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1 Introduction

Since Sims (1980), estimating the dynamic effects of structural shocks in vector autoregres-
sions (VARs) has been important for research in macroeconomics. In recent contributions,
Stock and Watson (2008, 2012), Montiel Olea, Stock, and Watson (2012), and Mertens
and Ravn (2013) have developed a method for estimating structural vector autoregressions
(SVARs) that uses proxy variables. These variables are external from the VAR, and they act
as proxies for the structural shocks of interest with the assumptions that they are correlated
with structural shocks of interest but uncorrelated with the other structural shocks.1

This proxy SVAR approach has proven to be very useful. Mertens and Ravn (2013) use
it to merge the SVAR literature on tax shocks (Blanchard and Perotti, 2002; Mountford and
Uhlig, 2009) with the narrative approach of Romer and Romer (2010), Gertler and Karadi
(2015) and Lunsford (2016) use it to study the effects monetary policy shocks, Carriero et al.
(2015) use it to study the effects of uncertainty shocks, and Stock and Watson (2012) use it
to study the effects of a large number of economic shocks, including oil shocks, productivity
shocks, uncertainty shocks, and financial shocks. In addition, Mumtaz, Pinter, and Theodor-
idis (2015) show that it matches the effects of credit supply shocks from a dynamic stochastic
general equilibrium model better than a Cholesky decomposition, and Drautzburg (2015)
uses it to estimate a Bayesian VAR and a dynamic stochastic general equilibrium model.
Mertens and Ravn (2014) show that it can reconcile the differences between structural VAR
and narrative estimates of tax multipliers; however, Kliem and Kriwoluzky (2013) argue that
it is not able to reconcile structural VAR and narrative estimates of monetary policy shocks.
Finally, this proxy SVAR approach has been included as a standard method for identifying
macroeconomic shocks in a recent handbook chapter (Ramey, 2016).

Despite the above research, inference for proxy SVARs has received little attention. To
fill this gap in the literature, we derive limiting results for estimation in proxy SVARs, study
the applicability of residual-based wild and moving block bootstrap (MBB) algorithms, and
provide asymptotic bootstrap theory.

To produce the confidence intervals for their structural impulse response functions (IRFs),
Mertens and Ravn (2013) (MR throughout the paper) use a recursive-design wild bootstrap
on the VAR residuals, and they advertise three appealing features of this method. First,
Gonçalves and Kilian (2004) show that this bootstrap design is robust against conditional
heteroskedasticity in the univariate case. Second, it accounts for uncertainty in estimating
the effects of structural shocks with proxy variables. Third, because MR’s narrative proxy
variables have many observations that are censored to zero, a bootstrap based on independent
and identically distributed (iid) re-sampling would have a positive probability of drawing all
zeros for a series of bootstrapped proxy variables. However, the wild bootstrap does not
allow this event. Because of these benefits, MR set the precedent for producing confidence

1We follow the terminology of Mertens and Ravn (2013, 2014) by referring to the external variables as
proxy variables. Because the covariance assumptions on these variables parallels those from the instrumental
variables literature, they may also be called “external instruments.”
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intervals, and their wild bootstrap method was also used by Mertens and Ravn (2014),
Gertler and Karadi (2015), Lunsford (2015a) and Nakamura and Steinsson (2015).

In contrast to MR’s claims, the first two features of the wild bootstrap are not true
as advertised. With regard to conditional heteroskedasticity, Gonçalves and Kilian (2004)
only applies to estimators of AR coefficients, but not to the covariance matrix of the VAR
innovations. This is problematic because structural IRFs are functions of both the VAR
coefficients and the covariance matrix of the VAR innovations. Brüggemann, Jentsch, and
Trenkler (2016) show that wild bootstraps do not replicate the relevant fourth moments of
the VAR innovations even when these innovations are iid. Hence, wild bootstraps cannot be
used for inference on structural IRFs.

With regard to accounting for the uncertainty of estimating the effects of structural
shocks with proxy variables, a similar problem occurs. The wild bootstrap does not correctly
replicate the relevant moments between the proxy variables and the VAR residuals. This
is true for any distribution used to produce the iid sequence of wild bootstrap multipliers,
such as a standard normal distribution. But the Rademacher distribution, which takes the
values 1 or −1 with equal probability of one half and has become standard in the proxy SVAR
literature, is especially problematic. This is because the bootstrap multipliers effectively drop
out of the bootstrap algorithm when computing the covariance between the VAR residuals
and the proxy variables. This causes the wild bootstrap to underestimate the uncertainty
of the estimated structural shock. In a Monte Carlo simulation with a sample size of 250,
the wild bootstrap’s 68% confidence interval includes the true initial impulse response in
only 5% to 8% of the simulations, and the 95% confidence interval includes the true initial
impulse response in only 16% to 18% of simulations. Further, these coverage rates shrink as
the sample size increases, showing that the Rademacher wild bootstrap produces confidence
intervals that are generally too small.

To replace the wild bootstrap method, we proceed in two steps. First, we provide a
joint central limit theorem (CLT) for the VAR coefficients, the (unconditional) covariance
matrix of the VAR innovations, and the (unconditional) covariance matrix of the VAR in-
novations with the proxy variables under mild α-mixing conditions that cover a large class
of uncorrelated and independent innovation processes. This result extends Theorem 3.1 in
Brüggemann, Jentsch, and Trenkler (2016) to the proxy SVAR setup.

Second, we prove that a modified version of the residual-based MBB studied by Brügge-
mann, Jentsch, and Trenkler (2016) is asymptotically valid for inference on statistics, such
as structural IRFs, that are smooth functions of the VAR coefficients, the covariance ma-
trix of the VAR innovations, and the covariance of the VAR innovations with the proxy
variables. The modification that we make to Brüggemann, Jentsch, and Trenkler’s (2016)
MBB incorporates the proxy variables into the block resampling. In contrast to the wild
bootstrap, the MBB is capable of mimicking the joint fourth order dependence structure of
the VAR innovations and the proxy variables. In the same Monte Carlo simulation as the
wild bootstrap, the MBB’s 68% confidence interval includes the true initial impulse response
in 60% to 63% of the simulations, and the 95% confidence interval includes the true initial
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impulse response in 91% to 92% of simulations. Although these coverage rates are slightly
low, they improve as the sample size increases and are better than the coverage rates from
either a normal or a Rademacher wild bootstrap.

As an application, we recreate a number of MR’s IRFs with confidence intervals that are
produced with the MBB. The primary result is that the confidence intervals for all of MR’s
IRFs become much larger. With the wild bootstrap, MR find that average personal income
tax rate (APITR) and average corporate income tax rate (ACITR) cuts have statistically
significant impacts on many economic variables at 90% and 95% confidence levels. However,
many of MR’s results are no longer inferable with the MBB, even at 68% confidence levels.
Most importantly, cuts to neither the APITR nor the ACITR have statistically significant
effects on output. Consistent with this, there are also no statistically significant effects
on labor market variables nor on investment. While these results suggest that confidence
intervals from proxy SVARs have the potential to be very large, it is not always the case that
proxy SVARs yield no inferable results. For example, Lunsford (2015b) finds statistically
significant results at the 90% level with the MBB when using Fernald’s (2014) utilization-
adjusted total factor productivities as proxy variables. Hence, proxy SVARs are useful for
inferring the dynamic effects of structural shocks with the MBB.

To our knowledge, the only other paper that addresses inference in proxy SVARs is
Montiel Olea, Stock, and Watson (2016), and our paper is complementary to theirs for several
reasons. First, their confidence intervals only apply to the case where one proxy variable is
used to identify one structural shock. In contrast, the MBB can be used to produce confidence
intervals when multiple proxy variables are used to identify multiple structural shocks, as in
MR and Drautzburg (2015). Second, their confidence intervals are constructed specifically
for structural IRFs that have been normalized so that one of the VAR variables changes by
a specified amount.2 However, the MBB can be used for inference on any statistic that is a
smooth function of the VAR coefficients, the covariance matrix of the VAR innovations, and
the covariance matrix of the VAR innovations with the proxy variables. For example, the
MBB can be used for inference on forecast error variance decompositions and on IRFs from
a one standard deviation shock. Finally, Montiel Olea, Stock, and Watson (2016) develop
confidence intervals for structural IRFs that are robust when a proxy variable is weakly
correlated with the structural shock of interest in large samples, similar to the problem of
a weak instrumental variable (Staiger and Stock, 1997). While our paper only applies when
the proxy is strong, our asymptotic theory and MBB provide a foundation for inference in
proxy SVARs under mild assumptions on the innovation and proxy processes.

The rest of the paper proceeds as follows. Section 2 describes the proxy SVAR method-
ology and provides the joint CLT. Section 3 describes the bootstrap algorithms, proves the
asymptotic validity of the MBB, and evaluates the bootstrap coverage rates with Monte Carlo
simulations. Section 4 recreates MR’s results using the MBB, and Section 5 concludes.

2For example, initial government spending increases by 1% or the initial federal funds rate falls by 0.25%.
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2 Proxy Structural Vector Autoregressions

2.1 An Overview of Proxy Structural Vector Autoregressions

The proxy SVAR methodology begins with a standard SVAR setup. We observe a data
sample (y−p+1, . . . , y0, y1, . . . , yT ) of sample size T with p pre-sample values from the following
data generating process (DGP) for the K-dimensional time series yt = (y1,t, . . . , yK,t)

′,

yt = A1yt−1 + · · ·+ Apyt−p + ut, t ∈ Z, (1)

where (ut, t ∈ Z) is a K-dimensional white noise sequence. A compact representation is given
by A(L)yt = ut, where A(L) = IK − A1L − · · · − ApLp, Ap 6= 0, IK is the K-dimensional
identity matrix, and L is the lag operator such that Lyt = yt−1. We assume that the lag
order p is known and that det(A(z)) has all roots outside the unit circle so that the DGP is
a stable (invertible and causal) VAR model of order p. In addition, there is a K-dimensional
sequence of structural shocks (εt, t ∈ Z) such that E(εtε

′
t) = IK , which are related to the

VAR innovations, ut, according to
ut = Hεt, (2)

where H is an invertible K ×K matrix. Hence, we have that

E(utu
′
t) = HH ′ = Σu (3)

is positive definite.
The objective here is to identify the effects of r of the structural shocks where r < K. To

be precise, partition the structural shocks into εt = (ε
(1)′
t , ε

(2)′
t )′, where ε

(1)
t is the r-dimensional

vector that contains the structural shocks of interest and ε
(2)
t is the (K−r)-dimensional vector

of other structural shocks. Further, we partition H into H = [H(1), H(2)], where H(1) is the
K × r matrix of coefficients that correspond to the structural shocks of interest and H(2)

is the K × (K − r) matrix of coefficients that correspond to the other shocks. Then, the
objective here is to estimate H(1).

The difficulty in estimating H(1) is that ε
(1)
t is unobserved and Equation (3) only provides

(K + 1)K/2 moment restrictions for the K2 elements of H. To provide additional moment
restrictions, Stock and Watson (2008, 2012), Montiel Olea, Stock, and Watson (2012), and
MR introduce the proxy variable approach. They assume that there exists a sequence of
r-dimensional vectors of proxy variables, denoted by (mt, t ∈ Z), taken from outside of
the VAR. Without loss of generality, these proxy variables are mean zero, E(mt) = 0. In
addition, they are relevant for identifying the structural shocks of interest. That is,

E(mtε
(1)′
t ) = Ψ, (4)

where Ψ is an invertible r × r matrix. They are also exogenous from the other structural
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shocks. That is,
E(mtε

(2)′
t ) = 0. (5)

Furthermore, we assume that the proxy variables mt and lags of yt are uncorrelated. That
is, E(mty

′
t−j) = 0 for all j = 1, . . . , p.3

When applying the proxy SVAR approach, mt can come from a wide variety of sources.
For example, MR follow the narrative approach of Romer and Romer (2009) to construct
proxy variables for tax shocks, Gertler and Karadi (2015) follow the high frequency approach
of Gürkaynak, Sack, and Swanson (2005) to construct proxy variables for monetary policy
shocks, and Carriero et al. (2015) use Bloom’s (2009) measure of uncertainty as a proxy for
uncertainty shocks. Thus, the assumptions in Equations (4) and (5) allow for the merging
of many different methods of identifying economic shocks with SVARs.

To implement the proxy SVAR approach, we partition ut and further partition H such
that Equation (2) can be re-written as

u
(1)
t

(r × 1)

u
(2)
t

(K − r × 1)

 =


H(1,1) H(1,2)

(r × r) (r ×K − r)
H(2,1) H(2,2)

(K − r × r) (K − r ×K − r)




ε
(1)
t

(r × 1)

ε
(2)
t

(K − r × 1)

 , (6)

where H(1,1) and H(2,2) are assumed to be non-singular. Then, the objective is to estimate
H(1) = [H(1,1)′, H(2,1)′]′. To do this, first note that Equations (4), (5) and (6) imply

E(mtu
(1)′
t ) = ΨH(1,1)′ (7)

and
E(mtu

(2)′
t ) = ΨH(2,1)′. (8)

Jointly, Equations (7) and (8) yield

H(2,1)H(1,1)−1 =
(

[E(mtu
(1)′
t )]−1E(mtu

(2)′
t )
)′
. (9)

Because the right-hand side of Equation (9) can be estimated from the data, it provides
restrictions on parameters of the model in addition to those in Equation (3) that help estimate
H(1,1) andH(2,1). Specifically, given an estimate ofH(2,1)H(1,1)−1 from Equation (9), Equation
(3) and the partitions in Equation (6) are sufficient to estimate H(1,2)H(1,2)′, H(1,1)H(1,1)′,
H(2,2)H(2,2)′ and H(1,2)H(2,2)−1. Appendix A provides details of these estimations.

When r = 1, Lunsford (2015b) shows that H(1,1) and H(2,1) can be estimated up to a sign
convention. However, in the general case of r > 1, as is the case in MR, we need additional

3As discussed in MR, this is not a restrictive assumption. To ensure it holds, one can always regress the
proxies on the lags of yt and keep the residuals as the new proxies.
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restrictions. To get these restrictions, MR re-write the system in Equation (6) as

u
(1)
t = Q(1)u

(2)
t + S(1)ε

(1)
t (10)

and
u
(2)
t = Q(2)u

(1)
t + S(2)ε

(2)
t , (11)

whereQ(1) = H(1,2)H(2,2)−1, Q(2) = H(2,1)H(1,1)−1, S(1) = (Ir−H(1,2)H(2,2)−1H(2,1)H(1,1)−1)H(1,1),
and S(2) = (IK−r−H(2,1)H(1,1)−1H(1,2)H(2,2)−1)H(2,2). Note that non-singularity of H, H(1,1)

and H(2,2) also guarantees the same for S(1), which crops-up in the inverse of a partitioned
matrix; compare e.g. Section A.10 in Lütkepohl (2005). Inversely, it is the case that[

H(1,1)

H(2,1)

]
=

[
Ir +Q(1)(IK−r −Q(2)Q(1))−1Q(2)

(IK−r −Q(2)Q(1))−1Q(2)

]
S(1) (12)

so that H(1,1) and H(2,1) are smooth functions of Q(1), Q(2) and S(1). Here Q(2) can be
estimated from Equation (9) and Q(1) can be estimated from Equations (3), (6) and (9), but
S(1) cannot be estimated without additional restrictions. To get these restrictions, note that

S(1)S(1)′

= (Ir −H(1,2)H(2,2)−1H(2,1)H(1,1)−1)H(1,1)H(1,1)′(Ir −H(1,2)H(2,2)−1H(2,1)H(1,1)−1)′
(13)

and
H(1,1) = (Ir −H(1,2)H(2,2)−1H(2,1)H(1,1)−1)−1S(1). (14)

Equation (13) provides an estimate of S(1)S(1)′. Given this, we follow MR and impose that
S(1) is the lower triangular Cholesky decomposition of S(1)S(1)′ with the normalization that
the diagonal elements of S(1) are positive. Then, H(1,1) and H(2,1) can be estimated from
Equations (14) and (9). This Cholesky decomposition provides the additional restrictions
needed to estimate the model by restricting how the shocks of interest can interact. For
example, MR estimate the effects of changes to both average personal income tax rates
(APITRs) and average corporate income tax rates (ACITRs), and the Cholesky decompo-
sition restricts how an APITR shock can effect the ACITR and vice versa. If the APITR is
ordered before the ACITR in yt, then the Cholesky decomposition implies that an APITR
shock impacts the ACITR directly through ε

(1)
t and indirectly through u

(2)
t . In contrast, an

ACITR shock only impacts the APITR indirectly though u
(2)
t .

2.2 Estimation

To estimate the proxy SVAR, we focus on estimators for the VAR coefficients A1, . . . , Ap,
the innovation covariance matrix Σu, and for the r × K matrix ΨH(1)′, where ΨH(1)′ =
Ψ[H(1,1)′, H(2,1)′] is the combination of Equations (7) and (8). We introduce the following
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notation, where the dimensions of the defined quantities are given in parentheses:

y = vec(y1, . . . , yT ) (KT × 1), Zt = vec(yt, . . . , yt−p+1) (Kp× 1)

Z = (Z0, . . . , ZT−1) (Kp× T ), β = vec(A1, . . . , Ap) (K2p× 1)

u = vec(u1, . . . , uT ) (KT × 1), ϕ = vec(ΨH(1)′) (Kr × 1),

(15)

where ‘vec’ denotes the column stacking operator. The parameter β is estimated by β̂ =
vec(Â1, . . . , Âp) via multivariate least squares so that β̂ = (ZZ ′)−1Z⊗IK)y (Lütkepohl, 2005,
p.71). Here, A ⊗ B = (aijB)ij denotes the Kronecker product of matrices A = (aij) and
B = (bij). Since the process is stable, yt has a vector moving average (VMA) representation

yt =
∞∑
j=0

Φjut−j, t ∈ Z, (16)

where Φj, j ∈ N0, is a sequence of (exponentially fast decaying) K ×K coefficient matrices
with Φ0 = IK and Φi =

∑i
j=1 Φi−jAj, i = 1, 2, . . . . Further, we define the (Kp×K) matrices

Cj = (Φ′j−1, . . . ,Φ
′
j−p)

′ and the (Kp×Kp) matrix Γ =
∑∞

j=1CjΣuC
′
j. The standard estimator

of Σu is

Σ̂u =
1

T

T∑
t=1

ûtû
′
t, (17)

where ût = yt − Â1yt−1 − · · · − Âpyt−p are the residuals from the estimated VAR(p) model.

We set σ = vech(Σu) and σ̂ = vech(Σ̂u). The ‘vech’ operator stacks the elements on and

below the main diagonal of a square matrix columnwise. Further, let ϕ̂ = vec(Ψ̂H(1)′), where

Ψ̂H(1)′ =
1

T

T∑
t=1

mtû
′
t. (18)

After estimating β, σ and ϕ, we can estimate H(1,2)H(1,2)′, H(1,1)H(1,1)′, H(2,2)H(2,2)′ and
H(1,2)H(2,2)−1 by following the steps in Appendix A. Then, the estimate of S(1)S(1)′ follows

from Equation (13), and Ŝ(1) is the Cholesky decomposition of ̂S(1)S(1)′. Finally, Equations

(14) and (9) give us Ĥ(1,1) and Ĥ(2,1), completing the estimation of Ĥ(1). Note that because

H, H(1,1) and H(2,2) are assumed to be non-singular, Ĥ(1) is obtained as a sufficiently smooth
function of β̂, σ̂ and ϕ̂.

Once H(1) is estimated, we can compute a number of statistics of economic interest. In
this paper, we focus on structural IRFs that give the dynamic response of yt to ε

(1)
t . These

IRFs are given by Θi = ΦiH
(1)ε̃

(1)
t , where ε̃

(1)
t is an r × 1 vector that gives the size of the

shock. One common way of producing these IRFs is to set the jth element of ε̃
(1)
t to 1 and

the other elements of ε̃
(1)
t to zero, yielding responses to a one standard deviation change in
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the jth structural shock of interest. A second common way of producing these IRFs is to
normalize the size of the structural shock so that one of the variables in yt responds by s on
impact. That is, the jth element of ε̃

(1)
t is set to s/(e′iHej), where ei and ej are the ith and

jth columns of IK , and the other elements of ε̃
(1)
t are zero. For example, MR normalize their

shocks so that the APITR or ACITR fall by -1 on impact. It is important to note that both
the one standard deviation and the normalized IRFs are smooth functions of β, σ and ϕ.

Despite our focus on structural IRFs, there are number of other statistics that our theory
can be applied to. For example, many papers in the SVAR literature study forecast error
variance decompositions, and Mertens and Ravn (2014) study the elements of H itself.

2.3 Assumptions and Asymptotic Inference

In addition to the setup described in Section 2.1, we make use of the following assumptions:

Assumption 2.1 (Mixing Conditions)

(i) Let xt = (u′t,m
′
t)
′ and assume that the (K+r)-dimensional process (xt, t ∈ Z) is strictly

stationary.

(ii) Let α(n) = supA∈F0
−∞,B∈F∞n |P (A ∩ B) − P (A)P (B)|, n = 1, 2, . . ., denote the α-

mixing coefficients of the process (xt, t ∈ Z), where F0
−∞ = σ(. . . , x−2, x−1, x0), F∞n =

σ(xn, xn+1, . . . ). For some δ > 0, we have

∞∑
n=1

(α(n))δ/(2+δ) <∞ (19)

and that E|xt|4+2δ
4+2δ is bounded, where |A|p = (

∑
i,j |aij|p)1/p for some matrix A = (aij).

(iv) For a, b, c ∈ Z define (K2 ×K2) matrices

τa,b,c = E
(
vec(utu

′
t−a)vec(ut−bu

′
t−c)

′) , (20)

νa,b,c = E
(
vec(mtu

′
t−a)vec(ut−bu

′
t−c)

′) , (21)

ζa,b,c = E
(
vec(mtu

′
t−a)vec(mt−bu

′
t−c)

′) , (22)

use K̃ = K(K + 1)/2 and assume that the (K2m+ K̃ +Kr×K2m+ K̃ +Kr) matrix
Ωm defined in Equation (B.4) exists and is eventually positive definite for sufficiently
large m ∈ N.

Instead of the common iid assumption for the white noise process (ut, t ∈ Z), the less
restrictive mixing condition in Assumption 2.1 covers a large class of dependent, but un-
correlated stationary innovation processes, allowing for conditional heteroskedasticity. In
addition, the proxy variables (mt, t ∈ Z) may show rather general serial dependence.
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We state the following central limit theorem (CLT) for our estimators. It is an extension
of Theorem 3.1 in Brüggemann, Jentsch, and Trenkler (2016) to the proxy SVAR setup.

Theorem 2.1 (Joint CLT for β̂, σ̂ and ϕ̂) Under Assumption 2.1, we have

√
T

 β̂ − β
σ̂ − σ
ϕ̂−ϕ

 D→ N (0, V ),

where ‘
D→’ denotes convergence in distribution,

V =

 V (1,1) V (2,1)′ V (3,1)′

V (2,1) V (2,2) V (3,2)′

V (3,1) V (3,2) V (3,3)


with

V (1,1) = (Γ−1 ⊗ IK)

(
∞∑

i,j=1

(Ci ⊗ IK)
∞∑

h=−∞

τi,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V (2,1) = LK

(
∞∑
j=1

∞∑
h=−∞

τ0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V (2,2) = LK

(
∞∑

h=−∞

{τ0,h,h − vec(Σu)vec(Σu)
′}

)
L′K

V (3,1) =

(
∞∑
j=1

∞∑
h=−∞

ν0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′

V (3,2) =

(
∞∑

h=−∞

{
ν0,h,h − vec(ΨH(1)′)vec(Σu)

′})L′K
V (3,3) =

∞∑
h=−∞

{
ζ0,h,h − vec(ΨH(1)′)vec(ΨH(1)′)′

}
and LK is the (K(K + 1)/2×K2) elimination matrix such that vech(A) = LKvec(A) for
any (K ×K) matrix A.

Some of the sub-matrices of V simplify if we impose additional structure on the joint
process of innovations and proxy variables xt = (u′t,m

′
t)
′. The following corollary summarizes

the results of imposing either a martingale difference sequence (mds) or an iid structure.

Corollary 2.1
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(i) If in addition to Assumption 2.1, xt = (u′t,m
′
t)
′ is an mds with E(xt|Ft−1) = 0 a.s.,

where Ft−1 = σ(xt−1, xt−2, . . .), we have

V
(1,1)
mds = (Γ−1 ⊗ IK)

(
∞∑

i,j=1

(Ci ⊗ IK)τi,0,j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V
(2,1)
mds = LK

(
∞∑
j=1

∞∑
h=0

τ0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V
(3,1)
mds =

(
∞∑
j=1

∞∑
h=0

ν0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′.

(ii) If in addition to Assumption 2.1, xt = (u′t,m
′
t)
′ are iid, we have V (2,1) = 0, V (3,1) = 0

and

V
(1,1)
iid = (Γ−1 ⊗ IK)

(
∞∑
i=1

(Ci ⊗ IK)τi,0,i(Ci ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V
(2,2)
iid = LK (τ0,0,0 − vec(Σu)vec(Σu)

′)L′K ,

V
(3,2)
iid =

(
ν0,0,0 − vec(ΨH(1)′)vec(Σu)

′)L′K ,
V

(3,3)
iid = ζ0,0,0 − vec(ΨH(1)′)vec(ΨH(1)′)′.

We note here that in the three cases of α-mixing, mds and iid, the proxy variables are
are allowed to be dependent on the process (ut). In particular, the DGP proposed by MR
for the proxy variables,

mt = dt(Πε
(1)
t + vt), (23)

is also covered by Assumption 2.1 if the joint process ((ε′t, v
′
t, d
′
t)
′, t ∈ Z) is strictly stationary

and fulfills mixing and moment conditions corresponding to Assumption 2.1(ii). Here, (dt, t ∈
Z) is a sequence of scalar dummy variables taking values in {0, 1}, (vt, t ∈ Z) is an r-

dimensional white noise process, and Π is an (r×r) matrix. Further, MR assume E(vtε
(1)′
t ) =

0 and E(dtvtε
(1)′
t ) = 0. If the process ((ε′t, v

′
t, d
′
t)
′, t ∈ Z) is iid, the sequences (mt, t ∈ Z) and

consequently (xt, t ∈ Z) will also be iid sequences such that part (ii) of Corollary 2.1 applies.
Because the limiting distributions in Corollary 2.1 and particularly in Theorem 2.1 can

be very complicated, we discuss suitable bootstrap methods for inference in the next section.

3 Bootstrap Inference for Proxy SVARs

In this section, we study bootstrap algorithms for inference for proxy SVARs. We focus on
inference for statistics that are functions of estimators of the VAR coefficients, the covariance
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matrix of the VAR innovations, and the covariance matrix of the proxy variables with the
VAR innovations, E(mtu

′
t) = ΨH(1)′. These statistics include H(1) itself as well as structural

IRFs and forecast error variance decompositions.
The rest of this section proceeds as follows. In Section 3.1 we describe two residual-based

bootstrap algorithms used for inference. The first bootstrap algorithm is a recursive-design
wild bootstrap, which was used by MR and has become standard in the proxy SVAR liter-
ature. The second bootstrap is the residual-based MBB proposed by Brüggemann, Jentsch,
and Trenkler (2016), which we modify to include moving blocks of the proxy variables. In
Section 3.2, we discuss inconsistency of the wild bootstrap and establish the asymptotic
validity of the MBB. In Section 3.3, we use Monte Carlo simulations to compare the wild
bootstrap and the MBB for inference on IRFs from structural SVARs.

3.1 Bootstrap Algorithms

3.1.1 Residual-based Wild Bootstrap

The algorithm for the recursive-design residual-based wild bootstrap is as follows:

1. Independently draw T observations of the scalar random sequence (ηt, t ∈ Z) from a
distribution with E(ηt) = 0, E(η2t ) = 1, and E(η4t ) <∞.

2. Use u∗t = ûtηt to produce (u∗1, . . . , u
∗
T ) and m∗t = mtηt to produce (m∗1, . . . ,m

∗
T ).

3. Set the initial condition (y∗−p+1, . . . , y
∗
0) = (y−p+1, . . . , y0).

4

4. Use the initial condition from the previous step along with Â1, . . . , Âp and u∗t to recur-
sively produce (y∗1, . . . , y

∗
T ) with

y∗t = Â1y
∗
t−1 + · · ·+ Âpy

∗
t−p + u∗t .

5. Estimate Â∗1, . . . , Â
∗
p by least squares from the bootstrap sample (y∗−p+1, . . . , y

∗
T ) and

set û∗t = y∗t − Â∗1yt−1 − · · · − Â∗pyt−p.

6. Use û∗t and m∗t for t = 1, . . . , T to estimate Σ̂∗u = T−1
∑T

t=1 û
∗
t û
∗′
t and Ψ̂H(1)′

∗
=

T−1
∑T

t=1m
∗
t û
∗′
t .

7. Use Â∗1, . . . , Â
∗
p, Σ̂∗u and Ψ̂H(1)′

∗
to produce the bootstrap statistics of interest.

Repeat the algorithm a large number of times and collect the bootstrap statistics of interest.
To be comparable to MR, we produce our confidence intervals with a standard percentile

4This is the initial condition in the algorithm used by Mertens and Ravn (2013), and we use it in order
to keep our results comparable.
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interval. That is, we sort the bootstrapped statistics of interest and keep the α/2- and
1 − α/2-percentiles as the confidence interval, where α is the level of significance. Because

the statistic of interest in this paper is the structural IRF, we compute Θ̂∗i , described in
Section 2.2, in step 7 of the bootstrap algorithm.

MR draw the sequence (ηt, t ∈ Z) from a Rademacher distribution where ηt = 1 with
probability 0.5 and ηt = −1 with probability 0.5. This is the standard wild bootstrap
algorithm in the proxy SVAR literature. However, another common option is to draw (ηt, t ∈
Z) from a standard normal distribution. We will study both of these methods further below.

3.1.2 Residual-based Moving Block Bootstrap

The algorithm for the residual-based MBB is as follows. First, to initialize the algorithm, we
choose a block length ` and compute N = [T/`], where [·] rounds up to the nearest integer
so that N` ≥ T . Next, collect the K × ` blocks Ui = (ûi, . . . , ûi+`−1) for i = 1, . . . T − `+ 1
and the r × ` blocks Mi = (mi, . . . ,mi+`−1) for i = 1, . . . T − `+ 1. Then,

1. Independently draw N integers with replacement from the set {1, . . . , T−`+1}, putting
equal probability on each element of the set. Denote these integers as i1, . . . , iN .

2. Collect the blocks (Ui1 , . . . ,UiN ) and (Mi1 , . . . ,MiN ) and drop the last N`−T elements
to produce (ũ∗1, . . . , ũ

∗
T ) and (m̃∗1, . . . , m̃

∗
T ).

3. Center (ũ∗1, . . . , ũ
∗
T ) according to

u∗j`+s = ũ∗j`+s −
1

T − `+ 1

T−∑̀
r=1

ûs+r−1 (24)

for s = 1, . . . , ` and j = 0, 1, . . . , N − 1 in order to produce (u∗1, . . . , u
∗
T ).

4. Center (m̃∗1, . . . , m̃
∗
T ) similarly to the VAR errors in Equation (24) in order to produce

(m∗1, . . . ,m
∗
T ).5

5. Set the initial condition (y∗−p+1, . . . , y
∗
0) = (y−p+1, . . . , y0).

6. Use the initial condition from the previous step along with Â1, . . . , Âp and u∗t to recur-
sively produce (y∗1, . . . , y

∗
T ) with

y∗t = Â1y
∗
t−1 + · · ·+ Âpy

∗
t−p + u∗t .

7. Estimate Â∗1, . . . , Â
∗
p by least squares from the bootstrap sample (y∗−p+1, . . . , y

∗
T ) and

set û∗t = y∗t − Â∗1yt−1 − · · · − Â∗pyt−p.
5Because of the censoring in the MR proxy variables, we only apply the centering to the non-censored

observations and leave the censored proxy variables with a value of zero.
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8. Use û∗t and m∗t for t = 1, . . . , T to estimate Σ̂∗u = T−1
∑T

t=1 û
∗
t û
∗′
t and Ψ̂H(1)′

∗
=

T−1
∑T

t=1m
∗
t û
∗′
t .

9. Use Â∗1, . . . , Â
∗
p, Σ̂∗u and Ψ̂H(1)′

∗
to produce the bootstrap statistics of interest.

As with the wild bootstrap, repeat the algorithm a large number of times, collect the boot-
strap statistics, and produce confidence intervals with a standard percentile interval.

This algorithm is similar to the residual-based MBB studied in Brüggemann, Jentsch, and
Trenkler (2016). In order to apply it to the proxy SVAR method, we added the re-sampling

and centering of the proxy variables along with the computing of Ψ̂H(1)′
∗
.

We will establish the asymptotic validity of this MBB in the next subsection. However,
there is one potential issue with the MBB in small samples. If a large number of the
observations of mt are censored to zero, as is the case in MR, then (m∗1, . . . ,m

∗
t ) might

contain only zeros. In contrast, it will never be the case that (m∗1, . . . ,m
∗
t ) contains only

zeros with the wild bootstrap method. However, as we will discuss in Section 4, this is not
a relevant issue in practice.

3.2 Asymptotic Bootstrap Theory for Proxy SVARs

In this subsection, we study the asymptotic properties of the bootstrap algorithms described
in the previous subsection. Hence, we define β̂∗ = vec(Â∗1, . . . , Â

∗
p), σ̂

∗ = vech(Σ̂∗u), and ϕ̂∗ =

vec(Ψ̂H(1)′
∗
) to be the bootstrap estimators that correspond to β, σ and ϕ, respectively.

To derive theory, we make the following additional assumption.

Assumption 3.1 (cumulants) The K + r-dimensional process (xt, t ∈ Z) (as defined in
Assumption 2.1) has absolutely summable cumulants up to order eight. More precisely, we
have for all j = 2, . . . , 8 and a1, . . . , aj ∈ {1, . . . , K}, a = (a1, . . . , aj) that

∞∑
h2,...,hj=−∞

|cuma(0, h2, . . . , hj)| <∞ (25)

holds, where cuma(0, h2, . . . , hj) denotes the jth joint cumulant of x0,a1 , xh2,a2 , . . . , xhj ,aj , see
e.g. Brillinger (1981). In particular, this condition includes the existence of eight moments
of (xt, t ∈ Z).

Such a condition has been imposed in Gonçalves and Kilian (2007) to prove consistency
of wild and pairwise bootstrap methods for univariate AR(∞) processes and in Brüggemann,
Jentsch, and Trenkler (2016) to prove consistency of a residual-based block bootstrap for
VAR(p) models. In terms of α-mixing conditions, Assumption 3.1 is implied by

∞∑
n=1

nm−2(αx(n))δ/(2m−2+δ) <∞ (26)
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for m = 8 if all moments up to order eight of (xt, t ∈ Z) exist, see Künsch (1989). For
example, GARCH processes are geometrically strong mixing under mild assumptions on the
conditional distribution such that the summability condition in Equation (26) always holds.

3.2.1 Inconsistency of the Wild Bootstrap

In this section, we show that the wild bootstrap is generally not consistent for inference on
β̂, σ̂ and ϕ̂ or statistics that are functions of these estimators. To do so, we derive the joint
limiting variance of

√
T ((β̂∗ − β̂)′, (σ̂∗ − σ̂)′, (ϕ̂∗ − ϕ̂)′)′ in the following theorem.

Theorem 3.1 (Residual-based Wild Bootstrap Limiting Variance) Suppose Assump-
tions 2.1 and 3.1 hold and the residual-based wild bootstrap from Section 3.1.1 is used to
compute bootstrap statistics β̂∗, σ̂∗ and ϕ̂∗. Then, we have

T V ar

 β̂∗−β̂
σ̂∗−σ̂
ϕ̂∗−ϕ̂

→
 V

(1,1)
mds OK2p×K̃ OK2p×Kr

OK̃×K2p τ0,0,0{E∗(η4t )− 1} ν ′0,0,0{E∗(η4t )− 1}
OKr×K2p ν0,0,0{E∗(η4t )− 1} ζ0,0,0{E∗(η4t )− 1}

 =: VWB,

in probability, where K̃ = K(K + 1)/2 and Oj×k denotes the j × k zero matrix.

As VWB 6= V for V as defined in Theorem 2.1, a consequence of Theorem 3.1 is that
the residual-based wild bootstrap is generally inconsistent for statistics that are functions
of β̂, σ̂ and ϕ̂. However, as V

(1,1)
WB = V

(1,1)
mds holds, the only exclusion is the case where the

statistic of interest is a (smooth) function of β̂ only under an additional mds assumption;
compare also Corollary 2.1.6 The latter framework was already addressed for the univariate
case by Gonçalves and Kilian (2004) and for the multivariate case by Brüggemann, Jentsch,
and Trenkler (2014). General asymptotic inconsistency of the residual-based wild bootstrap

for functions of β̂, σ̂ and ϕ̂ as e.g. structural IRFs without adding proxy variables to the
VAR setup has already been discussed in Brüggemann, Jentsch, and Trenkler (2016), who
show that the wild bootstrap cannot replicate the fourth moments of the VAR innovations.
Note also that imposing iid-ness for the process (xt, t ∈ Z) does not lead to wild bootstrap
consistency either; compare Corollary 2.1(ii).

If the bootstrap multipliers (ηt, t ∈ Z) follow a Rademacher distribution, as has been
proposed by MR in the proxy SVAR setup, we have E∗(η4t ) = E(η4t ) = 1 which immediately
leads to the following corollary.

Corollary 3.1 Under the assumptions of Theorem 3.1 and if the (iid) bootstrap multipliers

6The wild bootstrap also remains valid under mds assumptions in a very special and unrealistic scenario

where V (2,1) and V (3,1) vanish and E(η4t ) is accidently such that V
(i,j)
WB = V (i,j) holds for i, j = 1, 2, leading

eventually to VWB = V .
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(ηt, t ∈ Z) follow a Rademacher distribution, that is P (ηt = −1) = P (ηt = 1) = 0.5, we get

VWB =

(
V

(1,1)
WB OK2p×K̃+Kr

OK̃+Kr×K2p OK̃+Kr×K̃+Kr

)
. (27)

A comparison of VWB in Equation (27) with V from Theorem 2.1 leads to the conclusion
that a considerable amount of estimation uncertainty caused by estimating Σu and ΨH(1)′

with Σ̂u and Ψ̂H(1)′, respectively, is simply ignored by the wild bootstrap using a Rademacher
distribution for the bootstrap multipliers. Consequently, as can be also seen in the Monte
Carlo simulations conducted in Section 3.3, the wild bootstrap clearly leads to considerable
undercoverage of corresponding bootstrap confidence intervals for structural IRFs.

To see why the wild bootstrap underestimates e.g. the variance of ΨH(1)′, we temporarily
consider a simpler specification than the VAR and assume that ut can be observed directly
and does not need to be estimated from the VAR. Then, the wild bootstrap estimate of
ΨH(1,1)′ from Equation (7) is given by

Ψ̂H(1,1)′
∗

= T−1
T∑
t=1

m∗tu
(1)∗′
t .

Because u
(1)∗
t = u

(1)
t ηt and m∗t = mtηt and ηt equals 1 or -1, it is the case that

Ψ̂H(1,1)′
∗

= T−1
T∑
t=1

mtu
(1)′
t ,

which is simply the non-bootstrapped sample estimate. That is, when ut is directly ob-

servable, the wild bootstrap yields Ψ̂H(1,1)′
∗

= Ψ̂H(1,1)′ for every bootstrap replication and
implies that there is no bootstrap uncertainty in the estimate of this covariance at all.

Going back to the VAR, it is not the case that ut is directly observable. Thus, in the
bootstrap, we use û∗t rather than u∗t to estimate the covariances. Because û∗t is different for

each bootstrap replication, it will not be the case that Ĥ(1)∗ = Ĥ(1) holds exactly such that
the bootstrapped variance of H(1) will generally not be zero in finite samples. However, the
bootstrap variance of Ĥ(1) will converge to zero as the sample size increases.

3.2.2 Consistency of the Moving Block Bootstrap

Next, we show that the MBB can approximate the limiting distribution of
√
T ((β̂−β)′, (σ̂−

σ)′, (ϕ̂−ϕ)′)′ derived in Theorem 2.1. We get the following theorem.

Theorem 3.2 (Residual-based MBB Consistency) Suppose Assumptions 2.1 and 3.1
hold and the residual-based MBB bootstrap from Section 3.1.2 is used to compute bootstrap
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statistics β̂∗, σ̂∗ and ϕ̂∗. If `→∞ such that `3/T → 0 as T →∞, we have

sup
x∈RK̄

∣∣∣∣P ∗(√T ((β̂∗−β̂)′, (σ̂∗−σ̂)′, (ϕ̂∗−ϕ̂)′
)′
≤x
)
−P

(√
T
(

(β̂−β)′, (σ̂−σ)′, (ϕ̂−ϕ)′
)′
≤x
)∣∣∣∣→0

in probability, where P ∗ denotes the probability measure induced by the residual-based MBB
and K̄ = K2p + (K2 + K)/2 + Kr. The short-hand x ≤ y for some x, y ∈ Rd is used to
denote xi ≤ yi for all i = 1, . . . , d.

As noted above, Θi = (θjk,i) are the K × r structural IRFs of interest. In the following,
we refer to the parameters Θi simply as IRFs. Further, let θjk,i be the response of the j-th
variable to the k-th structural shock of interest that occurred i periods ago for j = 1, . . . , K
and k = 1, . . . , r. To simplify notation we suppress the subscripts in the following and simply
use θ and θ̂ to represent a specific structural impulse response coefficient and its estimator,
respectively. For both the one standard deviation and normalized IRFs, Θi, i = 0, 1, 2, . . . ,
are continuously differentiable functions of β, σ and ϕ. Hence, the asymptotic validity of
the residual-based MBB scheme to construct confidence intervals for the IRFs in the proxy
SVAR framework is easily implied by Theorem 3.1 and by the Delta method to get the
following corollary.

Corollary 3.2 (Asymptotic Validity of Bootstrap IRFs in proxy SVARs) Under As-
sumptions 2.1 and 3.1 and if `→∞ such that `3/T → 0 as T →∞, we have

sup
x∈R

∣∣∣∣P ∗(√T (θ̂∗ − θ̂)′ ≤ x

)
− P

(√
T
(
θ̂ − θ

)′
≤ x

)∣∣∣∣→ 0

in probability.

3.3 Monte Carlo Simulations

To study the wild bootstrap and MBB, we use Monte Carlo simulations with two different
VAR DGPs: one with iid innovations and one with innovations that follow GARCH(1,1)
processes. We simulate yt with the bivariate VAR(1) process

yt =

[
0.2 0
0.5 0.5

]
yt−1 + ut, E(utu

′
t) =

[
1 0.3

0.3 1

]
, (28)

which closely follows the DGP used in Kilian (1998). To simulate the VAR innovations, ut
follows Equation (2) where εt is the bivariate structural shock and

H =

[
0.592 −0.806
−0.592 −0.806

]
.
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In the iid simulation, each element of εt is an independent standard normal random variable.
In the GARCH(1,1) simulation, each element of εt is independent and follows

ε
(i)
t = g

(i)
t w

(i)
t ,

and
(g

(i)
t )2 = γ0 + γ1(ε

(i)
t−1)

2 + γ2(g
(i)
t−1)

2,

for i = 1, 2. Here, w
(i)
t for i = 1, 2 are independent standard normal random variables,

γ1 = 0.05, γ2 = 0.90, and γ0 = 1 − γ1 − γ2, which follows specification G2 in Brüggemann,
Jentsch, and Trenkler (2016).

In the simulations, ε
(1)
t is the structural shock of interest so that the structural IRFs are

produced from the first column of H. This implies that r = 1 so that the proxy variable is
a scalar. To simulate the proxy variable, we use

mt = Πε
(1)
t + vt,

where vt is a standard normal random variable. This corresponds to model (23) without
censoring, and we use Π = 0.5.

For each bootstrap method, we run the Monte Carlo simulations with effective sample
sizes of 100, 250, 500 and 1000. For each simulation, we draw εt and compute ut of sample
size T + 1000, where T is the relevant effective sample size. In the iid DGP, we use y0 = 0
and ut to recursively generate T + 1000 observations of yt. In the GARCH(1,1) DGP, we use

y0 = 0, (g
(i)
0 )2 = 1 for i = 1, 2, and (ε

(i)
0 )2 = 1 for i = 1, 2 to recursively generate T + 1000

observations of εt and yt. We then drop the first 999 observations of yt to get a sample of
length T plus one pre-sample value denoted by y0, y1, . . . , yT .

For the residual-based MBB, we use block lengths of 16, 20, 24, and 28 for the sample
sizes 100, 250, 500, and 1000, respectively. These block lengths yield N = [7, 13, 21, 36].
From Theorem 3.2, these block lengths must satisfy ` → ∞ and `3/T → 0 as T → ∞.
Because of this, we follow the rule ` = κT 1/4 where κ is normalized so that a sample size of
T = 250 corresponds exactly to ` = 20. This yields κ = 5.03.

For each Monte Carlo trial, we use 1000 simulations and 2000 bootstrap replications.
Then, we compute the coverage rate of a confidence interval to be the fraction of simulations
where the true IRF lies within the confidence interval. Tables 1 and 2 show the coverage
rates for the 68% and 95% confidence intervals, respectively, for each bootstrap method and
all four sample sizes. In both tables, we display the coverage rates for the first 6 impulse
responses, and the IRFs are produced with a one standard deviation change in ε

(1)
t .7 Finally,

we use y
(1)
t and y

(2)
t to denote the first and second elements of yt, respectively.

7We show the coverage rates of IRFs where the shock has been normalized so that the response of y
(1)
t

is -1 on impact in Appendix C. Those coverage rates are very similar to Tables 1 and 2 except that the

coverage rate of the initial response of y
(1)
t is 1 by construction.
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Both tables show that the Rademacher wild bootstrap produces coverage rates that can
be very small, particularly at impact. This is true for both DGPs and both the 68% and 95%
confidence intervals. For T = 250, which most closely corresponds to MR’s effective sample
size of 224, the coverage rates for the initial response for the 68% confidence interval are only
between 5% and 8%. Further, the 95% confidence intervals only have coverage rates of 16%
and 18% at a sample size of 250. In addition, the coverage of the initial impulse responses
gets worse as the sample size increases, indicating that more data worsens the Rademacher
wild bootstrap.

As discussed in Section 3.2, the Rademacher wild bootstrap ignores the uncertainty
in estimating Equations (3), (7) and (8). Hence, it ignores the uncertainty in estimating
H(1), yielding the very small coverage for the initial responses. With this in mind, two
additional results are worth noting. First, after the initial response, the coverage rates from
the Rademacher wild bootstrap quickly approach the target coverage rates for y

(1)
t . This

is because y
(1)
t is essentially an AR(1) with a coefficient near zero leading to corresponding

entries in the VMA coefficient matrices Φj in (16) that are quickly vanishing. For the DGP
in (28), the first four VMA coefficient matrices are

Φ1 =

[
0.20 0.00
0.50 0.50

]
, Φ2 =

[
0.04 0.00
0.35 0.25

]
, Φ3 =

[
0.01 0.00
0.20 0.13

]
, Φ4 =

[
0.00 0.00
0.10 0.06

]
,

and the wild bootstrap correctly measures the uncertainty around these coefficients in the
first row of Φj (Gonçalves and Kilian, 2004). Thus, H(1) has little influence on y

(1)
t ’s multi-

step ahead IRFs. Second, the Rademacher wild bootstrap’s small coverage rates for y
(2)
t

are more persistent. This is because y
(2)
t has persistently larger VMA coefficients than y

(1)
t ,

implying that H(1) has more persistent influence on the IRFs of y
(2)
t than y

(1)
t . Hence, the

Rademacher wild bootstrap has the potential to produce persistently small coverage rates
when the VMA coefficients are persistently large.

In contrast to the Rademacher wild bootstrap, the normal wild bootstrap produces cov-
erage rates that are too large. For T = 250, the coverage rates for the initial response for the
68% confidence interval are between 80% and 83%. Further, the 95% confidence intervals
are over 99% at a sample of 250. In addition, these initial coverage rates stay too large
as the sample size increases and are generally too large for the multi-step ahead IRFs. In
addition to the asymptotic invalidity of wild bootstraps established above, these results show
that wild bootstraps can have huge variation in coverage rates in practice depending on the
distribution of the bootstrap multipliers. Hence, wild bootstraps should not be used for
inference on structural IRFs.

In contrast to both wild bootstraps, the MBB is proven to be asymptotically valid for
inference on the structural IRFs. Tables 1 and 2 indicate that this bootstrap produces
modestly undersized coverage rates for the initial impulse responses. However, unlike the
wild bootstraps, these coverage rates generally improve as the sample size increases. Further,
for the sample size 250, the MBB’s coverage rates are generally better than those from the

20



normal wild bootstrap and much better than those from the Rademacher wild bootstrap.
For the iid DGP, the MBB produces undersized coverage rates for the initial response

because the block-wise resampling produces less variation than in a standard iid bootstrap,
yielding somewhat smaller confidence intervals. However, the requirement that `3/T → 0 as
T →∞ implies that this is not a problem asymptotically and explains the MBB’s improving
coverage rates with the sample size. Further, an iid bootstrap would not capture the non-
linear dependence structure in the GARCH DGP and produce even smaller coverage rates
than the MBB.8 In practice, this leads to a trade-off for the choice of block length, `.
Blocks that are too small will not be able to effectively account for dependence of the
VAR innovations or proxy variables, but blocks that are too large will not produce enough
bootstrap variation. For example, a block length of 1 will produce the appropriate coverage
rates for iid innovations, but will produce coverage rates that are too small for GARCH
innovations. As noted above, we set a block length of 20 for a sample size of 250, striking
a balance between getting good coverage in the presence of conditional heteroskedasticity
without producing coverage rates that are too low in the iid case.

4 The Effects of Tax Changes in the United States

As an application of the residual-based MBB, we recreate several figures from MR using the
MBB instead of their Rademacher wild bootstrap. MR study the dynamic effects of two
types of tax changes on the U.S. economy: average personal income tax rates (APITRs)
and average corporate income tax rates (ACITRs). To do this, they construct narrative
accounts of both shocks by decomposing Romer and Romer’s (2009) narrative account of
postwar tax changes (see Figure 1 of MR). Then, they use these narrative accounts as
proxy variables for the tax shocks in a SVAR as described in Section 2. For these recre-
ations, we use MR’s replication files from the American Economic Association’s website at
https://www.aeaweb.org/articles.php?doi=10.1257/aer.103.4.1212.

We begin with MR’s baseline specification, which includes the APITR, the ACITR, the
logarithm of the personal income tax base (PITB), the logarithm of the corporate income
tax base (CITB), the logarithm of government spending, the logarithm of GDP divided by
population, and the logarithm of government debt held by the public divided by the GDP
deflator and population, giving K = 7.9 The data are quarterly from 1950:Q1 to 2006:Q4.
We include a constant in the VAR, and we estimate the VAR with p = 4, giving an effective

8For example, see Figure 2 of Brüggemann, Jentsch, and Trenkler (2016).
9In their replication files, MR define the APITR as federal personal income tax revenues including contri-

butions to government social insurance divided by personal income tax base, the ACITR as federal corporate
income tax revenues divided by corporate income tax base, the PITB as personal income less government
transfers plus contributions to government social insurance divided by GDP deflator and by population, the
CITB as corporate profits less Federal Reserve Bank profits divided by GDP deflator and by population,
and government spending as real Federal government consumption and investment expenditures divided by
population.
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sample size of 224. Given this sample size, we use a block length of ` = 19 based on the rule
used for the Monte Carlo simulations above.10 Because we have two proxy variables and are
estimating two structural shocks, r = 2.

Following MR, we consider two orderings for the variables. In the first ordering, the
APITR comes before the ACITR, and in the second ordering, the ACITR comes before the
APITR. As discussed at the end of Section 2.1, this ordering influences how the shocks will
impact one another. Figure 1 displays the IRFs of a shock to personal taxes that has been
normalized to a 1% cut in the APITR for both orderings along with the 68% confidence
intervals from the MBB with 10,000 replications. Blue solid lines are the point estimate
when ordering the APITR first, and the blue dashed lines are the corresponding confidence
intervals. Red diamonds are the point estimate when ordering the ACITR first, and the red
dashed lines are the corresponding confidence intervals. This figure parallels Figure 2 in MR
but with two important differences. First, the confidence intervals here are produced with
the MBB. Second, the confidence intervals presented by MR are 95% intervals – not the 68%
intervals presented here. We present the 68% intervals here because the 95% intervals with
the MBB are huge, and no inferences can be drawn from them. We show the 95% confidence
intervals in Appendix C.

When using the wild bootstrap, MR find that a cut to the APITR causes an increase in
output, an increase in the PITB, and a decrease in personal income tax revenues that are
statistically significant with 95% confidence intervals. With the MBB, despite the smaller
confidence level, the confidence intervals here are larger than those in MR. Because of this,
Figure 1 indicates that no inference can be made about the effects of an APITR cut on
output or the PITB, even at a 68% level. However, personal income tax revenues do fall
with statistical significance at impact.11 Further, unlike in MR where the confidence intervals
were similar for both orderings, Figure 1 indicates that the confidence intervals can be quite
different depending on the ordering. For example, when the ACITR is ordered first, the
confidence interval for output is much narrower. At the third step in the IRF, which gives
the peak point estimate, this confidence interval is [-0.3%, 2.8%]. In contrast, the confidence
interval when the APITR is ordered first is [-2.9%, 4.0%].

Figure 2 displays the IRFs of a shock to corporate taxes that has been normalized to
a 1% cut in the ACITR for both orderings along with the 68% confidence intervals from
the MBB with 10,000 replications. Blue solid lines are the point estimate when the APITR
is ordered first, and the blue dashed lines are the corresponding confidence intervals. Red
diamonds are the point estimate when the ACITR is ordered first, and the red dashed lines
are the corresponding confidence intervals. This figure parallels Figure 3 in MR but with

10Setting ` = 1 yields an iid bootstrap. This produces modestly smaller confidence intervals than the

MBB with ` = 19 when applied to MR. However, autocorrelations of |û(j)t | and (û
(j)
t )2 provided in a table

in Appendix C yield several values that are statistically distinct from zero. This indicates some (non-linear)
dependence is present in the residuals the requires the use of the MBB.

11Personal income tax revenues are not a variable included in the VAR. Rather, following MR, we compute
them from the other IRFs as APITR/0.1667 + PITB.
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Figure 1: IRFs of a 1% cut in the APITR. Blue lines show the model with the APITR
ordered first, and red diamonds show the model with the ACITR ordered first. Dashed lines
are 68% confidence intervals from the MBB.
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Figure 2: IRFs of a 1% cut in the ACITR. Blue lines show the model with the APITR
ordered first, and red diamonds show the model with the ACITR ordered first. Dashed lines
are 68% confidence intervals from the MBB.
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the same differences as Figure 1 above. The same figure with 95% confidence intervals can
be found in Appendix C.12

When using the wild bootstrap, MR find that a cut to the ACITR causes increases
in output and the CITB that are statistically significant with 95% confidence intervals.
However, with the MBB, no inference can be made about the effects of an ACITR cut on
output. Further, as with the APITR cut, the confidence intervals surrounding output in
Figure 2 are noticeably different depending on the ordering of the variables. With the MBB,
inference about the effect of an ACITR cut on the CITB is ambiguous. When the APITR is
ordered first, it appears that the CITB increases in the first two quarters after the shock by a
statistically significant amount. However, this result disappears when the ACITR is ordered
first. Further, as shown in Appendix C, this result is insignificant for both orderings at the
95% level. Finally, Figure 2 suggests that a cut to the ACITR will increase government
purchases by a statistically significant amount after a year and a half. However, as in MR,
this result disappears at the 95% level.

As noted in Section 3, a potential drawback of the MBB is that the possibility exists for
all of the bootstrapped proxy variable observations to be censored to zero. This problem
arises because many of the observations in MR’s narrative account are censored to zero. Of
the 224 observed proxy APITR shocks, 211 (94%) are zero. For the ACITR, this number is
208 (93%). Further, there can be many periods between non-censored proxies. The largest
gap between non-censored proxies is 39 quarters for the APITR and 49 quarters for the
ACITR. Because of this, a block length of 19 does not guarantee that a non-censored proxy
will be observed in every block. However, given this block length, the MBB algorithm draws
12 blocks and the probability of all 12 blocks having zeros is very small. For the APITR, 153
of the 206 blocks contain at least one non-censored proxy, implying that the probability of
drawing a block of zeros is 0.257. Then, the probability of drawing 12 blocks of zeros will be
0.25712 ≈ 8× 10−8. For the ACITR, 162 of the 206 blocks contain at least one non-censored
proxy, yielding a probability of about 9 × 10−9 of drawing 12 blocks of zeros. Hence, even
with 10,000 bootstrap replications, the probability of drawing one replication of all zeros is
very small, and this is not a relevant drawback in practice. In producing Figures 1 and 2,
all 10,000 bootstrap samples contained at least 3 non-zero observations for both the APITR
and the ACITR proxies.

Following MR, we also consider the effects of APITR and ACITR cuts on labor market
variables, consumption and investment. For the labor market, we follow MR and estimate a
VAR with K = 8 that includes the APITR, the ACITR, the logarithm of government spend-
ing, the logarithm of GDP divided by population, the logarithm of government debt held
by the public divided by the GDP deflator and population, the logarithm of total economy
employment divided by population, the logarithm of total economy hours worked divided by
total economy employment, and the logarithm of labor force divided by population.

The left hand panels of Figure 3 display the IRFs of the labor market variables to a

12Note that corporate income tax revenues are not included in the VAR. Following MR, they are computed
from the other IRFs as ACITR/0.2996 + CITB.
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Figure 3: The left hand panels display IRFs of a 1% cut in the APITR. The right hand
panels display IRFs of a 1% cut in the ACITR. Blue lines show the point estimates and the
dashed lines show the 68% and 90% confidence intervals from the MBB.
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1% APITR cut, and the right hand panels display the corresponding IRFs to a 1% ACITR
cut. Solid blue lines are the point estimates, and the dashed lines show the 68% and 90%
confidence intervals. This figure corresponds to Figure 9 in MR.13 With the wild bootstrap,
MR find statistically significant increases in the employment to population ratio and hours
per worker along with a statistically significant decrease in the unemployment rate to an
APITR cut. However, Figure 3 shows that no such inferences can be made, even at the 68%
level. Rather, as with output, cuts to both the APITR and the ACITR have no inferable
impact on the labor market in the United States.

To study the effects of APITR and ACITR cuts on consumption, we estimate a VAR
with K = 8 that includes the APITR, the ACITR, the logarithm of the PITB, the loga-
rithm of government spending, the logarithm of GDP divided by population, the logarithm
of government debt held by the public divided by the GDP deflator and population, the log-
arithm of chain-aggregated nondurable consumption and service goods consumption divided
by population, and logarithm of real durable consumption goods expenditures divided by
population. The left hand panels of Figure 4 display the IRFs of consumption and durable
goods purchases to a 1% APITR cut, and the right hand panels display the corresponding
IRFs to a 1% ACITR cut. Solid blue lines are the point estimates, and the dashed lines show
the 68% and 90% confidence intervals. This figure corresponds to the top panels in Figure
10 in MR.14 With the wild bootstrap, MR find a statistically significant increase in durable
goods purchases at both the 90% and 95% levels from an APITR cut. However, Figure 4
shows that no such inferences can be made at the 90% level. However, at the 68% level, a
statistically significant positive response begins in quarter 5.

Finally, to study the effects of APITR and ACITR cuts on investment, we estimate a
VAR with K = 8 that includes the APITR, the ACITR, the logarithm of the CITB, the log-
arithm of government spending, the logarithm of GDP divided by population, the logarithm
of government debt held by the public divided by the GDP deflator and population, the
logarithm of real non-residential fixed investment divided by population, and the logarithm
of real residential fixed investment divided by population. The left hand panels of Figure 5
display the IRFs of nonresidential and residential investment to a 1% APITR cut, and the
right hand panels display the corresponding IRFs to a 1% ACITR cut. Solid blue lines are
the point estimates, and the dashed lines show the 68% and 90% confidence intervals. This
figure corresponds to the bottom panels in Figure 10 in MR.15 With the wild bootstrap, MR
find a statistically significant increase in nonresidential investment at both the 90% and 95%
levels from APITR and ACITR cuts. Further, they find a statistically significant increase
in residential investment at both the 90% and 95% levels from an ACITR cut. In contrast,
Figure 5 shows no statistically significant response of residential or nonresidential investment

13The APITR is ordered first for all IRFs in this figure. Also, the unemployment rate is not included
in the VAR. Following MR, we compute it from the other IRFs as 5.25{exp[−0.9475(Employment/Pop −
Labor Force/Pop)/5.25]− 1}.

14The APITR is ordered first for all IRFs in this figure.
15The APITR is ordered first for all IRFs in this figure.
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Figure 4: The left hand panels display IRFs of a 1% cut in the APITR. The right hand
panels display IRFs of a 1% cut in the ACITR. Blue lines show the point estimates and the
dashed lines show the 68% and 90% confidence intervals from the MBB.

to either tax cut.

5 Conclusions

Estimating the dynamic effects of structural shocks from SVARs is important for macroeco-
nomic research. Recently, Stock and Watson (2008, 2012), Montiel Olea, Stock, and Watson
(2012), and Mertens and Ravn (2013) developed a method for estimating SVARs that uses
an external proxy variable that is correlated with the structural shocks of interest but un-
correlated with the other structural shocks. This paper studies methods for inference when
using this proxy SVAR method. First, we provide a joint central limit theorem for the
VAR coefficients, the variance matrix of the VAR innovations, and the covariance matrix of
the VAR innovations with the proxy variables under mild α-mixing conditions. Second, we
prove that a residual-based moving block bootstrap is asymptotically valid for inference on
statistics that are smooth functions of the VAR coefficients, the variance matrix of the VAR
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Figure 5: The left hand panels display IRFs of a 1% cut in the APITR. The right hand
panels display IRFs of a 1% cut in the APITR. Blue lines show the point estimates and the
dashed lines show the 68% and 90% confidence intervals from the MBB.

innovations, and the covariance matrix of the VAR innovations with the proxy variables. In
contrast, wild bootstraps are not asymptotically valid for these statistics.

When the moving block bootstrap is applied to Mertens and Ravn (2013), we find that
many of their results are no longer statistically significant. Specifically, cuts to both personal
and corporate tax rates have no inferable effect on output, investment, employment, hours
worked per worker or the unemployment rate. These results suggest that the narrative
proxy variables used by MR are not informative enough to discern the dynamic effects of
tax changes on economic activity in the United States. However, these results do not imply
that proxy SVARs will always be uninformative. Lunsford (2015b) shows that inferences
can be made at the 90% level with the moving block bootstrap when using Fernald’s (2014)
utilization-adjusted total factor productivities as proxy variables. Thus, proxy SVARs and
the moving block bootstrap are useful tools for inferring the dynamic effects of structural
shocks.
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A Derivation of the Estimators

For the purposes of notation, define E(mtu
(1)′
t ) = Σ

(1)
mu, E(mtu

(2)′
t ) = Σ

(2)
mu, E(u

(1)
t u

(1)′
t ) =

Σ
(1,1)
u , E(u

(2)
t u

(1)′
t ) = Σ

(2,1)
u , and E(u

(2)
t u

(2)′
t ) = Σ

(2,2)
u to be the moments that can be estimated

from the data. Then, Equation (9) can be re-written as

(Σ(1)−1
mu Σ(2)

mu)
′ = H(2,1)H(1,1)−1. (A.1)

Next, Equations (3) and (6) imply

Σ(1,1)
u = H(1,1)H(1,1)′ +H(1,2)H(1,2)′, (A.2)

Σ(2,1)
u = H(2,1)H(1,1)′ +H(2,2)H(1,2)′, (A.3)

and
Σ(2,2)
u = H(2,1)H(2,1)′ +H(2,2)H(2,2)′. (A.4)

Using Equations (A.2) through (A.4), it is the case that

Σ(2,1)
u −H(2,1)H(1,1)−1Σ(1,1)

u = H(2,1)H(1,1)′+H(2,2)H(1,2)′−H(2,1)H(1,1)−1(H(1,1)H(1,1)′+H(1,2)H(1,2)′)

= (H(2,2)−H(2,1)H(1,1)−1H(1,2))H(1,2)′.

Next, define

Z = (H(2,2) −H(2,1)H(1,1)−1H(1,2))(H(2,2) −H(2,1)H(1,1)−1H(1,2))′. (A.5)

Then, Z can also be written as

Z = H(2,2)H(2,2)′ −H(2,1)H(1,1)−1H(1,2)H(2,2)′ −H(2,2)H(1,2)′(H(2,1)H(1,1)−1)′

+H(2,1)H(1,1)−1H(1,2)H(1,2)′(H(2,1)H(1,1)−1)′

= H(2,1)H(2,1)′ +H(2,2)H(2,2)′ −H(2,1)H(2,1)′ −H(2,1)H(1,1)−1H(1,2)H(2,2)′

−H(2,1)H(2,1)′ −H(2,2)H(1,2)′(H(2,1)H(1,1)−1)′ +H(2,1)H(2,1)′

+H(2,1)H(1,1)−1H(1,2)H(1,2)′(H(2,1)H(1,1)−1)′

= H(2,1)H(2,1)′ +H(2,2)H(2,2)′ −H(2,1)H(1,1)−1H(1,1)H(2,1)′ −H(2,1)H(1,1)−1H(1,2)H(2,2)′

−H(2,1)H(1,1)′(H(2,1)H(1,1)−1)′ −H(2,2)H(1,2)′(H(2,1)H(1,1)−1)′

+H(2,1)H(1,1)−1H(1,1)H(1,1)′(H(2,1)H(1,1)−1)′ +H(2,1)H(1,1)−1H(1,2)H(1,2)′(H(2,1)H(1,1)−1)′

= H(2,1)H(2,1)′ +H(2,2)H(2,2)′ −H(2,1)H(1,1)−1(H(1,1)H(2,1)′ +H(1,2)H(2,2)′)

− (H(2,1)H(1,1)′ +H(2,2)H(1,2)′)(H(2,1)H(1,1)−1)′

+H(2,1)H(1,1)−1(H(1,1)H(1,1)′ +H(1,2)H(1,2)′)(H(2,1)H(1,1)−1)′

= Σ(2,2)
u −H(2,1)H(1,1)−1Σ(2,1)′

u − Σ(2,1)
u (H(2,1)H(1,1)−1)′ +H(2,1)H(1,1)−1Σ(1,1)

u (H(2,1)H(1,1)−1)′.
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That is, Z is also given by

Z = Σ(2,2)
u −H(2,1)H(1,1)−1Σ(2,1)′

u − Σ(2,1)
u (H(2,1)H(1,1)−1)′

+H(2,1)H(1,1)−1Σ(1,1)
u (H(2,1)H(1,1)−1)′,

(A.6)

which allows us to estimate Z from the data. Next, Equation (A.5) implies

H(1,2)H(1,2)′ = H(1,2)[(H(2,2) −H(2,1)H(1,1)−1H(1,2))−1(H(2,2) −H(2,1)H(1,1)−1H(1,2))]′

× [(H(2,2) −H(2,1)H(1,1)−1H(1,2))(H(2,2) −H(2,1)H(1,1)−1H(1,2))−1]H(1,2)′

= (Σ(2,1)
u −H(2,1)H(1,1)−1Σ(1,1)

u )′Z−1(Σ(2,1)
u −H(2,1)H(1,1)−1Σ(1,1)

u ).

That is,

H(1,2)H(1,2)′ = (Σ(2,1)
u −H(2,1)H(1,1)−1Σ(1,1)

u )′Z−1(Σ(2,1)
u −H(2,1)H(1,1)−1Σ(1,1)

u ). (A.7)

Then, estimation of the model occurs as follows. First, estimate Equation (A.1). This
then allows for the estimation of Equation (A.6), which then allows for the estimation of
Equation (A.7). After this, we can estimate

H(1,1)H(1,1)′ = Σ(1,1)
u −H(1,2)H(1,2)′,

which follows from Equation (A.2),

H(2,2)H(2,2)′ = Σ(2,2)
u −H(2,1)H(1,1)−1H(1,1)H(1,1)′(H(2,1)H(1,1)−1)′,

which follows from Equation (A.4), and

H(1,2)H(2,2)−1 = [Σ(2,1)′
u −H(1,1)H(1,1)′(H(2,1)H(1,1)−1)′](H(2,2)H(2,2)′)−1,

which follows from Equation (A.3).

B Proofs

B.1 Proof of Theorem 2.1

We define σ̃ = vech(Σ̃u), where Σ̃u = 1
T

∑T
t=1 utu

′
t and ϕ̃ = vec(Ψ̃H(1)′), where Ψ̃H(1)′ =

1
T

∑T
t=1mtu

′
t. Due to

√
T (σ̂ − σ̃) = oP (1) and

√
T (ϕ̂− ϕ̃) = oP (1) by standard arguments

using ergodicity and E(mty
′
t−j) = 0, j = 1, . . . , p, we can replace σ̂ by σ̃ and ϕ̂ by ϕ̃ in the
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following calculations. Furthermore, by using

Zt−1 =

 yt−1
...

yt−p

 =
∞∑
j=0

 Φjut−1−j
...

Φjut−p−j

 =
∞∑
j=1

 Φj−1ut−j
...

Φj−put−j

 =
∞∑
j=1

Cjut−j, (B.1)

it can be shown that

√
T

 β̂ − β
σ̃ − σ
ϕ̃−ϕ

 =


{

( 1
T
ZZ ′)−1 ⊗ IK

}∑∞
j=1(Cj ⊗ IK) 1√

T

∑T
t=1

{
vec(utu

′
t−j)
}

1√
T

∑T
t=1 LK {vec(utu

′
t)− vec(Σu)}

1√
T

∑T
t=1

{
vec(mtu

′
t)− vec(ΨH(1)′)

}
(B.2)

= Am + (A− Am),

where A denotes the right-hand side of Equation (B.2) and Am is the same expression, but
with

∑∞
j=1 replaced by

∑m
j=1 for some m ∈ N. In the following, we make use of Proposition

6.3.9 of Brockwell and Davis (1991) and it suffices to show

(a) Am
D→ N (0, Vm) as T →∞

(b) Vm → V as m→∞
(c) ∀ δ > 0 : lim

m→∞
lim sup
T→∞

P (|A− Am|1 > δ) = 0.

To prove (a), setting K̃ = K(K + 1)/2, we can write

Am =

 ( 1
T
ZZ ′)−1 ⊗ IK OK2p×K̃ OK2p×Kr
OK̃×K2p IK̃ OK̃×Kr
OKr×K2p OKr×K̃ IKr

 C1 ⊗ IK · · · Cm ⊗ IK OK2p×K̃ OK2p×Kr
OK̃×K2 · · · OK̃×K2 IK̃ OK̃×Kr
OKr×K2 · · · OKr×K2 OKr×K̃ IKr



× 1√
T

T∑
t=1


vec(utu

′
t−1)

...
vec(utu

′
t−m)

LK {vec(utu
′
t)− vec(Σu)}

vec(mtu
′
t)− vec(ΨH(1)′)


= Q̂TRm

1√
T

T∑
t=1

Wt,m

with an obvious notation for the (K2p+ K̃ +Kr×K2p+ K̃ +Kr) matrix Q̂T , the (K2p+

K̃ + Kr ×K2m + K̃ + Kr) matrix Rm, and the K2m + K̃ + Kr-dimensional vector Wt,m.

By Lemma A.2 in Brüggemann, Jentsch, and Trenkler (2016), we have that Q̂T → Q in
probability, where Q = diag(Γ−1 ⊗ IK , IK̃ , IKr). Now, the CLT required for part (a) follows
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from Lemma B.1 with

Vm =

 V
(1,1)
m V

(1,2)
m V

(1,3)
m

V
(2,1)
m V (2,2) V (2,3)

V
(3,1)
m V (3,2) V (3,3)

 = QRmΩmR
′
mQ

′, (B.3)

which leads to V (i,j) = Ω(i,j), i, j ∈ {2, 3} as defined in Equations (B.5), (B.8) and (B.9),

V
(i,1)
m = V

(1,i)′
m , i ∈ {2, 3} and

V (1,1)
m = (Γ−1 ⊗ IK)

(
m∑

i,j=1

(Ci ⊗ IK)
∞∑

h=−∞

τi,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V (2,1)
m = LK

(
m∑
j=1

∞∑
h=−∞

τ0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′,

V (3,1)
m =

(
m∑
j=1

∞∑
h=−∞

ν0,h,h+j(Cj ⊗ IK)′

)
(Γ−1 ⊗ IK)′.

Part (b) follows from Assumption 3.1 and due to
∑∞

i=1 ‖Ci ⊗ IK‖ < ∞. The second and
third parts of A−Am in Equation (B.2) are zero and it suffices to show (c) for the first part

ignoring the factor Q̂T . Let λ ∈ RK2p and δ > 0, then (c) follows with Markov inequality
and ‖V (1,1)‖ <∞ from

P

(∣∣∣∣∣
∞∑

j=m+1

λ′(Cj ⊗ IK)
1√
T

T∑
t=1

vec(utu
′
t−j)

∣∣∣∣∣ > δ

)

≤ 1

δ2T
E

∣∣∣∣∣
∞∑

j=m+1

λ′(Cj ⊗ IK)
T∑
t=1

vec(utu
′
t−j)

∣∣∣∣∣
2


=
1

δ2

∞∑
i,j=m+1

λ′(Ci ⊗ IK)

{
1

T

T∑
t1,t2=1

E
(
vec(ut1u

′
t1−i) vec(ut2u

′
t2−j)

′)} (Cj ⊗ IK)′λ

=
1

δ2

∞∑
i,j=m+1

λ′(Ci ⊗ IK)

 T−1∑
h=−(T−1)

(
1− |h|

T

)
τi,h,h+j

 (Cj ⊗ IK)′λ

→
T→∞

1

δ2

∞∑
i,j=m+1

λ′(Ci ⊗ IK)
∞∑

h=−∞

τi,h,h+j(Cj ⊗ IK)′λ

→
m→∞

0.

�
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Lemma B.1 (CLT for innovations) Let Wt,m = (W
(1)′
t,m ,W

(2)′
t,m ,W

(3)′
t,m )′, where

W
(1)
t,m = (vec(utu

′
t−1)

′, . . . , vec(utu
′
t−m)′)′

W
(2)
t,m = LK{vec(utu

′
t)− vec(Σu)} = vech(utu

′
t)− vech(Σu)

W
(3)
t,m = vec(mtu

′
t)− vec(ΨH(1)′)

Under Assumption 2.1, for sufficiently large m, we have

1√
T

T∑
t=1

Wt,m
D→ N (0,Ωm),

where Ωm is a (K2m+ K̃ +Kr ×K2m+ K̃ +Kr) block matrix

Ωm =

 Ω
(1,1)
m Ω

(1,2)
m Ω

(1,3)
m

Ω
(2,1)
m Ω(2,2) Ω(2,3)

Ω
(3,1)
m Ω(3,2) Ω(3,3)

 . (B.4)

Here, Ω
(1,1)
m = (

∑∞
h=−∞ τi,h,h+j)i,j=1,...,m is a block matrix with τi,h,h+j defined in Equation

(19) and the (K̃ × K̃), (K̃ ×K2m), (Kr ×K2m), (Kr × K̃) and (Kr ×Kr) matrices

Ω(2,2) = LK

(
∞∑

h=−∞

{τ0,h,h − vec(Σu) vec(Σu)
′}

)
L′K , (B.5)

Ω(2,1)
m = LK

(
∞∑

h=−∞

(τ0,h,h+1, . . . , τ0,h,h+m)

)
, (B.6)

Ω(3,1)
m =

∞∑
h=−∞

(ν0,h,h+1, . . . , ν0,h,h+m) (B.7)

Ω(3,2) =

(
∞∑

h=−∞

{
ν0,h,h − vec(ΨH(1)′) vec(Σu)

′})L′K (B.8)

Ω(3,3) =
∞∑

h=−∞

{
ζ0,h,h − vec(ΨH(1)′) vec(ΨH(1)′)′

}
, (B.9)

respectively.

Proof.
The result follows analogously to the proof of Lemma A.1 (ii) in Brüggemann, Jentsch, and
Trenkler (2014) extended to the proxy SVAR setup.
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B.2 Proof of Theorem 3.1

As u∗t = ûtηt and m∗t = mtηt, by taking conditional expectations, we get

E∗
(
vec(u∗tu

∗′
t−a)vec(u∗t−bu

∗′
t−c)

′) = vec(ûtû
′
t−a)vec(ût−bû

′
t−c)

′E∗ (ηtηt−aηt−bηt−c) , (B.10)

where

E∗ (ηtηt−aηt−bηt−c) =


E(η4t ), a = b = c = 0

1, a = 0 6= b = c or b = 0 6= a = c or c = 0 6= a = b

0, otherwise

. (B.11)

Note that analogous representations also hold for E∗
(
vec(m∗tu

∗′
t−a)vec(ut−bu

∗′
t−c)

′) as well as
E∗
(
vec(m∗tu

∗′
t−a)vec(mt−bu

∗′
t−c)

′). Now, by using similar arguments as used in the proof of

Theorem 2.1 below, we can show that the variance of
√
T ((β̂∗ − β̂)′, (σ̂∗ − σ̂)′, (ϕ̂∗ − ϕ̂)′)′

converges to a quantity corresponding to V as defined in Theorem 2.1, where all τa,b,c, νa,b,c
and ζa,b,c terms have to be replaced by τa,b,cE∗ (ηtηt−aηt−bηt−c) , νa,b,cE (ηtηt−aηt−bηt−c) and
ζa,b,cE (ηtηt−aηt−bηt−c), respectively, leading to the claimed result. �

B.3 Proof of Theorem 3.2

By Polya’s Theorem and by Lemma A.1 in Brüggemann, Jentsch, and Trenkler (2016) simi-

larly to the proof of Theorem 2.1, it suffices to show that
√
T ((β̃∗− β̃)′, (σ̃∗− σ̂)′, (ϕ̂∗− ϕ̃)′)′

converges in distribution w.r.t. measure P ∗ to N (0, V ) as obtained in Theorem 2.1, where

β̃∗−β̃ := ((Z̃∗Z̃∗′)−1Z̃∗⊗IK)ũ∗, σ̃∗ = vech(Σ̃∗u) with Σ̃∗u = 1
T

∑T
t=1 ũ

∗
t ũ
∗′
t , σ̃ = vech(Σ̃u) with

Σ̃u = 1
T

∑T
t=1 utu

′
t, ϕ̃

∗ = vec(Ψ̃H(1)∗′) with Ψ̃H(1)∗′ = 1
T

∑T
t=1m

∗
t ũ
∗′
t and ϕ̃ = vec(Ψ̃H(1)′)

with Ψ̃H(1)′ = 1
T

∑T
t=1mtu

′
t. Here, pre-sample values ỹ∗−p+1, . . . , ỹ

∗
0 are set to zero and

ỹ∗1, . . . , ỹ
∗
T is generated according to

ỹ∗t = A1ỹ
∗
t−1 + · · ·+ Apỹ

∗
t−p + ũ∗t ,

where ũ∗1, . . . , ũ
∗
T is an analogously drawn version of u∗1, . . . , u

∗
T as described in Steps 2 and

3 of the moving block bootstrap procedure in Section 3.1, but from u1, . . . , uT instead of
û1, . . . , ûT . Further, we use the notation

Z̃∗t = vec(ỹ∗t , . . . , ỹ
∗
t−p+1) (Kp× 1)

Z̃∗ = (Z̃∗0 , . . . , Z̃
∗
T−1) (Kp× T )

ũ∗ = vec(ũ∗1, . . . , ũ
∗
T ) (KT × 1).
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Similarly to Equation (B.2), we get the representation

√
T

 β̃∗ − β̃σ̃∗ − σ̃
ϕ̃∗ − ϕ̃

 =


{

( 1
T
Z̃∗Z̃∗′)−1 ⊗ IK

}
1√
T

∑T−1
j=1 (Cj ⊗ IK)

∑T
t=j+1

{
vec(ũ∗t ũ

∗′
t−j)
}

1√
T

∑T
t=1 LK {vec(ũ∗t ũ

∗′
t )− vec(utu

′
t)}

1√
T

∑T
t=1 {vec(m∗t ũ

∗′
t )− vec(mtu

′
t)}

(B.12)

= A∗m + (A∗ − A∗m),

where A∗ denotes the right-hand side of Equation (B.10) and A∗m is the same expression, but
with

∑T−1
j=1 replaced by

∑m
j=1 for some fixed m ∈ N, m < T . In the following, we make use

of Proposition 6.3.9 of Brockwell and Davis (1991) and it suffices to show

(a) A∗m
D→ N (0, Vm) in probability as T →∞

(b) Vm → V as m→∞
(c) ∀ δ > 0 : lim

m→∞
lim sup
T→∞

P ∗(|A∗ − A∗m|1 > δ) = 0 in probability.

To prove (a), setting K̃ = K(K + 1)/2, we can write

A∗m =

 ( 1
T
Z̃∗Z̃∗′)−1 ⊗ IK OK2p×K̃ OK2p×Kr
OK̃ timesK2p IK̃ OK̃×Kr
OKr×K2p OKr×K̃ IKr

 C1 ⊗ IK · · · Cm ⊗ IK OK2p×K̃ OK2p×Kr
OK̃×K2 · · · OK̃×K2 IK̃ OK̃×Kr
OKr×K2 · · · OKr×K2 OKr×K̃ IKr



× 1√
T

T∑
t=1


vec(ũ∗t ũ

∗′
t−1)

...
vec(ũ∗t ũ

∗′
t−m)

LK {vec(ũ∗t ũ
∗′
t )− vec(utu

′
t)}

vec(m∗t ũ
∗′
t )− vec(mtu

′
t)


= Q̃∗TRm

1√
T

T∑
t=1

W̃ ∗
t,m

as ũ∗t := 0 for t < 0 and with an obvious notation for the (K2p+ K̃ ×K2p+ K̃) matrix Q̃∗T
and the (K2m+K̃+Kr)-dimensional vector W̃ ∗

t,m. By Lemma A.2 in Brüggemann, Jentsch,

and Trenkler (2016), we have that Q̃∗T → Q with respect to P ∗. By using a straightforward
extension of Lemma A.3 in Brüggemann, Jentsch, and Trenkler (2016), the CLT required
for part (a) follows with Vm defined in Equation (B.3). Part (b) follows from summability of
Cj and uniform boundedness of

∑∞
h=−∞ τi,h,h+j for i, j ∈ N which is implied by the cumulant

condition of Assumption 3.1. As the factor Q̃∗T can be ignored and the second and third
parts of A∗ − A∗m are zero, part (c) follows as in Theorem 4.1 in Brüggemann, Jentsch, and
Trenkler (2016), which concludes the proof. �
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C Supplemental Figures and Tables

Figures 6 and 7 display the baseline specification used to produce Figures 1 and 2 above,
but with 95% confidence intervals from the residual-based moving block bootstrap.
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Figure 6: IRFs of a 1% cut in the APITR. Blue lines show the model with the APITR
ordered first, and red diamonds show the model with the ACITR ordered first. Dashed lines
are 95% confidence intervals from the MBB.
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Figure 7: IRFs of a 1% cut in the ACITR. Blue lines show the model with the APITR
ordered first, and red diamonds show the model with the ACITR ordered first. Dashed lines
are 95% confidence intervals from the MBB.
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Tables 5 gives the autocorrelation functions for û
(j)
t , |û(j)t | and (û

(j)
t )2, for j = 1, . . . , K

where K = 7 in the baseline model. The ordering of the variables in this baseline model are
the APITR, the ACITR, the log of the PITB, the log of the CITB, the log of government
spending, the log of GDP divided population, and the log of government debt divided by
the GDP deflator and population.

Table 5: Autocorrelations

Autocorrelations of u
(j)
t :

h u
(1)
t u

(2)
t u

(3)
t u

(4)
t u

(5)
t u

(6)
t u

(7)
t

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 -0.01 0.02 0.01 0.00 -0.06 -0.01 -0.01
2 -0.01 -0.05 0.02 0.00 0.01 0.01 -0.08
3 0.02 -0.02 0.00 0.02 -0.03 0.02 -0.03
4 0.06 -0.02 -0.02 -0.16 0.16 -0.08 -0.04
5 -0.08 0.03 -0.16 -0.07 -0.01 -0.08 -0.03
6 -0.02 0.02 0.04 0.02 0.13 0.03 -0.02

Autocorrelations of |u(j)t |:
h |u(1)t | |u(2)t | |u(3)t | |u(4)t | |u(5)t | |u(6)t | |u(7)t |

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.26 0.29 0.11 0.06 0.07 0.12 0.30
2 0.06 0.13 0.00 0.00 0.04 0.19 0.08
3 -0.06 0.00 -0.02 0.01 -0.06 0.13 0.09
4 -0.06 0.04 0.20 0.12 0.08 0.12 0.09
5 0.02 -0.03 -0.01 -0.02 -0.10 0.07 0.01
6 0.03 -0.06 0.03 0.14 0.08 0.04 0.09

Autocorrelations of (u
(j)
t )2:

h (u
(1)
t )2 (u

(2)
t )2 (u

(3)
t )2 (u

(4)
t )2 (u

(5)
t )2 (u

(6)
t )2 (u

(7)
t )2

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.19 0.22 0.09 0.05 0.05 0.08 0.18
2 0.01 0.10 0.02 -0.04 0.00 0.10 0.03
3 -0.04 -0.01 0.03 -0.03 -0.05 0.04 0.07
4 -0.05 0.00 0.15 0.10 0.09 0.06 0.09
5 -0.02 -0.01 -0.02 -0.01 -0.10 0.03 -0.02
6 -0.02 -0.02 -0.01 0.10 0.01 0.05 0.00
Notes: h is the autocorrelation horizon: corr(xt, xt−h) for a given
variable xt. The 95% confidence interval is given by (−0.13, 0.13).
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