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1 Introduction

The recent literature has shown that two main ingredients are key for the specification

of a good Vector Autoregressive model (VAR) for forecasting and structural analysis of

macroeconomic data: a large cross section of macroeconomic variables, and modeling time

variation in their volatilities. Contributions which highlighted the importance of using a

large information set include Banbura, Giannone, and Reichlin (2010), Carriero, Clark,

and Marcellino (2015), Giannone, Lenza, and Primiceri (2015) and Koop (2013), which

all point out that large systems perform better than smaller systems in forecasting and

structural analysis. Contributions that have highlighted the importance of time variation

in the volatilities include Clark (2011), Clark and Ravazzolo (2015), Cogley and Sargent

(2005), D’Agostino, Gambetti and Giannone (2013), and Primiceri (2005).

Even though it is now clear that it would be ideal to include both of these features when

specifying a VAR model for macroeconomic variables, there are no papers which jointly allow

for time variation and large datasets. The only exceptions are Koop and Korobilis (2013),

Koop et al.(2016), and Carriero, Clark, and Marcellino (2012). Koop and Korobilis (2013)

and Koop et al.(2016) propose a computational (not fully Bayesian) shortcut that allows for

time-varying volatility using, roughly speaking, a form of exponential smoothing of volatility

that allows them to estimate a large VAR. However, the resulting estimates are not fully

Bayesian and do not allow, for example, to compute the uncertainty around the volatility

estimates in a coherent fashion. Our previous work in Carriero, Clark, and Marcellino (2012)

also tries to tackle this issue, by assuming a specific structure for the volatilities in the VAR.

In particular, in a common stochastic volatility specification, we imposed a factor structure

on the volatilities and further assumed that i) there is no idiosyncratic component for the

conditional volatilities, and ii) all the conditional volatilities have a factor loading of 1, which

implies that the order of magnitude of the movements in volatility is proportional across

variables. Although the evidence in Carriero, Clark, and Marcellino (2012) indicates that the

proposed model improves over an homoskedastic VAR in density forecasting, the restrictions

discussed above do not necessarily hold in a typical dataset of macroeconomic and financial

variables, especially so as the cross-sectional dimension grows. Some researchers might prefer

not to impose the restrictions, out of concern for misspecification.

The reason why stochastic volatilities in the disturbance term can not easily be estimated

in a large VAR – without restrictions such as those of Carriero, Clark, and Marcellino (2012)

– lies in the structure of the likelihood function. The introduction of drifting volatilities

leads to the loss of symmetry in the model, which in turn implies that estimation of the

system becomes rapidly unmanageable as the number of variables increases. Homoskedastic
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VAR models are SUR models featuring the same set of regressors in each equation. This

symmetry across equations means that homoskedastic VAR models have a Kronecker struc-

ture in the likelihood, and can therefore be estimated via OLS equation by equation. In a

Bayesian setting the symmetry in the likelihood transfers to the posterior, as long as the

prior used also features a Kronecker structure. Equation-specific stochastic volatility breaks

this symmetry because each equation is driven by a different volatility. This implies that

the model needs to be vectorised before estimation. The challenge with such a model is that

drawing the VAR coeffi cients from the conditional posterior involves computing a (variance)

matrix with the number of rows and columns equal to the number of variables squared times

the number of lags (plus one if a constant is included). The size of this matrix increases

with the square of the number of variables in the model, making CPU time requirements

highly nonlinear in the number of variables.

Similarly, there are cases where, even in the presence of a symmetric likelihood func-

tion, the prior distribution on the coeffi cients is not symmetric and this again implies a

considerable increase in the computational complexity of the model. For example, the VAR

estimated by Banbura, Giannone, and Reichlin (2010) is a homoskedastic VAR with 130

variables, but in order to make this estimation possible a specific structure must be as-

sumed for the prior distribution of the coeffi cients. In particular, the original Litterman

(1986) implementation of the so-called Minnesota prior puts additional shrinkage on the

lags of all the variables other than the dependent variable of the i-th VAR equation, in

order to capture the idea that, at least in principle, these lags should be less relevant than

the lag of the dependent variable itself. But such kind of shrinkage can not be implemented

in the model of Banbura, Giannone, and Reichlin (2010) without losing the Kronecker struc-

ture of the prior. In this case the prior is not symmetric across equations and therefore,

even in presence of a symmetric likelihood, the resulting posterior is not symmetric across

equations, which implies that the system needs to be vectorised prior to estimation, which

in turn results in the same type of computational costs we described in the previous para-

graph. Incidentally, it is for this reason that Litterman (1986) assumed a (fixed) diagonal

prior variance for the disturbance term, since this assumption allows one to estimate his

model equation by equation.

To summarize, if either the prior or the likelihood induce an asymmetry in the posterior

of the VAR coeffi cients, the model needs to be vectorised and its computational complexity

rises fromN3 up toN6, whereN is the size of the cross section. For this reason the only VAR

which can be reasonably estimated with a large cross section of data is the homoskedastic
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VAR with natural conjugate prior proposed by Kadiyala and Karlsson (1993, 1997),1 which

features symmetry in both the prior and the likelihood, and it is indeed on this model that

papers such as Banbura, Giannone, and Reichlin (2010) and Carriero, Clark, and Marcellino

(2012) are built upon.

In this paper we propose a new estimation procedure that allows one to estimate VARs

featuring asymmetries either in the prior or in the likelihood, thereby allowing for models

with asymmetric priors and time varying volatilities. Our procedure is based on a simple

triangularisation of the VAR, which allows one to simulate the VAR coeffi cients by drawing

them equation by equation. This reduces the computational complexity for estimating the

VAR model to the order N4, which is considerably faster than the complexity N6 arising

from the traditional algorithms, and therefore it allows one to estimate large models. More-

over, our new algorithm is very simple and, importantly, it can be easily inserted in any

pre-existing algorithm for estimation of BVAR models.

With our method, estimation of very large VARs with stochastic volatility becomes

feasible, and this is important both for reduced form applications, such as forecasting or

constructing coincident and leading indicators, and for more structural applications, such as

computing response functions to structural shocks or forecast error variance decompositions.

Hence, our method also paves the way for a large number of empirical applications.

As an example and illustration, we estimate a VAR with stochastic volatilities, using a

cross-section of 125 variables for the U.S. extracted from the dataset in McCracken and Ng

(2015).

A first interesting finding is that there is substantial homogeneity in the estimated volatil-

ity patterns for variables belonging to the same group, such as IP and PPI components or

interest rates at different maturities, but there is some heterogeneity across groups of vari-

ables. Moreover, while the Great Moderation starting around 1985 is evident in most series,

the effects of the recent crisis are more heterogeneous. In particular, while volatility of real

variables, such as IP and employment, and financial variables, such as stock price indexes,

interest rates and spreads, goes back to lower levels after the peak associated with the cri-

sis, there seems to remain a much higher level of volatility than before the crisis in price

indicators, in particular in PPI and its components and also in several CPI components

as well as in monetary aggregates, as well as housing starts. Overall, the first principal

component of all the estimated volatilities explains about 45% of overall variance, and the

1The conjugate Normal-Inverse Wishart prior is discussed in Rothenberg (1963), and Zellner (1973) in the

general context of multivariate regressions. Kadiyala and Karlsson (1993, 1997) proposed and studied this

prior in the specific context of Vector Autoregressions. Geweke and Whiteman (2006) and Karlsson (2013)

offer excellent surveys on priors for VARs.
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first three 73%, confirming that commonality is indeed present but idiosyncratic movements

also matter (as in the GFSV specification of Carriero, Clark, and Marcellino (2012) and in

the factor volatility model of Carriero, Clark and Marcellino (2016)).

Next, we use this very large VAR-SV to analyze the identification of US monetary

policy shocks and their transmission, replicating the analysis of Bernanke, Boivin and Eliasz

(2005, BBE), based on a constant parameter FAVAR, and that of Banbura, Giannone and

Reichlin (2010, BGR), based on a large VAR with homoskedastic errors. Besides the common

advantages of using large datasets in VARs, such as reducing the likelihood of omitted

variables and non-fundamental shocks, we can now also allow for time-varying variances of

the structural shocks. Indeed, a first result, perhaps obvious but omitted in previous analyses

with large datasets such as BBE and BGR, is that the variance of the shocks was clearly

unstable over time, so that the overall explanatory contribution of the monetary policy

shocks is also changing over time, while it is assumed constant in models with homoskedastic

errors. Next, we get a granular view of the dynamic propagation of the monetary shock:

most of the 125 responses look reasonable, with a significant deterioration in real variables

such as IP, unemployment, employment and housing starts, only very limited evidence of a

price puzzle, with most price responses not statistically significant, a significant deterioration

in stock prices, a less than proportional increase in the entire term structure, which leads to

a decrease in the term spreads, progressively diminishing over time, and a negative impact

on the ISM indexes.

Finally, we analyze the effect that the size of the cross-section and the time variation in

the volatilities has on out of sample forecasting performance. We compare small and medium

sized (20 variable) VARs for the US, with and without stochastic volatility, in a recursive

out of sample exercise, where the inclusion of the medium sized VAR-SV is only feasible

thanks to our new estimation method. A priori, we expect the inclusion of time variation

in volatilities to improve density forecasts, via a better modeling of error variances, while

the use of a larger dataset should improve point forecasts, via a better specification of the

conditional means. However, this is not the whole story, as there are also interaction effects:

a better point forecast should improve density forecast as well, by centering the predictive

density around a more reliable mean, and time varying volatilities should improve the point

forecasts - especially at longer horizons - because the heteroskedastic model will provide more

effi cient estimates (through a GLS argument) and a therefore a better characterization of the

predictive densities, with the predictive means gradually deviating from their homoskedastic

counterparts as the predictive densities cumulate nonlinearly with the forecast horizon.

Indeed this is precisely the pattern we find in the data, which confirms the usefulness of
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large VAR-SVs in a forecasting context.

The paper is structured as follows. Sections 2 and 3 introduce the model and develop

the estimation method. Section 4 presents a numerical comparison to illustrate the gains in

terms of computing time (and convergence and mixing properties). Section 5 discusses the

identification of the monetary policy shock and its propagation in the very large VAR with

time varying volatilities. Section 6 presents the out-of sample forecasting exercise. Section

7 summarizes the main findings and concludes.

2 Challenges in estimating large VARs with asymmetric pri-

ors and time varying volatilities

2.1 The model

Consider the following VAR model with stochastic volatility:

yt = Π0 + Π(L)yt−1 + vt, (1)

vt = A−1Λ0.5
t εt, εt ∼ iid N(0, IN ), (2)

where t = 1, ..., T , the dimension of the vectors yt, vt and εt is N , Π(L) = Π1L+Π2L
2 + ...+

ΠpL
p, Λt is a diagonal matrix with generic j-th element λj,t and A−1 is a lower triangular

matrix with ones on its main diagonal. The specification above implies a time varying

variance for the disturbances vt:

Σt ≡ V ar(vt) = A−1ΛtA
−1′. (3)

The diagonality of the matrix Λt implies that the generic j-th element of the rescaled V AR

disturbances ṽt = Avt is given by ṽj,t = λ0.5
j,t εjt. Taking logs of squares of ṽj,t yields the

following set of observation equations:

ln ṽ2
j,t = lnλj,t + ln ε2j,t, j = 1, . . . , N. (4)

The model is completed by specifying laws of motion for the unobserved states:

lnλj,t = lnλj,t−1 + ej,t, j = 1, . . . , N, (5)

where the vector of innovations to volatilities et is N(0,Φ) (and independent across time),

with a variance matrix Φ that is full as in Primiceri (2005) and not diagonal as in Cogley

and Sargent (2005).2

2The specification of Primiceri (2005) is more general and allows for the volatilities to be hit by a common

shock (while their conditional means are modeled independently one another). However, as N gets large with

5



In equation (2) we do not allow the elements in A−1 to vary over time, which would

yield the variance specification of Primiceri (2005). We do so because Primiceri (2005) found

little variation in such coeffi cients, and specifying variation in these coeffi cients would imply

additional N(N − 1)/2 state equations such as (5). Note however that even if one were to

specify also A−1 as time varying, this would not impact the main computational advantage

arising from the estimation method we propose below, as the main bottleneck in estimating

large VARs is the inversion of the variance matrix of the Π(L) coeffi cients, not the simulation

of the drifting covariances and volatilities. Similarly, one can modify equation (5) so that

the states lnλj,t follow an autoregressive process rather than a random walk, but again this

is not essential to the main point we make in this paper.

In a Bayesian setting, to estimate the model the likelihood needs to be combined with a

prior distribution for the model coeffi cients

Θ = {Π, A,Φ} (6)

and the unobserved states Λt. The matrix Π collects the lag matrices Π0,Π1, ...,Πp. Under

the conventional system approach, the priors for the coeffi cients blocks of the model are as

follows:

vec(Π) ∼ N(vec(µ
Π

),ΩΠ); (7)

A ∼ N(µ
A
,ΩA); (8)

Φ ∼ IW (dΦ · Φ, dΦ). (9)

The model is completed by eliciting a prior for the initial value of the state variables Λt,

which we set to an uninformative Gaussian.

respect to T , allowing correlations across variables might become problematic. In the case of a full Φ matrix,

innovations to the volatility are modeled with a Wishart prior, which needs to use at least N + 2 degrees

of freedom to be proper. With large N , this makes the prior highly informative, more with quarterly data

than monthly. If some researcher were worried about that, he could treat the innovations as independent

and draw them from individual inverse gamma distributions, as in Cogley-Sargent (2005). Of course this

amounts to putting the restriction that both the prior and the likelihood have a diagonal Φ matrix, which

can be seen as an even more informative prior than the Wishart one.
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2.2 Model estimation

The model presented above is typically estimated as follows. First, the conditional posterior

distributions of all the coeffi cients blocks are derived:

vec(Π)|A,ΛT , yT ∼ N(vec(µ̄Π),ΩΠ); (10)

A|Π,ΛT , yT ∼ N(µ̄A,ΩA); (11)

Φ|ΛT , yT ∼ IW ((dΦ + T ) · Φ̄, dΦ + T ), (12)

where ΛT and yT denote the history of the states and data up to time T , and where the

posterior moments µ̄Π, ΩΠ, µ̄A, ΩA and Φ̄ can be derived by combining prior moments and

likelihood moments.3

A step of a Gibbs sampler cycling through (10)-(12) provides a draw from the joint

posterior distribution p(Θ|ΛT , yT ). Conditional on this draw, a draw from the distribution

of the states p(ΛT |Θ, yT ) is obtained using the observation and transition equations (4) and

(5), by using a mixture of normals approximation and multi-move algorithm proposed by

Kim, Shepard and Chib (1998).4 Cycling through p(Θ|ΛT , yT ) and p(ΛT |Θ, yT ) provides the

joint posterior of the model coeffi cients and unobserved states p(Θ,ΛT |yT ). This estimation

strategy is used in all of the implementations of this model.

In this paper we are interested in one specific step of the algorithm described above, the

draw from Π|A,ΛT , yT described in equation (10). The main problem in this step is that –

as is clear from the fact that equation (10) is specified in terms of the vectorised vector of

coeffi cients vec(Π) – it involves the manipulation of the variance matrix of the coeffi cients

Π, which is a square matrix of dimension N(Np+ 1).

Consider drawing m = 1, ...,M draws from the posterior of Π. To perform a draw Πm

from (10), one needs to draw a N(Np + 1)−dimensional random vector (distributed as a

standard Gaussian), denoted rand, and to compute:

vec(Πm) = Ω̄Π

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

Π vec(µ
Π

)

}
+ chol(Ω̄Π)× rand, (13)

where Xt = [1, y′t−1, ..., y
′
t−p]

′ is the (Np+ 1)-dimensional vector collecting the regressors in

equation (1). The calculation above involves computations of the order of 4O(N6). Indeed,
3Note that knowledge of the full history of the states ΛT renders redundant conditioning on the hyper-

parameters Φ regulating the law of motions of such states when drawing Π and A, as well as conditioning

on Π and A when drawing Φ.
4 In such case one needs to introduce another set of state variables sT used to approximate the error term

appearing in (4). For more details see Section (3.2.1) below. In the case of volatilities independent across

equations one could instead use the single move sampler of Jacquier, Polson and Rossi (1994) and avoid

drawing the mixture states sT .
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it is necessary to compute: i) the matrix Ω̄Π by inverting

Ω̄−1
Π = Ω−1

Π +
T∑
t=1

(Σ−1
t ⊗XtX

′
t); (14)

ii) its Cholesky factor chol(Ω̄Π); iii) multiply the matrices obtained in i) and ii) by the vector

in the curly brackets of (13) and the vector rand respectively. Since each of these operations

requires O(N6) elementary operations, the total computational complexity to compute a

draw Πm is 4 × O(N6). Also computation of Ω−1
Π vec(µ

Π
) requires O(N6) operations but

this is fixed across repetitions so it needs to be computed just once.5

For a system of 20 variables, which is the "medium" size considered in studies such as

Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and Marcellino (2012), Giannone,

Lenza, and Primiceri (2015) and Koop (2013), this amounts to 4 × 206 = 256 million

elementary operations (per single draw), and this is the main bottleneck that prevented the

existing literature to estimate models with stochastic volatility using more than a handful

of variables, typically 3 to 5.

5Some speed improvements can be obtained as follows. Define Ω̄−1
Π = C′C where C is an upper triangular

matrix and C′ is therefore the Cholesky factor of Ω̄−1
Π . It follows that Ω̄Π = C−1C′−1 with C−1 upper

triangular. Clearly, draws from C−1 × rand will have variance Ω̄Π so we can use C−1 × rand rather than

chol(Ω̄Π) × rand. Moreover we can substitute Ω̄Π = C−1C′−1 in (13) and take C−1 as common factor to

obtain:

vec(Πm) = C−1

[
C−1′

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

Π vec(µ
Π

)

}
+ rand

]
. (15)

In the expression above, the computation of Πm requires i) computing C′, the Cholesky factor of Ω̄−1
Π ; ii)

obtaining C−1′ by inverting C′; iii) performing the two multiplications of the terms in the curly and square

brackets by C−1′ and C−1 respectively. However, in the above expression C is triangular so its inversion is

less expensive, in particular one can simply use the command for backward solution of a linear system as

suggested by Chan (2015) instead of inverting the matrices:

vec(Πm) = C\
[
C′\

{
vec

(
T∑
t=1

Xty
′
tΣ
−1
t

)
+ Ω−1

Π vec(µ
Π

)

}
+ rand

]
, (16)

where X = C\B is the matrix division of C into B, which is roughly the same as C−1B , except it is

computed as the solution of the equation CX = B. A draw in this case still requires the computation of the

Cholesky factor of Ω̄−1
Π and its inversion, but the multiplications are avoided. Moreover in general computing

inverse matrixes using the \ operator is faster and more precise than matrix inversion in softwares such as
Matlab. Therefore, using (16) to perform a draw requires only 2O(N6). While this is twice as fast as using

(13), it is just a linear improvement and it is not suffi cient to solve the bottleneck in estimation of large

systems, as the overall computational complexity for calculating a draw is still of the order O(N6). In the

remainder of the paper we use the strategy outlined in this footnote for all the models we consider.
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2.3 Asymmetric priors

It is important to note that the computational problem arises from the fact that in a

stochastic volatility model, if we rescale each of the equations by the error volatility, in a

weighted least squares fashion, then each equation ends up having different regressors, and

this is the root of the asymmetry in the likelihood. However, the computational problem

related to the dimension of the variance matrix of the coeffi cients is not limited to stochastic

volatility VARs, but can happen also in a homoskedastic setting. In particular, consider

making the model (1)-(2) homoskedastic:

yt = Π0 + Π(L)yt−1 + vt, (17)

vt = A−1Λ0.5εt, εt ∼ iid N(0, I), (18)

where the subscript t has been eliminated from the matrix Λ, so that we have

Σ ≡ V ar(vt) = A−1ΛA−1′. (19)

For this model, the prior distribution typically used is

vec(Π) ∼ N(vec(µ
Π

),ΩΠ); (20)

Σ ∼ IW (dΣ · Σ, dΣ), (21)

and the implied posteriors are

vec(Π)|Σ, y ∼ N(vec(µ̄Π),ΩΠ); (22)

Σ|Π, y ∼ IW ((dΣ + T ) · Σ̄, dΣ + T ); (23)

with

Ω̄−1
Π = Ω−1

Π +

T∑
t=1

(Σ−1 ⊗XtX
′
t). (24)

The matrix in (24) still has the same dimension as the one in (14), notwithstanding the fact

that the matrix Σ does not vary with time.

The papers that have estimated homoskedastic VARs with a large cross section all use

a different prior for Π:

vec(Π)|Σ ∼ N(vec(µ
Π

),Σ⊗ Ω0), (25)

that is, the prior is conditional on knowledge of Σ, and the matrix Σ is used to elicit the

prior variance ΩΠ = Σ⊗ Ω0. Under these assumptions, equation (24) simplifies to:

Ω̄−1
Π = Σ−1 ⊗

{
Ω−1

0 +

T∑
t=1

XtX
′
t

}
, (26)
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which has a Kronecker structure that permits manipulating the two terms in the Kronecker

product separately (for details, see Carriero, Clark and Marcellino (2015)), which provides

huge computational gains and reduces the complexity to N3. This specification allowed

researchers, starting with Banbura, Giannone and Reichlin (2010), to estimate BVARs with

more than a hundred variables.

However, a specification such as (25) is restrictive, as highlighted by Rothenberg (1963),

Zellner (1973), Kadiyala and Karlsson (1993, 1997), and Sims and Zha (1998), and there

are many situations in which the form (25) can turn out to be particularly unappealing.

First, it prevents permitting any asymmetry in the prior across equations, because the

coeffi cients of each equation feature the same prior variance matrix Ω0 (up to a scale factor

given by the elements of Σ). For example, the traditional Minnesota prior in the original

Litterman (1986) implementation can not be cast in such a convenient form, because it

imposes extra shrinkage on lags of variables that are not the lagged dependent variable in

each equation. As another example, consider the case of a bivariate VAR in the variables

y1 and y2 and suppose that the researcher has a strong prior belief that y2 does not Granger

cause y1, while he has not strong beliefs that y2 itself follows a univariate stationary process.

This system of beliefs would require shrinking strongly towards zero the coeffi cients attached

to y2 in the equation for y1. However, in order to keep the conjugate structure (25) this would

also necessarily require shrinking strongly towards their prior means also the coeffi cients

attached to y2 in the equation for y2, and this is unpleasant since the researcher does not

have such strong priors in this respect.

Second, the Kronecker structure Σ⊗Ω0 in (25) also implies the unappealing consequence

that prior beliefs must be correlated across the equations of the reduced form representa-

tion of the VAR, with a correlation structure proportional to that of the disturbances (as

described by the matrix Σ). Sims and Zha (1998) discuss in depth this issue, and propose

an approach which allows for a more reasonable structure of the coeffi cient prior variance,

and which also attains -like our proposal below- computational gains of order O(N2). Their

approach is based on eliciting a prior featuring independence among the structural equa-

tions of the system, but does not achieve computational gains for an asymmetric prior on

the reduced form equations coeffi cients. 6

6 In particular, the approach of Sims and Zha (1998) achieves conceptual and computational gains by

(i) working on the structural representation of the VAR, in which the matrix of the errors is diagonal (an

identity matrix in their normalization scheme) and (ii) allowing independence across the coeffi cients belonging

to different structural equations, which amounts to the prior variance of the coeffi cients being block-diagonal,

which is desirable as it breaks the unreasonable symmetry across equations implied by the conjugate N-IW

prior. These two ingredients ensure that the posterior variance matrix has a block-diagonal structure, and
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As we shall see, our estimation method solves the problems outlined above, making the

independent N-IW prior applicable in general, regardless of the size of the cross-section.

3 An estimation method for large VARs

In this section we propose a very simple estimation method that solves the problems we

discussed above. It does so simply by blocking the conditional posterior distribution in (10)

in N different blocks. Recall that in the step of the Gibbs sampler that involves drawing Π,

all of the remaining model coeffi cients are given, and consider again the decomposition vt =

A−1Λ0.5
t εt:

v1,t

v2,t

...

vN,t

 =


1 0 ... 0

a∗2,1 1 ...

... 1 0

a∗N,1 ... a∗N,N−1 1




λ0.5

1,t 0 ... 0

0 λ0.5
2,t ...

... ... 0

0 ... 0 λ0.5
N,t




ε1,t

ε2,t

...

εN,t

 , (27)

where a∗j,i denotes the generic element of the matrix A
−1 which is available under knowledge

of A. We will also denote by π(i) the vector of coeffi cients for equation i contained in row i

of Π, for the intercept and coeffi cients on lagged yt. The VAR can be written as:

y1,t = π
(0)
1 +

N∑
i=1

p∑
l=1

π
(i)
1,lyi,t−l + λ0.5

1,t ε1,t

y2,t = π
(0)
2 +

N∑
i=1

p∑
l=1

π
(i)
2,lyi,t−l + a∗2,1λ

0.5
1,t ε1,t + λ0.5

2,t ε2,t

...

yN,t = π
(0)
N +

N∑
i=1

p∑
l=1

π
(i)
N,lyi,t−l + a∗N,1λ

0.5
1,t ε1,t + · · ·+ a∗N,N−1λ

0.5
N−1,tεN−1,t + λ0.5

N,tεN,t,

with the generic equation for variable j:

yj,t − (a∗j,1λ
0.5
1,t ε1,t + ...+ a∗j,,j−1λ

0.5
j−1,tεj−1,t) = π

(0)
j +

N∑
i=1

p∑
l=1

π
(i)
j,l yi,t−l + λj,tεj,t. (28)

Consider estimating these equations in order from j = 1 to j = N . When estimating

the generic equation j the term on the left hand side in (28) is known, since it is given by

therefore achieves computational gains of order N2. However, such strategy still implies that the beliefs

about the reduced form coeffi cients are correlated across equations in a way that depends on the covariance

of the reduced form errors of the model, and gains are not attainable if one wants to impose an asymmetric

prior on these reduced form coeffi cients, as explained in section 5.2 of their paper.

11



the difference between the dependent variable of that equation and the estimated residuals

of all the previous j − 1 equations. Therefore, we can define:

y∗j,t = yj,t − (a∗j,1λ
0.5
1,t ε1,t + ...+ a∗j,,j−1λ

0.5
j−1,tεj−1,t), (29)

and equation (28) becomes a standard generalized linear regression model for the variables

in equation (29), with independent Gaussian disturbances with mean 0 and variance λj,t.

The distribution (10) can be factorized as:

p(Π|A,ΛT , y) = p(π(N)|π(N−1), π(N−2), . . . , π(1), A,ΛT , y)

×p(π(N−1)|π(N−2), . . . , π(1), A,ΛT , y)

...

×p(π(1)|A,ΛT , y), (30)

with generic element:

p(π(j)|π(j−1), π(j−2), . . . , π(1), A,ΛT , y) = p(Π{j}|Π{1:j−1}, A,Φ,ΛT , y)

∝ p(y|Π{j},Π{1:j−1}, A,ΛT )p(Π{j}|Π{1:j−1}),

where Π{j} = π(j)′ denotes the (transposed of the) j-th row of the matrix Π, and Π{1:j−1} all

of the previous 1, ..., j − 1 rows (transposed). The term p(y|Π{j},Π{1:j−1}, A,ΛT ) is the

likelihood of equation j which coincides with the likelihood of the general linear regression

model in (28). The term p(Π{j}|Π{1:j−1}) is the prior on the coeffi cients of the j-th equation,

conditionally on the previous equations. The moments of p(Π{j}|Π{1:j−1}) can be found

recursively from the joint prior (7) using p(Π{j}|Π{1:j−1}) = p(Π{j},Π{1:j−1})/p(Π{1:j−1}).

It follows that using the factorization in (30) together with the model in (28) allows one

to draw the coeffi cients of the matrix Π in separate blocks Π{j} which can be obtained from:

Π{j}|Π{1:j−1}, A,ΛT , y ∼ N(µ̄Π{j} ,ΩΠ{j}) (31)

with

µ̄Π{j} = ΩΠ{j}

{
Ω−1

Π{j}
µ

Π{j}
+

T∑
t=1

Xj,tλ
−1
j,t y

∗′
j,t

}
(32)

Ω
−1
Π{j} = Ω−1

Π{j}
+

T∑
t=1

Xj,tλ
−1
j,tX

′
j,t, (33)

where y∗j,t is defined in (29) and where Ω−1
Π{j}

and µ
Π{j}

denote the prior moments on

the j-th equation, given by the j-th column of µ
Π
and the j-th block on the diagonal
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of Ω
−1
Π . Note we have implicitly assumed here that the matrix Ω−1

Π is block diagonal,

which means that we are ruling out any prior correlation among the coeffi cients belong-

ing to different equations (i.e. p(Π{j}|Π{1:j−1}) = p(Π{j})). This assumption is frequent

in the literature,7 but can be easily relaxed and we discuss how to do so below. There-

fore, the joint posterior distribution of Π can be simulated recursively in separate blocks

Π{1},Π{2}|Π{1},Π{3}|Π{1:2}, ...,Π{N}|Π{1:N−1} using (31). Note that this amounts to simple

Monte Carlo simulation which will produce draws numerically identical to those that would

be obtained using system-wide estimation, meaning that any difference in the simulated

posterior draws will be due to random variation (which eventually vanishes) and rounding

numerical errors.

The dimension of the matrix Ω
−1
Π{j} in (33) is (Np+1), which means that its manipulation

only involves operations of order O(N3). However, since in order to obtain a draw for the full

matrix Π one needs to draw separately all of its N rows, the total computational complexity

of this estimation algorithm is O(N4). This is considerably smaller than the complexity of

O(N6) implied by the standard estimation algorithm, with a gain ofN2. For a model with 20

variables this difference amounts to a 400-fold improvement in estimation time. Where is the

computational gain coming from? In the traditional algorithm the sparsity implied by the

possibility of triangularising the system is not exploited, and all computations are carried out

using the whole vectorized system. In our algorithm, instead, the triangularization allows

one to estimate equations which at most contain Np + 1 regressors, and the correlation

among the different equations typical of SUR models is implicitly accounted for by the

triangularisation scheme.

While prior independence across equations is typical in the most common priors elicited

in the literature, there might be cases in which a researcher wishes to specify priors which

feature correlations across coeffi cients belonging to different equations. Examples in which

a correlation across coeffi cients of different equations might be expected a priori include

rational expectations - present value models such as the expectation theory of the term

structure of interest rates, the uncovered interest rate parity, and the permanent income

hypothesis (see, e.g., Campbell and Shiller 1987). For this case, the general form of the

posterior can be obtained easily using a similar triangularization argument on the joint

7Some widely used priors within the independent N-IW paradigm involve prior correlations among coef-

ficients of the same equations, but not across equations. These include the sum of coeffi cients and unit root

prior proposed by Sims (1993) and Sims and Zha (1998). As we already mentioned, the conjugate prior for

a homoskedastic VAR in (25) does impose prior dependence across equations, but for this case an algorithm

of computational complexity O(N3) is already available.
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prior distribution, and equation (31) generalizes to:

Π{j}|Π{1:j−1}, A,ΛT , y ∼ N(µ̄Π{j|1:j−1} ,ΩΠ{j|1:j−1}) (34)

with

µ̄Π{j|1:j−1} = ΩΠ{j|1:j−1}

{
T∑
t=1

Xj,tλ
−1
j,t y

∗′
j,t + Ω−1

Π{j|1:j−1}µΠ{j|1:j−1}

}
(35)

Ω
−1
Π{j|1:j−1} = Ω−1

Π{j|1:j−1} +

T∑
t=1

Xj,tλ
−1
j,tX

′
j,t, (36)

where µ
Π{j|1:j−1} and ΩΠ{j|1:j−1} are the moments ofΠ{j}|Π{1:j−1} ∼ N(µ

Π{j|1:j−1} ,ΩΠ{j|1:j−1}),

i.e. the conditional priors (for equation j conditional on all of the previous equations) implied

by the joint prior specification. The conditional prior moments can be obtained recursively

using (20) and standard results on multivariate Gaussian distributions:

µ
Π{j|1:j−1} = µ

Π{j}
+ ΩΠ{[j][1:j−1]}Ω−1

Π{[1:j−1][1:j−1]}(Π
{1:j−1} − µ

Π{1:j−1}), (37)

ΩΠ{j|1:j−1} = ΩΠ{j} − ΩΠ{[j][1:j−1]}Ω−1
Π{[1:j−1][1:j−1]}Ω

′
Π{[j][1:j−1]} (38)

where ΩΠ{j} denotes the block of ΩΠ corresponding to equation j, ΩΠ{[1:j−1][1:j−1]} denotes

all the blocks on the main block-diagonal, north-west of ΩΠ{j} , and ΩΠ{[j][1:j−1]} denotes all

the blocks to the left of ΩΠ{j} . The computational cost of deriving these conditional prior

moments is negligible as they need to be computed only once outside the main MCMC

sampler. Clearly in case of a prior independent across equations ΩΠ{[j][1:j−1]} is a zero matrix

and these expressions simplify to µ
Π{j|1:j−1} = µ

Π{j}
and ΩΠ{j|1:j−1} = ΩΠ{j} , yielding (32)

and (33).

Most of the priors typically used in the literature are entirely compatible with the algo-

rithm described above, including the Minnesota prior (possibly with cross-variable shrink-

age), the Sims and Zha (1998) priors (including the sum of coeffi cients and dummy initial

observation priors), the steady-state prior of Villani (2009), the long run prior of Giannone

et al. (2016), and theory-based priors such as those of Ingram and Whiteman (1989) and

Del Negro and Schorfheide (2004).

Finally, note that in a homoskedastic model the same reasoning for drawing the coeffi -

cients Π applies, so that the relevant posterior distributions for the Gibbs sampler would

again be given by equation (31), with prior mean and variance given by formulas (32) and

(33) (or (34), (35), and (36) in case of prior dependence), with the only difference being

that the subscript t would be omitted from the volatility terms λj,t. For this reason, the

equation-by-equation step can be also used to estimate large VARs with asymmetric pri-

ors, such as, e.g., the Minnesota prior. For the homoskedastic case Waggoner and Zha

14



(2003) proposed an effi cient Gibbs sampler which is also based on an equation-by-equation

approach, and Koop et al. (2016) proposed to use the method of compression to achieve

computational gains. However these approaches are grounded on the Sims and Zha (1998)

prior specification, and as such they can not handle the case of asymmetric priors for the

reduced form parameters.

3.1 The role of variables ordering

In closing this Section it is worth stressing that expression (27) and the following triangular

system are based on a Cholesky-type decomposition of the variance Σt, but such decom-

position here is simply used as an estimation device, not as a way to identify structural

shocks. Once the posterior draws have been obtained at the end of the MCMC simulations,

any identification scheme can be applied to perform structural analysis, including differ-

ent Cholesky orderings, sign restrictions, and long run restrictions. The implied structural

form matrices can be readily obtained from the reduced form posteriors using the methods

described in Baumeister and Hamilton (2015) and Rubio Ramirez, Wagoner and Zha (2010).

Moreover, note that under knowledge of Σt, the ordering of the variables in the system

does not change the conditional posterior distribution of the reduced form coeffi cients, so

changing the order of the variables is inconsequential to the resulting conditional posterior of

Π. However, note that the latter statement relates to drawing from the conditional posterior

of the conditional mean parameters, when Σt belongs to the conditioning set. One needs also

to keep in mind that the joint distribution of the system might be affected by the ordering of

the variables in the system due to an entirely different reason: the use of the diagonalization

(3) typically used for Σt in stochastic volatility models. Since priors are elicited separately

for A and Λt, the implied prior of Σt will change if one changes the equation ordering, and

therefore different orderings would result in different prior specifications and then potentially

different joint posteriors. This problem is not a feature of our algorithm, but rather it is

inherent to all models using the diagonalization (3).

As noted by Primiceri (2005), this problem will be mitigated in the case (as the one

considered in this paper) in which the covariances A do not vary with time, because the

likelihood will quickly dominate the prior as the sample size increases. This problem can

entirely be avoided by eliciting a prior on the whole matrix Σt rather than proceeding

with its diagonalization, for example Shin and Zhong (2016) do so using the multivariate

stochastic volatility specification of Philipov and Glickman (2006). Finally, it is important

to note that this problem is entirely absent in the case of the homoskedastic model, since in
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such a case one can easily specify the prior directly on the whole matrix Σ.8

3.2 MCMC samplers

To conclude, we summarize the steps involved in the MCMC samplers for the BVAR with

stochastic volatility and for a BVAR with asymmetric priors, highlighting how all the existing

algorithms can be easily modified to include our equation-by-equation step in place of the

standard system-wide step for drawing the VAR conditional mean coeffi cients.

3.2.1 Gibbs sampler for large VAR with stochastic volatility

We estimate the BVAR model with stochastic volatility (BVAR-SV) with a Gibbs sampler.

Let sT denote the states of the mixture of normals distribution used in the Kim, Shephard,

and Chib (1998) algorithm, and recall that Θ denotes all the model coeffi cients, while yT

and ΛT denote the full time series of the data and states.

The Gibbs sampler draws in turn from the conditionals p(ΛT |Θ, sT , yT ) and p(Θ, sT |ΛT ,yT ).

Step 1: Draw from p(ΛT |Θ, sT , yT ) relying on the state space representation described

above and the Kalman filter and simulation smoother of Carter and Kohn (1994).

Step 2: Draw from p(Θ, sT |ΛT ,yT ) relying on the factorization p(Θ, sT |ΛT ,y) ∝ p(sT |Θ,ΛT ,y)·
p(Θ|ΛT ,y), that is by (i) drawing from the marginal posterior of the model parameters

p(Θ|ΛT ,yT ) and (ii) drawing from the conditional posterior of the mixture states p(sT |Θ,ΛT ,yT ).

The marginal posterior p(Θ|ΛT ,yT ) is sampled by further breaking the parameter block

into pieces and drawing from the distributions of each parameter piece conditional on the

other parameter pieces (steps 2a-2c below), while draws from p(sT |Θ,ΛT ,yT ) (step 2d) are

obtained using steps similar to those described in Primiceri (2005). In more detail, the

sub-steps used to produce draws from p(Θ, sT |ΛT ,yT ) are as follows.

Step 2a: Draw Φ conditional on the data and ΛT , using the conditional (IW) distribution

for the posterior given in (12).

Step 2b: Draw the matrix of VAR coeffi cients Π equation by equation, conditional on

the data, A and ΛT , using the conditional (normal) distribution for the posteriors given in

equation (31) and the factorization (30).

Step 2c: Draw the elements of the matrix A conditional on the data, Π and ΛT , using

the conditional distribution for the posterior given in (11).

8Our use of the diagonalization (19) in describing the homoskedastic system is purely for the sake of

consistency in notation with the more general time varying model. In practice, for an homoskedastic VAR

the diagonalization (19) is not necessary, and the matrix Σ is estimated in a single step.
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Step 2d: Draw the states of the mixture of normals distribution sT conditional on the

data, ΛT , and the parameter block Θ.

Alternatively, if the innovations to volatility are assumed to be uncorrelated, one can

use the Cogley and Sargent (2005) approach to draw the volatility states ΛT . In such case

there is no need to introduce the mixture states sT and therefore step 2d is not necessary

while step 1 uses an independence Metropolis step such as the one described in Cogley and

Sargent (2005). Also, with independence, the IW step for drawing Φ would be replaced by

a step to loop over the N variables to draw each element on the diagonal Φ.

Note that the only difference between this algorithm and the standard algorithm used

in most implementations of VARs with stochastic volatility is in step 2b, which here is

performed equation by equation. This means that if a researcher already has a standard

algorithm, its computational effi ciency can be easily improved by simply replacing the tra-

ditional system-wide step to draw Π with step 2b.

3.2.2 Gibbs sampler for large VAR with asymmetric prior

In the case of a homoskedastic model with an asymmetric prior the Gibbs sampler works as

follows.

Step 1: Draw the matrix of VAR coeffi cients Π equation by equation, conditional on the

data, A, and Λ using the conditional (normal) distribution given in equation (31) and the

factorization (30).

Step 2: Draw the matrix Σ conditional on the data and Π, using the conditional (IW)

distribution for the posterior given in (23), and derive the matrices A−1 and Λ using the

decomposition in equation (19).

Note that the only difference between this algorithm and the standard algorithm used,

e.g., in Kadiyala and Karlsson (1997) for the independent Normal-Wishart prior is in step

1, which here is performed equation by equation. This means that if a researcher already

has a standard algorithm, its computational effi ciency can be easily improved by simply

replacing the traditional system-wide step to draw Π with step 1 above. Also, note that the

decomposition (19) is only used as a triangularization device, and not to specify the priors,

therefore the problem of the influence of equation ordering on the joint posterior is absent

in the homoskedastic case.
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4 A numerical comparison of the estimation methods

In this section we compare the proposed triangular algorithm with the traditional system-

wide algorithm for estimation of the VAR in (1)-(2).

4.1 Computational complexity and speed of simulation

First, we compare the results obtained by using either algorithm as the dimension of the

cross section N increases. We use data taken from the dataset of McCracken and Ng (2015)

(MN dataset), at monthly frequency, from January 1960 to December 2014. The data are

transformed as in McCracken and Ng (2015) to achieve stationarity and their short acronyms

are listed in Table 1.

We start by simply comparing the posterior estimates obtained using the two alternative

algorithms, focussing on a medium-sized system of 20 variables and 13 lags. The 20 variables

we select for this exercise are identified by a star in Table 1, and they include a selection of

the most widely followed, aggregate time series in the MN dataset. Figure 1 presents the

impulse response functions to a monetary policy shock defined as a shock to the federal funds

rate obtained using the two alternative algorithms, based on 5000 draws from the posterior

distribution after 500 draws of burn-in. Of course, the two algorithms produce the same

results, and any residual difference is due to sample variation and is bound to disappear as

the number of replication increases.9 A similar picture comparing the (time series of) the

distributions of the time-varying volatilities shows completely indistinguishable results, and

for this reason we omit it.

Importantly, though, the estimation of the model using the traditional system-wide

algorithm was about 261 times slower. This represents a substantial improvement in the

ease of estimating and handling these models, which is relevant especially in consideration

of the fact that models of this size have been markedly supported by the empirical evidence

in contributions such as Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and

Marcellino (2015), Giannone, Lenza, and Primiceri (2015) and Koop (2013).

Figure 2 further illustrates the computational gains arising from the use of the trian-

gular algorithm. The top panel shows the computational time (on a 3.5 GHz Intel Core

i7) needed to perform 10 draws as a function of the size of the cross section using the tri-

angular algorithm (blue line) and the system-wide algorithm (red line). As is clear, the

computational gains grow nonlinearly and become already substantial with N > 5. The

9We repeated the exercise shutting down the random variation, i.e. using exactly the same random seed

for the two algorithms, and the results exactly coincide besides minimal numerical errors.
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bottom panel compares the gain in theoretical computational complexity (black dashed line

- which is equal to N2) with the actual computational time. As is clear, for smaller systems

the computational gains achieved are below the theoretical ones, but this is due to all the

other operations involved in the estimation rather than the core computations involving the

inversion of the coeffi cients’posterior variance matrix.

In order to explore what happens for cross sections larger than N = 10, Figure 3 extends

the results of Figure 2 up to N = 40. These results are computed by including additional

variables from the MN dataset. Since the computational gains become so large that they

create scaling problems, results in this Figure are displayed using a logarithmic vertical axis.

As is clear, the computational gains from the triangular algorithm grow quadratically, and

after N = 25 they become even larger than the theoretical gains, which we attribute to the

fact that for such large systems the size of the operations is so large that it saturates the

CPU computing power.

Indeed, we do not extend this comparison to N = 125, which is the size used in the

empirical application we present below in Section 5, because for a model of this size the

system-wide algorithm would be extremely computationally demanding: a scalar number

stored in double-precision floating-point format requires 8 bytes, and for a system N =

125 the size of the covariance matrix of the coeffi cients is of dimension 203250, which would

require about 330 GB of RAM (2032502 × 8/109).10

4.2 Convergence and mixing

Clearly, as shown in Figure 1, the traditional step-wise and the proposed triangular algorithm

produce draws from the same posterior distribution. It could be argued that - as long as

we have an increasing computing power - using the triangular algorithm only achieves gains

in terms of speed. However, it is important to stress that - regardless of the power of the

computers used to perform the simulation - the triangular algorithm will always produce

many more draws than the traditional system-wide algorithm in the same unit of time. This

has important consequences in terms of producing draws with good mixing and convergence

properties.

To illustrate this point, we consider the quality of the draws that we can obtain from

the two algorithms within a given amount of time. Specifically, for the 20-variable model

with Minnesota prior and stochastic volatility described in the previous subsection, we first

run the system-wide algorithm and produce 5000 draws from it and record the total time

needed to produce these draws. Then, we run our triangular algorithm for the same amount

10For a reference, consider that most desktops nowadays have either 8 or 16 GB of RAM.
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of time, and out of all the draws produced in this time interval, which are 261 times more

– since our algorithm is about 261 times faster – we perform skip-sampling by saving only

each 261-th draw. Obviously, this results in the same number of final draws (5000) but these

draws have dramatically improved convergence and mixing properties. Figure 4 plots the

Ineffi ciency Factors of 5000 draws obtained by running the two alternative algorithms for

the same amount of time. As is clear, the Ineffi ciency Factors produced by the triangular

algorithm are way lower than those obtained by the system-wide algorithm. The triangular

algorithm can produce draws many times closer to i.i.d. sampling in the same amount of

time. Being closer to i.i.d sampling, the draws from the triangular algorithm feature better

convergence properties. Instead, the system-wide algorithm is slower to converge (in a unit

of time), especially so for the coeffi cients related to volatility (the innovations to volatility

and the volatility states).

Figure 5 illustrates the recursive means for some selected coeffi cients and shows that the

triangular algorithm with split sampling reaches convergence much faster than the system-

wide algorithm, and this pattern is particularly marked for the volatility component of the

model. In the figure, both algorithms are initialized at the same value, given by the prior

means and variances of the coeffi cients.

Since these gains increase nonlinearly with the system size, we conclude that, for fore-

casting or structural analysis with medium and large BVARs, our estimation method based

on the triangular algorithm offers computational gains large enough that many researchers

should find it preferable. This should be especially true in forecasting analyses that involve

model estimation at many different points in time.

5 A large structural VAR with drifting volatilities

In this Section we illustrate how our estimation method based on the triangular algorithm

can be used to estimate a very large BVAR with drifting volatilities and asymmetric priors.

We consider a VAR with 125 variables, which includes all of the variables considered by

McCracken and Ng (2015) with the exception of housing permits and their disaggregate

components, which we exclude since these variables produced problems of collinearity.

We use a specification with 13 lags and the prior mean and variance of the coeffi cients

set using an independent Normal-Wishart prior, which reflects the prior mean and variances

of the original Minnesota prior. This means that we do impose cross-variable shrinkage, so

the prior is asymmetric and could not be cast in the form (25). Furthermore, all of the

errors feature stochastic volatility.
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The total number of objects to be estimated is extremely large: 203250 mean coeffi cients,

7750 covariance coeffi cients, 125 latent states (each of length T ), and 7875 covariances of

the states. Despite the huge dimension of the system, our estimation algorithm can produce

5000 draws (after 500 of burning in) in just above 7 hours on a 3.5 GHz Intel Core i7.

Figure 6 provides convergence diagnostics (Ineffi ciency Factors and Potential Scale Re-

duction Factors) on the various parameters and latent states. As is clear from the figure,

once a skip-sampling of 5 is performed (leaving 1000 clean draws) the algorithm has good

convergence and mixing properties. Note that, with a model this large, skip-sampling greatly

reduces storage costs.

5.1 Volatilities

Figures 7 and 8 graph the estimated volatilities for, respectively, slow and fast variables,

where the classification of fast and slow is as close as possible to Bernanke, Boivin and

Eliasz (2005, BBE). It turns out that there is substantial homogeneity in the estimated

volatility patterns for variables belonging to the same group, such as IP and PPI components

or interest rates at different maturities, but there is some heterogeneity across groups of

variables. Moreover, while the Great Moderation starting around 1985 is evident in most

series, the effects of the recent crisis are more heterogeneous. In particular, while volatility

of real variables, such as IP and employment, and financial variables, such as stock price

indexes, interest rates and spreads, goes back to lower levels after the peak associated with

the crisis, there seems to remain a much higher level of volatility than before the crisis in

price indicators, in particular in PPI and its components and also in several CPI components

as well as in monetary aggregates, but also in housing starts. Overall, the first principal

component of all the estimated volatilities explains about 45% of overall variance, and the

first three 73%, confirming that commonality is indeed present but idiosyncratic movements

also matter (as in the GFSV specification of Carriero et al. (2012) and the factor volatility

specification of Carriero et al. (2016)).

5.2 Impulse responses

Figures 9 and 10 present the estimated impulse response functions to a unitary shock to the

federal funds rate, replicating in our context the analysis of Bernanke, Boivin and Eliasz

(2005), based on a constant parameter FAVAR, and that of Banbura, Giannone and Reichlin

(2010) based on a large VAR with homoskedastic errors. For identification, the federal funds

rate is ordered after slow-moving and before fast-moving variables.

The impulse responses present patterns in line with economic theory, with a significant
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deterioration in real variables such as IP, unemployment, employment and housing starts,

only very limited evidence of a price puzzle, with most price responses not statistically

significant, a significant deterioration in stock prices, a less than proportional increase in

the entire term structure, which leads to a decrease in the term spreads, progressively

diminishing over time, and a negative impact on the ISM indexes. Overall, the responses are

in line with those reported in Banbura, Giannone and Reichlin (2010) since, as we have seen,

the presence of heteroskedasticity does not affect substantially the VAR coeffi cient estimates,

but it matters for calculating the confidence bands and understanding the evolution of the

size of the shock (and therefore of the actual responses that are proportional to the actual

size of the shock) over time.

Stochastic volatility would also matter for variance decompositions, omitted here in the

interest of brevity.

5.3 The factor structure of time varying volatilities

The joint posterior of the model coeffi cients also provides us with an estimate of the matrix

Φ, which describes the covariance structure of the shocks hitting the panel of volatilities. It

is an interesting question to look how these shocks are related to different types of variables

in the system. To do so, we have performed a Principal Component (PC) analysis on the

posterior mean of Φ, and we have collected the loadings associated with the first 5 principal

components in Figure 11. The figure shows that the panel of volatilities is largely driven by

two shocks, the first impacting the volatilities of all variables in the panel and explaining the

largest part (73%) of the total variation in the volatilities, while the second shock, explaining

a further 19% of variation, is mostly impacting financial variables. A third shock accounts

for only 2.6% of residual variation. This result shows that movements in the volatilities of

macroeconomic variables are largely driven by two main shocks, which can be interpreted as

representing macroeconomic uncertainty and financial uncertainty. This argument is further

developed in Carriero et al. (2016).

Furthermore, it is possible to perform PC analysis on the volatility states. Conceptually,

these represent the static factors corresponding to the two dynamic factors highlighted

above. The PC analysis results are displayed in Figures 12 and 13 and show that 3 factors

are suffi cient to explain about 73% of the total variation in the volatilities, with the first

factor accounting for about 45%, the second for about 15%, and the third for about 12%.

Interestingly, such factors can be clearly linked to specific groups of macroeconomic data.

A first factor (blue in Figure 13) mainly loads on real activity variables (see the groupings

in Figure 12), and its fluctuations induce the pattern in all the variables included in this
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group (these are the first 52 volatilities in Figure 7). A second factor (red in Figure 13)

mainly loads on prices and monetary aggregates (see the groupings in Figure 12), and its

fluctuations induce the pattern in all the variables included in this group (these are the

volatilities in positions 53 to 72 and 105 to 118 in Figures 7 and 8). A third factor (green

in Figure 13) mainly loads on the FFR and other interest rates and financial variables (see

groupings in Figure 12) and its fluctuations induce the pattern in this group (these are the

volatilities 73 to 104 in Figure 8).

The results of this analysis open the way to build a model in which volatilities follow a

factor structure, with different factors representing different types of uncertainty, a strategy

which we pursue in Carriero, Clark and Marcellino (2016).

6 The role of model size and stochastic volatility for forecast-

ing

The previous section showed that a large BVAR with time varying volatility can offer several

insights regarding the impulse propagation mechanism of monetary policy shocks and the

underlying shocks driving the volatilities of all variables. Besides structural analysis, models

are commonly used to forecast the future behavior of macroeconomic time series, and they

are compared on the basis of their forecasting performance. In this section we investigate

the implications that cross-sectional size and time varying volatilities have on the out of

sample forecasting performance of a VAR.11

We perform a recursive pseudo out of sample forecasting exercise to study the effects

that time variation in volatility and the use of a large information set have on the precision

of density and point forecasts of macroeconomic variables. The out of sample exercise

is performed recursively, starting with the estimation sample 1960:3 to 1970:2 (ten years

of monthly data) and ending with the estimation sample 1960:3 to 2014:5. We compute

forecasts up to 12 steps ahead; therefore the forecasting samples range from 1970:3-1971:2

to 2014:6-2015:5, for a total of 531 sets of 12-step ahead forecasts.

We consider four models. The first model is a small homoskedastic VAR including the

growth rate of industrial production (∆ ln IP ), the inflation rate based on consumption

expenditures (∆ lnPECEPI) and the effective Federal Funds Rate (FFR). The second

11As noted by Diebold (2013) pseudo-out of sample forecasting exercise are not superior to several others

model comparison techniques, notably F-tests and posterior odds, and are actually less powerful. However,

performing posterior odds analysis presents problems in the case at hand because for the independent N-IW

prior used in this paper the marginal likelihood is not available in closed form and its computation would

require an extremely demanding Monte Carlo integration.
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model is also a homoskedastic VAR, but includes the 20 macroeconomic variables identified

by a star in Table 1 (these are the same variables used in the numerical comparison of Section

4). As this model has been shown to be very competitive in forecasting in papers such as

Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and Marcellino (2015), Giannone,

Lenza, and Primiceri (2015) and Koop (2013) we set this as our benchmark, namely, we will

provide results relative to the performance of this model. The third model instead is still

based on a tri-variate specification, but it allows for time variation in volatilities. Also small

models of this type have received support in the literature in terms of their forecasting

performance; see, e.g., Clark (2011), Clark and Ravazzolo (2015), Cogley, Morozov, and

Sargent (2005), and D’Agostino, Gambetti and Giannone (2013). Moreover, models of this

scale have been used in the structural analyses of Cogley and Sargent (2005) and Primiceri

(2005). The fourth model includes both time variation in the volatilities and a large (20

variables) information set, thereby using both the ingredients that seem to be important to

improve density and point forecasts. This model can be rather easily estimated using the

approach proposed in this paper.12

A priori, we expect the inclusion of time variation in volatilities to improve density

forecasts via a better modeling of error variances, while the use of a larger dataset should

improve point forecasts via a better specification of the conditional means. However, this

is not the whole story, as there are also interaction effects: a better point forecast should

improve the density forecast as well, by centering the predictive density around a more

reliable mean, and time varying volatilities should improve the point forecasts - especially

at longer horizons - because the heteroskedastic model will provide more effi cient estimates

(through a GLS argument) and a therefore a better characterization of the predictive den-

sities, with the predictive means gradually deviating from their homoskedastic counterparts

as the predictive densities cumulate nonlinearly with the forecast horizon.

Indeed, this is precisely the pattern we find in the data. Figure 14 displays the Root

Mean Squared Forecast Error (RMSFE) relative (ratio) to the benchmark (the 20 variables

homoskedastic VAR), so that a value below 1 denotes a model outperforming the benchmark.

The large homoskedastic model outperforms the small homoskedastic model for all variables

at all horizons, suggesting that the inclusion of more data does improve the specification of

the conditional means and therefore the point forecasts. The inclusion of time variation in

volatilities consistently improves the performance of the small model, and for the FFR it also

outperforms the benchmark at long horizons. However, the small heteroskedastic model is

12Naturally, larger forecasting models could be also used, but as we recursively repeat the exercise many

times this becomes computationally demanding.
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still largely dominated by the benchmark at short forecast horizons. The model with both

time varying volatilities and a large cross section instead provides systematically better

point forecasts than the benchmark (and than the other models), with the only exception

of inflation for the 1, 2, and 3 step-ahead horizons.

Figure 15 presents results for density forecasts, based on the average log scores. The

Figure displays the average log scores relative (difference) to the benchmark (the 20 vari-

ables homoskedastic VAR), so that a value above 0 denotes a model outperforming the

benchmark. Both homoskedastic specifications perform quite poorly in density forecasting,

while the heteroskedastic specifications can achieve very high gains. Moreover, the large

heteroskedastic system consistently outperforms the small heteroskedastic system. In com-

bination with the results presented for point forecasts, this result suggests that while both

the heteroskedastic models provide a better assessment of the overall uncertainty around

the forecasts, the model based on the large cross section centers such uncertainty around a

more reliable mean, thereby obtaining further gains in predictive accuracy.

So far the discussion has been focused only on the three variables industrial production,

inflation, and Federal Funds rate. For the larger specifications (the BVARs with 20 variables)

is of course possible to compare forecasts for all the variables included in the cross section.

Results of this comparison are displayed in Figure 16 (for point forecasts) and Figure 17

(for density forecasts). In these graphs each subplot corresponds to a different variable.

In all of the subplots in Figure 16 the x axes measure the RMSFE obtained by the

large BVAR when we allow for stochastic volatility, while the y axes measure the same loss

function (RMSFE) obtained by the homoskedastic specification. Each point corresponds to

a different forecast horizon, and when a point is above the 45 degree line this shows that the

RMSFE of the heteroskedastic specification is smaller, indicating that the inclusion of vari-

ation in the volatility improved point forecasting performance. As is clear in the graph, in

several instances the models produce similar point forecasts. However, as the forecast hori-

zon increases (which can be indirectly inferred from the graph as in general higher RMSFE

correspond to longer forecast horizons) the specification with variation in the volatilities

tends to outperform the homoskedastic version of the model. The mechanism at play is as

follows: the heteroskedastic model provides more effi cient estimates and a therefore a better

characterization of the predictive densities, while the homoskedastic model is misspecified

and therefore provides an inferior characterization of the predictive densities. At short fore-

cast horizons this does not have much effect on point forecasts (note that under knowledge

of the coeffi cients the 1- step ahead the point forecasts would be exactly the same under the

two models), but as the forecast horizon increases, the predictive densities cumulate non-
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linearly and therefore the misspecification of the homoskedastic model increasingly reduces

the relative accuracy of the point forecasts.

We now turn to density forecasts, which are described in Figure 17. In the subplots in

Figure 17 the x axes measure the (log) density score obtained by the large BVAR when

we allow for stochastic volatility, while the y axes measure the same gain function (score)

obtained by the homoskedastic specification. Each point corresponds to a different forecast

horizon, and when a point is below the 45 degree line this shows that the score of the het-

eroskedastic specification is larger, indicating that the inclusion of variation in the volatility

improved density forecasting performance. In Figure 17 the improvement coming from the

introduction of time variation in the volatilities is striking and it is common to all variables,

with only a handful of exceptions. Clearly, stochastic volatility improves the overall assess-

ment of uncertainty with respect to the homoskedastic model, and it does so both directly,

by simply using the correct variance around the point estimates, and indirectly, by centering

the densities towards improved point forecasts (as documented in Figure 16).

To summarize, the joint use of time varying volatilities and a large cross-section produces

forecasting gains larger than those obtained by using either of this two ingredients separately.

7 Conclusions

Recent research has shown that a reliable Vector Autoregressive model (VAR) for forecasting

and structural analysis of macroeconomic data requires a large set of variables and modeling

time variation in their volatilities. Yet, there are no papers jointly allowing for stochastic

volatilities and large datasets, due to computational complexity. Moreover, homoskedastic

VAR models for large datasets so far restrict substantially the allowed prior distributions

on the parameters.

In this paper we have proposed a new estimation method for large VARs with possibly

asymmetric priors and drifting volatilities. The method is based on a straightforward tri-

angularization of the system, and it is very simple to implement. Indeed, if a researcher

already has algorithms to produce draws from a VAR with an independent N-IW prior and

stochastic volatility, only the step in which the conditional mean parameters are drawn

needs to be modified, which can be easily done with a few lines of code.

The algorithm ensures computational gains of order N2 with respect to the traditional

algorithm used to estimate VARs with time varying volatilities, and because of this it is

possible to achieve much better mixing and convergence properties compared to existing

algorithms and substantial computational gains. This makes estimation of this type of model
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doable regardless of the dimension of the system. Given its simplicity and the advantages

in terms of speed, mixing, and convergence, we argue that the proposed algorithm should

be preferred in empirical applications, especially those involving large datasets.

Moreover, our approach makes viable the estimation of models with independent N-IW

priors of any model size. Since the independent N-IW prior is much more flexible than the

conjugate N-IW prior, we argue that it should be preferred in most situations, including

some in which the model is homoskedastic. The conjugate N-IW prior imposes restrictions

on the prior covariance matrix of the coeffi cients which can be in many instances undesirable,

since it implies that the prior precision has to be the same (up to a scaling factor) in all

equations, and that coeffi cients belonging to different equations have to be correlated with

a correlation structure proportional to that of the error variance.

We have presented a numerical example to show that the new and old algorithms lead

to draws from the same posterior distribution, apart from random deviations, and so for

example also lead to the same impulse response functions and forecasts. The only, but main,

difference is computational time and effi ciency.

Then, we have illustrated the empirical application of the new estimation method by

studying the effects of a monetary policy shock in a large Vector Autoregression with sto-

chastic volatilities, finding interesting patterns in the latter, in the response functions, and

in the time-varying size of the shock.

Finally, we have shown how, jointly, the inclusion of time varying volatilities and the

use of a large data-set improve point and density forecasts for macroeconomic and finan-

cial variables, with gains that are larger than what would be obtained by using these two

ingredients separately.

In closing we want to highlight two caveats. First, while the independent N-IW prior

avoids putting on the data the straightjacket that the conjugate N-IW does, the compu-

tation of the marginal likelihood is not as simple, while for the conjugate N-IW prior the

marginal likelihood is available in closed form (for homoskedastic models). Second, while the

model with stochastic volatility does produce dramatically superior density forecasts than

its homoskedastic counterpart, some work is still needed to improve the density forecasts in

the exact periods a large swing in volatilities takes place. Both these issues require further

research.
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8 Appendix

8.1 Specific on priors

In this section we discuss in detail the priors used for the BVARs estimated in the paper.

The priors for the coeffi cients blocks of the model are as follows:

vec(Π) ∼ N(vec(µ
Π

),ΩΠ); (39)

A ∼ N(µ
A
,ΩA); (40)

Φ ∼ IW (dΦ · Φ, dΦ). (41)

The prior moments of the VAR coeffi cients µ
Π
and ΩΠ are specified along the lines

of the Minnesota prior beliefs. In particular, for the conditional mean coeffi cients, we set

a prior mean of 0 for the intercepts Π0 and for all the coeffi cient matrices in the matrix

polynomial Π(L) for L = 2, ..., p. The lag-1 coeffi cient matrix Π1 is set to a diagonal matrix

with diagonal elements being either 1 or 0 depending on the degree of persistence (high

or low) of the series included in the estimation. The prior variances are specified as in

Litterman’s (1979) original implementation of the Minnesota prior, which includes cross-

variable shrinkage. In particular we set ΩΠ such that:

V ar(Π
(ij)
l ) =

λ2
1λ2

lλ3

σi
σj
, l = 1, ..., p (42)

where Π
(ij)
l denotes the element in row i and column j of the matrix Πl. For the intercepts

we elicit an uninformative prior by setting the prior variance equal to 100. The parameter λ1

measures the overall tightness of the prior and is set to 0.05. The parameter λ2 implements

additional shrinkage on lags of other variables than for lags of the dependent variable and

we set it to 0.5. The parameter λ3 measures determines the rate at which the prior variance

decreases with increasing lag length and is set to 2 (quadratic decay). To set the scale

parameters σi we follow common practice (see e.g. Litterman, 1986; Sims and Zha, 1998)

and set it equal to the standard deviation of the residuals from a univariate autoregressive

model.

The matrix A collects the covariances of the errors. We set each individual element of

this matrix to be a-priori normally distributed with means collected in the vector µ
A
and

variances collected in the vector ΩA. The prior means µA are all set to 0 while the prior vari-

ance is uninformative, set to a diagonal matrix with diagonal elements 106 (this implements

a virtually flat prior on these coeffi cients).

The matrix Φ is the variance matrix of the innovations to the volatilities. It is set a-priori

to an Inverse Wishart distribution with scale dΦ ·Φ and dΦ degrees of freedom. The degrees
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of freedom are set to N + 2 which provides the least informative proper prior. The scale

matrix is set to an identify matrix.

8.2 Volatility estimation

Our treatment of volatility draws on Primiceri’s (2005) implementation of the Kim, Shep-

hard, and Chib (1998) algorithm (hereafter, KSC algorithm). As indicated above, vt denotes

the reduced form residuals of the VAR and ṽt = Ãvt are the rescaled residuals, which obey

equation (4). We further define v∗j,t = ln(ṽ2
j,t + c̄), where c̄ denotes an offset constant used

in the KSC algorithm. With this notation, we can establish the measurement equation of a

state-space system with non-Gaussian errors:

v∗j,t = lnλj,t + ln ε2j,t, j = 1, . . . , N. (43)

The transition equations are given by (5). In the equations above ln ε2j,t is not Gaussian, but

εj,t is a Gaussian process with unit variance, and with this setup we can use the mixture of

normals approximation of KSC to estimate volatility with a Gibbs sampler, first drawing

the states of the mixture and then drawing volatility conditional on the states. Primiceri

(2005) and Del Negro and Primiceri (2014) detail the steps required. Alternatively, if the

innovations to volatility are assumed to be uncorrelated (Φ diagonal), one can use the Cogley

and Sargent (2005) approach to draw the volatility states.

The prior specification is completed by eliciting a prior for the initial values of the state

variables Λt, which we set to independent Gaussian distributions with mean 0 and variance

100.
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Table	1:	Variables	used	in	the	125-dimensional	VAR	with	Minnesota	prior	and	stochastic	volatility	
(a	star	indicates	inclusion	in	the	20-variable	system)	

	
	
Slow	variables		 		

		 variable	 mnemonic	
1	 Real	Personal	Income*	 RPI	
2	 RPI	ex.	Transfers	 W875RX1	
3	 Real	PCE*	 DPCERA3M086SBEA	
4	 Real	M&T	Sales*	 CMRMTSPLx	
5	 Retail	and	Food	Services	Sales	 RETAILx	
6	 IP	Index*	 INDPRO	
7	 IP:	Final	Products	and	Supplies	 IPFPNSS	
8	 IP:	Final	Products	 IPFINAL	
9	 IP:	Consumer	Goods	 IPCONGD	

10	 IP:	Durable	Consumer	Goods	 IPDCONGD	
11	 IP:	Nondurable	Consumer	Goods	 IPNCONGD	
12	 IP:	Business	Equipment	 IPBUSEQ	
13	 IP:	Materials	 IPMAT	
14	 IP:	Durable	Materials	 IPDMAT	
15	 IP:	Nondurable	Materials	 IPNMAT	
16	 IP:	Manufacturing	 IPMANSICS	
17	 IP:	Residential	Utilities	 IPB51222S	
18	 IP:	Fuels	 IPFUELS	
19	 Capacity	Utilization:	Manufacturing*	 CUMFNS	
20	 Help-Wanted	Index	for	US	Help	wanted	indx	 HWI	
21	 Help	Wanted	to	Unemployed	ratio	 HWIURATIO	
22	 Civilian	Labor	Force	 CLF16OV	
23	 Civilian	Employment	 CE16OV	
24	 Civilian	Unemployment	Rate*	 UNRATE	
25	 Average	Duration	of	Unemployment	 UEMPMEAN	
26	 Civilians	Unemployed	<5	Weeks	 UEMPLT5	
27	 Civilians	Unemployed	5-14	Weeks	 UEMP5TO14	
28	 Civilians	Unemployed	>15	Weeks	 UEMP15OV	
29	 Civilians	Unemployed	15-26	Weeks	 UEMP15T26	
30	 Civilians	Unemployed	>27	Weeks	 UEMP27OV	
31	 Initial	Claims	 CLAIMSx	
32	 All	Employees:	Total	nonfarm*	 PAYEMS	
33	 All	Employees:	Goods-Producing	 USGOOD	
34	 All	Employees:	Mining	and	Logging	 CES1021000001	
35	 All	Employees:	Construction	 USCONS	
36	 All	Employees:	Manufacturing	 MANEMP	
37	 All	Employees:	Durable	goods	 DMANEMP	
38	 All	Employees:	Nondurable	goods	 NDMANEMP	
39	 All	Employees:	Service	Industries	 SRVPRD	
40	 All	Employees:	TT&U	 USTPU	
41	 All	Employees:	Wholesale	Trade	 USWTRADE	
42	 All	Employees:	Retail	Trade	 USTRADE	
43	 All	Employees:	Financial	Activities	 USFIRE	
44	 All	Employees:	Government	 USGOVT	
45	 Hours:	Goods-Producing*	 CES0600000007	



46	 Overtime	Hours:	Manufacturing	 AWOTMAN	
47	 Hours:	Manufacturing	 AWHMAN	
48	 Total	Business	Inventories	 BUSINVx	
49	 Inventories	to	Sales	Ratio	 ISRATIOx	
50	 Ave.	Hourly	Earnings:	Goods*	 CES0600000008	
51	 Ave.	Hourly	Earnings:	Construction	 CES2000000008	
52	 Ave.	Hourly	Earnings:	Manufacturing	 CES3000000008	
53	 PPI:	Finished	Goods*	 PPIFGS	
54	 PPI:	Finished	Consumer	Goods	 PPIFCG	
55	 PPI:	Intermediate	Materials	 PPIITM	
56	 PPI:	Crude	Materials	 PPICRM	
57	 Crude	Oil	Prices:	WTI	 oilpricex	
58	 PPI:	Commodities*	 PPICMM	
59	 CPI:	All	Items	 CPIAUCSL	
60	 CPI:	Apparel	 CPIAPPSL	
61	 CPI:	Transportation	 CPITRNSL	
62	 CPI:	Medical	Care	 CPIMEDSL	
63	 CPI:	Commodities	 CUSR0000SAC	
64	 CPI:	Durables	 CUUR0000SAD	
65	 CPI:	Services	 CUSR0000SAS	
66	 CPI:	All	Items	Less	Food	 CPIULFSL	
67	 CPI:	All	items	less	shelter	 CUUR0000SA0L2	
68	 CPI:	All	items	less	medical	care	 CUSR0000SA0L5	
69	 PCE:	Chain-type	Price	Index*	 PCEPI	
70	 PCE:	Durable	goods	 DDURRG3M086SBEA	
71	 PCE:	Nondurable	goods	 DNDGRG3M086SBEA	
72	 PCE:	Services	 DSERRG3M086SBEA	

	 	 	
	 	 		

Fast	variables	 		

		 variable	 mnemonic	
73	 Effective	Federal	Funds	Rate*	 FEDFUNDS	
74	 Starts:	Total*	 HOUST	
75	 Starts:	Northeast	 HOUSTNE	
76	 Starts:	Midwest	 HOUSTMW	
77	 Starts:	South	 HOUSTS	
78	 Starts:	West	 HOUSTW	
79	 Orders:	Durable	Goods	 AMDMNOx	
80	 Unfilled	Orders:	Durable	Goods	 AMDMUOx	
81	 S&P:	Composite*	 S&P	500	
82	 S&P:	Industrials	 S&P:	indust	
83	 S&P:	Dividend	Yield	 S&P	div	yield	
84	 S&P:	Price-Earnings	Ratio	 S&P	PE	ratio	
85	 Switzerland	/	U.S.	FX	Rate	 EXSZUSx	
86	 Japan	/	U.S.	FX	Rate	 EXJPUSx	
87	 U.S.	/	U.K.	FX	Rate*	 EXUSUKx	
88	 Canada	/	U.S.	FX	Rate	 EXCAUSx	
89	 Month	AA	Comm.	Paper	Rate	CPF3M	Comm	paper	 CP3Mx	
90	 3-Month	T-bill	 TB3MS	
91	 6-Month	T-bill	 TB6MS	



92	 1-year	T-bond	 GS1	
93	 5-year	T-bond	 GS5	
94	 10-year	T-bond	 GS10	
95	 Corporate	Bond	Yield	Aaa	bond	 AAA	
96	 Corporate	Bond	Yield	Baa	bond	 BAA	
97	 CP	-	FFR	spread	CP-FF	spread	 COMPAPFFx	
98	 3	Mo.	-	FFR	spread	3	mo-FF	spread	 TB3SMFFM	
99	 6	Mo.	-	FFR	spread	6	mo-FF	spread	 TB6SMFFM	

100	 1	yr.	-	FFR	spread	1	yr-FF	spread*	 T1YFFM	
101	 5	yr.	-	FFR	spread	5	yr-FF	spread	 T5YFFM	
102	 10	yr.	-	FFR	spread	10	yr-FF	spread*	 T10YFFM	
103	 Aaa	-	FFR	spread	Aaa-FF	spread	 AAAFFM	
104	 Baa	-	FFR	spread	Baa-FF	spread*	 BAAFFM	
105	 Money	Stock	 M1SL	
106	 Money	Stock	 M2SL	
107	 Real	M2	Money	Stock	 M2REAL	
108	 St.	Louis	Adjusted	Monetary	Base	 AMBSL	
109	 Total	Reserves	 TOTRESNS	
110	 Nonborrowed	Reserves	 NONBORRES	
111	 Commercial	and	Industrial	Loans	 BUSLOANS	
112	 Real	Estate	Loans	 REALLN	
113	 Total	Nonrevolving	Credit	 NONREVSL	
114	 Credit	to	PI	ratio	 CONSPI	
115	 MZM	Money	Stock	 MZMSL	
116	 Consumer	Motor	Vehicle	Loans	 DTCOLNVHFNM	
117	 Total	Consumer	Loans	and	Leases	 DTCTHFNM	
118	 Securities	in	Bank	Credit	 INVEST	
119	 ISM	Manufacturing:	Production	 NAPMPI	
120	 ISM	Manufacturing:	Employment	 NAPMEI	
121	 ISM:	PMI	Composite	Index	 NAPM	
122	 ISM:	New	Orders	Index*	 NAPMNOI	
123	 ISM:	Supplier	Deliveries	Index	 NAPMSDI	
124	 ISM:	Inventories	Index	 NAPMII	
125	 ISM	Manufacturing:	Prices	 NAPMPRI	
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Figure 1: Impulse responses to a Federal Funds Rate shock, estimated under the system-wide and

triangular algorithms. For both algorithms the red solid line represents the median response, and the

dotted blue lines represent the 16% and 84% quantiles. See Table 1 for a description of the variables.
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Figure 2: Computational time and complexity of the alternative algorithms for a cross section of less

than 10 variables. Computational times are the average time (over 10 independent chains) required

to draw 10 draws on a 3.5 GHz Intel Core i7.
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Figure 3: Computational time and complexity of the alternative algorithms for a cross section of

more than 10 variables, y-axes are in logarithmic scale. Computational times are the average time

(over 10 independent chains) required to draw 10 draws on a 3.5 GHz Intel Core i7.
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Figure 4: Comparison of Ineffi ciency Factors between the system wide and triangular algorithm.

Kernel estimates. Solid, dashed, and dotted lines refer to 4, 8, and 15 percent tapering respectively.

The densities in each sub-plot are computed across the parameters within a given set (from top to

bottom: conditional mean coeffi cients, covariances, states, and covariances of the states). The graphs

on the left refer to the system-wide algorithm, while the graphs on the right refer to the triangular

algorithm.
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gular algorithm. The chains are initialised at the same value (set equal to the priors).
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Figure 6: Convergence diagnostics. Ineffi ciency Factors (IF, panels on the left) and Potential Scale

Reduction Factors (PSRF, panels on the right) of the 125-dimensional VAR coeffi cients and latent

states. Kernel estimates. The densities in each subplot are computed across the parameters within

a given set (from top to bottom: conditional mean coeffi cients, covariances, states, and covariances

of the states).
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Figure 7: Posterior distribution of volatilities (diagonal elements of Σt ), slow variables.
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Figure 8: Posterior distribution of volatilities (diagonal elements of Σt ), fast variables.
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Figure 9: Impulse responses to a monetary policy shock: slow variables.
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Figure 10: Impulse responses to a monetary policy shock: fast variables.
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Figure 11: Principal components loadings of the variance-covariance of the volatilities (matrix Φ).
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Figure 12: Principal components loadings of the volatility states.
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Figure 16: Comparison of point forecast accuracy. Each panel describes a different variable. The x

axis reports the RMSFE obtained using the BVAR with stochastic volatility (heteroschedastic), the

y axis reports the RMSFE obtained using the homoschedastic BVAR. Each point corresponds to a

different forecast horizon from 1 to 12 step-ahead (in most cases, a higher RMSFE corresponds to a

longer forecast horizon).
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Figure 17: Comparison of density forecast accuracy. Each panel describes a different variable. The

x axis reports the (log) density score obtained using the BVAR with stochastic volatility (het-

eroschedastic), the y axis reports the (log) density score obtained using the homoschedastic BVAR.

Each point corresponds to a different forecast horizon from 1 to 12 step-ahead.




