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1 Introduction

As is evident in public commentary (see, e.g., Bernanke 2007 and Mishkin 2007), central
bankers and other policymakers pay considerable attention to measures of long-run in�a-
tion expectations. These expectations are viewed as shedding light on the credibility of
monetary policy. Monetary policy tools work di¤erently if long-run in�ation expectations
are �rmly anchored than if they are not. In general, monetary policy is thought to be
most e¤ective when long-run in�ation expectations are stable.
These considerations have contributed to the development of a large literature on the

measurement of long-run in�ation expectations. One simple approach is to rely on direct
estimates of in�ation expectations from surveys of professionals or consumers.1 For exam-
ple, Federal Reserve commentary such as Mishkin (2007) includes long-run expectations
based on the Survey of Professional Forecasters�(SPF) projection of average in�ation 1
to 10 years ahead.
Other approaches rely on econometric estimates of trend in�ation; under some as-

sumptions, trend in�ation should correspond to long-run in�ation expectations. A large
literature uses econometric methods to estimate in�ation trends and forecast in�ation
(see, among many others, Stock and Watson, 2007, Chan, Koop and Potter, 2013, and
Clark and Doh, 2014).2 A smaller strand of the literature combines econometric models
of trend with the information in surveys (see, among others, Kozicki and Tinsley, 2012,
Wright, 2013 and Nason and Smith, 2014).3

In recent years, some countries have experienced extended periods of in�ation running
below survey-based estimates of long-run in�ation expectations. For example, Fuhrer,
Olivei, and Tootell (2012) show that actual in�ation in Japan consistently ran below
(survey-based) long-run in�ation expectations in their sample, from the early 1990s to
2010. More recently, in the United States, for each year between 2008 and 2014, in�ation
in the core PCE price index has run below the SPF long-run forecast of 2 percent (which
coincides with the Federal Reserve�s o¢ cial goal for in�ation).4 Even though survey-
based in�ation expectations have been stable, actual in�ation has been low enough for
long enough to pull some common econometric estimates of trend in�ation well below
2 percent (see, e.g., Bednar and Clark 2014). These experiences raise the question of
whether it is possible for survey-based in�ation expectations to become disconnected
from actual in�ation. Such a disconnect would make such expectations less useful for

1Direct estimates of in�ation expectations can also be obtained based on the relationship between
real and nominal bonds. However, estimates of break-even in�ation calculated using these are usually
available only for a short time span. And there are reasons to expect that break-even in�ation might
re�ect factors other than just long run in�ation expectations (e.g. if the risk premium is time-varying).
Faust and Wright (2013) �nd it too volatile to be a sensible forecast for long run expected in�ation. For
these reasons, we do not use break-even in�ation data in this paper.

2The reader is referred to Faust and Wright (2013) for a recent survey on in�ation forecasting, in-
cluding a discussion of in�ation surveys and methods for estimating trend in�ation.

3Some DSGE models � developed in Del Negro and Schorfheide (2013) and references therein �
treat the in�ation target of the central bank as a random walk process and include survey measures of
long-run in�ation expectations as indicators of the target in model estimation.

4This statement is based on Q4/Q4 in�ation rates for each year. The statement also applies to
headline in�ation, except that headline in�ation rose above two percent for one year, 2011.
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gauging the credibility of monetary policy and for forecasting in�ation.
In this paper we develop a new model to examine the relationship between in�ation,

in�ation expectations and trend in�ation. We use this model to assess whether survey-
based in�ation expectations can become disconnected from actual in�ation and, even if
they do so, whether they can improve estimates of trend in�ation. We build on papers
such as Kozicki and Tinsley (2012) by using models which are more �exible in empirically
important directions, extending recent work with unobserved components models with
stochastic volatility (UCSV) such as Stock and Watson (2007, 2015), Chan, Koop and
Potter (2013), Clark and Doh (2014), Garnier, Mertens, and Nelson (2015), and Mertens
(2015). Papers such as Kozicki and Tinsley (2012) equate long run forecasts with trend
in�ation. Similarly, econometric estimates of trend in�ation are sometimes calibrated to
be the same as surveys. Our model breaks such links between trend in�ation and long run
in�ation forecasts. Instead it allows us to estimate the relationship to investigate whether
equating trend in�ation with in�ation expectations based on surveys is a sensible thing
to do. Furthermore, it does so in a time-varying manner so that, e.g., trend in�ation can
be equal to the forecasts provided in the surveys at some points in time, but at other
points in time forecasts can provide biased estimates of trend in�ation. Another point
of departure from the existing literature is that we only use survey data on long run
in�ation forecasts, allowing us to avoid the use of a subsidiary (possibly mis-speci�ed)
model linking short-run forecasts to long run in�ation expectations.
An empirical application involving several measures of US in�ation and long-run fore-

casts from two di¤erent sources shows the usefulness of our approach. We present evidence
that extensions over simpler approaches such as the addition of stochastic volatility and
time-varying coe¢ cients are important in practice. Survey-based measures of in�ation
expectations are found to be useful for estimating trend in�ation, producing smoother
and more sensible estimates than the UCSV model. However, we also present evidence
that the survey-based measures should not simply be equated with trend in�ation as the
relationship between the two is more complicated and time-varying. We conclude with
an examination of out-of-sample forecasting, which shows point and density forecasts
from our model to be at least as good as those from other models that have been found
successful in the in�ation forecasting literature.

2 Econometric Modelling of Trend In�ation

An unobserved components framework is commonly-used to model in�ation, �t, as being
composed of trend (or underlying) in�ation, ��t , and a deviation from trend, the in�ation
gap, ct:

�t = ��t + ct: (1)

The two components of in�ation are identi�ed by making assumptions (e.g. that trend
in�ation follows a random walk) that imply

lim
j!1

Et [�t+j] = Et[�
�
t+j] = ��t (2)
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and
lim
j!1

Et [ct+j] = 0; (3)

where Et [�] are expectations at time t.
There are many possible econometric models consistent with this simple decomposi-

tion (which can be seen as a generalization of the Beveridge-Nelson decomposition) and
we will argue for a particular modeling framework soon. But the basic justi�cation for
using surveys of long run forecasts can be clearly seen from (2). Those surveyed at time
t about what in�ation will be in period t + j can be expected to be reporting Et [�t+j].
Thus, using (2), forecasts of long-run in�ation should also provide estimates of Et[��t+j]
for large j and, given the random walk assumption, also for trend in�ation, ��t . There are
several ways that this relationship plus data on long-run forecasts made at time t (zt) can
be used to produce estimates of current trend in�ation, with Kozicki and Tinsley (2012)
being an in�uential recent approach.
However, there are reasons to be cautious about simply equating long run forecasts

from surveys with in�ation trends. For instance, surveys may produce forecasts that are
biased, at least at some points in time. Surveys might also contain some noise, due to
factors such as changes in participants from one survey date to another. Accordingly, we
desire an econometric speci�cation that allows us to estimate the relationship between
�t and zt rather than imposing a particular form. In our model, a �nding that long
run forecasts taken from surveys can be equated with trend in�ation is possible, but not
assumed a priori.
Earlier work also suggests many other desirable features we want our econometric

model to have. First, the in�ation gap, ct, should be stationary but may exhibit persis-
tence. For instance, the Fed may tolerate deviations of in�ation from a trend or target
for a certain period of time, provided such deviations are temporary. Furthermore, the
Fed�s toleration for such deviations may change over time. For instance, Chan, Koop and
Potter (2013) discuss how the high in�ation in the 1970s may have been partly due to the
combination of a large in�ation gap (with only a small increase in trend in�ation) with
a Fed tolerant of a high degree of in�ation gap persistence. When Paul Volcker subse-
quently became the Fed governor, this tolerance decreased and in�ation gap persistence
dropped. We want our model to be able to accommodate such shifts in persistence.
Second, Faust and Wright (2013) �nd improvements in forecast performance by using

the in�ation gap (as opposed to in�ation itself) as a dependent variable and modeling
the in�ation gap as deviations of actual in�ation from a slowly evolving trend. Following
this recommendation, our econometric speci�cation also has this property.
Third, a large number of papers such as Stock and Watson (2007) have found the

importance of allowing for stochastic volatility, not only in the in�ation equation but also
in the state equations which describe the evolution of trend in�ation.
Finally, a general theme of many papers on in�ation modeling, including Faust and

Wright (2013) and Stella and Stock (2013), is time-varying predictability. Accordingly,
we want a time-varying parameter (TVP) model where coe¢ cients can change.
All of these features are built into the following extremely �exible model which should

be able to accommodate any relevant empirical properties of the data on in�ation (�t)
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and the survey-based in�ation expectation (zt):

�t � ��t = bt(�t�1 � ��t�1) + vt; (4)

zt = d0t + d1t�
�
t + "z;t +  "z;t�1; (5)

��t = ��t�1 + nt; (6)

bt = bt�1 + "b;t; "b;t � TN(0; �2b); (7)

dit � �di = �di (di;t�1 � �di) + "di;t; "di;t � N(0; �2di); i = 0; 1; (8)

vt = �0:5v;t"v;t; "v;t � N(0; 1); (9)

nt = �0:5n;t"n;t; "n;t � N(0; 1); (10)

log(�i;t) = log(�i;t�1) + �i;t; �i;t � N(0; �i); i = v; n: (11)

All of the errors de�ned above are independent over time and with each other.
TN (0;1)(�; �

2) denotes the normal distribution with mean � and variance �2 truncated so
as to ensure 0 < bt < 1 at every point in time. Note that by allowing bt to be time-varying
we can �nd changes in the degree of persistence in the in�ation gap. And truncating the
errors in (7) to an appropriate interval allows us to ensure that the in�ation gap is sta-
tionary at every point in time.
Variants of the model described above, excluding zt, involving only (possibly restricted

versions of) (4), (6), (7), (9), (10) and (11) have been used to estimate trend in�ation
by several authors. For instance, the popular UCSV model of Stock and Watson (2007)
is this model with bt = 0, and Chan et al (2013) use this model with bounded trend
in�ation but without stochastic volatility in "n;t. We stress that stochastic volatility is
often found to be important in models of trend in�ation such as these.5 This feature
allows for the possibility that the volatility of trend in�ation or deviations of in�ation
from trend vary over time.
By adding the additional equations (5) and (8) to a conventional unobserved compo-

nents model such as the one de�ned by (4), (6), (7), (9), (10) and (11), we can potentially
improve estimates of trend in�ation. That is, adding the relationship between zt and ��t
should provide extra information for estimating trend in�ation beyond that provided in
a univariate model involving in�ation only.
Another important feature of our model is that we allow d0t and d1t to vary over

time.6 These coe¢ cients relate to the question of whether long run in�ation forecasts
are unbiased estimates of trend in�ation. If d0t = 0 and d1t = 1 they are. If d1t = 1 but

5For the errors in other equations, preliminary estimates suggest that an assumption of homoskedas-
ticity is reasonable.

6Although our model is less restrictive than other studies that relate in�ation and survey measures
of in�ation expectations, our speci�cation can be seen as consistent with the cointegration restrictions
imposed in these other studies (e.g., Mertens 2015, Mertens and Nason 2015, and Nason and Smith
2014). These other studies impose stationarity of the di¤erence between actual in�ation and survey
expectations. Our model is consistent with cointegration of the survey expectation zt with trend in�ation
��t : the innovation term of the zt equation is a stationary MA(1) process. Although the posterior of d0;t
and d1;t need not be close to 0 or 1, respectively, our prior puts the initial values of these coe¢ cients
at 0 and 1, respectively. So our prior implies cointegration of zt with trend in�ation ��t with a slope
coe¢ cient of 1. With ��t the source of integration in �t, it follows that we can think of �t and zt as
cointegrated as well.
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d0t 6= 0 then long run forecasts are consistently biased upwards or downwards. Under
this de�nition, bias includes either a constant di¤erential between trend in�ation and
the survey forecast or a failure of the survey to move one-for-one with trend.7 Thus,
investigating restrictions relating to d0t and d1t is of economic interest. To allow for
persistence in a long-term in�ation forecast that may not be adequately picked up by
persistence in trend in�ation, we add an MA(1) error term to (5). As we shall see,
empirical evidence for the need for this MA error term is weak for some choices of zt
(and there is never any evidence for lag lengths greater than one), but for the Blue
Chip forecasts the MA term is empirically important and we include it in our general
speci�cation. Since d0t and d1t are time varying, we have the potential to estimate
changes in the relationship between long run forecasts and trend in�ation. For instance,
it is possible that long run forecasts are unbiased estimates of trend in�ation at some
points in time, but not others. Our model allows for this possibility, but a constant
coe¢ cient model would not.
Finally, our model excludes an economic activity indicator from the in�ation gap

equation (4). We do so in the interest of parsimony, motivated in part by evidence in the
forecasting literature (see Faust andWright 2013 and references therein) of the di¢ culty of
using economic activity variables to improve predictions of in�ation. However, we include
in the empirical appendix results for a model supplemented to include in the in�ation
equation an unemployment rate gap with a time-varying coe¢ cient. These results are
very similar to those we obtain without economic activity in the model. Our speci�cation
with the unemployment gap has precedents in other recent studies, including: Stella and
Stock (2013), which generalizes the UCSV formulation of Stock and Watson to relate
the in�ation gap to an unemployment gap; Jarocinski and Lenza (2015), which considers
a model with a factor model of economic activity, for the purpose of estimating the
output gap, with a structure for in�ation, trend in�ation, and in�ation expectations that
corresponds to a restricted, constant parameter version of our formulation; and Morley,
Piger, and Rasche (2015), which considers a bivariate, constant parameter model relating
in�ation less a random walk trend to an unemployment gap.
We use Bayesian methods to estimate all the unknown parameters of our model, in-

cluding latent variables such as trend in�ation. The Markov Chain Monte Carlo (MCMC)
algorithm used for estimation is similar to that used in previous work (e.g. Chan et al,
2015) and, hence, we say no more of it here (see the Technical Appendix for details).
For model comparison, we calculate posterior model probabilities using methods that are
less familiar and, accordingly, we brie�y describe here. Bayesian model comparison is
typically done using posterior model probabilities. That is, if the researcher has a set of
models, Mr for r = 1; ::; R, model comparison can be done by calculating P (MrjData),

7Conceptually, the distinction between the in�nite horizon forecast that constitutes trend in�ation
and the 10-year horizon of the survey expectation could cause d0;t to di¤er from 0 and d1;t to di¤er
from 1. In practice, though, for professional forecasters, it seems likely that the 10-year ahead survey
forecast is equivalent to an in�nite horizon forecast. For example, since the Federal Reserve established its
longer-run in�ation objective of 2 percent, the 10 year-ahead forecast of PCE in�ation from the Survey of
Professional Forecasters has been anchored at 2 percent. Moreover, in a cross-country analysis, Mehrotra
and Yetman (2014) �nd that survey forecasts at just a 24-month ahead horizon tend to cluster around
central bank in�ation targets.
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the posterior model probability (where P (�jData) is our general notation for a posterior
probability, i.e. the probability of � conditional on the data). For model comparison
involving models nested within an unrestricted speci�cation, P (MrjData) can often be
obtained in a particularly simple way through the use of the Savage-Dickey Density Ratio
(SDDR, see, e.g., Verdinelli and Wasserman, 1995). The SDDR provides a direct esti-
mate of the Bayes factor comparing an unrestricted to restricted model (e.g. comparing
our full model to a variant which restricts the MA coe¢ cient in (5) to be zero). If equal
prior weight is attached to each model, then the Bayes factor is simply the ratio of poste-
rior model probabilities. Recently, methods for calculating the SDDR in a time-varying
manner in state space models (such as the one used in this paper), have been developed
by Koop, Leon-Gonzalez and Strachan (2010). In this paper, we use such methods to
calculate posterior model probabilities in a time varying fashion. For instance, we can
calculate P (d0t = 0; d1t = 1jData) for t = 1; ::; T to see if long run in�ation forecasts
provide unbiased estimates of trend in�ation at some points in time but not others. The
Technical Appendix provides additional details on our Bayesian econometric methods.

3 Data

Policymakers are interested in a range of di¤erent measures of in�ation, and the research
literature considers a range of measures. Accordingly, we provide results for a number of
combinations of di¤erent measures of in�ation and in�ation expectations. In the interest
of brevity, in the text we focus on three combinations. In the Empirical Appendix we
provide results for three additional combinations; these results are very similar to those
we report in the text.
In total, we provide results for four di¤erent measures of quarterly in�ation (�t in

the model): i) in�ation based on the consumer price index (CPI in�ation), ii) in�ation
based on the consumer price index excluding food and energy (core CPI in�ation), iii)
in�ation based on the price index for personal consumption expenditures (PCE in�ation)
and iv) in�ation based on the GDP de�ator (GDP de�ator in�ation). In�ation rates are
computed as annualized log percent changes (�t = 400 ln (Pt=Pt�1) where Pt is a price
index).
In our text results, we focus on the (headline) CPI and PCE measures. The CPI

has the advantage of being widely familiar to the public, and for much of our sample,
the available in�ation expectations data refer to it. However, changes over time in the
methodology used to construct the CPI � such as the 1983 change in the treatment
of housing costs to use rental equivalence � may create structural instabilities, because
the historical data are not revised to re�ect methodology changes. One reason we also
consider PCE in�ation is that its historical data has been revised to re�ect methodology
changes, reducing concerns with instabilities created by methodology changes. Another
reason is that the Federal Reserve�s preferred in�ation measure is PCE in�ation; its
longer-run in�ation objective is stated in terms of PCE in�ation.
Re�ecting data availability, our results draw on a few di¤erent sources of long-run

in�ation expectations. Surveys of professional forecasters have long included projections
of CPI in�ation or the GNP/GDP price de�ator/price index, but only recently has any
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survey included PCE in�ation.8 However, in light of the many similarities in CPI and
PCE in�ation (many of the detailed price indexes used to construct the PCE measure
come from the CPI), some policy work and some research measures historical expectations
for PCE in�ation with expectations for CPI in�ation, subject to an adjustment for the
di¤erence in their average in�ation rates. We follow that practice in this paper.
More speci�cally, our main source of long-run in�ation expectations (zt in the model)

is the Federal Reserve Board of Governor�s FRB/US econometric model, which includes
in�ation expectations as a variable denoted PTR. De�ned in CPI terms, the PTR series
in the Board�s model splices (1) econometric estimates of in�ation expectations from
Kozicki and Tinsley (2001) early in the sample to (2) 5- to 10-year-ahead survey measures
compiled by Richard Hoey to (3) 1- to 10-year ahead expectations from the Survey of
Professional Forecasters. De�ned in the PCE terms actually used in the FRB/US model,
the series uses the same sources, but from 1960 through 2006, the source data are adjusted
to a PCE basis by subtracting 50 basis points from the in�ation expectations measured in
CPI terms. We refer to these long run forecast series for CPI and PCE in�ation as PTR-
CPI and PTR-PCE, respectively. From 1960 through 2006, PTR-PCE is just PTR-CPI
less 50 basis points.
We also use the Blue Chip Consensus as a source of long-run in�ation expectations.

Blue Chip has been publishing long run (6-10 year) forecasts of CPI in�ation and GNP
or GDP de�ator in�ation since 1979 in the latter case and 1983 in the former case. To
extend the CPI forecast survey back to 1979, we �ll in data for 1979 to 1983 using de�ator
forecasts from Blue Chip.9 The forecasts are only published twice a year; we construct
quarterly values using interpolation.
In the interest of text brevity, we present results for three combinations of in�ation

with corresponding in�ation expectations: i) CPI in�ation plus PTR-CPI long run fore-
casts, ii) PCE in�ation plus PTR-PCE long run forecasts, and iii) CPI in�ation plus
Blue Chip CPI in�ation forecasts. This set addresses robustness to di¤erent in�ation
measures and to di¤erent measures of in�ation expectations. We provide results for other
combinations in the empirical appendix: iv) core CPI in�ation plus PTR-CPI long run
forecasts, v) core CPI in�ation plus Blue Chip CPI in�ation forecasts and vi) GDP
de�ator in�ation plus Blue Chip GDP de�ator in�ation forecasts.
Finally, in results based on the PTR measures of in�ation expectations, we estimate

the model using data from 1960:Q1 to 2014:Q3. In results based on Blue Chip expecta-
tions, the sample period is 1979:Q4 to 2014:Q3.

4 Empirical Results

In this section, we present results for three di¤erent data combinations (i.e. an in�a-
tion with appropriate long run in�ation expectations measure). Empirical results are
mostly presented using �gures. In each case, the �rst set of �gures plots posterior

8The Blue Chip consensus tracks expectations of in�ation in both the CPI and GDP price index. The
Survey of Professional Forecasters tracks expectations of CPI in�ation and, since 2007, PCE in�ation.

9For the next several years following 1983, Blue Chip�s long-run forecasts of CPI and GDP in�ation
are very similar.
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means (along with an interval estimate) of all the latent variables in the model (i.e.
��t ; bt; �v;t; �n;t; d0t; d1t). The �gure for �

�
t also plots actual in�ation (�t) along with long-

run forecasts taken from the surveys (zt). The second set of �gures relate to the question
of whether long-run survey forecasts can be equated with trend in�ation or not. In par-
ticular, they plot P (d0t = 0; d1t = 1jData), P (d0t = 0jData) and P (d1t = 1jData) for
t = 1; ::; T . Our model allows for these probabilities to vary over time. But it is possible
that d0t and/or d1t are constant over time. To shed light on this, we present �gures
plotting, e.g., P (d0t = d0sjData) for t = 1; ::; T and a given choice of s. This addresses
the question: what is the probability a parameter has changed since time s? To present
evidence on whether parameters are constant over time, we present �gures of this form
for d0t; d1t (individually and jointly) and bt.
For comparison, we also present trend in�ation for a more general version of the

popular UCSV model of Stock and Watson (2007) which we take as a restricted version
of our model which excludes the equations involving zt, d0t and d1t but allowing bt to be
non-zero, while all other choices (including the prior hyperparameters) are identical to
our model. This model, which corresponds to the univariate model of Cogley, Primiceri,
and Sargent (2010), is denoted as the UCSV-AR model.10

In the empirical appendix, we provide plots of the prior and posterior of the MA
coe¢ cient for each data combination. This is used to calculate the SDDR and help decide
whether to include an MA process in (5). The priors used in this paper are informative,
but not dogmatically so. In models such as ours, involving many unobserved latent
variables, use of informative priors is typically necessary.11 In the empirical appendix,
we present results from a prior sensitivity analysis showing our results are fairly robust
to changes in our prior.

4.1 Results Using CPI In�ation and PTR-CPI Forecasts

Using CPI in�ation and the PTR-CPI long-run in�ation expectations, Figures 1 through 4
present estimates of ��t ; bt; �v;t; �n;t; d0t and d1t. Trend in�ation estimates can be seen to be
much smoother than actual in�ation and track long-run survey-based forecasts fairly well.
However, there are some di¤erences between ��t and zt, particularly around 1980. This
was a time of high in�ation and the professionals were forecasting long run in�ation to be
somewhat higher than our estimate of trend in�ation. A �nding that the professionals�
forecasts are often slightly above our estimates of trend in�ation (particularly around
1980) can also be seen in the estimates of d0t and d1t. Remember that d0t = 0 and d1t = 1
implies long run forecasts are unbiased estimates of trend in�ation. Our estimate of d0t
is positive and d1t is above one (and increases to a value well-above one around 1980).
These values jointly imply that our trend in�ation estimates are slightly below those of the
professional throughout the sample and this di¤erence increases around 1980. However,
the lower bound of the interval estimate for d0t (d1t) tends to be near zero (one). Estimates

10However, for simplicity, we depart from Cogley, Primiceri, and Sargent (2010) by treating the variance
of innovations to the AR(1) coe¢ cient as constant instead of time-varying.
11Indeed, in the UC-SV model of Stock and Watson (2007), the stochastic volatility equations equiv-

alent to our (11) are assumed to have a common error variance and this common variance is �xed at a
speci�c value. Our prior is much less restrictive than this.
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of bt tend to be quite high until around 1980, but decrease steadily thereafter, indicating
that the degree of persistence in the in�ation gap has dropped over time. Such a �nding
is consistent with the Fed become increasingly intolerant of in�ation being above implicit
targets for long periods of time, particularly after Paul Volcker became Chairman of the
Federal Reserve in 1979. There is also strong evidence of stochastic volatility, both in the
in�ation equation and in the one for trend in�ation. This is consistent with the �ndings
of Stock and Watson (2007) in their univariate model for in�ation. It is interesting to
note that, as in Stock and Watson (2007), both types of stochastic volatility increased
throughout the 1970�s, peaking around 1980, and falling subsequently. However, with our
longer sample span, we are �nding that the recent �nancial crisis was associated with a
large increase in in�ation volatility, but no increase in the volatility of trend in�ation.
The previous discussion was based on an examination of point estimates and, with

interval estimates being fairly wide, the question of how statistically important these
�ndings are naturally arises. More formal conclusions about the consistency of long-run
survey based in�ation expectations with trend in�ation can be based on the posterior
model probabilities presented in Figure 5. With regards to d0t and d1t individually,
evidence is somewhat ambiguous, with P (d0t = 0jData) and P (d1t = 1jData) both being
around a half for much of the sample, although there is a substantial drop in the latter in
the late 1970s and early 1980s. However, the joint probability, P (d0t = 0; d1t = 1jData),
is more de�nitive. It indicates that between the mid-1970s and 1990, the probability of
this joint restriction holding was near zero. Even though there is some imprecision in
our estimates of the time-varying coe¢ cients, the near-zero joint probability points to
signi�cant information in the data on changes over time in these coe¢ cients. For this
period at least, there is found to be a disconnect between the econometric estimate of
trend in�ation with the survey-based long-run in�ation forecasts. Given this �nding, it is
not surprising that Figure 6, which calculates P (d0t = d0;1980; d1t = d1;1980jData) provides
some evidence of time variation in these parameters, with the beginning and end of the
sample indicating the most divergence from 1980s values. It is also worth noting that
most of the evidence against the hypotheses that d0t = 0; d1t = 1 and that they are
constant over time arises through the behavior of d1t. This coe¢ cient wanders farthest
from the restriction of interest (d1t = 1), whereas there is less evidence that d0t wanders
far from zero. Finally, Figure 2 provides support for the conclusion that bt is time-varying
and, in particular, decreases markedly as part of the Great Moderation of the business
cycle in the early to mid 1980s.
Figure 7 plots trend in�ation using the UCSV-AR model. A comparison to Figure

1 indicates the UCSV-AR estimate of trend in�ation does not track the long-run survey
forecasts as well as our model. In addition, the interval estimate is quite wide; estimating
trend in�ation without the information available in the long-run in�ation expectation
included in our proposed model yields a much less precise estimate. The right hand panel
of Figure 7 calculates the dynamic probabilities that the trend in�ation estimates equal
the long-run forecasts. After the late 1980s these are very close to one, although prior
to this there were periods that this probability becomes much lower. The fact that these
probabilities tend to be higher than those in Figure 5 re�ects the imprecision of trend
in�ation estimates provided by the UCSV models. The long-run forecasts are more likely
to fall within the wider interval estimates produced by the UCSV-AR model than with
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our model.
It is also worth noting that the Bayes factor comparing the unrestricted version of our

model against a restricted version without an MA term (5) is 1:5. This provides us with
some weak support in favor of its inclusion. In the empirical appendix, it can be seen
that that most of the posterior probability is associated with positive but small values
for the MA coe¢ cient.
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Figure 1: Posterior means and quantiles (16% and 84%) of ��t .
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Figure 2: Posterior means and quantiles (16% and 84%) of b�t , and the dynamic
probabilities that bt = bs with s = 1980Q1.
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Figure 3: Posterior means and quantiles (16% and 84%) of dit.

1960 1970 1980 1990 2000 2010
0

5

10

15

λ
v,t

1960 1970 1980 1990 2000 2010
0

0.01

0.02

0.03

0.04

0.05

0.06

λ
n,t

λ
n,t

Figure 4: Posterior means and quantiles (16% and 84%) of �v;t and �n;t.
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Figure 5: Marginal and joint dynamic probabilities for d0t and d1t
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Figure 6: The marginal and joint dynamic probabilities that dit = di;s with s =
1980Q1.
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Figure 7: Posterior means and quantiles (16% and 84%) of ��t and dynamic
probabilities P (��t = ztjData) for the UCSV-AR model.

4.2 Results Using PCE In�ation and PTR-PCE Forecasts

In this sub-section, the in�ation measure is PCE in�ation, and the long-run in�ation
expectations measure is PTR-PCE. Apart from some minor di¤erences, results are the
same as for the two previous cases. One more substantial di¤erence is that now we are
�nding stronger evidence in favor of the MA error in (5) in that the relevant Bayes factor is
3:8 with a point estimate of nearly 0:4. As with the previous cases, we are �nding sensible
smooth trend in�ation estimates which match up fairly well with long-run forecasts. But
this matching is not perfect, so that equating trend in�ation with survey-based measures
looks questionable. For instance, P (d0t = 0; d1t = 1jData) is near zero for most of the
1980s and 1990s.
The trend in�ation estimates provided by the UCSV-AR model are mostly sensible.

However, they do not match up with zt that closely and, even allowing for the wide interval
estimate, there are many periods where the probability that trend in�ation equals the
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long-run forecasts is very small.
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Figure 8: Posterior means and quantiles (16% and 84%) of ��t .
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Figure 9: Posterior means and quantiles (16% and 84%) of b�t , and the dynamic
probabilities that bt = bs with s = 1980Q1.
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Figure 10: Posterior means and quantiles (16% and 84%) of dit.
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Figure 11: Posterior means and quantiles (16% and 84%) of �v;t and �n;t.
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Figure 12: Marginal and joint dynamic probabilities for d0t and d1t.
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Figure 13: The marginal and joint dynamic probabilities that dit = di;s with s =
1980Q1.
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Figure 14: Posterior means and quantiles (16% and 84%) of ��t and dynamic
probabilities P (��t = ztjData) for UCSV-AR model.

4.3 Results Using CPI in�ation and Blue Chip CPI Forecasts

This section of empirical results uses the Blue Chip 6-10 year forecast as the measure of
long run in�ation expectations. Remember that these forecasts are available for a shorter
time span and only begin in 1979Q4. This sub-section contains results where the in�ation
measure is CPI-based and the Blue Chip forecasts are of CPI in�ation.
A general pattern we are �nding with the Blue Chip forecasts is that there is much

more evidence in favor of an MA process. In this sub-section, we are �nding a Bayes factor
in favor of its inclusion to be 31.8. We are also �nding that the probability that d0t = 0
and d1t = 1 increases over time, which contrasts with results found using PTR-based
long-run surveys. And we are also �nding less evidence in favor of time variation in the
coe¢ cients. Although this reduced evidence of time variation could partly be due to the
shorter sample span, it seems to be more due to the di¤erence in in�ation expectations.
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In unreported results, we found that estimating the model using the PTR-CPI measure
of expectations over the shorter sample yields results very similar to those for the full
sample. Overall, though, our main results are found to be robust to changes in data.
In particular, our model, by incorporating survey-based information, is producing more
sensible estimates of trend in�ation than a UCSV-AR model, but that simply equating
trend in�ation with the survey-based forecasts is not a sensible thing to do.
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Figure 15: Posterior means and quantiles (16% and 84%) of ��t .
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Figure 16: Posterior means and quantiles (16% and 84%) of b�t , and the dynamic
probabilities that bt = bs with s = 1980Q1.
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Figure 17: Posterior means and quantiles (16% and 84%) of dit.
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Figure 18: Posterior means and quantiles (16% and 84%) of �v;t and �n;t.
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Figure 19: Marginal and joint dynamic probabilities for d0t and d1t.
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Figure 20: The marginal and joint dynamic probabilities that dit = di;s with s =
1980Q1.
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Figure 21: Posterior means and quantiles (16% and 84%) of ��t and dynamic
probabilities P (��t = ztjData) for UCSV-AR model.

4.4 Forecasting

The primary purpose of this paper is to develop an appropriate model for investigating
the relationship between in�ation, trend in�ation and in�ation expectations. However, it
is also of interest to see whether it forecasts better than plausible alternatives. To this
end, we carry out a pseudo out-of-sample forecasting exercise. For the sake of brevity,
we present results for CPI and PCE in�ation using the PTR long-run forecasts. The
evaluation period is from 1975Q1 to 2014Q3.12 In addition to our proposed method,
we consider two benchmarks. One is the UCSV model of Stock and Watson (2007),
implemented as described in Section 2 (for comparability to Stock and Watson, in the
forecast comparison we use the UCSVmodel and not the UCSV-ARmodel included in our

12We repeated the analysis with a shorter forecast evaluation period beginning in 1985Q1 (after the
Great Moderation) and found results to be qualitatively similar.
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full-sample model estimates reported above). The other is an AR(1) model in �gap form"
similar to that used in Faust and Wright (2013), which they describe as �amazingly hard
to beat by much�. We call this the Faust and Wright model below.13 We add stochastic
volatility to this model to aid in comparability with our own. Speci�cally, we de�ne the
gap as gt = �t � zt and use the model:

gt = �0 + �1gt�1 + �g;t; �g;t � N(0; �g;t);

log(�g;t) = log(�g;t�1) + �g;t; �g;t � N(0; �g);

where we assume j�1j < 1. The forecast for �t+k given data till time t is computed by
adding zt to a forecast for gt+k. All other modeling choices, including priors, are the same
as for our model.
Tables 1 and 2 evaluate forecast performance for CPI and PCE in�ation, respectively,

using root mean squared forecast errors (RMSFEs) and sums of log predictive likelihoods
relative to the UCSV model. For CPI in�ation, we tend to �nd some small improvements
in RMSFE relative to UCSV, particularly at longer horizons. However, using predictive
likelihoods as measures of forecast performance, our model is beating the UCSV model
by a substantial amount, particularly at longer forecast horizons. Our forecasts do not
beat the AR(1) model in gap form, but our model is at least competitive with one which
the in�ation forecasting literature has found to be among the top forecasting models.
For PCE in�ation, neither our model nor Faust and Wright can beat UCSV when

RMSFEs are used to measure forecast performance. However, when using predictive
likelihoods, we are clearly beating UCSV at virtually every forecast horizon whereas Faust
and Wright is inferior to UCSV at virtually every horizon. Hence, for PCE in�ation ours
is, overall, the best forecasting model.

Table 1: RMSFEs and log predictive likelihood for forecasting CPI, 1975Q1 to 2014Q3.

Relative RMSFE
1Q 2Q 4Q 8Q 12Q

UCSV 1.00 1.00 1.00 1.00 1.00
Faust-Wright 1.00 1.01 0.98 0.92 0.90
New model 0.98 1.00 1.03 0.98 0.96

Relative log predictive likelihood
1Q 2Q 4Q 8Q 12Q

UCSV 0.00 0.00 0.00 0.00 0.00
Faust-Wright 0.14 2.91 8.95 14.13 17.56
New model 3.81 4.26 5.71 9.48 14.30

Hence, for both in�ation measures, our model has been found to be as good or better
than popular and successful alternatives in terms of forecast performance, particularly

13Our speci�cation generalizes their ��xed ��model by including an intercept and estimated coe¢ -
cients. Accordingly, our model takes the same form as their �AR-gap�model, except that, at all horizons,
we use the 1-step ahead form of the model and iterated forecasts, whereas they use a direct multi-step
form of the model.
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Table 2: RMSFEs and log predictive likelihood for forecasting PCE, 1975Q1 to 2014Q3.

Relative RMSFE
1Q 2Q 4Q 8Q 12Q

UCSV 1.00 1.00 1.00 1.00 1.00
Faust-Wright 1.01 1.03 1.00 0.98 0.99
New model 0.99 1.02 1.03 1.01 1.02

Relative log predictive likelihood
1Q 2Q 4Q 8Q 12Q

UCSV 0.00 0.00 0.00 0.00 0.00
Faust-Wright -1.40 -0.88 1.90 -4.12 -3.86
New model 2.19 1.47 2.81 -0.96 2.56

as measured by predictive likelihoods. The fact that RMSFEs rarely di¤er much for the
three approaches we are comparing indicates that most of the bene�ts of our model arise
not from improving point forecasts, but from more accurate estimation of higher moments
of the predictive distribution.

5 Summary and Conclusion

In this paper, we have developed a bivariate model of in�ation and in�ation expecta-
tions that incorporates empirically-important features such as time-varying parameters
and stochastic volatility. In a broad sense, we have used our model to investigate the
relationship between these two variables. In a narrower sense, we have investigated the
degree to which survey-based long-run in�ation forecasts can be used to inform estimates
of trend in�ation. In an extensive empirical exercise involving three di¤erent measures
of in�ation and two di¤erent sources for long-run in�ation forecasts we �nd a consistent
story: Long-run in�ation forecasts do provide useful additional information in informing
estimates of trend in�ation. However, the forecasts themselves cannot simply be equated
with trend in�ation. In out-of-sample forecasting, our model yields point and density
forecasts that are at least as good as those from other models that have been found
successful in the in�ation forecasting literature.
The history captured by our estimates indicates the distinction between trend in�a-

tion and long-run in�ation expectations captured by surveys is practically important.
For example, as noted in the introduction, for most of the period since 2008, in�ation in
the PCE price index has run below the Federal Reserve�s longer-run in�ation objective
of 2 percent. Over the past couple of years, in�ation has declined to very low levels.
Yet, for several years before the recession that began in 2007, in�ation ran steadily above
target. Some estimates of trend in�ation based entirely on in�ation � as in the UCSV
speci�cation of Stock and Watson (2007) � have moved around with in�ation, rising
in the early to mid-2000s and declining markedly as of late 2014. At the other extreme,
long-run in�ation expectations measured from the Survey of Professional Forecasters have
remained steady around 2 percent (with occasional up-ticks and down-ticks). Drawing
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on the information in both in�ation and the survey�s long-run expectation, our model�s
estimate of trend is much smoother than the estimate from a univariate UCSV speci�ca-
tion, implying the trend to be stable in the face of both the rise of in�ation in the years
before the recession and the fall since the recession. In fact, our model estimates show
trend in�ation to be even more stable than the survey expectation. However, in keeping
with a historical bias in the survey forecast, our estimate of trend in�ation has for some
time been stable, slightly below the survey expectation.
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Technical Appendix
In this appendix, we specify the prior and MCMC algorithm used in this paper. We

also provide additional details on the calculation of dynamic model probabilities using
the SDDR.
The model is given in (4), (5), (6), (7), (8), (9), (10) and (11). We initialize the

state equations (6), (8), (7) and (11) by ��1 � N(��0; �n;1V��), b1 � N(b0; Vb), di1 �
N(�di; �

2
di=(1 � �2di)), i = 0; 1; and log(�i;1) � N(log(�i;0); V�i), i = v; n, with �i;0 = 1,

b0 = ��0 = 0 and V�i = Vb = V�� = 100: These are relatively non-informative choices.
For later reference, let � = (�1; : : : ; �T )0 and d = (d01; d11; : : : ; d0T ; d1T )0, and similarly

de�ne z, ��, b, �v and �n. In addition, let � denote the model parameters, i.e., � =
( ; �d0; �d1; �d0; �d1; �

2
d0; �

2
d1; �

2
b ; �

2
w; �v; �n)

0:
We assume independent priors for elements of the parameter vector � which are proper

and weakly informative. The priors for �di and �di are:

�d0 � N(a0; V�); �d1 � N(a1; V�); �di � TN(c1;c2)(a2; V�);

where the TN(c1;c2)(a1; a2) denotes the N(a1; a2) distribution truncated to the interval
(c1; c2) and we set a0 = 0, a1 = 1, a2 = 0:95, V� = 0:12 and V� = 0:12. These choices
imply relatively informative priors centered at the values which imply trend in�ation
is equal to long-run in�ation forecasts (apart from a mean zero error). For the MA(1)
coe¢ cient, we consider the relatively non-informative prior which restricts the MA process
to be invertible:  � TN(�1;1)(0; V ) with V = 0:252. Finally, we assume independent
inverse gamma priors for the variance parameters. In particular, the degree of freedom
parameters are all set to the relatively non-informative value of 5, and the scale parameters
are set such that E(�2d0) = E(�2w) = E(�v) = E(�n) = 0:01 and E(�

2
d1) = E(�2b) = 0:001.

These values are chosen to re�ect the desired smoothness of the corresponding state
transition. For example, the prior mean for �2d0 implies that with high probability the
di¤erence between consecutive d0t lies within the values �0:2 and 0:2.
To estimate the model in (4), (5), (6), (7), (8), (9), (10) and (11), we extend the

MCMC sampler developed in Chan, Koop and Potter (2013) which was used for a uni-
variate bounded in�ation trend model. Moreover, we also incorporate the sampler in
Chan (2013) for handling the MA innovations with stochastic volatility. Speci�cally, we
sequentially draw from the following densities:

1. p(�� jData; b; d; �v; �n; �);

2. p(b jData; ��; d; �v; �n; �);

3. p(d jData; ��; b; �v; �n; �);

4. p(�v; �n jData; ��; b; d; �);

5. p(�d0; �d1 jData; ��; b; d; �v; �n; ��f�d0;�d1g);

6. p(�2d0; �
2
d1 jData; ��; b; d; �v; �n; ��f�2d0;�2d1g);

7. p(�d0; �d1 jData; ��; b; d; �v; �n; ��f�d0;�d1g);
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8. p( jData; ��; b; d; �v; �n; ��f g);

9. p(�2b ; �
2
w; �v; �n jData; ��; b; d; �v; �n; ��f�2b ;�2w;�v ;�ng).

Step 1: To implement Step 1, note that information about �� comes from three
sources: the two measurement equations (4) and (5), and the state equation (6). We
derive an expression for each component in turn. First, write (4) as

Hb� = Hb�
� + ~��� + v; v � N(0;�v);

where ~��� = (b1(�0 � ��0); 0; : : : ; 0)
0, �v = diag(�v;1; : : : ; �v;T ) and

Hb =

0BBBBB@
1 0 0 � � � 0
�b2 1 0 � � � 0
0 �b3 1 � � � 0
...

. . .
...

0 0 � � � �bT 1

1CCCCCA :

Since jHbj = 1 for any b, Hb is invertible. Therefore, we have

(� j��; b; �v) � N(�� + ��� ; (H
0
b�

�1
v Hb)

�1);

with log density

log p(� j��; b; �v) / �
1

2
(� � �� � ���)

0H 0
b�

�1
v Hb(� � �� � ���); (12)

where ��� = H�1
b ~���. Note that Hb is a band matrix and ��� can be obtained quickly

by solving the band system Hbx = ~��� for x without computing the inverse H�1
b .

The second component comes from (5) which can be written as:

z = d0 +X���
� +H �z; �z � N(0; �2wIT );

where d0 = (d01; : : : ; d0T )0, X�� = diag(d11; : : : ; d1T ) and

H =

0BBBBB@
1 0 0 � � � 0
 1 0 � � � 0
0  1 � � � 0
...

. . . . . .
...

0 0 � � �  1

1CCCCCA :

Thus, ignoring any terms not involving ��, we have

log p(z j��; d; �2w) / �
1

2�2w
(z � d0 �X���

�)0(H H
0�1
 (z � d0 �X���

�);

= � 1

2�2w
(~z � ~X���

�)0(~z � ~X���
�); (13)
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where ~z = H�1
 (z � d0) and ~X�� = H�1

 X��. Since H is a band matrix, ~z can be
computed quickly by solving a linear system of equations without �nding the inverse
H�1
 . The matrix ~X�� is lower triangular that is in general not banded. However, most of

the elements away from the main diagonal band are close to zero. In our implementation
we construct a band approximation by replacing all elements below 10�6 with 0. Since
the cut-o¤ point is so small, it has no impact on the results, but it substantially speeds
up the computation.
The third component is contributed by the state equation (6):

log p(�� j�n) / �
1

2
(�� � ���)

0H 0��1n H(�� � ���); (14)

where H is the T �T �rst di¤erence matrix, �n = diag(�n;1V�� ; �n;2; : : : ; �n;T ) and ��� =
H�1(��0; 0; : : : ; 0)

0. Then, combining (12), (13) and (14), we �nally obtain

logp(�� jData; b; d; �v; �n; �)

/� 1
2
(� � �� � ���)

0H 0�1
b vHb(� � �� � ���)�

1

2�2w
(~z � ~X���

�)0(~z �X���
�)

� 1
2
(�� � ���)

0H 0��1n H(�� � ���);

/� 1
2
(�� � �̂�)0K��(�

� � �̂�);

which is the kernel of the N(�̂�; K�1
�� ) distribution, where

K�� =

�
H 0�1
b vHb +

1

�2w
~X 0
��
~X�� +H 0��1n H

��1
;

�̂� = K�1
��

�
H 0�1
b Hb(� � ���) +

1

�2w
~X 0
��~z +H 0��1n H���

�
:

If we use the band approximation of ~X�� as described above, the precision K�� is also a
band matrix. Then, we use the precision sampler in Chan and Jeliazkov (2009) to sample
�� from the conditional distribution (�� jData; b; d; �v; �n; �).
Step 2: Next, we derive the conditional density p(b jData; ��; d; �v; �n; �). Due to

the inequality restriction 0 < bt < 1, this joint density is non-normal. We �rst rewrite
(4) as:

~� = Xbb+ v; v � N(0;�v);

where ~� = (�1 � ��1; : : : ; �T � ��T )
0 and Xb = diag(�0 � ��0; : : : ; �T�1 � ��T�1). It follows

that the log density of (� j��; b; �v) can also be written as follows:

log p(� j��; b; �v) / �
1

2
(~� �Xbb)

0��1v (~� �Xbb); (15)

Next, write (7) as
Hb = ~�b + �b;

27



where ~�b = (b0; 0; : : : ; 0)0 and the elements of �b are independent truncated normal vari-
ables. Note that Pr(0 < b1 < 1) = �((1� b0)=

p
Vb)� �(b0=

p
Vb) and

Pr(0 < bt < 1) = �

�
1� bt�1
�b

�
� �

�
�bt�1
�b

�
;

where �(�) is the cumulative distribution function of the standard normal distribution.
Hence, the prior density for b is given by

log p(b j�2b) /
1

2
(b� �b)

0H 0��1b H(b� �b) + gb(b; �
2
b); (16)

where �b = diag(Vb; �2b ; : : : ; �
2
b), �b = H�1~�b and

gb(b; �
2
b) = �

TX
t=2

log

�
�

�
1� bt�1
�b

�
� �

�
�bt�1
�b

��
:

Combining (15) and (16), we obtain

log(b jData; ��; d; �v; �n; �) / �
1

2
(b� b̂)0K�1

b (b� b̂) + gb(b; �
2
b);

where
Kb =

�
H 0��1b H +X 0

b�
�1
v Xb

��1
; �̂� = K�1

b (H
0�1
b
~�b +X 0

b�
�1
v ~�):

We follow Chan, Koop and Potter (2013) to sample b. Speci�cally, candidate draws
are �rst obtained from the N(b̂; K�1

b ) distribution using the precision sampler in Chan
and Jeliazkov (2009), and they are accepted or rejected via an acceptance-rejection
Metropolis-Hastings step.
Step 3: To sample from p(d jData; ��; b; �v; �n; �), we �rst rewrite (5) and (8) as

z = Xdd+H "z; "z � N(0; �2wIT );

H�dd =
~�d + "d "d � N(0;�d);

where ~�d = (�d0; �d1; (1 � �d0)�d0; (1 � �d1)�d1; : : : ; (1 � �d0)�d0; (1 � �d1)�d1)
0; �d =

diag(�2d0=(1� �2d0); �
2
d1=(1� �2d1); �

2
d0; �

2
d1; : : : ; �

2
d0; �

2
d1),

Xd =

0BBB@
1 ��1 0 0 0 � � � 0
0 0 1 ��2 0 � � � 0
...

. . .
...

...
0 0 � � � 0 0 1 ��T

1CCCA ; H�d =

0BBBBBBB@

1 0 0 0 � � � 0
��d0 1 0 0 � � � 0
0 ��d1 1 0 � � � 0
...

. . . . . .
...

0 0 � � � ��d0 1
0 0 � � � 0 ��d1 1

1CCCCCCCA
:

Using standard linear regression results (see, e.g., Koop, 2003, pp. 60-61), we have
(d jData; ��; b; �v; �n; �) � N(d̂; K�1

d ), where

Kd =

�
H 0
�d
��1d H�d +

1

�2w
~X 0
d
~Xd

��1
; d̂ = K�1

d

�
H 0
�d
��1d

~�d +
1

�2w
~X 0
d(H

�1
 z)

�
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with ~Xd = H�1
 Xd. As before, we construct a band approximation of ~Xd by replacing all

elements less than 10�6 with 0. Then, the precision Kd is a band matrix and the precision
sampler in Chan and Jeliazkov (2009) is used to sample d.
Step 4: To implement Step 4, note that �v and �n are conditionally independent given

the parameters and other states. Hence, we can draw them sequentially using the auxiliary
mixture sampler of Kim, Shepherd and Chib (1998). See also Koop and Korobilis (2010),
p. 308�310, for a textbook treatment. Note that in conventional implementations, a
forward-�ltering-backward-smoothing algorithm is used; here it is replaced by the more
e¢ cient precision sampler of Chan and Jeliazkov (2009).
Steps 5 and 6: Both the densities of (�d0; �d1) and (�2d0; �

2
d1) are standard. In fact,

we have

(�di jData; ��; b; d; �v; �n; ��f�d0;�d1g) � N(�̂di; K
�1
di );

(�2di jData; ��; b; d; �v; �n; ��f�2d0;�2d1g) � IG(�di + T=2; ~Sdi);

whereKdi = 1=V�+(1��2di)=�2di+(T�1)(1��di)2=�2di, �̂di = K�1
di (ai=V�+(1��2di)di1=�2di+PT

t=2(1��di)(dit��didi;t�1)=�2di) and ~Sdi = Sdi+((1��2di)(di1��di)2+
PT

t=2(dit��di(1�
�di)� �didi;t�1)

2)=2.
Step 7: It follows from (8) that

p(�di jData; ��; b; d; �v; �n; ��f�d0;�d1g) / p(�di)g�di(�di)e
� 1

2�2
di

PT
t=2(dit��di��di(di;t�1��di))2

;

where p(�di) is the truncated normal prior for �di and g(�di) = (1� �2di)1=2 exp(� 1
2�2di
(1�

�2di)(di1��di)2). This conditional density is non-standard, and we implement an independence-
chain Metropolis-Hastings step with proposal distribution N(�̂di; K

�1
�di
), where K�di =

1=V�+X
0
�di
X�di=�

2
di and �̂di = K�1

�di
(a2=V�+X

0
�di
y�di=�

2
di), withX�di = (di1��di; : : : ; di;T�1�

�di)
0 and y�di = (di2��di; : : : ; diT ��di)0. Then, given the current draw �di, a proposal ��di

is accepted with probability min(1; g�di(�
�
di)=g�di(�di)); otherwise the Markov chain stays

at the current state �di.
Step 8: To sample  , note that

log p( jData; ��; b; d; �v; �n; ��f g) / log p(z j��; d; �2w) + log p( )

/ � 1

2�2w
(z � d0 �X���

�)0(H H
0�1
 (z � d0 �X���

�) + log p( );

where p( ) is the prior density of  . Following Chan (2013), we sample  via an
independence-chain Metropolis-Hastings step. Speci�cally, since this log density can be
quickly evaluated using band matrix routines, we maximize it numerically to obtain the
mode and negative Hessian, denoted as  ̂ and K , respectively. Then, we generate can-
didate draws from the N( ̂;K�1

 ) distribution.
Step 9: To sample �2b ; �

2
w; �v and �n, �rst note that these parameters are conditionally

independent given the data and the states. Hence, we can sample each element one by
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one. The variance parameters �2w; �v and �n follow inverse-Gamma distributions:

(�2w jData; ��;b; d; �v; �n; ��f�2b ;�2w;�v ;�ng) � IG

 
��2w +

T

2
; S�2w +

1

2

TX
t=1

�2z;t

!
(�i jData; ��;b; d; �v; �n; ��f�2b ;�2w;�v ;�ng)

� IG

 
��i +

T � 1
2

; S�i +
1

2

TX
t=2

(log(�it)� log(�i;t�1))2
!
; i = v; n;

where the elements of �z can be computed as �z = H�1
 (z�Xdd): Next, the log conditional

density for �2b is given by

log(�2b jData; ��; b; d; �v; �n; ��f�2b ;�2w;�v ;�ng)

/ �(��2b + 1) log �
2
b �

S�2b
�2b

� T � 1
2

log �2b �
1

2�2b

TX
t=2

(bt � bt�1)
2 + gb(b; �

2
b);

which is a nonstandard density. To proceed, we implement an MH step with the proposal
density

IG

 
��2b +

T � 1
2

; S�2b +
1

2

TX
t=2

(bt � bt�1)
2

!
:

We adopt the approach in Koop, Leon-Gonzalez, and Strachan (2010) to compute the
various dynamic posterior model probabilities reported in the paper. For concreteness,
suppose we wish to compute P (d0t = 0 jData). Recall that the posterior odds ratio in
favor of the restriction d0t = 0 can be obtained using the SDDR

POt =
p(d0t = 0 jData)

p(d0t = 0)
:

Therefore, it su¢ ces to calculate the quantities p(d0t = 0 jData) and p(d0t = 0).14 Koop,
Leon-Gonzalez, and Strachan (2010) describe how one can compute both quantities using
Monte Carlo methods based on the Kalman �lter. We follow a similar approach, but use
a direct method based on band matrix routines as in Chan (2015). More speci�cally, note
that the full conditional posterior density p(d jData; ��; b; �v; �n; �) is normal as derived
in Step 3 of the sampler. Since all marginals of a jointly normal density are normal, so
is p(d0t jData; ��; b; �v; �n; �). Therefore, we can evaluate p(d0t = 0 jData; ��; b; �v; �n; �)
exactly. It follows that p(d0t = 0 jData) can be estimated using the Monte Carlo average:

^p(d0t = 0 jData) =
1

R

RX
i=1

p(d0t = 0 jData; ��(i); b(i); �(i)v ; �(i)n ; �(i));

14The notation P (d0t = 0jData) should not be confused with p (d0t = 0jData). The former is the
posterior probability associated with the model which imposes the restriction d0t = 0. The latter is the
probability density function of the unrestricted posterior evaluated at the point d0t = 0.
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where (��(i); b(i); �(i)v ; �
(i)
n ; �

(i)); i = 1; : : : ; R, are posterior draws. Similarly, we can esti-
mate p(d0t = 0) using Monte Carlo methods since the prior density is also normal. Finally,
we can calculate the posterior probabilities using P (d0t = 0 jData) =POt=(1+POt).
Dynamic probabilities of the form P (d0t = d0s jData) can be computed using the

same approach with slight modi�cations. As before, the joint density of d given the data
and parameters is normal. Hence, the bivariate density (d0t; d0s) is normal, so is the linear
transformation d0t � d0s. Therefore, P (d0t � d0s = 0 jData) can be computed as before.
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Empirical Appendix
In this appendix, we present additional results for a speci�cation including the unem-

ployment gap in the in�ation equation, three other data speci�cations, empirical evidence
on a key parameter in our model,  , and a prior sensitivity analysis.
Results for a Model Augmented with Economic Activity

To examine the robustness of our results to including economic activity as a predictor
of in�ation, we follow common practice (e.g., Morley, Piger, and Rasche 2015, Stella and
Stock 2013) and de�ne the relevant activity variable as an unemployment gap, de�ned
as the actual unemployment rate less the Congressional Budget O¢ ce�s estimate of the
natural rate of unemployment.15 We augment the model to include the unemployment
gap, denoted xt, as follows:

�t � ��t = bt(�t�1 � ��t�1) + �txt�1 + vt; (17)

zt = d0t + d1t�
�
t + "z;t +  "z;t�1; (18)

��t = ��t�1 + nt; (19)

bt = bt�1 + "b;t; "b;t � TN(0; �2b); (20)

�t = �t�1 + "�;t; "�;t � N(0; �2�); (21)

dit � �di = �di (di;t�1 � �di) + "di;t; "di;t � N(0; �2di); i = 0; 1; (22)

vt = �0:5v;t"v;t; "v;t � N(0; 1); (23)

nt = �0:5n;t"n;t; "n;t � N(0; 1); (24)

log(�i;t) = log(�i;t�1) + �i;t; �i;t � N(0; �i); i = v; n: (25)

For comparison to our baseline model, we estimate this activity-augmented model
using CPI in�ation and PTR-CPI in�ation expectations. Figures A1-A5 below present
key results from the model. Figure A1 (compare to Figure 1) indicates the inclusion
of an economic activity measure has little e¤ect on our estimates of trend in�ation.
Figures A2 through A4 (compare to Figures 2-4) show that the augmented model yields
evidence on time variation in in�ation persistence, volatility, and the coe¢ cients of the
expectations equation very similar to the evidence from the baseline model. Finally,
Figure A5 reveals substantial evidence of a gradual, but sizable, trend in the coe¢ cient
on the unemployment gap in the in�ation equation. Our estimates point to a Phillips
curve that has become �atter (with in�ation becoming less sensitive to economic activity)
over time.

Results Using Core CPI In�ation and PTR-CPI Forecasts, 1961-2014

Figures A6 through A12 are the same as Figures 1 through 7 except that they use core
CPI in�ation. When using our model, results are very similar to those with CPI in�ation.

15Following studies such as Rudd and Peneva (2015), we use the measure the CBO refers to as its
short-term estimate of the natural rate, which incorporates a temporary, substantial rise in the natural
rate in the period following the start of the Great Recession, attributable to structural factors such as
extended unemployment insurance bene�ts.
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There are a few minor di¤erences (e.g. there is less evidence in favor of time-variation
in d1t and the Bayes factor favoring the model which includes the MA coe¢ cient is, at
1.4, slightly lower than with CPI). The major di¤erence is found in Figure A12 for the
UCSV-AR model. With core in�ation, the UCSV-AR model is producing very erratic,
unreasonable estimates of trend in�ation, especially prior to 1990. This is probably due to
our use of a relatively non-informative prior. With our approach, the extra information in
zt allows for sensible estimation of trend in�ation, even without much prior information.
With the UCSV-AR model, additional prior information appears to be required to give
sensible estimates.
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Figure A1: Posterior means and quantiles (16% and 84%) of ��t .

1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

b
t

1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1
P(bt=bs |  Data)

Figure A2: Posterior means and quantiles (16% and 84%) of b�t , and the dynamic
probabilities that bt = bs with s = 1980Q1.
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Figure A3: Posterior means and quantiles (16% and 84%) of dit.
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Figure A4: Posterior means and quantiles (16% and 84%) of �v;t and �n;t.
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Figure A5: Posterior means and quantiles (16% and 84%) of �t, the coe¢ cient
associated with the unemployment gap.
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Figure A6: Posterior means and quantiles (16% and 84%) of ��t .
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Figure A7: Posterior means and quantiles (16% and 84%) of b�t , and the dynamic
probabilities that bt = bs with s = 1980Q1.
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Figure A8: Posterior means and quantiles (16% and 84%) of dit.
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Figure A9: Posterior means and quantiles (16% and 84%) of �v;t and �n;t.
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Figure A10: Marginal and joint dynamic probabilities for d0t and d1t.
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Figure A11: The marginal and joint dynamic probabilities that dit = di;s with s =
1980Q1.
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Figure A12: Posterior means and quantiles (16% and 84%) of ��t and dynamic
probabilities P (��t = ztjData) for UCSV-AR model

Results Using Core CPI in�ation and Blue Chip CPI Forecasts, 1979-2014

Figures A18 through A24 are based on core CPI in�ation and Blue Chip forecasts of
CPI in�ation. There is strong evidence in favor of an MA term in the in�ation expec-
tations equation. The Bayes factor against the model with  = 0 is 29.8. Our estimate
of trend in�ation is consistently slightly below the suvey-based long-run in�ation fore-
casts, but, other than this, the two series move closely together. This contrasts with the
UCSV-AR estimates of trend in�ation in Figure A19 which are much more erratic and
do not move as closely with the long-run in�ation forecasts.
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Figure A13: Posterior means and quantiles (16% and 84%) of ��t .
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Figure A14: Posterior means and quantiles (16% and 84%) of b�t , and the dynamic
probabilities that bt = bs with s = 1980Q1.
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Figure A15: Posterior means and quantiles (16% and 84%) of dit.
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Figure A16: Posterior means and quantiles (16% and 84%) of �v;t and �n;t.
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Figure A17: Marginal and joint dynamic probabilities for d0t and d1t.
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Figure A18: The marginal and joint dynamic probabilities that dit = di;s with s =
1980Q1.
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Figure A19: Posterior means and quantiles (16% and 84%) of ��t and dynamic
probabilities P (��t = ztjData) for UCSV-AR model.

Results Using GDP De�ator in�ation and Blue Chip GDP De�ator Forecasts, 1979-2014

In this sub-section, we again �nd strong evidence in favor of including the MA process
in the equation for zt with the Bayes factor in its favor being 37.9. In general, we are
�nding the same pattern as in previous sections where our model is producing sensible,
smooth, estimates of trend in�ation which match up closely, but not perfectly with long
run forecasts. This reinforces our story that including survey-based in�ation forecasts can
improve estimation of trend in�ation, but this should be done in a model based fashion
rather than simply equation long run forecasts with trend in�ation.
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Figure A20: Posterior means and quantiles (16% and 84%) of ��t .
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Figure A21: Posterior means and quantiles (16% and 84%) of b�t , and the dynamic
probabilities that bt = bs with s = 1980Q1.
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Figure A22: Posterior means and quantiles (16% and 84%) of dit.
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Figure A23: Posterior means and quantiles (16% and 84%) of �v;t and �n;t.
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Figure A24: Marginal and joint dynamic probabilities for d0t and d1t.
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Figure A25: The marginal and joint dynamic probabilities that dit = di;s with s =
1980Q1.
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Figure A26: Posterior means and quantiles (16% and 84%) of ��t and dynamic
probabilities P (��t = ztjData) for UCSV-AR model.
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Moving average component of model

Figure A27 presents the priors and posteriors for our six di¤erent data con�gurations
(i.e. a combination of an in�ation measure with a long-run in�ation forecast). These
were used to calculate the Bayes factors presented in the body of the paper using the
SDDR. It can be seen that all of them suggest a positive MA coe¢ cient, but it is only
when using Blue Chip forecasts is it the case this evidence is strong.
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Figure A27: Prior and posterior densities of  for six combinations of in�ation and in�ation
expectation: CPI and PTR-CPI (top left), core CPI and PTR-CPI (top middle), PCE and
PTR (top right), CPI and Blue Chip CPI (bottom left), core CPI and Blue Chip CPI
(bottom middle) and GDP de�ator and Blue Chip GDP de�ator (bottom right).

Sensitivity Analysis

There are many parameters in this model and, thus, many dimensions we could carry
out a prior sensitivity analysis. However, many parameters are initial conditions for state
equations. Empirically, researchers often use di¤use initial conditions and we have fol-
lowed this practice. Hence, we do not present results relating to prior sensitivity relating
to these parameters. Similarly for several parameters (e.g. the MA coe¢ cient) we are
�nding sensible parameter estimates using relatively non-informative priors and, hence,
do not investigate prior sensitivity to them. Instead we focus on the prior hyperparameter
V� (remember that �d0 � N(a0; V�); �d1 � N(a1; V�)) as this is a key parameter in the
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state equation for dit. Note that the term d1t�
�
t , involving two latent series, appears in

(5). In order to allay concerns about separately identifying these two series, we present
results for di¤erent choices of V�. Results in the paper are for V� = 0:12. This is an
informative, but not dogmatic choice, attaching appreciable prior weight to intervals of
�0:2 around the theoretically-justi�ed prior mean values. In this appendix, we present
results for the more informative choice of V� = 0:0252 and the very non-informative choice
of V� = 1: We use CPI in�ation and PTR-CPI long run forecasts.
Figures A28 through A33 present results using V� = 0:0252. Overall results are very

similar to Figures 1 through 7. Since the prior hyperparameters we are changing are
for the state equation for dit, it is unsurprising that the largest impacts are seen by
comparing Figure 6 to Figure A32. It can be seen that P (d0t = 0; d1t = 1jData) and
P (d1t = 1jData) are slightly higher using the tighter prior, but the di¤erence is small.
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Figure A28: Posterior means and quantiles (16% and 84%) of ��t .
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Figure A29: Posterior means and quantiles (16% and 84%) of �v;t and �n;t.
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Figure A30: Posterior means and quantiles (16% and 84%) of b�t , and the dynamic
probabilities that bt = bs with s = 1980Q1.
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Figure A31: Posterior means and quantiles (16% and 84%) of dit.
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Figure A32: Marginal and joint dynamic probabilities for d0t and d1t.
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Figure A33: The marginal and joint dynamic probabilities that dit = di;s with s =
1980Q1.

Figures A34 through A39 present results for the very non-informative case with V� =
1. Estimates of trend in�ation are not greatly a¤ected by this, but estimates of d0t
and d1t are. In particular, they are now far away from theoretically-suggested values of
d0t = 0 and d1t = 1. This reinforces a point made previously. That is, our model has
the desirable feature that it does not dogmatically impose d0t = 0 and d1t = 1 a priori as
other approaches implicitly do. However, given the great �exibility of our model, we do
require some prior information in order to get reasonable results.
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Figure A34: Posterior means and quantiles (16% and 84%) of ��t .
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Figure A35: Posterior means and quantiles (16% and 84%) of �v;t and �n;t.
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Figure A36: Posterior means and quantiles (16% and 84%) of b�t , and the dynamic
probabilities that bt = bs with s = 1980Q1.
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Figure A37: Posterior means and quantiles (16% and 84%) of dit.
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Figure A38: Marginal and joint dynamic probabilities for d0t and d1t.
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Figure A39: The marginal and joint dynamic probabilities that dit = di;s with s =
1980Q1.
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