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lationship posited in the Permanent Income Hypothesis; persistence dependence is 
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Persistence Dependence in Empirical Relations

1 Introduction

“It is often useful to regard time series as a combination of transitory stochastic and

more permanent underlying components and to regard the two components as reflecting

two different sets of forces; e.g., purely random measurement errors may have a far larger

impact on the transitory component than on the permanent component. The process of

obtaining serially uncorrelated residuals may in effect simply eliminate the permanent

components, leaving the analyst to study the relation among the stochastic components

of his series, which may be pure noise, when what is of economic interest is the relation

between the permanent components he has discarded in the process of seeking to satisfy

mechanical statistical tests.” Friedman (1988, p. 230)

Empirical studies in economics generally assume linear relationships between variables. There

are many reasons for this: Occam’s razor; the fact that a first order approximation is often satisfac-

tory; the fact that linear tools are more readily available; and so on. Perhaps of chief importance is

this reason: while there are many potential forms of nonlinearity, relatively few are suggested by a

compelling economic theory. Because of the multiplicity of ways in which a time-series relationship

can be nonlinear, a search over a variety of them is bound to detect one form or another, simply by

chance. Thus, if a particular form of nonlinearity is detected based primarily on statistical grounds,

it is reasonable to suspect that it may be artifactual.

In contrast, one particular form of nonlinearity is often well-supported by theory in various

contexts, and usually straightforward to interpret: persistence dependence. This refers to the

notion that the relationship between the more transitory components of two time series is distinct

from the relationship between their more persistent components. As Friedman (1988) and Cochrane

(2012) suggest, measurement error may routinely give rise to persistence dependence, as a given

time series might be plagued by highly transitory noise that is unrelated to other variables. Or

persistence dependence might arise in an economically meaningful fashion, as in the Permanent

Income Hypothesis of macroeconomic consumption theory.

Such persistence dependence gives rise to inference problems that we discuss below. It has not

been addressed much because, until very recently, extant tools were difficult to use and limited in
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their ability to deliver clean and credible inference.

In this paper, we demonstrate that linear econometric analysis can be very misleading in the

presence of persistence dependence. Key relationships can be missed, and it is even possible that

the sign of a coefficient can be deceptive. This is because inference from linear tools is only

valid if the relationship is not persistent-dependent. We demonstrate that the problems with

standard techniques (such as differencing) extend beyond those noted by Friedman (1988) and

Cochrane (2012). Further, we discuss newly-developed techniques that allow one to easily and

gracefully detect, and model, persistence-dependence in the data. We apply these tools to the

compelling example used in Cochrane (2012): the velocity of money. In that paper, Cochrane

demonstrated that first-differencing appears to give rise to misleading results. He suggested using

a levels-specification, with a correction for standard errors, as a superior approach. We provide

a much more thorough explication of the the relationship between velocity and interest rates, a

relationship that the tools used by Cochrane can only hint at.

2 Persistence dependence and linear analysis

2.1 Persistence dependence in economics

Either economic theory or an informal inspection of the data frequently suggests that  and 

have one kind of relationship at high persistence levels (i.e., at low frequencies), but a different

kind of relationship at low persistence levels (i.e., at high frequencies). One prominent theoreti-

cal example is the Permanent Income Hypothesis; it posits that consumption is strongly related

to low-frequency variations in income, whereas high-frequency variations in income do not affect

consumption. But other theoretical examples abound in economics. In the context of monetary

policy, theory dictates that a central bank should not respond to movements in the natural rate

of unemployment — and furthermore, that high-frequency movements in inflation should also be

ignored (see Ashley, Tsang and Verbrugge 2015 for evidence); the standard Phillips curve posits

that inflation itself responds to slack, and hence, does not respond to variations in the NAIRU (see

Ashley and Verbrugge 2013); forward-looking optimizing firms must attempt to distinguish between
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high-frequency and low-frequency movements in demand and cost conditions; and so on. According

to standard macroeconomic theory, the relationship between variables at “business-cycle” frequen-

cies (or the “cyclical components”, in the terminology of Kydland and Prescott 1983) might differ

from the relationship at lower frequencies. Indeed, this notion motivated the development of the

Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997) in 1980, and its subsequent routine use

in business-cycle analysis for decades. (We discuss below why the common practice of examin-

ing the relationship of HP-filtered data does not allow one to credibly draw conclusions about

business-cycle relationships.)

2.2 Persistence dependence and the inadequacy of ordinary linear regression

We here clarify further the meaning of the term “frequency dependence” in the context of a regres-

sion coefficient, to distinguish it from related concepts, and to demonstrate how linear specifications

cannot capture this kind of serial dependence. Ashley and Verbrugge (2009a) observes that a linear

relationship between  and −1 implies that the relationship between  and −1 is the same at

all frequencies; that is, if −1 experiences a one-standard-deviation increase, then  responds in

the same way regardless of whether that one-standard-deviation increase is part of an unusually

persistent movement in −1 or whether it is part of an unusually transient movement in −1.

Now consider the following hypothetical consumption function:

 =  + 1−1 + 2−2 + 3−1 + −1 +  (1)

where  and  are the log of consumption spending and disposable income of individual  in period

,  represents control variables (such as the number of children, etc.), and  is a covariance-

stationary error term. In this model 1 may be interpreted as the “short-run marginal propensity

to consume,” characterizing how consumption spending (on average) responds to fluctuations in

−1. In contrast,
(1+2)

(1−3) might be interpreted as the “long-run marginal propensity to consume,”

in that it represents the eventual total response of consumption to a one unit change in income.

The distinction between 1 and
(1+2)

(1−3) is not frequency-dependence.

Rather, frequency-dependence, of the form asserted by the permanent-income hypothesis, im-

plies that this regression is misspecified: the value of 1 itself depends upon frequency. In particular,
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this hypothesis asserts that consumption should not change appreciably if the previous period’s

fluctuation in income is highly transitory (i.e., high-frequency), whereas consumption should change

significantly if the previous period’s fluctuation in income is part of a persistent (low-frequency)

movement in income. Thus, the inverse of frequency dependence is what we here call “persistence

dependence.” 1, then, should be approximately equal to zero for high frequencies, and close to one

for very low frequencies. Notice that equation (1) contains an implicit assumption which violates

the permanent income theory: a restriction that 1 is the same across all frequencies.
1

When the coefficient on −1, say, is frequency-dependent, it is thus history-dependent; that is,

it depends upon −2, −3, and so forth. Therefore the linear specification in equation (1) must

be incorrect. In that case, inference based upon the linear specification, i.e. equation (1), is clearly

also not correct.

A useful analogy is the standard example of a break in a coefficient. To focus ideas, consider

the simpler consumption model,

 =  + 1−1 + 3−1 +  (2)

The parameter 1 can be interpreted as the conditional expectation −1. But suppose

that the coefficient 1 actually takes on two values: 
∗
1 in the first half of the sample and 

∗∗
1 in the

second half of the sample, for example. Then this regression is clearly mis-specified, and the usual

statistical machinery for testing hypotheses about 1 is invalid. Indeed, the hypotheses themselves

are essentially meaningless, since 1 does not have a single well-defined value to test. Similarly, the

least-squares estimate of 1 is clearly neither a consistent estimator for 
∗
1 nor for 

∗∗
1 . In particular,

if the sign of the relationship is positive in the first part of the sample and negative later on, then

the least squares estimate of 1 might well be close to zero, even if both ∗1 and |∗∗1 | are quite
large.

1One might wonder why this issue does not seem to arise in many theoretical models of consumption.
The explanation is that the filtering problem in these models is trivial: no filtering is necessary, since all
fluctuations in income are treated equivalently. This will be the case when income is specified as a known,
essentially linear stochastic process (such as AR(1) in levels or first differences). Of course, such assumptions
need not hold in reality. For example, some fluctuations in after-tax income are known to be transitory. See
Arellano, Blundell and Bonhomme (2014), who discuss the shortcomings of linear consumption models and
develop a particular nonlinear model which incorporates persistence-dependence in consumption.

6



Persistence Dependence in Empirical Relations

If the value of 1 different at low frequencies than at high frequencies, then all of the same

unhappy properties hold. In particular, the least squares estimator of 1 is an inconsistent estimator

of −1, and — since 1 does not have a unique value — hypothesis tests about 1 are of

doubtful value, and in many instances quite misleading.

2.3 Other tools

Frequency or persistence based decompositions are not, in themselves, new to economics. Beveridge

and Nelson (1981) provide an early example, in which the time series is decomposed into a (‘per-

manent’) integrated — i.e., I(1) — series and a remainder (‘transitory’) covariance stationary series.

This decomposition allows for only two levels of persistence: arbitrarily large and finite. Wavelet

analysis (e.g., Ramsey and Lampart, 1998) provides another example. Wavelet analysis projects

the data on one of several families of time-dependent basis sets, in each of which the persistence

of a fluctuation varies. The choice of which wavelet family to use is not clear, however. Also, the

focus in a wavelet decomposition is on the detection of time-dependent variations in persistence,

with little opportunity for economic interpretation as to how this dependence and variation arise.

A species of what we call ‘pseudo frequency dependence’ in a regression coefficient was

proposed by Geweke (1982), fundamentally based on the cross-spectrum between the an explanatory

variable and the dependent variable. A discussion of this technique is relegated to Appendix 1

below, as this is the analysis of a mathematical decomposition (albeit in the frequency domain) of

a fixed-coefficient linear time-series relationship, rather than the nonlinear frequency dependence

considered here. The estimated gain and phase functions resulting from this kind of analysis are,

in addition to being inconsistently estimated where there is feedback, very difficult to interpret in

economic terms.2

Consequently, we focus below on a method which is fundamentally based on a one-sided band-

pass filtering of the data. However, as explained below, band-pass filtering as currently practiced

cannot be used.

2Granger (1969) notes, “in many realistic economic situations, however, one suspects that feedback is
occurring. In these situations the coherence and phase diagrams become difficult or impossible to interpret,
particularly the phase diagram.”
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2.4 Differencing and persistence dependence

Under persistence dependence, differencing can lead to distorted inference. If the relationship

between two variables is linear, and therefore the same at all frequencies, the estimated dynamic

relationship between these two variables will not be distorted by the first-differencing. But as

Baxter (1994) pointed out, the first-difference filter emphasizes the high-frequency variation in the

data (see Figure 1) at the expense of all other variation. Not only is the zero-frequency component

of the variation removed by first-differencing, but much of the low- and medium-frequency variation

is greatly attenuated, leaving mostly the high-frequency variation in the variable.

Thus, regardless of whether the variables  and −1 are mostly related via their most persistent

components (as in the examples of Friedman 1988 and Cochrane 2012), or alternatively are mostly

related via “business-cycle” components (as in the example of Baxter 1994), a linear regression of a

first-differenced variable  on a first-differenced variable −1 will yield a coefficient estimate that

pertains mainly to the high-frequency relationship between the two variables — which may well be

quite weak.

Figure 1: Squared gain of the first-difference filter.

As noted above, persistence dependence is common in economics. The solution is not “don’t

first difference.” First-differencing is necessary if the data are non-stationary — i.e., I(1) — and failing

to difference in that circumstance leads to the well known “spurious regression” phenomenon with

8



Persistence Dependence in Empirical Relations

regard to any levels variables that are not in a cointegrating relation (if there is one).3 Under

persistence dependence, any analysis that assumes linearity in the relationship is fraught with

danger for both consistent parameter estimation and for statistical inference. Linearity assumes

that the relationship between two variables is the same at all frequencies — that is, for all persistence

levels. If this assumption is violated, then linear tools are not appropriate.

2.5 Two-sided filtering and the problem with feedback

It is natural to consider detecting and modeling frequency dependence in a regression relationship

by repeatedly band-pass filtering both sides of the equation. To this end, excellent band-pass filters

have been developed by Baxter and King (1999), Christiano and Fitzgerald (2003) and Iacobucci

and Noullez (2005). Indeed, the use of these and other two-sided filters is common, particularly

in the RBC literature, ostensibly because researchers wish to focus on the relationship between

variables at business-cycle frequencies. However, there is a pitfall in utilizing such filtering whenever

the relationship involves feedback.

Consider the analysis of possible frequency dependence in the parameter 2 of the following

bivariate equation system:

 = 1−1 + 2−1 +  (3)

 = 1−1 + 2−1 + 

Clearly, this is a feedback relationship only if 2 is nonzero. But note that the  equation implies

that

 = 1−1 + 2−1 + 

= 1−1 + 2 (1−2 + 2−2 + −1) + 

= 1−1 + 21−2 + 22−2 + 2−1 + 

so that  is correlated with −1 if there is feedback from past  to . But, two-sided fil-

tering implies that ∗−1 depends upon  +1 +2 etc., so that ∗−1 is thus correlated with

3See Ashley and Verbrugge (2009b) and Granger, Hyung and Jeon (2010). They show that distorted
inference will occur even for I(0) data, if it is highly persistent and the sample length is not huge.
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−1  +1 +1  which (under two-sided filtering) are correlated with ∗ . Thus, in the pres-

ence of feedback, a two-sided transformation of −1 will in general produce a transformed explana-

tory variable, ∗−1, which is correlated with the tranformed error term, 
∗
 , yielding inconsistent

least-squares parameter estimates (including correlation estimates). Putting this differently, using

a two-sided filter means that one cannot reliably uncover the true relationship between  and .

A one-sided filter is necessary.

A second potential pitfall relates to the filtering problem faced by agents. Frequency dependence

often arises from the intertemporal optimizing behavior of agents facing uncertainty. In real-time,

agents might misinterpret a highly transitory fluctuation as a persistent fluctuation, and might

respond accordingly. A two-sided filter implicitly grants perfect foresight to agents with respect to

this type of filtering problem.

Below we use filtration based on rolling windows moving through the sample data; this ef-

fectively renders our filtering one-sided, and hence still valid in the presence of feedback. Our

approach partitions the sample data on an explanatory variable (and only this variable) into set

of frequency/persistence components which add up to the original sample data for this variable.

Consequently, in our approach, one can simply replace the data on this variable in the original

regression model by a linear form in these persistence components and estimate/test the resulting

new coefficient estimates.4 This makes the approach easy to implement and straightforward to

interpret in economic terms.

3 Methodology: The Ashley/Verbrugge approach

In essence, the Ashley/Verbrugge (2009a) approach consists of applying a one-sided band-pass filter

solely to the explanatory variable — depicted ∆ below — whose coefficient is being examined for

possible frequency dependence. As described below, this filter simultaneously decomposes ∆ into

 separate time series, where the first series
³

{1}


´
corresponds to the lowest (zero) frequency

portion of ∆, the next series
³

{2}


´
corresponds to the next-lowest frequency portion of ∆,

4Further, one can simultaneously partition any number of explanatory variables in any otherwise conven-
tional specification; for example, Ashley et al. (2015) investigate nonlinearity in a Taylor rule, which involves
partitioning both the unemployment rate and the inflation rate.
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and so on, with
P

=1 
{}
 = ∆.

5 Then a regression equation such as ∆ = + ∆−1 +  can

be reformulated as:

∆ = +

X
=1


{}
−1 + 

The coefficient 1 estimates the lowest-frequency relationship between  and . Similarly, the

coefficient  estimates the highest-frequency relationship. A rejection of the hypothesis that

these 1 coefficients are all equal, using the usual F-test, implies frequency dependence in the

relationship.

We provide specifics below on the relatively simple and intuitive set of bandpass filters that

we use here to obtain the  frequency component time series
³

{1}
   

{}


´
from the data on

∆ itself. Like most bandpass filters, this filter is fundamentally two-sided in nature, but (for the

reasons given above) one-sided filtering is needed here. We obtain a one-sided filtering by repeatedly

applying this filter to a set of    sample observations on ∆ at a time. The length of this

subset () is kept constant, but its starting point is repeatedly incremented, moving a ‘rolling

window’ of length  through the sample data set.

Suppose (as is the case in the empirical work below) that  is set equal to 16 quarters, so

that each of these moving windows is 16 quarters in length. And consider the first such window,

consisting of the sample observations of ∆1∆16. Applying  bandpass filters to this window

extracts  time series
¡
1  

2
   




¢
— one time series for each of the  frequency components — with

each of these  time series running from period 1 to period 16. Each of the 1  
2
   


 components

obtained from this 16-month long window depends upon all 16 observations of ∆, reflecting the

two-sided nature of bandpass filtering. But the last observation, dated ‘16,’ depends only upon

data in its own past. This final observation alone is retained; in particular, we set
³

{1}
16   

{}
16

´
equal to

¡
116  


16

¢
, the 16th (last) observation on each of the  frequency component time series

extracted by the bandpass filters from the first window of the sample data, ∆1∆16.

In the next step of the procedure, the window is moved one month farther in the sample, so that

it now contains observations ∆2∆17. Once again,  time series are obtained, this time running

from observation number 2 to observation number 17. As above, we retain only the last observation

5Software to accomplish this decomposition is available from the authors, either as a standalone Windows
executable or as RATS code, which can be easily customized. We discuss the upper bound on  momentarily.
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in each of the  frequency components, i.e.,
³

{1}
17   

{}
17

´
=
¡
117  


17

¢
. Next the window is

again moved ahead one month, to yield the vector
³

{1}
18   

{}
18

´
. This process is continued until

the last observation in the window is ∆ , at which point the  frequency component time series

observations
³

{1}
  

{2}
   

©



ª´
 which run from date  = 16 until date  =  , have been

obtained.6 Notice that at each value of , the vector
³

{1}
  

{2}
   

{}


´
is constructed using only

data from its own past. Thus, this moving window procedure uses a two-sided filter in each window,

but produces frequency components that are, by construction, backward-looking — i.e., the product

of one-sided filtering.

A window size of  allows a partitioning of the data into, at most,
¡

2
+ 1
¢
components; i.e.,

 ≤ ¡

2
+ 1
¢
. Thus a window 16 quarters in length allows for 9 frequency components. The

first of these corresponds to the sample mean of ∆1∆16, i.e., to a frequency of zero. The

next component is comprised of oscillations in the window that occur at a frequency of 216. (As

explained below, the filter we use builds this component from an associated cosine and sine function

at this frequency.) The next frequency component corresponds to frequency 2 (216); the next

to frequency 3 (216); and so forth. The highest-frequency component, 8 (216) = , is just a

sequence of the changes in the series ∆.
7

It is more intuitive to index each of these  components by its reversal period — typically

denoted just ‘period’ — which is defined as 2 times the reciprocal of the frequency; the reversal

period corresponds to the number of months needed for a sinusoid with this frequency to complete

one full oscillation. Thus, the lowest non-zero-frequency
³

{2}


´
corresponds to a period of 16

quarters, and the largest frequency corresponds to a period of 2 quarters. The general idea of the

bandpass filter being described here is that fluctuations in ∆1∆16 that vary quickly — i.e., tend

to self-reverse within a couple of quarters — are mainly placed in the highest-frequency component,


{9}
 . In contrast, fluctuations in ∆1∆16 that vary slowly — i.e., which tend to persist over most

of the 16 quarter window — mainly end up in the lowest non-zero-frequency component 
{1}
 . With

16-quarter moving windows, fluctuations in ∆1∆16 that occur at the seasonal frequency (i.e.,

6Reference to the  matrix defined in equation (5) below shows that the first frequency component

extracted (i.e., 
{1}
16   

{1}
 ), which corresponds to a frequency of zero and the first row of , is here just a

16-quarter backward-looking moving average of ∆.
7See equation (5) below; and see Ashley, Tsang and Verbrugge (2015) for a more detailed account and

an example with a window ten periods in length. Table 4 in the Appendix lists the frequencies and reversal
periods corresponding to a window 16 quarters in length.
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that more or less recur every four quarters) would mainly end up in the frequency component 
{5}
 .8

In principle, one could apply any two-sided bandpass filter within a moving window as described

above. But most available filters only partition the data into two parts, greatly limiting the ability

of the data to speak to the true nature of the frequency dependence in the data, or requiring iterative

use of the filter to obtain frequency components which add up to the original ∆ series. The filter

we use is less sophisticated than, e.g., that of Christiano and Fitzgerald (2003). However, it is

intuitively appealing and has the distinct advantage of automatically yielding a set of  frequency

components that, at each time period , add up to the original series; that is, by construction,


{1}
 + 

{2}
 + + 

{}
 = ∆. This filter was introduced in Tan and Ashley (1999a and 1999b) and

is also discussed in detail in Ashley and Verbrugge (2009a), so we only briefly review it here.

Tan and Ashley (1999a and 1999b) developed a real-valued re-formulation of the Engle’s (1974)

framework. It is based on the ordinary regression model:

 =  +   ∼ 
¡
0 2

¢
(4)

where  is × 1 and, for illustration,  is × 1 (i.e.,  consists of a single time series of length

). Now define a × real-valued matrix  with ( ) element:

 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√


 = 1q
2

cos
h
(−1)



i
 = 2 4 − 2q

2

sin
h
(−1)(−1)



i
 = 3 5 − 1

1√

(−1)+1  = 

(5)

8As the zero-frequency component, 
{1}
 , is just the sample mean of ∆ over the observations in the

window, any component of ∆ which is either actually a constant or varies so slowly so as to not change

appreciably in 16 quarters will have little impact on 
{1}
 . The frequency decomposition must be a bit more

complex than described above, due to what are usually called ‘edge effects.’ When decomposing the ∆
data, it is well known — e.g., see Dagum (1978) or Stock and Watson (1999) — that better results are obtained
by augmenting the window data with projected observations for future periods. We find that at least four
quarters of projected data (or, with monthly data, at least 5 months) are helpful. (Four quarters are used
in the analysis described below.) Thus, for example, with a window length  of 16 quarters, the window

for obtaining frequency components in period + 12 (i.e., for obtaining the vector
³

{1}
+12  

{9}
+12

´
uses 12

quarters of actual data (∆+1 ∆+12) in conjunction with projections of ∆+13∆+16, to yield a

window of length 16 quarters. The frequency components extracted using the window are 
{1}
+12  

{9}
+12,

the 12th element from the window; the components for observation number + 12 are thus still based only
on data up through observation number  + 12. We also use a linear detrending procedure within each
window, to address the fact that the sample data within a relatively short window will appear trended for
some windows.
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It can be shown that  is an orthogonal matrix. Premultiplying the regression model (4) by 

yields

 =  + →  ∗ = ∗ + ∗ ∗ ∼ 
¡
0 2

¢
The dimensions of the of  ∗∗ and ∗ arrays are the same as those of   and  in (4), but

the  components of  ∗ and ∗ and the rows of ∗ now correspond to frequencies instead of time

periods, with the initial row corresponding to the lowest-frequency part of . (Transformation

back into the time domain will occur after the next step.)

Suppose one wishes to decompose frequency dependence between  and . In the frequency

domain, this corresponds to testing whether the coefficient  is the same across the “observations”

of ∗
 in the frequency domain. But one generally wants to conduct regressions in the time domain.

To do so, the Ashley/Verbrugge approach strips apart  into  pieces. The first piece consists of

the first “observation” of . After that, we take pairs of observations; we use pairs because at

a given frequency, there is usually both a sine and a cosine portion. We continue to take pairs

individually, or possibly to group pairs of observations, until it comes to the very last observation.

Hence if  = 4 and  = 6, we would obtain:9⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
1

∗
2

∗
3

∗
4

∗
5

∗
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∗

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
1

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

1∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

∗
2

∗
3

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

2∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

∗
4

∗
5

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3∗


+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

∗
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
4∗


Back-transformation into the time domain is accomplished by pre-multiplying by  , the trans-

pose of . Thus,  ∗ =  , etc. Similarly, we compute 
{}
 = ∗ for each . In each case,

pre-multiplying the column with  yields a time series of length  that corresponds to the fre-

quencies associated with the observations in ∗. Clearly, ∗
 =

P
=1 

{}
 ; the 

{}
 are effectively

band-pass filtered versions of , with two nice properties: they are orthogonal, and they add up

9Note that ∗1 corresponds to a frequency of zero; 
∗
2 and ∗3 correspond to a frequency of 26 and a

period of 6; ∗4 and ∗5 correspond to a frequency of 2 (26) and a period of 3; and ∗6 corresponds to a
frequency of 3 (26) =  and a period of 2. See equation (6) with  = 16, and Table 1 below.
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precisely to . To test for frequency dependence in the regression coefficient on this regressor,

then, all that one need do is test the null hypothesis that 1 = 2 =  = .10

Selecting the number of frequency bands () and the particular set of frequencies to be included

in each band is an important issue. A typical approach in the literature has been to completely

limit consideration to an ad hoc set of frequencies thought to correspond to the ‘business cycle.’11

Here this would correspond to combining several (pairs of) components 
{}
 into one aggregated

‘business cycle’ component, say 
 . If the values of  are the same for all of the values of 

included in this ‘business cycle’ component, then the coefficient  on 
 will be consistently

estimated. But if  actually vary substantially across the values of , then it is clear that no single

estimate of  obtained in this manner can be consistent. Similarly, if a researcher chooses 3

bands (say), and  is inconsistently estimated for each , then one could spuriously find, or fail

to find, a population frequency pattern in  . On the other hand, such aggregation can lead to

coefficient estiamtes which are somewhat inconsistent but more readily interpreted economically;

there is a trade-off in this regard.

Another approach is to choose the number and composition of the frequency bands so as to

minimize an adjusted goodness-of-fit criterion, such as the BIC. Such a procedure would require

Monte Carlo simulation of the sampling distribution of the  statistic for testing equality of the

coefficient across frequency bands to account for this quite extensive specification search, which

would doubtless yield a test of very low power.

The least restrictive approach is to allow the regression equation to estimate a distinct coefficient

for every possible frequency allowed by the limited length of the window used to implement the

one-sided filtering. This is feasible given enough time periods of data, but the estimate of the

coefficient on the associated variable 

 might be quite imprecise. When using monthly data,

a parsimonious approach is to model the variation of the  coefficients by means of a lower-order

Chebyshev polynomial. Finally, one might well decide a priori that one is not interested in variation

at some frequencies.

10Here we use a moving window of length  and apply the filter described above within each moving
window, so as to force the filter to be one-sided, as described earlier in this section. This use of the moving
window filtration retains the “adding up” property for the frequency components noted here, but the 
component time series are no longer precisely orthogonal.
11Of course, an even more typical approach is to exclude frequency dependence from consideration alto-

gether.
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In our model for velocity below, we aggregate all frequencies with period length of 4 quarters or

lower into one band, but impose no further restrictions. As with considering just a single ‘business

cycle’ band, this choice to aggregate all of the frequency components corresponding to reversal

periods less than or equal to 4 quarters in inherently a bit ad hoc (and risks inconsistent estimation

and concomitant inference distortion), but it yields estimated frequency dependence in  which is

readily interpretable in economic terms.

4 The Velocity of Money

The velocity of money has been an important topic in macroeconomics for centuries. The first

velocity function was posited in 1662 by Sir William Petty; Locke (1691) added the interest rate

to this function.12 Over the next several centuries, a huge literature arose involving the study

of velocity (and its alter ego, the demand for money). Velocity was a central concept in two of

the most famous studies of money in the 20th century, Fisher (1911) and Friedman (1956), and is

central to the celebrated Cagan (1956) model.

The centrality of the velocity concept for monetary policy was unquestioned ... until disaster

struck. In the 1980s, velocity in the U.S. fell markedly, and existing money demand functions

displayed substantial underprediction. By the 1990s, velocity was increasingly viewed as being

neither stable nor predictable. The perceived breakdown of the velocity-interest rate relationship

forced a significant change in the conduct of monetary policy: M2 would no longer be used as a

policy target or indicator — despite the fact that the Humphrey-Hawkins Act required that the

Federal Reserve specify growth ranges for money and credit. While velocity no longer plays the

central role it once did in monetary policy discussions, its behavior during the Great Recession

prompted much discussion, and it continues to be of central interest to macroeconomics (see, e.g.,

Carlson, Craig and Schwarz 2000, Wang and Shi 2006, Faig and Jerez 2007, Ball 2012, Mbiti and

Weil 2013, and Wen 2014).

Cochrane (2012) recently examined the velocity-interest rate relationship. As he notes, the

standard theory of money demand holds that velocity  =  rises — that is, money demand

12Humphrey (1993) traces the historical (pre-1911) development of velocity functions.
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falls — when interest rates rise. Following Cochrane, Figure 2 plots velocity against interest rates

—more specifically, it plots (∗) − 1 (where  is nominal GDP, and ∗ is the St. Louis

Fed MZM series)13 against 10, where  is the 3-month Treasury bill rate. Inspection of Figure 2

indicates that the prediction of the standard theory appears to hold up pretty well: velocity and

the interest rate are clearly related at low frequencies.14

Figure 2: Velocity and the interest rate

However, both data series are highly persistent, and conventional unit-root tests suggest that

both series are I(1). Standard econometric practice would suggest modeling the relationship in

first-differences,15 as in

∆ = + ∆−1 +  (6)

13We plot the series “Velocity of MZMMoney Stock” from the Federal Reserve Bank of St. Louis. Cochrane
notes, “There is an issue of what monetary aggregate to use and how to incorporate the vast expansion of
highly liquid interest bearing assets. The St. Louis Fed’s MZM definition tries to take account of this fact.
The point here being econometric and not about the deep theory of money, I won’t pursue the question.”
14Reynard (2012) also highlights the low-frequency relationship — a relationship which is, in fact, at the

heart of “P*” models of inflation (see Orphanides and Porter, 2000). However, he makes use of the two-sided
HP filter, compromising his conclusions. As Ball (2012) notes, the conventional wisdom is that the long-run
demand for money is stable — if one interprets long-run demand as a cointegrating relation — but short-run
demand for money is unstable.
15Or, perhaps, would suggest quasi-differencing the data (i.e. using GLS). Given the level of persistence

in these data, there is little difference between the two practices. We sidestep the issue of cointegration for
the moment, since we wish to focus attention on the relationship at various different frequencies, rather than
the (distinct) issue of whether deviations from the trendline relationship impact the relationship between
changes. Note that our procedure in no way precludes inclusion of an error-correction term in Equation 6.
In fact, we examine such terms in our paper on the Taylor rule, Ashley, Tsang and Verbrugge (2015).
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Table 1 presents the results from the specification (6) over the period 1963:1-2011:3.16

Table 1. Regression of ∆ on ∆

OLS, Conventional s.e. OLS, Newey-West s.e.b −0001
(0004)

−0001
(0006)b 0027∗∗∗

(0005)
0027∗∗∗
(0005)

Durbin-Watson statistic 1.44


2

0.14

Newey-West standard errors are computed with Newey/West/Bartlett Window and 5 lags.

As Cochrane notes, these results suggest that the relationship between velocity and the interest

rate, while statistically significant, is quite weak; the estimated coefficient
³b´ is far smaller than the

“sensible” estimate derived from a regression involving levels of both variables, and the regression


2
is far smaller as well. The persuasive correlation in Figure 2 has been lost.17

What happened? Cochrane argues that measurement error can overwhelm the signal when data

are differenced. He then argues that this “loss of signal” problem is why much recent research in

finance has given up on “efficient” estimation in favor of running OLS regressions on levels data

and correcting standard errors.18

Clearly the relationship between velocity and the interest rate is simply different at high frequen-

cies than at low frequencies. Differencing the data thus leads to estimates of the high-frequency

relationship — which, in the present case, is weak. But, using our new tools, we can do better.

Rather than running the regression on levels data (and almost certainly incurring spurious regres-

sion), we next proceed to simultaneously estimate the relationship at every frequency, letting the

16Cochrane estimates this relationship over the period 1959:I-2011:III. Results are not materially different.
In our analysis below, we must start our estimation period somewhat later; so for consistency throughout
the paper, we use a common estimation period.
17 Ironically, a number of researchers preferred the first-difference specification inasmuch as it appeared to

generate more stable money demand function (see, e.g., Gordon 1984). Friedman (1959) indirectly called
attention to persistence dependence in the velocity-interest rate relationship, by stating that the historical
stability of velocity — i.e., its failure to mimic the volatility of interest rates — was evidence against the view
that money demand was highly sensitive to the interest rate.
18Cochrane’s note is full of insight and advice, and we enthusiastically recommend it, with the caveats we

discuss herein.
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data speak as to how the relationship varies across frequencies. This application of our modeling

technique yields additional insight into the nature of the relationship between velocity and the

interest rate. Further, our results demonstrate that — if frequency dependence in the relationship

is accounted for — then first-differencing the data need not lead to weak or noninformative models.

We decompose ∆ by frequency, using a window length equal to 16 quarters. As noted

above, the number of bands () is reduced to five by aggregating all of the frequencies corre-

sponding to reversal periods less than or equal to 4 quarters. The frequencies and periods asso-

ciated with each band are listed in Table 2.19 Velocity and interest rate data run from 1959:I-

2011:III; given first-differencing and the 16-quarter window, the 
{}
 run from 1963:I-2011:III.20

Table 2: The 5 persistence/frequency components into which ∆ is partitioned

# of frequency Row Number
band frequencies periods (∗) components in  matrix


{1}
 0-

8
16.0 1 1


{2}



8

16.0 2 2,3


{3}


2
8

8.0 2 4,5


{4}


3
8

5.3 2 6,7


{5}



2
- 2-4 9 8...16

Allowing for persistence/frequency dependence in the relationship, equation (6) now takes the

form

∆ = +

5X
=1


{}
 +  (7)

with OLS results given in the first column of Table 3.

We also perform some robustness checks, such as including ∆−1 (which addresses autocorrela-

tion in the residuals, but also changes the interpretation of the coefficients), allowing for coefficients

to be different in a subsample running from 1980-1983, and aggregating 2 − 4 in one specifica-

tion.21 These alternative estimation results are reported in Table 3.

19So as to deal with the “edge effect” discussed in footnote 8 above, each window uses 12 actual observations
on ∆ and is augmented by 4 projected quarters of “data.” The projection model used here is the average
of two univariate forecasting models of ∆: an AR(4) model, and an ARMA(2,2) model.The ARMA(2,2)
model is chosen by the HQ criterion. Results are nearly identical if one uses solely the AR(4) model.
20 I.e., analogous with using lagged variables in a regression model to account for dynamics and eliminate

serial correlation in the model errors, our use of a 16-quarter moving window so as to make our bandpass
filtering one-sided causes a “start-up” loss of 12 observations.
21A formal test of the equality of these coefficients yields a p-value of 0.69.
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Table 3: Frequency dependence in the estimated velocity-interest rate relationship

OLS OLS
HAC s.e.

OLS
HAC s.e.

OLS
HAC s.e.

OLS
HAC s.e.

constant −0002
0003

−0002
0004

−0001
0003

−0001
0003

−0002
0003

{1} 012∗∗∗
0019

012∗∗∗
0014

008∗∗∗
0016

008∗∗∗
0015

008∗∗∗
0020

{2} 010∗∗∗
0022

010∗∗
0049

008∗
0044

005∗∗
0024

{3} −001
0015

−001
0013

−001
0013

004∗∗
0013

004∗∗
0018

{4} 004∗∗∗
0012

004∗∗∗
0009

005∗∗∗
0013

003∗∗
0012

{5} −001
0007

−001
0009

000
0010

000
0007

−000
0017

∆−1 026∗∗∗
0079

027∗∗∗
0069

027∗∗∗
0092

Coefficient change X

Durbin-Watson statistic 1.84 2.28 2.34 2.29


2

0.41 0.45 0.53 0.39

 (0 : 1 =  = 5)
( )

239
000

446
001

174
000

528
000

382
002

HAC standard errors are computed with the Newey-West/Bartlett window and 5 lags.

In this regression, 15 were all allowed to shift for the sub-sample 1980I to 1983IV.

There are two findings. First, we find a statistically-significant frequency-dependence in the

velocity-interest rate relationship using all of these specifications. Second, we can characterize the

nature of that frequency dependence. Across all specifications, the strongest relationship between

velocity and the interest rate is a statistically significant positive one, at the lowest frequency —

i.e., for those fluctuations with a reversal period of at least four years. But there is no evidence for

a relationship at high frequencies — i.e., for fluctuations in the change of the interest rate with a

reversal period equal to a year or less.

Because we find no evidence for a relationship at high frequencies, our results are consistent

with a small estimated coefficient
³b´ in the model specification (6), a first-differenced model

that does not allow for persistence/frequency dependence in this coefficient. Thus, our findings

are consistent with Cochrane (2012)’s interpretation: this apparently quite weak relationship in

first-differenced data mainly reflects a low cross-correlation between the measurement errors in the
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money and velocity change variates. But Cochrane’s result (essentially replicated here in Table 1)

only hints at the true nature of the relationship (displayed here in Table 3) in which there is a

strong positive relationship between money and velocity — even in this differenced formulation — at

low frequencies, corresponding to reversal periods larger than four quarters.

5 Conclusion

Economic theory frequently implies that the low-frequency relationship between two variables differs

from their high-frequency relationship. But inference from linear tools is not valid under these

circumstances. Hence, the use of those tools readily leads to erroneous conclusions. For example,

the relationship between two variables may appear to be weak or nonexistent if the high-frequency

relationship is weak and first-differencing is necessary.

Also, we note above that common practices, such as pre-filtering using the HP filter, are also

invalid — because two-sided filtering leads to inconsistent estimation if there is feedback in the

relationship. But recent developments in econometric theory allow one to properly circumvent

these difficulties and obtain correct inferences, despite the presence of persistence dependence in a

relationship. In particular, here we demonstrate how the nonlinear tools of Ashley and Verbrugge

(2009a) can be used to obtain a more complete (and richer) depiction of the relationship between

the velocity of money and the interest rate, and to formally test for frequency-dependence in this

relationship. We find that the relationship between velocity and interest rates is strong at low

frequencies, but essentially nonexistent at high frequencies, even though the data needed to be

differenced in this case, since the levels of these two variables are not covariance stationary.

On the surface, first-differencing the data appears to destroy the apparent strength of the rela-

tionship, due to the way that first-differencing emphasizes high-frequency variation. But — because

we have appropriately allowed for frequency dependence in the relationship — first-differencing does

not prevent us from uncovering both the strength of this relationship at low frequencies and its

weakness at high frequencies.
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6 Appendix

6.1 Pseudo frequency dependence

We here distinguish “true” frequency dependence in a relationship from a superficially similar

concept in which the coefficients of the model quantifying the relationship are constant, but the

coherence (closely related to the magnitude of the cross-spectrum of the variates) is frequency-

dependent. This latter notion is used in Geweke (1982), Diebold, Ohanian and Berkowitz (1998),

and a host of other studies. These decompositions are mathematically sound, but we call what

they measure “pseudo frequency dependence” because — since the underlying model coefficients are

assumed constant — such measures do not actually quantify frequency variation in the relationship

itself.

A simple example clarifies this distinction. Consider the following consumption relation,

 = 1−1 +  + −1 (8)⎛⎝ 



⎞⎠ ∼ 

⎡⎣⎛⎝ 0

0

⎞⎠ 

⎛⎝ 2 0

0 2

⎞⎠⎤⎦
The marginal propensity to consume in this relationship is clearly a constant (1) and Fourier

transforming both sides of this equation will do nothing to change that — it merely yields a rela-

tionship between the Fourier transform of  and the Fourier transform of −1, still with a constant

coefficient 1. But the cross-spectrum and coherence functions relating  and  are not constants:

by construction, they depend explicitly upon the frequency parameter . In particular, Geweke

(1982)’s measure of the strength of the linear dependence of  on −1 (a generalization of the

coherence function) for this model is:

→ () =
1

2
ln

(
2
¡
1 + 2 − 2 cos ()¢+ 21

2


[2 (1 + 2 − 2 cos ())]2
)

which clearly does depend upon frequency so long as the moving average parameter  is not zero.

Evidently, this frequency dependence in Geweke’s measure (and in the other ‘strength of as-

sociation’ measures based upon the cross-spectrum and the coherence function) is not quantifying

the frequency variation in the - relationship itself, since in this case there is none to quantify.
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So what is it doing? These kinds of measures are usually interpreted as quantifying the degree

to which the overall 2 for the equation is due to sample variation at low frequencies versus high

frequencies.

Suppose that  is positive, in which case Geweke’s measure indicates that low frequencies are

important to the 2 of the relationship. This says nothing about whether consumption and income

are differently related at low versus high frequencies — that depends upon the marginal propensity to

consume (1), which is constant. Rather, it says that this dynamic relationship transforms serially

uncorrelated fluctuations in −1 and  into positively correlated fluctuations in . Alternatively,

one could observe that  in that case has substantial spectral power at low frequencies, and interpret

this result, to paraphrase Geweke (1982, p. 312), as indicating that the white noise innovations in

−1 explain most of this low frequency portion of the variance in .
22

6.2 Frequency variation implies time variation; whither Wold?

The frequency dependence of 1 in (2) implied by the permanent income hypothesis concomitantly

implies that 1 varies over time, depending upon the type of fluctuation that dominates  at

time . For example, with adaptive expectations, the implication is that 1 will be larger if the

deviation −1 has the same sign as the deviation −2, so that the deviation −1 is part of a

smooth pattern. Note that this dependence of 1 on the recent history of −1 (and the resulting

frequency dependence in 1) can thus be viewed as a symptom of unmodeled nonlinearity in the

relationship between  and −1. This aspect of frequency dependence is discussed at some length

in Tan and Ashley (1999a); see also Ashley and Verbrugge (2013). Here, the essential point is that

this frequency dependence in 1 further implies that the value of 1 is not a fixed constant, but

rather varies over time due to its dependence on the recent past of .

Similarly, viewing equation (2) as part of a bivariate VAR model, the impulse response function

for  will be a function of past innovations in both equations, and  will depend differently on

different lags in the  innovations. Frequency dependence alters the nature of the impulse response

22We do not deny that estimates of gain and phase, taken together, might contain much the same in-

formation as the sign and magnitude of the estimated coefficients b1. However, in practice these spectral
measures can be extremely challenging to interpret, as opposed to the straightforward interpretation of (say)
a negative coefficient on one of our persistence level components. See Granger (1969), quoted in footnote 2.
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functions. In particular, if there is no frequency dependence in the  −  relationship, then the

moving average representation of the  process will be a linear function of serially independent

innovations; this leads to a set of conventional linear impulse response functions in which the change

in the expected value of + induced by an innovation in the  process of size  is unrelated to the

values of previous innovations. Conversely, frequency dependence in the − relationship implies
that the full moving average representation of the  −  relationship (and hence, the impulse

response functions also) are nonlinear functions of serially independent innovations. Thus, in that

case, the change in the expected value of + induced by an innovation in the  process of size 

does depend on the values of previous innovations.23 (Of course, the Wold Theorem still guarantees

the existence of a linear MA(1) representation for  and  — and hence of a set of linear impulse

response functions for these variables —but the innovations in this linear MA(1) representation are

not serially independent.)

The following explicit example clarifies this point. Consider the particular case in which the

linear moving average (Wold) representation for a series  can be approximated by the MA(1)

process:

 =  + 1−1

in which the  innovation series is generated by the bilinear process:

 = 07−2−1 + 

where  is serially independent. It is easy to verify that the  generated by this bilinear process

are serially uncorrelated, so this MA(1) process could in principle be the Wold representation for

. Now rewrite the moving average representation of  as a function of the current and past values

of the serially independent innovations —  −1  — by repeatedly substituting the bilinear model

in to eliminate  −1 etc. from the model for . In this way one obtains:

 =  + (1 + 07−2 + higher order terms)−1 + (071−3 + higher order terms)−2 + 

where the higher order terms involve (07)2 −4−3, (07)2 −5−4, and so forth. Continued

substitution would further elaborate these terms, but the point is clear: the coefficient on the

serially independent innovation −1 is no longer a constant. Instead, it is (1 + 07−2) plus
23See Potter (2000) for a formal treatment of nonlinear impulse response functions.
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higher order terms. Consequently, the impulse response function at lag one is frequency dependent

in the sense discussed here: the coefficient on −1 will be different when the previous innovation

(−2) is of the same sign as −1. Thus, estimating a linear moving average model for  yields

an impulse response coefficient estimate at lag one which cannot be stable over time or across

frequencies, since  responds differently to a lag-one shock which is part of a smooth pattern than

to a lag-one shock which has just changed sign from the previous period.
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6.3 Frequency components

Table 4: Frequency components for a 16 time-period rolling window

Frequency Reversion Row Number(s)
Component Frequency Period in 

1 0  16 1
2 8 161 = 16 2,3
3 28 162 = 8 4,5
4 38 163 = 533 6,7
5 48 164 = 4 8,9
6 58 165 = 320 10,11
7 68 166 = 267 12,13
8 78 167 = 229 14,15
9  168 = 2 16
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