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1 Introduction

Since Sims (1980), identifying structural shocks in vector autoregressions (VARs) has been
important for research in macroeconomics. Specifically, consider the n × 1 vector of time
series variables, denoted by Yt, that follows

Y ′t = A0 + Y ′t−1A1 + · · ·+ Y ′t−pAp + u′t, (1)

where ut is the n × 1 vector of VAR innovations. Let vt be the n × 1 vector of structural
shocks, which are related to the VAR innovations by

ut = Bvt. (2)

Then, the objective for much of the structural VAR literature is to estimate the column of
B that corresponds to the structural shock of interest. For ease of exposition, assume that
the relevant column of B is the first, B1.

Some popular approaches for structural identification, such as zero and sign restrictions,
estimate B1 by reducing the set of allowable values of the elements of B. In this paper, I take
an alternative approach. Following Stock and Watson (2008, 2012), Montiel Olea, Stock,
and Watson (2012), and Mertens and Ravn (2013), I use a variable external from the VAR
in Equation (1) as a proxy for the structural shock of interest. Specifically, I assume that
the proxy variable is correlated with the structural shock of interest and uncorrelated with
the other structural shocks.1 This proxy variable allows me to estimate B1 without placing
any restrictions on the values of the elements of B.

Recent research suggests that this proxy variable approach has good empirical properties.
Carriero et al. (2015) argue that it has less downward bias due to measurement error when
estimating the impact of Bloom’s (2009) uncertainty shocks compared to putting the shocks
directly into the VAR, and Mumtaz, Pinter, and Theodoridis (2015) show that it does better
in matching the effects credit supply shocks from a dynamic stochastic general equilibrium
model than a Choleski decomposition. Further, the proxy variable approach can be used
to identify a wide variety structural shocks and proxies can come from a wide variety of
sources. As examples, Mertens and Ravn (2013) follow the narrative approach of Romer
and Romer (2009) to construct proxy variables for tax shocks, Gertler and Karadi (2015)
follow the high frequency approach of Gürkaynak, Sack, and Swanson (2005) to construct
proxy variables for monetary policy shocks, and Montiel Olea, Stock, and Watson (2012) and
Stock and Watson (2012) use 18 different proxies to identify shocks to oil, monetary policy,
productivity, uncertainty, liquidity and financial risk, and fiscal policy. Finally, Mertens and
Ravn (2014) show that it can be used to reconcile the differences between structural VAR

1These assumptions are similar to those made in the instrumental variables literature. Because of this,
the exogenous variable in this paper might also be referred to as an “instrumental variable.” However, to
avoid confusion with the instrumental variables literature, I follow the terminology in Mertens and Ravn
(2013) and refer to the exogenous variable as a “proxy” or a “proxy variable.”
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and narrative estimates of tax multipliers; however, Kliem and Kriwoluzky (2013) argue that
it is not able to reconcile structural VAR and narrative estimates of monetary policy shocks.

Given this proliferation in the use proxy variables, it is important to ask how relevant
these proxies are for estimating the effects of the structural shocks of interest. Thus, the
objectives of this paper are to answer the following questions. Can a weakly relevant proxy
reliably estimate B1? What statistic can be used to test the weakness of a proxy?

To answer these questions, this paper proceeds in three steps. First, it provides a simple
estimator for B1 when the proxy is not weak. Previous papers that have used proxy vari-
ables to estimate structural VARs have relied on tedious matrix algebra to construct their
estimators. See, for example, the Appendix of Mertens and Ravn (2013) or Appendix D
of Lunsford (2015). In contrast, I show that B1 can be estimated as a direct function of
the VAR errors and the proxy variable. In addition to making the proxy variable approach
easier to use, this simple estimator is important because it will make the analysis of weak
proxy variables tractable.

The second step of this paper is to characterize the asymptotic limit of the estimate of B1

under the assumption that the proxy variable is weak. To do this, I follow Staiger and Stock
(1997) and model a weak proxy as local to zero by assuming that the covariance between the
proxy and the structural shock of interest goes to zero at a rate of square root of the sample
size. Given this assumption, the estimate of B1 is not consistent. Rather, it converges in
distribution to a function of normal random variables. While this limiting distribution is
not the same as that in the weak instrumental variables (IV) literature, many characteristics
of the limiting distribution can be summarized by a concentration parameter similar to the
concentration parameter in Stock, Wright, and Yogo (2002), and Stock and Yogo (2005).
As the concentration parameter increases, the asymptotic distribution collapses to B1. This
implies that even when the local to zero assumption holds, a proxy variable can provide a
close estimate of B1 as long as the concentration parameter is sufficiently large. To get a
measure of how close this estimate is, I follow the weak IV literature and use the asymptotic
bias of the estimate of B1. This asymptotic bias decreases as the concentration parameter
increases, and weak proxy sets, defined as the set of proxy variables with concentration
parameters below a given threshold, can be produced based on a researcher’s tolerance for
bias. Using simulation, I provide concentration parameter thresholds for asymptotic biases
of 20%, 10%, 5% and 1%, and for VARs of dimensions between 2 and 20.2

Because the concentration parameter cannot be directly estimated, the third step of this
paper is to provide a test for a weak proxy variable, which is based on an F statistic. An
important point of distinction from the weak IV literature is which equation the F statistic
is derived from. The weak IV literature uses the F statistic from the first-stage or the
reduced form equation where the endogenous variables of interest are linearly projected on
the instruments. In contrast, the F statistic in this paper comes from the linear projection

2In this paper, I do not address what the optimal level of bias tolerance is. This question is left for future
research. Rather, throughout this paper I follow Stock, Wright, and Yogo (2002) and use 10% bias when
discussing applications.
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of the proxy on the VAR errors. That is, the proxy variable is the dependent variable when
computing the F statistic. I show that n times this F statistic converges in distribution
to a non-central χ2

n distribution, where the concentration parameter is the non-centrality
parameter. Thus, if the F statistic is sufficiently large, then there is a low probability
that the true concentration parameter is below the weak proxy set threshold, and the null
hypothesis that the proxy variable is in the weak proxy set can be rejected. Based on the
computed concentration parameter thresholds noted above, I provide critical F statistic
values for asymptotic biases of 20%, 10%, 5% and 1%, for VARs of dimensions between 2
and 20, and for levels of significance of 0.10, 0.05 and 0.01. As in the weak IV literature, the
critical F statistics are large. For conventional VAR dimensions, F statistics between 7 and
9 are needed to reject the null hypothesis that the proxy variable yields greater than 10%
asymptotic bias at a 5% level of significance.

An appealing feature of this F statistic is that its limiting distribution does not depend
on parameters of the model that have to be estimated. This feature is important because
previous tests of proxy strength have followed the weak IV literature and been based on
an F statistic where one of the VAR errors is projected onto the proxy variable (Montiel
Olea, Stock, and Watson, 2012; Gertler and Karadi, 2015; Lunsford, 2015). I show that the
limiting distribution this F statistic is a function of B. This is problematic for two reasons.
First, the critical values of this F statistic will vary with the elements of B and will not be
the same as those derived in the weak IV literature (Stock and Yogo, 2005). Because of this,
rules of thumb from the weak IV literature, such as requiring that an F statistic be grater
than 10, will lead to tests that are mis-sized. The second problem is that estimates of some
of the elements of B are needed to compute the correct critical values. However, when the
proxy variable is weak, these estimates will be inconsistent and the estimated critical values
will be unreliable. Hence, while the econometric theory in this paper is closely related to
the weak IV literature, the results from the weak IV literature cannot be applied to this
framework and the theory in this paper is needed to test for weak proxies.

The F statistic studied in the paper has been applied by Montiel Olea, Stock, and Watson
(2012) and Stock and Watson (2012). They find that only five of their 18 proxy variables
have F statistics that exceed 7.81, which is the 5% critical value for 10% asymptotic bias.3

This result suggests that weak proxy variables are prevalent and that the theory for testing
proxy weakness in this paper will be important in future applied work.

As an application of the theory developed in this paper, I study the dynamic effects
of productivity shocks. To do this, I use Fernald’s (2014) measures of utilization-adjusted
total factor productivity (TFP) for the consumption and investment sectors as proxy vari-
ables. The F statistics for the consumption and investment TFP shocks are 26.26 and 9.01,
respectively. Thus, I reject the null hypothesis that these are weak proxy variables. Fur-
ther, I find that these proxies yield structural shocks that are serially uncorrelated, mutually
uncorrelated, correlated with their corresponding proxy variable, and uncorrelated with the

3This critical value can be found in Table 2 below and is based on the fact that Montiel Olea, Stock, and
Watson (2012) and Stock and Watson (2012) use a VAR with 6 variables.
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other TFP proxy variable. Hence, Fernald’s (2014) measures of consumption and investment
TFP yield structural shocks that are consistent with the econometric theory below. Given
this, I show that an increase in consumption TFP causes an immediate increase in output
growth, an immediate decrease in inflation, and a delayed increase in private employment
growth. These responses are consistent with standard economic theory that a supply-side
shock causes quantities and prices to move in opposite directions. In contrast, a positive
shock to investment TFP causes an immediate drop in output growth and private employ-
ment growth along with a hump-shaped decline in inflation. While these empirical responses
are similar to those found in Basu et al. (2013), they are not consistent with a positive
supply-side shock. Rather, they are consistent with a negative demand-side shock. To pro-
vide a theory for these puzzling responses, Basu, Fernald, and Liu (2012) solve a dynamic
stochastic general equilibrium model where investment goods have sticky prices. They show
that a positive TFP shock to investment production increases the mark-up of investment
goods. This reduces current demand for investment, suppressing both output and inflation
in the short-run. Finally, I show that the two TFP shocks are very important for aggregate
fluctuations. From 1948:Q1 to 2015:Q2, they contributed nearly 80% of the variance of GDP
growth. In addition, the investment TFP shock alone contributed over 70% of the variance
in private employment growth.

The remainder of the paper is as follows. Section 2 lays out the assumptions for the
VAR and the proxy variable, provides the estimator for B1, and establishes the consistency
of this estimator. Section 3 defines a weak proxy variable, shows that the estimator of B1

is inconsistent with a weak proxy variable, describes the test for a weak proxy variable, and
provides the critical F statistics. Section 4 studies the F statistic that has been used in
the literature up to this point and shows that standard weak IV critical values cannot be
applied. Section 5 studies Fernald’s (2014) TFP proxy variables and the dynamic effects of
TFP shocks. Section 6 concludes.

2 The Model

2.1 The Structural VAR

The structural VAR follows Equations (1) and (2). Without loss of generality, I order the
structural shocks so that the first element of vt is the shock of interest. Then, Equation (2)
is

ut =

[
B1 B2

(n× 1) (n× n− 1)

]
v1,t

(1× 1)
v2,t

(n− 1× 1)

 (3)

so that v1,t is the shock of interest, and v2,t contains the other n − 1 × 1 structural shocks.
Here, the vector B1 determines how v1,t impacts Yt, and estimating this vector is the focus
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of this paper. With this in mind, I make the following common assumptions about the
properties of the structural VAR model.

Assumption 1:

a) The lag order p is known and the VAR is stationary.

b) B is invertible.

c) E(vt) = 0.

d) E(vtv
′
t) = Σv, where Σv is finite, symmetric, positive-definite and invertible. Further,

Σv =

[
σ2
v1

0
0 Σv2

]
, (4)

where E(v21,t) = σ2
v1

and E(v2,tv
′
2,t) = Σv2 so that v1,t is uncorrelated with v2,t.

e) E(vtv
′
s) = 0 for t 6= s.

Given assumption 1.d, if v1,t were observable, then B1 could be consistently estimated by
simply including v1,t in a least-squares estimation of Equation (1). However, because v1,t is
not directly observable, the structural VAR literature has turned to a variety of alternative
methods of estimating B1. In the next section, I show that having an exogenous proxy
variable can identify B1.

2.2 The Proxy Variable and Identification

There exists a time series variable, denoted by zt, that can be used as a proxy for v1,t.
Specifically, I make the following assumptions.

Assumption 2:

a) zt has a finite mean E(zt) = µz.

b) zt a relevant proxy for v1,t,

E[v1,t(zt − µz)] = φ 6= 0, with φ finite. (5)

c) zt is exogenous from the structural shocks v2,t,

E[v2,t(zt − µz)] = 0. (6)
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These relevance and exogeneity assumptions mirror those assumptions used in the IV liter-
ature. However, it is important to note that the proxy here is serving a different purpose
than an IV. In this model, the econometric problem is not that B1 cannot be consistently
estimated because v1,t is correlated with v2,t. This has been ruled out by Equation (4) in
Assumption 1.d. Rather the econometric problem is that B1 cannot be estimated because
v1,t is not observable. Thus, although the relevance and exogeneity assumptions are similar
to the assumptions for instruments, they are being used towards a different end. Equations
(5) and (6), along with the partition in Equation (3), imply

E[ut(zt − µz)] = B1φ. (7)

Here, the population covariance between the proxy variable and the VAR innovations gives
B1 up to the scalar φ. In order to estimate φ, note that

E[(zt − µz)u′t][E(utu
′
t)]
−1E[ut(zt − µz)] = φB′1(BΣvB

′)−1B1φ

= φe′1Σ
−1
v e1φ

= φ2σ−2v1 ,

where the first line applies Equations (2), (4) and (7), the second line applies B−1B1 = e1
where e1 = [1, 0, . . . , 0]′, and the third line applies e′1Σ

−1
v e1 = σ−2v1 from Equation (4). I

summarize this list of equations with

φ2 = σ2
v1
E[(zt − µz)u′t][E(utu

′
t)]
−1E[ut(zt − µz)]. (8)

Thus, given the variance of the structural shock of interest, the covarainces of the VAR
innovations and the proxy variable can be used to recover φ2. However, because v1,t is
unobservable, there is insufficient information to separately identify φ2 from the scalar σ2

v1
.

Because of this, I follow Mertens and Ravn (2013) and use the normalization

E(v21,t) = σ2
v1

= 1. (9)

This normalization has no impact on the impulse response functions from a one standard
deviation shock to v1,t nor on the variance contribution of v1,t to Yt. Following Stock and
Watson (2008), we can interpret this normalization as simply assigning a unit of measurement
to v1,t so that its variance is equal to 1. Given the normalization in Equation (9), Equations
(7) and (8) imply

B1 = ±E[ut(zt − µz)]{E[(zt − µz)u′t][E(utu
′
t)]
−1E[ut(zt − µz)]}−1/2. (10)

This shows that B1 can be computed as a simple function of the covariances of the VAR
innovations and the proxy variable. The plus or minus in Equation (10) is a result of the
square root of φ2. Because φ is the covariance of zt and v1,t, it is up to the researcher
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to determine whether their proxy is positively or negatively correlated with the structural
shock of interest. If the proxy is intended to be positively correlated, then the positive sign
in Equation (10) should be applied. If the proxy is intended to be negatively correlated,
then the negative sign should be applied.4

To recover the structural shock of interest, I follow Stock and Watson (2012) and linearly
project zt onto ut and a constant. Because zt is correlated with v1,t but not with v2,t, this
projection will return the component of ut that is driven by v1,t without influence from v2,t.
Specifically, I use

zt = µz + u′tπ + εt, (11)

where π is an n× 1 vector. I make the following assumptions about εt.

Assumption 3:

a) E(εt) = 0.

b) E(ε2t ) = σ2
ε , where σ2

ε is finite.

c) E(εtεs) = 0 for t 6= s.

d) εt is independent of lags of Yt so that E(Yt−jεt) = 0 for j ≥ 1.

e) εt is independent of vt.

Then, the population projection of zt − µz on ut is given by

π = [E(utu
′
t)]
−1 E[ut(zt − µz)]. (12)

Using this projection, the expectation of zt conditional on ut from Equation (12) yields an
estimate of v1,t up to a constant and a scalar. That is,

E(zt|ut) = µz + u′tπ

= µz + u′t [E(utu
′
t)]
−1 E[ut(zt − µz)]

= µz + v′tB
′(BΣvB

′)−1B1φ

= µz + v′tΣ
−1
v e1φ

= µz + v1,tφ,

where e1 = [1, 0, . . . , 0]′. This list of equations shows that the expectation of zt conditional
on ut is equivalent to what the expectation of zt conditional on v1,t would be if we could
linearly project zt on v1,t. I summarize the above list of equations as

u′tπ = v1,tφ. (13)

4Of course, one can always multiply the proxy variable by -1 and use the other sign.
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Rewriting Equation (13) as v1,t = u′tπφ
−1 gives an estimate of the structural shock of in-

terest where φ and π can be computed from Equations (8) and (12) above, along with the
normalization in Equation (9).

2.3 Estimation and Consistency

To estimate B1, I first define A = [A′0, A
′
1, . . . , A

′
p]
′ and X = [1, Y ′t−1, . . . , Y

′
t−p]

′ so that

Equation (1) can be written as Y ′t = X ′tA+ u′t. Next, I define z̄ =
∑T

t=1 zt to be the sample
average of the proxy variable. Then, I define the following matrices

Y
(T × n)

=

Y
′
1
...
Y ′T

 X
(T × np+ 1)

=

X
′
1

...
X ′T

 U
(T × n)

=

u
′
1
...
u′T

 Û
(T × n)

=

û
′
1
...
û′T


Z

(T × 1)
=

z1...
zT

 Z̄
(T × 1)

=

z̄...
z̄

 Mz

(T × 1)
=

µz...
µz

 E
(T × 1)

=

ε1...
εT

 Ê
(T × 1)

=

 ε̂1...
ε̂T

 ,
where ût denotes the estimate of ut, and ε̂t is the estimate of εt. I estimate the VAR
coefficients by least squares

Â = (X ′X)−1X ′Y, (14)

with VAR errors given by
Û = Y −XÂ. (15)

Further, I estimate π by least squares so that

π̂ = (T−1Û ′Û)−1[T−1Û ′(Z − Z̄)] (16)

and
Ê = (Z − Z̄)− Û ′π̂. (17)

Next, the estimators of the moments in Equations (7), (8) and (9) can be written as

B̂1φ = T−1Û ′(Z − Z̄) (18)

and
φ̂2 = [T−1(Z − Z̄)′Û ](T−1Û ′Û)−1[T−1Û ′(Z − Z̄)]. (19)

Then, the estimator for B1 from Equation (10) is

B̂1 = ±[T−1Û ′(Z − Z̄)]{[T−1(Z − Z̄)′Û ](T−1Û ′Û)−1[T−1Û ′(Z − Z̄)]}−1/2, (20)

which can be computed directly from Û and Z.

8



To establish consistency of B̂1, I make the following assumption.

Assumption 4:

a) T−1X ′X
p→ E(XtX

′
t).

b) T−1X ′U
p→ E(Xtu

′
t).

c) T−1U ′U
p→ E(utu

′
t).

d) T−1
∑T

t=1 ut
p→ E(ut).

e) T−1U ′E
p→ E(utεt).

f) T−1
∑T

t=1 εt
p→ E(εt).

Next, note that Equation (18) can be rewritten as

B̂1φ = T−1U ′(Mz − Z̄) + (T−1U ′X)(T−1X ′X)−1[T−1X ′(Mz − Z̄)]

+ T−1U ′Uπ + (T−1U ′X)(T−1X ′X)−1(T−1X ′U)π

+ T−1U ′E + (T−1U ′X)(T−1X ′X)−1(T−1X ′E).

(21)

Then, Assumptions 1, 2, 3, and 4 along with Equation (12) and the continuous mapping

theorem imply B̂1φ
p→ E[ut(zt−µz)] = B1φ. Similarly, Assumptions 1, 2, 3, and 4, Equation

(12) and the continuous mapping theorem imply φ̂2 p→ E[(zt − µz)u
′
t][E(utu

′
t)]
−1E[ut(zt −

µz)] = φ2. Finally, from these results, the continuous mapping theorem, and Equations (10)

and (20), it is the case that B̂1
p→ ±B1φ/|φ|, where | · | denotes absolute value. As discussed

above, when researchers intend for their proxy variable to be positively correlated (φ > 0)
with the shock of interest then the researcher chooses the positive sign in Equation (20), and
when they intend for this correlation to be negative (φ < 0) then they choose the negative
sign. In either case, Equation (20) provides a consistent estimator for B1.

After estimating φ and applying the appropriate sign, I can also estimate the structural
shock of interest, v1,t. To do this, I use

v̂1,t = û′tπ̂φ̂
−1 (22)

from Equation (13), noting that Assumptions 1, 2, 3, and 4 along with the continuous

mapping theorem imply π̂
p→ [E(utu

′
t)]
−1 E[ut(zt − µz)] = π.

9



3 Testing for a Weak Proxy Variable

I model a weak proxy variable comparably to a weak instrumental variable by following
Staiger and Stock (1997) and treating φ as being local to zero:

φ = φT = C/
√
T . (23)

Then, the analysis of a weak proxy variable is based on the projection of the proxy on the
VAR innovations in Equation (11). In addition, I make one additional assumption.

Assumption 5:

1. T−1/2U ′E
d→ N(0,E(utε

2
tu
′
t)).

Given Equation (23) and this assumption, the following subsections show that B̂1 is no longer
a consistent estimator for B1. Rather it converges in distribution to a function of normal
random variables. Further, I discuss the bias of this distribution and show that it is small
when a parameter similar to the concentration parameter in the weak IV literature is large.
Finally, I show that the F statistic on the null hypothesis that π = 0 in Equation (11) can
provide a test that this parameter is large.

3.1 Inconsistency of the B1 Estimator

Given the weak proxy assumption in Equation (23), it is the case that Equation (12) implies

π = (BΣvB
′)−1B1C/

√
T . (24)

Then, Assumptions 1, 2, 3, 4 and 5, Equations (23) and (24), the continuous mapping
theorem and Slutsky’s theorem imply

√
TB̂1φ

d→ BΣ1/2
v σεθ (25)

where B̂1φ is taken from Equation (21),

θ ∼ e1
C

σε
+N(0, In), (26)

and In is the n× n identity matrix. Then, from Equations (18) and (20), B̂1 can be written
as

B̂1 = ±
√
TB̂1φ

[
(
√
TB̂1φ)′(T−1Û ′Û)−1(

√
TB̂1φ)

]−1/2
,

with the following result

B̂1
d→ ±BΣ1/2

v θ(θ′θ)−1/2. (27)
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This follows from Equation (25), T−1Û ′Û
p→ BΣvB

′, the continuous mapping theorem and
Slutsky’s theorem. Thus, when zt is a weak instrument, it is the case that B̂1 is no longer a
consistent estimator for B1. Rather, B̂1 converges in distribution to a linear transformation
of the random vector θ divided by the Euclidean norm of θ.

Given the definition of θ in Equation (26), it is the case that θ(θ′θ)−1/2 → ±e1 as
C2/σ2

ε → ∞. Applying this result to Equation (27) along with the appropriate sign on B̂1

implies that the asymptotic distribution of B̂1 collapses to B1 as C2/σ2
ε → ∞.5 Thus, B̂1

becomes an increasingly accurate estimator as C2/σ2
ε becomes large, and C2/σ2

ε is comparable
to the concentration parameter in the weak IV literature (Stock, Wright, and Yogo, 2002;
Stock and Yogo, 2005). Because of this, I refer to C2/σ2

ε as the concentration parameter and
use it to construct the weak proxy set. First, I define (C2/σ2

ε )
∗ to be a threshold value. Then,

all proxy variables with concentration parameters in the interval [0, (C2/σ2
ε )
∗] compose the

weak proxy set. Conversely, all proxy variables with concentration parameters in the interval
((C2/σ2

ε )
∗,∞) are deemed strong. Following the weak IV literature, I set the threshold value

(C2/σ2
ε )
∗ so that proxies that are not in the weak proxy set have small asymptotic biases.

I discuss the asymptotic bias of B̂1 and threshold concentration parameters further in the
next subsection.

3.2 Asymptotic Bias of B1

To characterize the asymptotic bias of B̂1 with a weak proxy, I use the following lemma.

Lemma 1 Define the n× 1 random vector θ̃ = θ(θ′θ)−1/2 with elements θ̃j for j = 1, . . . , n.
Then, E(θ̃j) = 0 for j ≥ 2.

The proof of this lemma is provided in the appendix. Given this definition of θ̃, Equation
(27) implies that B̂1 converges to the random vector ±BΣ

1/2
v θ̃ as T →∞. Define b = E(θ̃1).

Then, Lemma 1 implies that
E(BΣ1/2

v θ̃) = B1b.

Thus, the expectation of the first element of θ̃ characterizes the asymptotic bias of B̂1. This
element is a function of C/σε and n standard normal random variables, and so its expectation
can be fully characterized by the parameters C2/σ2

ε and n.
To characterize b, I use a simulation. First, I fix a value of C2/σ2

ε . Second, I draw 10,000
observations of the random vector θ. Third, I compute θ̃1 and average over the 10,000
observations, which I take to be E(θ̃1). Figure 1 shows the results of these simulations
for multiple choices of C2/σ2

ε and n. In this figure, I use C/σε = +
√
C2/σ2

ε . Results for

C/σε = −
√
C2/σ2

ε simply flip this image so that b is negative.

5Application of the appropriate sign on B̂1 follows as in the strong proxy case. When the proxy is intended
to be positively correlated with the structural shock, then C > 0 and the positive sign is used in Equation
(27). When the proxy is intended to be negatively correlated with the structural shock, then C < 0 and the
negative sign is used in Equation (27).
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Figure 1: b as a function of C2/σ2
ε and n.

Figure 1 shows that b is bounded between 0 and 1, implying that the asymptotic bias
from a weak proxy biases B̂1 toward zero. When C2/σ2

ε = 0, then Lemma 1 applies to θ̃1
so that b = 0. As C2/σ2

ε increases, b increases and asymptotes to 1. When n is small, b
converges to 1 quickly and the asymptotic bias becomes small. However, as n increases, b
goes to 1 more slowly and larger values of C2/σ2

ε are needed to produce a small asymptotic
bias.

Figure 1 implies that for a given asymptotic bias tolerance, 1 − b, and for a given VAR
dimension n, a researcher can find a minimum value of the concentration parameter so that
the the asymptotic bias tolerance is not exceeded. This minimum value of C2/σ2

ε is given
by (C2/σ2

ε )
∗ and characterizes the weak proxy set discussed in the previous subsection. To

compute different values of (C2/σ2
ε )
∗ for different values of b and n, I use simulation and the

method of bisection. My algorithm proceeds as follows

1. Fix b and n.

12



2. Set a minimum bound on C/σε of min = 0 and a maximum bound of max = 40.6

3. Compute a guess of C/σε = (min+max)/2.

4. Given the guess of C/σε, draw 100,000 observations of the random vector θ.

5. Use the draws of θ to compute 100,000 observations of θ̃1 and compute b̄ to be the
average of the 100,000 observations of θ̃1.

6. If |b− b̄| < 1× 10−8, then stop the algorithm and set (C2/σ2
ε )
∗ to be the square of the

guess of C/σε. If not, proceed to the next step.

7. If b < b̄, then set the minimum bound equal to the guess of C/σε. If not, then set the
maximum bound equal to the guess of C/σε. Return to step 3.

I repeated this process for b equal to 0.80, 0.90, 0.95 and 0.99 and for n = 2, . . . , 20. The
results are presented in Table 1. They indicate that the threshold for the weak instrument
set increases with b and n. However, because C2/σ2

ε is not directly observable, this table is
not directly applicable for determining whether a proxy variable is in the weak proxy set or
not. Because of this, I use the testing procedure described in the next subsection.

3.3 A Test for a Weak Instrument

The objective of this subsection is to provide test for whether or not zt is in the weak proxy
set. Formally, I test

H0 : C2/σ2
ε ∈ [0, (C2/σ2

ε )
∗] vs. H1 : C2/σ2

ε ∈ ((C2/σ2
ε )
∗,∞).

To do this, I use the F statistic for the null hypothesis that π = 0 in Equation (11). This is
given by

F =

(
T − n
n

)
(Z − Z̄)′(Z − Z̄)− [(Z − Z̄)− Û π̂]′[(Z − Z̄)− Û π̂]

[(Z − Z̄)− Û π̂]′[(Z − Z̄)− Û π̂]

=
1

n

(
T − n
T

)
[T−1/2(Z − Z̄)′Û ](T−1Û ′Û)−1[T−1/2Û ′(Z − Z̄)]

T−1Ê ′Ê
.

(28)

Then under the weak proxy assumption in Equation (23),

F
d→ n−1θ′θ, (29)

6This implicitly assumes that C > 0. This algorithm can also be run for C < 0 by setting min = −40
and max = 0. Identical results down to a small simulation error will be achieved.
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Table 1: Values of (C2/σ2
ε )
∗ given b and n

n b = 0.80 b = 0.90 b = 0.95 b = 0.99

2 3.12 6.03 11.05 51.05
3 4.77 10.02 20.07 100.29
4 6.48 14.18 29.26 149.55
5 8.21 18.40 38.52 198.99
6 9.98 22.68 47.84 248.60
7 11.74 26.93 57.07 297.74
8 13.51 31.19 66.35 347.11
9 15.27 35.42 75.54 396.05
10 17.04 39.68 84.79 445.27
11 18.81 43.93 94.03 494.39
12 20.60 48.23 103.37 544.16
13 22.36 52.47 112.58 593.15
14 24.14 56.73 121.83 642.39
15 25.93 61.02 131.16 692.03
16 27.69 65.25 140.34 740.87
17 29.48 69.54 149.67 790.54
18 31.26 73.82 158.96 839.99
19 33.04 78.10 168.24 889.38
20 34.81 82.35 177.48 938.55
Note: (C2/σ2

ε )∗ is the upper bound on the weak proxy set,

where n is the dimension of the VAR and 1− b is the level

of asymptotic bias.
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which follows from Equation (25), T−1Û ′Û
p→ BΣvB

′, T−1Ê ′Ê
p→ σ2

ε , the continuous map-
ping theorem and Slutsky’s theorem. Equation (29) shows that nF converges to a non-central
χ2
n distribution with a non-centrality parameter of C2/σ2

ε . Then, the testing procedure is as
follows.

1. Choose a bias tolerance 1− b and a level of significance α.

2. Using the choice of b along with n, find the weak proxy set threshold (C2/σ2
ε )
∗.

3. Compute F in Equation (28).

4. Compute the Pr(X ≤ nF ) where X is a random variable from the non-central χ2
n

distribution with a non-centrality parameter of (C2/σ2
ε )
∗.

5. If 1− Pr(X ≤ nF ) < α reject H0; otherwise, fail to reject H0.

The idea behind this testing procedure is that if F is sufficiently large, then the probability
that it comes from a non-central χ2

n distribution with a non-centrality parameter at or below
(C2/σ2

ε )
∗ is sufficiently small to indicate that the true value of C2/σ2

ε is above (C2/σ2
ε )
∗.

Using the computed threshold values in Table 1, I compute the corresponding F statistics
for α equal to 0.90, 0.95 and 0.99. These F statistics are reported in Table 2.

As in the IV literature, the threshold F statistics are large. For example, if one wants to
reject the threshold concentration parameter that corresponds to a 10% asymptotic bias at
a 5% level of significance, then the critical F statistics are between 7 and 9 for conventional
VAR dimensions. For comparison purposes, if the threshold concentration parameter was
zero so that the asymptotic distribution of nF was a central χ2

n, then the critical F values
would be between 1.5 and 3 for the 5% level of significance.

4 An Analysis of Alternative Identification Methods

and Weak Proxy Tests

Previous papers that have used proxy variables to identify structural VAR shocks have
followed a slightly different identification procedure than the one proposed in Section 2 above.
For example, Gertler and Karadi (2015) and Lunsford (2015) further partition Equation (3)
into 

u1,t
(1× 1)
u2,t

(n− 1× 1)

 =


b11 b12

(1× 1) (1× n− 1)
b21 b22

(n− 1× 1) (n− 1× n− 1)




v1,t
(1× 1)
v2,t

(n− 1× 1)

 .
Mertens and Ravn (2014) use a similar partition except that they have two shocks of interest
so that that u1,t and v1,t are 2×1. Montiel Olea, Stock, and Watson (2012) also use a similar
partition, but make a different normalization. Instead of setting σ2

v1
= 1 as in Equation
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(9), they use a unit shock normalization where b11 = 1, implying that a one unit shock in
v1,t produces a one unit shock to u1,t. However, whether the normalization used is σ2

v1
= 1

or b11 = 1, the above partition along with the relevance and endogeneity assumptions in
Equations (5) and (6) imply

E[u1,t(zt − µz)] = b11φ

and
E[u2,t(zt − µz)] = b21φ,

which combine to yield

b21b
−1
11 = E[u2,t(zt − µz)]{E[u1,t(zt − µz)]}−1.

In Montiel Olea, Stock, and Watson (2012) this completes the estimation of B1 because of
the normalization b11 = 1. In Mertens and Ravn (2013), Gertler and Karadi (2015) and
Lunsford (2015), once b21b

−1
11 is estimated, b11 and b21 can then be separately estimated using

E(utu
′
t) = BΣvB

′ and the normalization in Equation (9). For example, see the Appendix of
Mertens and Ravn (2013) or Appendix D of Lunsford (2015).

The above equation indicates that b21b
−1
11 can be estimated by instrumental variables

where zt − µz is an instrument for u1,t. The corresponding structural and reduced form
equations for this estimate are

u2,t = b21b
−1
11 u1,t + η1,t

and
u1,t = γ(zt − µz) + η2,t.

Thus, one may attempt to identify a weak proxy by following the weak IV literature and
using the first-stage F statistic that tests the null hypothesis of γ = 0. This statistic is given
by

FIV = (T − 1)
Û ′1Û1 − [Û1 − (Z − Z̄)γ̂]′[Û1 − (Z − Z̄)γ̂]

[Û1 − (Z − Z̄)γ̂]′[Û1 − (Z − Z̄)γ̂]

=

(
T − 1

T

)
[T−1/2Û ′1(Z − Z̄)][T−1(Z − Z̄)′(Z − Z̄)]−1[T−1/2(Z − Z̄)′Û1]

T−1Û ′1U1 − [T−1Û ′1(Z − Z̄)][T−1(Z − Z̄)′(Z − Z̄)]−1[T−1(Z − Z̄)′Û1]

(30)

where Û1 = [û1,1, . . . , û1,T ]′, γ̂ = [(Z−Z̄)′(Z−Z̄)]−1(Z−Z̄)′Û1, and the notation FIV denotes
that this F statistic follows from the weak IV literature. This IV approach is taken by Montiel
Olea, Stock, and Watson (2012), Gertler and Karadi (2015) and Lunsford (2015) who then
compare FIV to critical values from the weak IV literature to test for proxy strength.

However, this weak IV approach is flawed. Comparing FIV to critical values from the
weak IV literature is not useful for testing the strength of the covariance between zt and v1,t.
This is because the asymptotic distribution of FIV depends on the matrix B, which will be
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different in each application. Thus, the standard critical values from the weak IV literature
will not apply because they cannot take B into account. To hightlight the problems with
using FIV as a test of proxy strength, I present a simple Mont Carlo experiment before
turning to the asymptotic properties of FIV in the following two subsections.

4.1 A Simple Monte Carlo Example

To hightlight the problem with the FIV statistic, I first run a simple Monte Carlo experiment.
In the experiment, I run two simulations where only one element of B changes between
the two simulations. Then, I compare how frequently FIV rejects the null of a weak proxy
variable. In these simulations, I put aside the reduced-form VAR in Equation (1) and assume
that the VAR innovations ut are directly observable. This will allow for direct study of the
weak proxy testing without any confounding problems that may arise from estimating ut.

In both simulations, ut is 2 × 1 and follows Equation (3) where v1,t and v2,t are both
standard normal random variables. The data generating processes (DGPs) of each simulation
are differentiated by B. DGP1 has

B =

[
1 10
1 1

]
,

and DGP2 has

B =

[
1 0.1
1 1

]
,

so that the only differences between the GDPs are the value of B12. For both DGPs, the
proxy variable follows

zt = 2 + v1,t(2.456/
√
T ) + εt,

where εt is a standard normal random variable and T is the sample size. Here, zt follows
the local to zero assumption in Equation (23). The value C = 2.456 is chosen so that the
concentration parameter is 6.03, which is from the b = 0.90 column of Table 1. Hence, B̂1

has an asymptotic bias of 10%. The value of µz = 2 is chosen arbitrarily.
For both DGPs, I run 10,000 simulations with sample size T = 200, 000. This sample

size is large so that the testing statistics behave similarly to their asymptotic distributions.
I then compute FIV in Equation (30) and compute the percentage of simulations where it
exceeds the value 10. This value of 10 a is common rule of thumb for testing proxy strength
and was used as a threshold by Stock and Watson (2012) and Gertler and Karadi (2015).
For comparison purposes, I also compute F in Equation (28) and compute the percentage
of simulations where it exceeds the value 9.06, which is the 5% critical value for n = 2 and
b = 0.90 in Table 2. Effectively, this value of F is testing H0 : C2/σ2

ε ∈ [0, 6.03] versus
H1 : C2/σ2

ε ∈ (6.03,∞) at the 5% level.
In DGP1, FIV exceeds 10 in only 0.3% of the simulations, implying that DGP1 would

almost never yield a test that rejects zt in the weak proxy set. However, in DGP2, FIV
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exceeds 10 in 23.3% of the simulations, implying that DGP2 would yield a test that rejects
zt in the weak proxy set nearly a quarter of the time. These results are problematic given
that FIV is intended to be a test of the concentration parameter and that the concentration
parameter is the same in both DGPs. This suggests that the standard critical values from
the weak IV literature (Stock and Yogo, 2005) may not apply in this context and that the
statistical size of this test can fluctuate depending on the elements of B. Further, the size
can depend on a parameter, B12, that is associated with structural shocks other than the
shock of interest.

For comparison, F exceeds 9.06 in 5.3% of the simulations for both DGPs, which is very
close to the 5% critical value that 9.06 represents for this DGP. Further, this shows that for
large sample sizes, B does not impact F as implied by Equation (29).

4.2 Analysis of the FIV Statistic

To understand why the two DGPs in the Monte Carlo experiment above gave different reject
rates for the FIV statistic, I first note that

FIV
d→ (e′1BΣvB

′e1)
−1(e′1BΣ1/2

v θ)2, (31)

where e1 = [1, 0, . . . , 0]′ and θ is defined in Equation (26). This result follows from the second

line of Equation (30), û1,t = e′1ût, Equation (25), T−1Û ′Û
p→ BΣvB

′, T−1(Z− Z̄)′(Z− Z̄)
p→

σ2
ε , the continuous mapping theorem and Slutsky’s theorem. The limiting distribution in

Equation (31) can be rewritten as(
B11C/σε√

B2
11 +B12Σv2B

′
12

+ w

)2

,

where w is a standard normal random variable. Hence, FIV converges in distribution to a
non-central χ2

1 with a non-centrality parameter of

B2
11C

2/σ2
ε

B2
11 +B12Σv2B

′
12

.7

Here, we see that unlike F , which converges to a distribution that is independent of B
and Σv, FIV does not. This is problematic because the weak IV critical values (Stock and
Yogo, 2005) will no longer apply, and as highlighted by the Monte Carlo experiment above,
the rule of thumb of FIV > 10 will not be a good guide for proxy strength. With FIV , the
concentration parameter C2/σ2

ε is now scaled by B2
11/(B

2
11 + B12Σv2B

′
12) in the asymptotic

distribution. This scaling is the ratio of the variance of u1,t that is attributable to v1,t relative
to the total variance of u1,t. Thus, if the variance of u1,t is largely driven by v2,t as it was in

7This same result can be found in Montiel Olea, Stock, and Watson (2012).
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DGP1 above, then the non-centrality parameter is 0 and an FIV static larger than 10 will
rarely be drawn. This is consistent with the simulation results of DGP1. If the variance of
u1,t is largely driven by v1,t as it was in DGP2 above, then the non-centrality parameter is
close C2/σ2

ε . Because the concentration parameter in DGP2 was 6.03, this DGP will draw
FIV > 10 at a much higher rate.

With knowledge of the variance decomposition of u1,t, it is still possible to test whether
or not C2/σ2

ε is in the weak proxy set with FIV . To do this, the threshold concentration
parameter needs to be scaled by the fraction of the variance of u1,t that is attributable to v1,t
before finding a critical value from the corresponding non-central χ2

1 distribution. For DGP1,
the appropriate variance fraction is 1/101. Multiplying this by the threshold (C2/σ2

ε )
∗ = 6.03

yields a non-centrality parameter of 0.060 and 5% critical value of 4.07, which is less than half
of the rule of thumb critical value. When FIV > 4.07 is used in DGP1 rather than FIV > 10,
then the null hypothesis is rejected in 4.8% of the simulations. The corresponding critical
value for DGP2 is 16.71, and when FIV > 16.71 is used in DGP2 rather than FIV > 10, then
the null hypothesis is rejected in 5.3% of the simulations. This shows that using FIV may
require big differences in critical values that will depend on the variance decomposition of
u1,t. These critical values will be different for each empirical application and will also vary
depending on how researchers make their choice of u1,t. That is, different orderings of the
VAR will also imply different critical values for FIV .

This process of scaling the threshold concentration parameter by the fraction of the
variance of u1,t that is attributable to v1,t before computing critical values does not make
FIV useful in practice, however. This is because B11 is not known to researchers and has
to be estimated. With a weak instrument, the estimate of B11 will be inconsistent and
lead to an incorrectly estimated variance decomposition, yielding an incorrect critical value.
As an example of this problem, I return to the Monte Carlo experiment above. For both
DGPs, I estimate B11 with the first element of B̂1, and I estimate B2

11 + B12Σv2B
′
12 with

T−1
∑T

t=1 u
2
1,t. Then, I scale the threshold concentration parameter, 6.03, with the estimate

of B2
11/(B

2
11 + B12Σv2B

′
12) to estimate the relevant non-centrality parameter and compute

the 5% critical value. With DGP1, this estimated critical value rejects the null hypothesis in
0.1% of the simulations. With DGP2, this estimated critical value rejects the null hypothesis
in 6.1% of the simulations. Thus, using F instead of FIV gives better statistical size for both
DGPs. Further, using F allows researchers to use the same critical values from Table 2 for
all applications and regardless of the VAR ordering.

5 The Dynamic Effects of Productivity Shocks

As an application of the estimation and weak proxy testing laid out in the previous sections, I
study the dynamic effects of productivity shocks. To do this, I use Fernald’s (2014) measures
of utilization-adjusted total factor productivity (TFP) as my proxy variables. Fernald (2014)
constructs two measures of TFP. The first is a measure of TFP in the consumption sector,
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which excludes durable goods. The second is a measure of TFP in the sector for durable
goods and equipment investment. For simplicity, I refer to these as consumption TFP and
investment TFP.

The VAR that I use includes GDP growth, private employment growth and inflation.
All variables are in annualized percentage terms.8 In addition, I include the combined
annualized percent growth in non-durable goods and services consumption to correspond to
Fernald’s (2014) consumption TFP series as well as the combined annualized percent growth
in equipment investment and durable goods consumption to correspond to Fernald’s (2014)
investment TFP series.9 Thus, the VAR dimension is n = 5. The data is quarterly with a
sample of 1947:Q2 to 2015:Q2, and I estimate the VAR with 3 lags.

Before testing for proxy weakness or estimating the impulse response functions (IRFs)
and variance contributions of the TFP shocks, I first estimate the correlation of the proxy
variables. The first row of the first column of Table 3 shows that this correlation 0.29.
Because the VAR has three lags, this statistic is computed from the 1948:Q1 to 2015:Q2
sample. In addition, Table 3 gives the 95% confidence interval in parentheses, which is
the percentile intervals from an i.i.d. bootstrap with 10,000 replications. This confidence
interval shows that the positive correlation of the proxy variables is statistically distinct
from zero. Because of this, it may be appropriate to treat zt as a 2 × 1 vector where
zt = [zCt , z

I
t ]
′ and to identify both structural shocks simultaneously as in Mertens and Ravn

(2013). However, because the econometric theory in this paper is based on zt being a
scalar, I estimate the structural TFP shocks one at a time. To ensure that estimating
the structural shocks one at a time does not produce structural shocks that violate the
assumptions of the model, Table 3 also gives the correlation of the estimated structural
shocks, the first autocorrelation of the proxies and the structural shocks, the correlations
between the proxies and their corresponding structural shocks, and the correlations between
the proxies and the other structural shock. This table shows that the structural shocks have
a correlation 0.08, which is much lower than the correlation between the proxies. Further,
this correlation is not statistically distinct from zero. Thus, I treat the estimated structural
shocks as uncorrelated and consistent with Equation (4) in Assumption 1. In addition,
Table 3 shows that both of the proxies and the estimated structural shocks have small and
statistically insignificant autocorrelations, which is consistent with Assumptions 1 and 3.
Next, the correlations between the proxies and their corresponding structural shocks are both
positive and statistically significant, implying that proxies satisfy the relevance assumption.
Finally, the correlation of the consumption TFP proxy and the investment TFP structural

8Annualized percent growth in GDP is from the National Income and Product Accounts (NIPA) Table
1.1.1. For the other series, I use the formula gt = (xt/xt−1−1)×400 to compute annualized growth percents.
Inflation is computed as an annualized growth percent from the price index for GDP from NIPA Table 1.1.4.
Employment is defined as all employees in total private industries, and I use a quarterly average of monthly
data from the FRED database before computing annualized percent growth.

9To combine these series, I start with annualized percent growth from NIPA Table 1.1.1. Then, I compute
a weighted average based on the relative size of the sectors, using nominal series from NIPA Table 1.1.5 to
compute the relative size.
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Table 3: Correlations of proxies and structural shocks

corr(zCt , z
I
t ) = 0.29 corr(v̂C1,t, v̂

I
1,t) = 0.08

(0.16, 0.42) (−0.05, 0.22)

corr(zCt , z
C
t−1) = 0.04 corr(v̂C1,t, v̂

C
1,t−1) = −0.01

(−0.12, 0.12) (−0.12, 0.11)

corr(zIt , z
I
t−1) = −0.01 corr(v̂I1,t, v̂

I
1,t−1) = 0.01

(−0.12, 0.11) (−0.12, 0.12)

corr(zCt , v̂
C
1,t) = 0.58 corr(zIt , v̂

I
1,t) = 0.38

(0.48, 0.66) (0.28, 0.48)

corr(zCt , v̂
I
1,t) = 0.05 corr(zIt , v̂

C
1,t) = 0.03

(−0.09, 0.19) (−0.11, 0.17)
Notes: zCt and zIt are the proxy variables for consumption TFP and investment

TFP, respectively. v̂Ct and v̂It are the estimated structural shocks for consumption

TFP and investment TFP, respectively. The sample is 1948:Q1 to 2015:Q2. 95%

confidence intervals are presented in parentheses, and they are percentile intervals

that are computed from an i.i.d. bootstrap with 10,000 replications.

shock is small and statistically insignificant. The same is true for the correlation of the
investment TFP proxy and the consumption TFP structural shock. Thus, Fernald’s (2014)
TFP proxies do not violate the exogeneity assumption with themselves. Taken together, the
correlations presented in Table 3 imply that the estimated structural shocks do not violate
the basic assumptions of the model even though the proxies are positively correlated and the
structural shocks are identified one at a time.

Next, I test the strength of Fernald’s (2014) TFP proxies. To do this, I follow the weak
IV literature and define my weak proxy set as containing any proxy variable that produces
an asymptotic bias larger than 10% (Stock, Wright, and Yogo, 2002). From Table 1, this
implies that the threshold concentration parameter is 18.40. Then from Table 2, the 10%
critical F statistic is 7.12 and the 5% critical F statistic is 7.98. For the consumption TFP
proxy, the estimated F statistic is 26.26, which well exceeds both of these critical values.
For the investment TFP proxy, the estimated F statistic is 9.02, which also exceeds both
critical values. Thus, I reject the null hypothesis that each proxy is in the weak proxy set.

Figure 2 shows the dynamic effect of a positive one standard deviation TFP shock to
consumption. The 90% confidence intervals are the percentile intervals from a modified
version of the residual-based moving block bootstrap algorithm described in Brüggemann,
Jentsch, and Trenkler (2014) with 10,000 bootstrap replications. This algorithm is modified
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Figure 2: Dynamic effect of a TFP shock to consumption (excluding durables).

so that blocks of the proxy variable that correspond to the blocks of the VAR errors are
also centered and re-sampled. This allows for re-estimation of B̂1 in every bootstrap loop to
account for the uncertainty in estimating B̂1. Figure 2 shows that a positive TFP shock to
consumption causes an increase in GDP growth, a delayed increase in employment growth,
and a decrease in inflation. Further, this shock causes an jump in growth in non-durables
and services consumption and an increase durables consumption and equipment investment.
These effects are theoretically consistent with a positive supply shock because they generate
opposite movements in quantities and prices.

Figure 3 shows the dynamic effect of a positive one standard deviation TFP shock to
investment. As in Figure 2, the 90% confidence intervals are percentile intervals from a
modified residual-based moving block bootstrap algorithm with 10,000 bootstrap replica-
tions. Figure 3 shows that a positive TFP shock to investment causes immediate decreases
in GDP growth, employment growth, and durables consumption and equipment investment
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Figure 3: Dynamic effect of a TFP shock to durable consumption and equipment investment.

growth. These drops are then followed by smaller booms in growth after about 4 quarters.
Further, an increase in investment TFP causes a decrease in inflation. These effects are
theoretically inconsistent with a standard supply shock because quantities and prices move
in the same direction. Rather, Figure 3 looks like a negative demand shock. However, these
results are consistent with the empirical findings in Basu et al. (2013). To make sense of
these results, Basu, Fernald, and Liu (2012) solve a dynamic stochastic general equilibrium
model where consumption and investment are produced in different sectors and both sectors
have sticky prices. In their model, an increase in productivity in the investment sector causes
a drop in both quantities and prices similar to Figure 3. The intuition is that an increase
in productivity in the investment sector causes an increase in the mark-up of investment
goods with sticky prices. This causes investment goods to be expensive in the current period
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Table 4: Variance Contributions of Structural Shocks from 1948:Q1 to 2015:Q2

Private Non-Durables Durables
Structural Shock GDP Employment Inflation & Services & Equipment

Consumption TFP 0.39 0.05 0.07 0.17 0.14
Investment TFP 0.39 0.74 0.23 0.10 0.29

relative to future periods, suppressing current demand for investment goods. Thus, with
sticky investment prices, positive TFP shocks can act like negative demand shocks.

Finally, I compute the variance contribution of each of the structural shocks. To do this,
I first estimate

ζ̂t = Yt − Â′0 − Â′1Yt−1 − · · · − Â′pYt−p − B̂1v̂1,t,

where ζ̂t is the estimate of B2v2,t. I then simulate

Ỹt = Â′0 + Â′1Ỹt−1 + · · · − Â′pỸt−p + ζ̂t,

where the initial condition is given by [Ỹ0, . . . , Ỹ−p+1] = [Y0, . . . , Y−p+1]. This generates the
variables in the VAR without the contribution of the structural shocks of interest. Finally,
for each element in the VAR, indexed by j, I compute 1−var(Ỹj,t)/var(Yj,t) to be the variance
contribution from the structural shock of interest. Because the initial condition is the same
for both Yt and Ỹt by construction, I drop the initial condition from this calculation and use
the sample 1948:Q1 to 2015:Q2. Table 4 presents these contributions for each variable in the
VAR and for both structural shocks. The most striking result is that both shocks contribute
39% to the variance of GDP growth, implying that productivity shocks explain nearly 80%
of the variance in output growth. Next, the investment TFP shock contributes 74% to the
variance of growth in private employment, indicating that the majority of the fluctuations
in employment growth comes from this one shock. The investment TFP shock also has a
large impact on inflation and growth in durables and equipment investment, contributing
23% and 29% of those variances, respectively. Finally, the consumption TFP shock has only
modest variance contributions to employment growth, inflation, growth in non-durables and
services, and growth in durables and equipment.

6 Conclusion

In this paper, I show that a proxy variable can identify a structural shock in a VAR, where
a proxy variable is defined as being external from the VAR, correlated with the structural
shock of interest, and uncorrelated with all other structural shocks. I provide a simple
estimator for the impact of the structural shock of interest and show that this estimator is
consistent when the proxy variable is strong. Next, I study the case of a weak proxy variable
by assuming that a weak proxy is local to zero as in Staiger and Stock (1997). Given this
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assumption, the estimator for the impact of the structural shock of interest is inconsistent
and converges in distribution to a function of normal random variables. Finally, I propose a
test for a weak proxy based on the F statistic from the projection of the proxy variable onto
the VAR errors. I give critical F values that depend on the level of statistical significance,
asymptotic bias tolerance, and VAR dimension.

An important feature of F the statistic used in this paper is that its asymptotic dis-
tribution does not depend on parameters that need to be estimated. This contrasts with
the F statistic from the weak IV literature, which has been used to test for weak proxy
variables up to this point. The asymptotic distribution of the F statistic from the weak IV
literature is a function of the variance decomposition of the relevant VAR error. Because
different empirical applications and different choices of the relevant VAR error will yield dif-
ferent variance decompositions, the limiting distribution of the F statistic from the weak IV
literature will be different from application to application and for different VAR orderings.
Thus, the critical value for this statistic cannot simply be read from the weak IV literature
(Stock and Yogo, 2005); rather, it will need to be computed for each application. Finally,
the problem with computing these critical values is that the presence of a weak proxy makes
them inconsistent and leads to mis-sized statistical tests.

I use Fernald’s (2014) measures of consumption TFP and investment TFP as proxy
variables to study the dynamic effects of productivity shocks. I find that both of these
proxies are strong, that they yield structural shocks that satisfy the relevance and exogeneity
assumptions, and that these structural shocks are mutually and serially uncorrelated. A
positive shock to consumption TFP produces an immediate increase in output growth and
an immediate decrease in inflation, which is consistent with the standard theory of a supply
shock. A positive shock to investment TFP causes an immediate decrease in output growth
along with a hump-shaped decrease in inflation, resembling a negative demand shock rather
than a positive supply shock. However, this result is consistent with the empirical findings
of Basu et al. (2013) and the theoretical model of Basu, Fernald, and Liu (2012). Finally,
I find that the consumption and investment TFP shocks combine to contribute nearly 80%
of the variance in GDP growth and that the investment TFP shock alone contributes over
70% of the variance in private employment growth.

This paper focuses on the case where one proxy variable is used to identify one structural
shock. Thus, future research should extend this analysis to study the cases where multiple
proxies exist for one structural shock. Further, this analysis should be extended for when
researchers want to identify multiple structural shocks at once with multiple proxy variables
as in Mertens and Ravn (2013) or with Fernald’s (2014) TFP shocks.
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Appendix

Proof of Lemma 1 The jth element of θ̃j can be written as

θ̃j =
θj√

θ21 + · · ·+ θ2n
,

where θj is the jth element of θ. The elements of θ as defined in Equation (26) are uncor-
related normal random variables, implying that they are also independent. Next, define a
n− 1× 1 random vector λ, containing all elements of θ except for θj for any j ≥ 2. Then,

θ̃j =
θj√

θ2j + λ′λ
.

Here λ′λ is a random scalar from the non-central χ2
n−1 distribution with a non-centrality

parameter of C2/σ2
ε . Because the elements of θ are independent, it is also the case that θj

and λ′λ are independent. This implies that the expectation of θj can be written as

E(θ̃j) =

∫ ∞
0

∫ ∞
−∞

θj√
θ2j + λ′λ

f(θj)dθj

 g(λ′λ)dλ′λ, (A.1)

where f is the probability density function (pdf) for a standard normal random variable, and
g is the pdf for a non-central χ2

n−1 distribution with a non-centrality parameter of C2/σ2
ε .

The proof proceeds in two steps. First, I establish that the interior integral in Equation
(A.1) is finite for any λ′λ ≥ 0 so that it can be computed for each λ′λ ≥ 0. Second, I
establish that the interior integral is equal to zero for all λ′λ ≥ 0 implying that E(θ̃j) = 0.

First, fix some λ′λ > 0. Then, for θj ≥ 0 and for θj ≤ 0

0 ≤ θj√
θ2j + λ′λ

≤ 1 and − 1 ≤ θj√
θ2j + λ′λ

≤ 0,

respectively. Then,

0 ≤
∫ κ

0

θj√
θ2j + λ′λ

f(θj)dθj ≤
∫ κ

0

f(θj)dθj,

and

0 ≥
∫ 0

−κ

θj√
θ2j + λ′λ

f(θj)dθj ≥
∫ 0

−κ
−f(θj)dθj.
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Because limκ→∞
∫ κ
0
f(θj)dθj = 1/2 and limκ→∞

∫ 0

−κ−f(θj)dθj = −1/2, it is the case that

0 ≤
∫ ∞
0

θj√
θ2j + λ′λ

f(θj)dθj ≤
1

2
and 0 ≥

∫ 0

−∞

θj√
θ2j + λ′λ

f(θj)dθj ≥ −
1

2
.

Thus, the interior integral of Equation (A.1) is finite for all λ′λ > 0.
Second, fix some λ′λ > 0. Then,∫ ∞
−∞

θj√
θ2j + λ′λ

f(θj)dθj =

∫ ∞
0

θj√
θ2j + λ′λ

f(θj)dθj +

∫ 0

−∞

θj√
θ2j + λ′λ

f(θj)dθj

=

∫ ∞
0

θj√
θ2j + λ′λ

f(θj)dθj +

∫ ∞
0

−θj√
(−θj)2 + λ′λ

f(−θj)dθj

=

∫ ∞
0

θj√
θ2j + λ′λ

f(θj)dθj +

∫ ∞
0

−θj√
θ2j + λ′λ

f(θj)dθj

=

∫ ∞
0

θj − θj√
θ2j + λ′λ

f(θj)dθj =

∫ ∞
0

0 · f(θj)dθj = 0.

In the event that λ′λ = 0,

θj√
θ2j + λ′λ

= 1 and
θj√

θ2j + λ′λ
= −1

for θj > 0 and for θj < 0, respectively. When λ′λ = 0, then θj/
√
θ2j + λ′λ is undefined when

θj = 0. However, I can apply

lim
κ→0+

∫ ∞
κ

θj√
θ2j + λ′λ

f(θj)dθj = lim
κ→0+

∫ ∞
κ

f(θj)dθj =
1

2

and

lim
κ→0−

∫ κ

−∞

θj√
θ2j + λ′λ

f(θj)dθj = lim
κ→0−

∫ κ

−∞
−f(θj)dθj = −1

2
.

Thus, the interior integral of Equation (A.1) is zero for all λ′λ ≥ 0, and Equation (A.1) can
be re-written as

E(θ̃j) =

∫ ∞
0

0 · g(λ′λ)dλ′λ = 0.
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