣ−1
tr,t 1

]
. (42)

where we defined

B
n×n

= (In − φκψΣ−1
tr,t)
−1, (43)

κ
1×1

= (1 + ψΣ−1
tr,tφ)−1. (44)
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The reduced form of the structural VAR in (41) can be obtained by pre-multiplying (41) by

the inverse matrix in (42):(
yt

lnmt

)
=

[
C11 C21

C12 C22

](
yt−1

lnmt−1

)
+

(
εt

ut

)
;V ar

(
εt

ut

)
=

[
Σ11t Σ12t

Σ12t Σ22t

]
(45)

with:[
C11 C21

C12 C22

]
=

[
B Bφκ

ψΣ−1
tr,t 1

] Πy Πm
n×1

δy − ψΣ−1
tr,tΠy

1×n
δm − ψΣ−1

tr,tΠm
1×1


=

[
BΠy +Bκφδy −BκφψΣ−1

tr,tΠy BΠm +Bκφδm −BκφψΣ−1
tr,tΠm

δy δm

]
,

[
Σ11t Σ12t

Σ12t Σ22t

]
=

[
B Bφκ

ψΣ−1
tr,t 1

][
Σtr,tΣ

′
tr,t 0

0 σ2
ũ

][
B′ Σ−1

tr,tψ
′

κφ′B′ 1

]

=

[
BΣtB

′ + κ2σ2
ũBφφ

′B′ BΣtr,tψ
′ + κσ2

ũBφ

ψ′Σ′tr,tB
′ + κσ2

ũφ
′B′ σ2

ũ + ψψ′

]
.

We can simplify some of the elements of the matrices above as follows:

C11 − κBφδy = B(I − κφψΣ−1
tr,t)Πy = Πy,

C21 − κBφδm = B(I − κφψΣ−1
tr,t)Πm = Πm

where we used (43). Hence, it is:

C11 = Πy + κBφδy,

C21 = Πm + κBφδm,

C12 = δy,

C22 = δm,

Σ11t = BΣtr,tΣ
′
tr,tB

′ + κ2σ2
ũBφφ

′B′,

Σ12t = BΣtr,tψ
′ + κσ2

ũBφ,

Σ22 = σ2
ũ + ψ′ψ.

The system above is the one reported in (20). To obtain the system for the bivariate

case it is suffi cient to set n = 1 and Σtr,t =
√
mtht (a scalar). This implies19 κB = 1, and

straightforward algebra leads to the system in (17).

19Because B =
(
I1 − κφψΣ−1

tr,t

)−1
=
(
1− (1 + φΣ−1

tr,tψ)−1φψΣ−1
tr,t

)−1
=

(
1+φΣ−1

tr,tψ−φψΣ−1
tr,t

1+φΣ−1
tr,tψ

)−1

= 1 +

φψ√
mtht

= κ−1
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7.2 Derivation of the joint density of data and states

The starting point is the computation of the joint density of the data and the states p(yt,mt, ht|θ),
which can be obtained via the change of variable theorem.

We start by re-writing the shocks as follows:

ε∗t = m−0.5
t H−0.5

t A(yt −Π0 −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt), (46)

ũt = lnmt − α− δy(L)yt−1 − δm(L) lnmt−1 − ψε∗t , (47)

η̃jt = lnhjt − αj − δj lnhjt−1, j = 1, ..., n, (48)

with:

rt =


ε∗t

ũt

η̃t

 ∼ N



0

0

0

 ,

In 0 0

0 σ2
ũ 0

0 0 Ση̃


 (49)

where η̃t = (η̃1t, ..., η̃nt)
′
and Ση̃ is a diagonal matrix with elements σ2

η̃j
, j = 1, ..., n.20 The

vector rt is therefore a vector of independent Gaussian (structural) shocks.

Furthermore, we define:

et = H0.5
t ε∗t (50)

= m−0.5
t A(yt −Π0 −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt)

ut = ψε∗t + ũt

Note that et is observable conditioning on mt and yt (plus the coeffi cients in θ1), while ut is

observable conditioning on mt and yt and ε∗t (plus the coeffi cients in θ2).

Using the shocks (46)-(48) and:

JNt =


∂ε∗t /∂yt ∂ε∗t /∂mt ∂ε∗t /∂ht

∂ũt/∂yt ∂ũt/∂mt ∂ũt/∂ht

∂η̃t/∂yt ∂η̃t/∂mt ∂η̃t/∂ht

 .
we can use the change of variable theorem to get:

p(yt,mt, ht|θ) = |JNt| × pG(ε∗t , ũt, η̃t). (51)

Since ∂η̃t/∂yt = ∂η̃t/∂mt = 0 and ∂η̃t/∂ht = H−1
t , it is:

|JNt| = |H−1
t |
∣∣∣∣∣
(
∂ε∗t /∂yt ∂ε∗t /∂mt

∂ũt/∂yt ∂ũt/∂mt

)∣∣∣∣∣ ,
20The assumption that the shocks to ht are independent can be easily removed.
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with

∂ε∗t /∂yt = m−0.5
t H−0.5

t A, (52)

∂ũt/∂yt = −ψ∂ε∗t /∂yt, (53)

∂ũt/∂mt = m−1
t − ψ∂ε∗t /∂mt. (54)

Hence, the determinant is:

|JNt| = |H−1
t ||∂ε∗t /∂yt| ∗ |∂ũt/∂mt − ∂ũt/∂yt ∗ (∂ε∗t /∂yt)

−1 ∗ ∂ε∗t /∂mt| =

= |H−1
t ||∂ε∗t /∂yt| ∗ |∂ũt/∂mt + ψ∂ε∗t /∂yt ∗ (∂ε∗t /∂yt)

−1 ∗ ∂ε∗t /∂mt| =

= |H−1
t ||∂ε∗t /∂yt| ∗ |m−1

t − ψ∂ε∗t /∂mt + ψ ∗ ∂ε∗t /∂mt| =

= |H−1
t ||∂ε∗t /∂yt| ∗ |m−1

t | = m−0.5n
t Πn

j=1h
−1.5
jt |A| ∗m

−1
t =

= m−1−0.5n
t Πn

j=1h
−1.5
jt .

Therefore,

p(yt,mt, ht|θ) = m−1−0.5n
t Πn

j=1h
−1.5
jt × pG(ε∗t , ũt, η̃t)

= m−1−0.5n
t Πn

j=1h
−1.5
jt pG(ε∗t )︸ ︷︷ ︸

eq. (1)

× pG(ũt)︸ ︷︷ ︸
eq. (2)

× pG(η̃t)︸ ︷︷ ︸
eq. (4)

, (55)

where it is clear which pieces are coming from equations (1)-(4).

7.3 Derivation of the conditional posterior of the states

In this subsection we derive the expression for the conditional posterior of the states in

equation (26). To do so we consider the data density (55) for the generic volatility of

variable j at time t (i.e. hjt) and recognize that i) since mutual independence of the shocks

ensures that pG(ε∗t ) = Πn
j=1pG(ε∗jt) and pG(η̃t)) = Πn

j=1pG(η̃jt)), all the terms not involving

variable j can be subsumed in the integrating constant; ii) due to the Markov property

featured by hjt, all the terms involving time periods beyond t− 1 or t+ 1 can be ignored.21

This gives:

p(hjt|hjt−1, hjt+1, θ,y1:T ,m1:T ,h6=j1:T ) ∝ h−1.5
jt pG(ε∗jt)× pG(ũt)× pG(η̃jt) (56)

= h−1.5
jt exp

(
−ε∗2jt − ε∗2jt+1

2

)
(57)

× exp

(−ũ2
t − ũ2

t+1

2σ2
ũ

)
(58)

× exp

(
−η̃2

jt − η̃2
jt+1

2σ2
η̃

)
, (59)

21These initial derivation steps follow the approach of Jacquier, Polson, and Rossi (2004). However, as we

stressed in Section 2, our model is more general than theirs.
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where we also subsumed m−1−0.5n
t and all of the terms h−1.5

it with i 6= j in the integrat-

ing constant. Furthermore, the terms ε∗2jt+1 and ũ
2
t+1 are also redundant, while the term

exp

(
−η̃2

jt−η̃2
jt+1

2σ2
η̃

)
will be used in the usual way as a proposal kernel. The term exp

(
−ũ2

t

2σ2
ũ

)
can be written as:

exp

(
−ũ2

t

2σ2
ũ

)
= exp

(
−(ut − ψε∗t )2

2σ2
ũ

)
= exp

(
−u2

t + 2utψε
∗
t − ε∗′t ψ′ψε∗t

2σ2
ũ

)
,

and, as ut is observed under the conditioning set, this becomes

exp

(
−ũ2

t

2σ2
ũ

)
∝ exp

(
2utψε

∗
t − ε∗′t ψ′ψε∗t
2σ2

ũ

)
, (60)

where exp(utψε
∗
t = utψ1ε

∗
1t + utψ2ε

∗
2t + ...+ utψnε

∗
nt) ∝ exp(utψjε

∗
jt). Also, since:

(ψ1ε
∗
1t + ψ2ε

∗
2t + ...+ ψnε

∗
nt)× (ψ1ε

∗
1t + ψ2ε

∗
2t + ...+ ψnε

∗
nt)

= ψ1ε
∗
1t × (ψ1ε

∗
1t + ψ2ε

∗
2t + ...+ ψnε

∗
nt)

+ψ2ε
∗
2t × (ψ1ε

∗
1t + ψ2ε

∗
2t + ...+ ψnε

∗
nt)

...

+ψjε
∗
jt × (ψ1ε

∗
1t + ψ2ε

∗
2t + ...+ ψnε

∗
nt)

...

+ψnε
∗
nt × (ψ1ε

∗
1t + ψ2ε

∗
2t + ...+ ψnε

∗
nt),

we have that for a given equation j and conditioning on the remaining equations exp(ε∗′t ψ
′ψε∗t ) ∝

exp(ε∗2jtψ
2
j + 2ψjε

∗
jt(ψ1ε

∗
1t + ...+ ψj−1ε

∗
j−1t + ψj+1ε

∗
j+1t + ...+ ψnε

∗
nt)). This leads to:

exp

(
−ũ2

t

2σ2
ũ

)
∝ exp

(
2utψjε

∗
jt − (ε∗2jtψ

2
j + 2ε∗jtψjψ 6=jε

∗
6=jt)

2σ2
ũ

)
(61)

= exp

(
−
e2
jtψ

2
j

2σ2
ũhjt

+
ejtψj√
hjtσ2

ũ

[ut − ψ 6=jε∗6=jt]
)
, (62)

where ψj is the j−th element of the vector ψ and ψ 6=j is the vector obtained by removing
the element ψj from ψ. Using ε∗jt = h−0.5

jt ejt gives:

exp

(
−
ε∗2jt
2
− ũ2

t

2σ2
ũ

)
∝ exp

(
−
e2
jt

2hjt
−

e2
jtψ

2
j

2σ2
ũhjt

+
ejtψj√
hjtσ2

ũ

[ut − ψ 6=jε∗6=jt]
)
, (63)

and:

p(hjt|hjt−1, hjt+1, θ,y1:T ,m1:T ,h 6=j1:T )

∝ h−0.5
jt exp

(
−
e2
jt

2hjt

[
1 +

ψ2
j

σ2
ũ

]
+

ejt√
hjt

ψj
σ2
ũ

[ut − ψ 6=jε∗6=jt]
)
× h−1

jt exp

−
(

lnh2
jt − µjt

)2

σ2
η̃

 ,

which is the conditional posterior of the states appearing in (26).
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7.4 Mixing and convergence diagnostics for the multivariate model

In this section we evaluate the convergence and mixing properties of the MCMC sampler.

Figure 13 reports the potential scale reduction factors and ineffi ciency factors for all of the

coeffi cients in the model for the monthly dataset with macro uncertainty (results are very

similar for all the other specifications). The results are organized in groups, so that results

for the coeffi cients in the yt equations (θ1) are reported in the plots in the first column on

the left-hand side, results for the coeffi cients in the uncertainty equation (θ2) are reported in

the plots in the central column, and results for the coeffi cients of the idiosyncratic volatilities

processes (θ3) are reported in the plots in the last column, on the right-hand side.
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Figure 13: Potential scale reduction factors and ineffi ciency factors for the simulated draws

of the model coeffi cients.
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8 Figure Appendix

This Appendix contains the simulated distributions of the impulse response functions at

selected forecast horizons (h=0, 1, 4, and 12 quarters ahead for the quarterly model and

h=0,3,12,36 for the monthly model), for the following cases:

• Figure 14: Macro uncertainty shock, quarterly data, effect of imposing ψ = 0

• Figure 15: Macro uncertainty shock, monthly data, effect of imposing ψ = 0

• Figure 16: Macro uncertainty shock, quarterly data, effect of imposing φ = 0

• Figure 17: Macro uncertainty shock, monthly data, effect of imposing φ = 0

• Figure 18: Financial uncertainty shock, quarterly data, effect of imposing ψ = 0

• Figure 19: Financial uncertainty shock, monthly data, effect of imposing ψ = 0

• Figure 20: Financial uncertainty shock, quarterly data, effect of imposing φ = 0

• Figure 21: Financial uncertainty shock, monthly data, effect of imposing φ = 0
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Figure 14: Macro uncertainty shock, quarterly data. Distribution of impulse responses at

selected horizons. Blue solid line denotes the case ψ 6= 0, red dashed line denotes the case

ψ = 0.
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Figure 15: Macro uncertainty shock, monthly data. Distribution of impulse responses at

selected horizons. Blue solid line denotes the case ψ 6= 0, red dashed line denotes the case

ψ = 0.
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Figure 16: Macro uncertainty shock, quarterly data. Distribution of impulse responses at

selected horizons. Blue solid line denotes the case φ 6= 0, red dashed line denotes the case

φ = 0.
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Figure 17: Macro uncertainty shock, monthly data. Distribution of impulse responses at

selected horizons. Blue solid line denotes the case φ 6= 0, red dashed line denotes the case

φ = 0.
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Figure 18: Financial uncertainty shock, quarterly data. Distribution of impulse responses

at selected horizons. Blue solid line denotes the case ψ 6= 0, red dashed line denotes the

case ψ = 0.
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Figure 19: Financial uncertainty shock, monthly data. Distribution of impulse responses at

selected horizons. Blue solid line denotes the case ψ 6= 0, red dashed line denotes the case

ψ = 0.
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Figure 20: Financial uncertainty shock, quarterly data. Distribution of impulse responses

at selected horizons. Blue solid line denotes the case φ 6= 0, red dashed line denotes the case

φ = 0.
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Figure 21: Financial uncertainty shock, monthly data. Distribution of impulse responses at

selected horizons. Blue solid line denotes the case φ 6= 0, red dashed line denotes the case

φ = 0.
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