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1 Introduction

Facing the global �nancial crisis and the associated recession, many central banks around

the world cut their short-term interest rates and many of these rates among the developed

countries hit the zero lower bound (ZLB). The ZLB puts a nonlinearity in the otherwise

linearized models that central banks and academics use to describe the evolution of the

economy. Such linearized models are also used widely for analyzing the term structure

models in a¢ ne models. There have been many attempts to deal with ZLB and the

associated nonlinearity.

The �rst paper to deal with the ZLB and optimal monetary policy is Krugman (1998).

That paper and the in�uential Eggertson and Woodford (2003) consider monetary policy

when there is always a chance to be stuck at the ZLB. However, once out of the ZLB the

lower bound can never be hit again. Although these papers provide important insights

for monetary policy, recent papers study more realistic cases. For example, Fernandez-

Villaverde et al. (2012) consider a medium-scale DSGE model and uses global projection

methods to deal with the ZLB.

There are two other strands of literature that also study the ZLB problem. In the

forecasting literature, there are papers such as Clark and McCracken (2014), which as-

sess the predictive ability of conditional forecasts. However, these papers only consider

forecasts for the case in which interest rate is zero; they do not explicitly consider that

the case in which the short rate is zero because of an explicit lower bound. In the term-

structure literature, there has been a wide interest in analyzing the e¤ect of the ZLB for

the yield curve. Black (1995) �rst proposes that the short-term rate can be thought of

as an option since the arbitrage opportunity with cash creates the ZLB. Filipovic et al.

(2014) and Andreasen and Meldrun (2014) use models where the interest rates cannot

take values lower than a threshold via parameter restrictions. There are also papers an-

alyzing what is called "shadow interest rate models". In those models, it is the shadow

rate that is the driver of the short rate (along with other latent or observable variables)

and thus the term structure. This shadow rate can take any value. As long as it is above

a threshold, the actual/observed interest rate is equal to this shadow rate. However, if

it is less than the threshold, the observed interest rate takes the threshold value. Under

such a system, Kim and Singleton (2012) uses simulations to come up with conditional

expectations. Krippner (2012), Wu and Xia (2014), and Priebsch (2013) instead compute

analytical expressions to compute those expectations.

However, economic relationships such as the investment�interest rate or asset pricing

relationships are about the actual interest rate, not an arti�cial shadow rate. Accordingly,
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in this paper I use a setting where the actual/observed interest rate is endogenous. In

other words, it is the actual (observed) short-term interest rate that directly a¤ects other

variables, and it is the actual (observed) short interest rate that is directly a¤ected by

other variables and shocks. In such a forecasting exercise, one has to pay attention to all

of the previous interest rate forecasts, not only the forecast in the previous period in order

to compute the exact moments of the future values of the variables. However, this causes

the number of state variables to grow exponentially as the forecast horizon increases.

The contribution of this paper is therefore twofold: First, it computes the exact moments

of the variables for the �rst n+1 periods when n previous periods are tracked. However,

this does come at the cost of tracking 2n di¤erent states of binding and no-binding ZLB

constraint. The second contribution of the paper is to �nd an approximation method to

deal with the exponentially growing number of states.

In its simplest form, the proposed method tracks the ZLB only in the previous pe-

riod and uses an approximation originally proposed by Kim (1994) for regime-switching

state space models. I show that the method works pretty well for a moderate degree

of persistence. However, the method�s accuracy worsens as the persistence of the VAR

system increases. I also show that we can improve the approximation by keeping track

of more periods than just the previous one. As we track more periods, the algorithm

gets numerically more complicated and more costly in terms of computational time but

results show that the method where we track two or three periods can compete with the

Monte Carlo simulations in terms of computational time and accuracy.

In the next section I set up the forecasting problem: I show the nonlinearity induced

by the lower bound and the way this setting di¤ers from the setting of the shadow rate

models. In Section III, I develop the algorithm of this paper. I �rst show how to compute

the exact moments for the �rst n+ 1 periods. I then present the approximation method

that keeps the number of states constant. Section IV goes over some numerical examples

showing the performance of the algorithm in terms of the accuracy of the approximation

and computational speed. The method is quite suitable for VAR(1) models, which is

also commonly used in the a¢ ne term structure models. In Section V, I show the results

for such a numerical example. On the other hand, by increasing the number of periods

tracked we can at the same time have a better ability to make the method work for VAR

systems with more lags. In Section VI, I present the results for a VAR model with 2

lags. Section VII provides further possible avenues to increase computational accuracy

and concludes.
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2 Forecasting from the VAR under a lower bound

In this section, I present the forecasting problem and introduce how the existence of

the zero-lower bound introduces a nonlinearity and brings about complexity in the fore-

casting and simulations for an otherwise ordinary reduced-form VAR. Throughout the

presentation, I work with a VAR of order one. Note that in �nance term-structure mod-

els (such as a¢ ne term structure models), the law of motion for the state is typically a

VAR of order one. Thus, the method developed in this paper suits those models well.

VAR models for economic forecasting, however, typically have more than one lag. As

will be clear in the next section, the introduction of more lags will make the forecast-

ing/simulation problem more complex. Later in the paper, I present the case with higher

order VARs and suggest some ways to reduce the complexity.

Let Xt be an nx � 1 column vector of endogenous variables including the nominal
interest rate, it: Without loss of generality we can order the variables such that it is the

�rst variable. Let yt denote other endogenous variables. If there is no bound on any of

the endogenous variables, the endogenous variables will follow a VAR(1):

Xt+1 = �+ �Xt + �"t+1:

Here, � is the constant, � is a VAR (1) matrix of coe¢ cients, � is the volatility matrix,

and "t is the vector of errors (multi-) normally distributed with mean 0 and variance term

Inx; "t � N (0; Inx). Let�s decompose the VAR system in a way that is helpful in the

exposition of this paper�s method. First, let ei denote the row vector that picks out it from

Xt, i.e. ei = [1; 0; ::; 0]1�nx and it = eiXt. Similarly, let ey denote the (nx � 1)�nx matrix
that picks out other endogenous variables, yt, from Xt, i.e. ey =

h
0nx�1�1 Inx�1

i
and

yt = eyXt. The introduction of a lower bound on the nominal interest rate, �{; makes the

law of motion for the endogenous variables as follows:

~Xt = Xt;
~Xt+1 = �+ � ~Xt + �"t+1;

Xt+1 =

8><>:
~Xt+1 if ei ~Xt+1 � �{
it+1 = �{

yt+1 = ey ~Xt+1

if ei ~Xt+1 < �{
:

Note that if the lower bound does not bind, Xt+1 = � + �Xt + �"t+1. In addition, the

value of yt+1 does not di¤er whether the lower bound binds or not. However, since the

next period�s value for the other variables depends on the nominal rate in the current

period, the value of those other variables in period t+2 will depend on whether the t+1

lower bound binds or not.
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The way I am modeling the ZLB and its e¤ects on other endogenous variables seems

to be similar to the use of a shadow interest rate, as modeled in Krippner (2012), Wu and

Xia (2014), and Priebsch (2013) but it has quite di¤erent implications . In these models,

there is a shadow rate, st; that is a¤ected by the state vector, Xt directly. Xt follows

a VAR(1), and st may take any value as dictated by the reduced-form model, including

values lower than �{. On the other hand, the nominal interest rate, it is equal to st if st
is greater than �{ and equal to �{ otherwise:

it = max (�{; st) :

There are a number of di¤erences between that modeling choice and mine. The endoge-

nous relationship is between the shadow rate and the other variables in those models, not

with the nominal interest rate and the other variables. Importantly, there is no feedback

loop from the actual interest rate to the other endogenous variables or to the shadow

rate. This seems to be in contrast with a) how the economy works or b) the monetary

models that analyze the e¤ects of the ZLB on the economy and optimal policy. As for

the �rst point, for example, the level of investment in the economy is a function of the

nominal interest rate. Similarly, the aggregate demand relationship (i.e., the relation-

ship between the level of output gap, the short rate and the in�ation rate) and asset

pricing relationships are all about the nominal interest rate, not an arti�cial variable

like the shadow rate. Second, imposing the ZLB constraint via shadow rate modeling

does not lead to any of the concerns that Krugman (1998), and Eggertson and Wood-

ford (2003)have raised. If the nominal rate is only an indicator and does not directly

a¤ect other variables, there would be no need to worry about whether there is a lower

bound on it. As a �nal note, the ZLB is a recent phenomenon in the US and most other

developed economies, so we don�t really know much about the relationship between a

shadow rate and other variables. For these reasons, I model the ZLB di¤erently than in

the term-structure papers cited above.

It can be argued that a longer duration of the nominal interest rate at zero (i.e., the

persistence of a binding ZLB constraint) can easily be satis�ed in a shadow rate model.

If a large enough shock moves the shadow rate far away from the lower bound and if

the process is persistent enough, no further large shocks are needed in order to be stuck

at the ZLB. In contrast, since the VAR model is mean-reverting and the main driving

variable for the interest rate is its own lag1, which is at least zero, the tendency to stay at

the ZLB is relatively smaller in my model. However, the approach chosen should relate

to the kind of force one thinks causes a binding ZLB. If a persistent shock (like a discount

rate shock in macro models) is thought to be responsible, not a big one-time shock, it can

1Either because of persistence or because of a monetary policy rule with a lagged interest rate.
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easily be modeled within the framework I introduce. Or if one thinks that other variables,

such as a big and persistent negative output gap, causes the ZLB constraint to bind (via

a Taylor-type policy rule), that, too, can easily be modeled within my framework. In

contrast, the main mechanism that shadow rate papers propose is that the nominal short

rate is zero today because it was zero yesterday because of an underlying shadow rate at

a very low level .

Let�s continue with the decomposition of the variables. First, note that we can de-

compose the error term into "1;t and ~"t as "t =
h
"1;t+1 ~"0t

i0
: Next we de�ne following

the submatrices for the decomposition:

Xt =

"
it

yt

#
; "t =

"
"1;t

~"t

#
; � =

"
�i

�y

#
;

� =

"
�i

�y

#
;� =

h
�i �y

i
;� =

"
�i

�y

#
:

With this decomposition at hand we can write the system as

yt+1 = ey (�+ �Xt + �"t+1) = �y + �yXt + �y"t+1:

it+1 =

(
�i + �iXt + �i"t+1 if �i + �iXt + �i"t+1 � �{
it+1 = �{ if �i + �iXt + �i"t+1 < �{

;

Xt+1 =

"
it+1

yt+1

#
:

In the next section, we use these decompositions to come up with a solution for the

computation of forecast moments under a lower bound.

3 Simulations and forecasts under a lower bound

In this section, I explain how we can simulate the VAR system under a lower bound

period by period. Then, I explain how we can compute the exact moments of the system

for the �rst 2 periods when we track 1 previous period. I go over the main steps and

leave the details to Appendix A. Although I do not go over the general case of tracking

n previous periods, Appendix B provides the constraints for tracking di¤erent number of

previous periods.
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3.1 The ZLB constraint at t+ 1

3.1.1 Simulations

Consider the case of the ZLB at t+ 1. We have:

If �i + �iXt + �i"t+1 � �{ =) it = �i + �iXt + �i"t+1; and

If �i + �iXt + �i"t+1 < �{ =) it = �{:

We can equivalently write these two cases as:

If �i"t+1 � �{� �i � �iXt =) it = �i + �iXt + �i"t+1; and

If �i"t+1 < �{� �i � �iXt =) it = �{:

Accordingly, we have two sets of "t+1 on the realization of which the interest rate takes

either the minimum value (�{) or the value dictated by the VAR dynamics. These sets

are:

F1
t+1= f"t+1j�i"t+1 � �{� �i � �iXtg ;
F2
t+1= f"t+1j�i"t+1 � �{� �i � �iXtg = RnxnF1

t+1 =
�
F1
t+1

�c
:

Whether the constraint binds or not, the value of other endogenous variables at time

t+ 1 is given by the VAR law of motion:

yt+1 = �y + �yXt + �y"t+1:

We can summarize the simulation for t + 1 as follows: Given "t+1; yt+1 takes the value

given by VAR. If the lower bound does not bind, that�s the case for the short rate; if not,

the short rate is �{.

3.1.2 Computing the moments

The conditional expectation of Xt+1 at time t can be decomposed into the expectations

coming from two mutually exclusive sets of "t+1:

EtXt+1 = Pr
�
"t+1 2 F1

t+1

�
� Et

�
Xt+1j "t+1 2 F1

t+1

�
+ Pr

�
"t+1 2 F2

t+1

�
� Et

�
Xt+1j "t+1 2 F2

t+1

�
:

Since the value of yt does not depend on whether the lower bound binds or not the

one-period expectation is equal to that of a model without a lower bound. Formally,

Et
�
yt+1j "t+1 2 F1

t+1

�
= �y + �yXt + Et

�
�y"t+1j "t+1 2 F1

t+1

�
;

Et
�
yt+1j "t+1 2 F2

t+1

�
= �y + �yXt + Et

�
�y"t+1j "t+1 2 F2

t+1

�
;

Etyt+1 = �y + �yXt:
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The variance of yt+1 is

vartyt+1 = �y�
0
y:

Thus, yt+1 is normally distributed with N
�
�y + �YXt;�y�

0
y

�
: On the other hand, since

Et
�
it+1j "t+1 2 F1

t+1

�
= �i + �iXt + Et

�
�i"t+1j "t+1 2 F1

t+1

�
;

Et
�
it+1j "t+1 2 F2

t+1

�
= �{;

the conditional expectation of it+1 at t is:

Etit+1 = Pr
�
"t+1 2 F1

t+1

�
�
�
�iXt + Et

�
�i"t+1j "t+1 2 F1

t+1

�	
+�{
�
1� Pr

�
"t+1 2 F1

t+1

��
:

Thus, we have to compute moments such as:

Pr
�
"t+1 2 F1

t+1

�
, Et

�
"t+1j "t+1 2 F1

t+1

�
, vart

�
"t+1j "t+1 2 F1

t+1

�
;

Pr
�
"t+1 2 F2

t+1

�
, Et

�
"t+1j "t+1 2 F2

t+1

�
, vart

�
"t+1j "t+1 2 F2

t+1

�
:

Remember that the set F1
t+1 is de�ned by a single linear constraint, �i"t+1 � �{��i��iXt;

thus, it is the combination of shocks, not the value of a particular shock, that determines

whether the lower-bound constraint binds or not. This constraint leads to a truncated

normal distribution, as the lowest value of the short rate is �{: In order to �nd this

truncated distribution, I follow Tallis (1965), who proposes an exact solution to compute

moments under linear constraints for multivariate normal settings. His method uses a

transformation of the original shock process into another shock process, which turns the

single constraint consisting of a combination of shocks into one that consists of only one

shock. The derivation of his method for a single constraint is given in Appendix A.

With some abuse of notation, let EtZ1t+k denote Et
�
Zt+kj "t+1 2 F1

t+1

�
and EtZ2t+k

denote Et
�
Zt+kj "t+1 2 F2

t+1

�
. Given the expectation and the variance of the shocks con-

ditional on whether the lower bound binds or not, the conditional and the unconditional

expectation and the variance of the short-rate is straightforward:

Eti
1
t+1 = �i + �iXt + E1;t [�i"t+1] ;

Eti
2
t+1 = �{;

varti
1
t+1 = var1;t [�i"t+1] = �ivart

�
"t+1j "t+1 2 F1

t+1

�
�0i;

varti
2
t+1 = 0:

The unconditional (time t-conditional) expectation of it+1 is then

Etit+1 = p1E1;tit+1 + (1� p1)E2;tit+1;

where p1 = Pr
�
"t+1 2 F1

t+1

�
. Appendix A shows the moments for yt as well.
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3.2 The ZLB constraint at t+ 2

3.2.1 Simulation

Now consider the simulation of Xt+2:

yt+2 = �y + �yXt+1 + �y"t+2;

it+2 =

(
�i + �iXt+1 + �i"t+2 if �i + �iXt+1 + �i"t+2 � �{
it+1 = �{ if �i + �iXt+1 + �i"t+2 < �{

:

The constraint �i + �iXt+1 + �i"t+2 � �{ de�nes a set F1
t+2 and its complement F2

t+2

F1
t+2= f"t+2j�i"t+2 � �{� �i � �iXt+1g ;
F2
t+2= f"t+2j�i"t+2 < �{� �i � �iXt+1g = RnxnF1

t+2 =
�
F1
t+2

�c
:

However, remember that the value of Xt+1 depends on whether "t+1 belongs to F1
t+1 or

its complement, F2
t+1; since

�yXt+1 = �y (�iit+1 + �yyt+1) ;

�iXt+1 = �i (�iit+1 + �yyt+1) ;

and it+1 = �{ if "t+1 2 F2
t+1 and it+1 = �i + �iXt + �i"t+1: Thus, F1

t+2 and F2
t+2 actually

depend on F1
t+1 and F2

t+1: Thus, for the t + 2 simulations we have four cases depending

on whether "t+1 2 F1
t+1 or "t+1 2 F2

t+1: We denote these cases by using one superscript

(i) for t + 1 variables and two superscripts in the variables (i; j) ; where i and j take 1

for the case in which the lower bound does not bind or 2 for the case in which the lower

bound binds. The superscript i is for the period t+1; and j is for the period t+2. Thus,

X1
t+1 is the (simulated) value of the variable at period t+ 1 when the lower bound does

not bind, and X1;1
t+2 is the (simulated) value of the variable at period t+2 where the lower

bound does not bind in both periods. Similarly, X2;2
t+2 means the (simulated) value of the

variable where the lower bound binds in both periods. Our four cases are as follows:

1. Case 1:

y1;1t+2 = ey
�
�+ �X1

t+1 + �"t+2
�
;

i1;1t+2 = ei
�
�+ �X1

t+1 + �"t+2
�
:

2. Case 2:
y1;2t+2 = ey

�
�+ �X1

t+1 + �"t+2
�
;

i1;2t+k+1 = �{:
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3. Case 3:

y2;1t+2 = ey
�
�+ �X2

t+1 + �"t+2
�
;

i2;1t+2 = ei
�
�+ �X2

t+1 + �"t+2
�
:

4. Case 4:

y2;2t+2 = ey
�
�+ �X2

t+1 + �"t+2
�
;

i2;2t+2 = �{:

3.2.2 Computing the moments

Since there are four di¤erent cases depending on whether "t+1 2 F1
t+1 or not and "t+2

2 F1
t+2 or not, we have conditional moments corresponding to those four cases. In this

section I go over the main steps to compute the conditional moments for these four cases.

I then aggregate them to �nd the conditional moment with less information, going all the

way to time t conditional moments. I present the method to compute only one particular

conditional probability, that of the event of a nonbinding ZLB constraint both in the

�rst and the second periods. Following our convention of using the superscripts above,

let p11t+2 denote this probability; i.e. p
11
t+2 = Pr (it+2 � �{j it+1 > �{).

Remember that Pr (it+2 � �{; it+1 > �{) is the probability that Pr
�
"t+2 2 F1

t+2; "t+1 2 F1
t+1

�
.

Thus, there are two linear restrictions for this event.

Pr (�i"t+2 � �{� �i � �iXt+1;�i"t+1 � �{� �i � �iXt) ;

Pr ((�i"t+2 � �{� �i � �iXt+1)& (�i"t+1 � �{� �i � �iXt)) :

We need to �nd the joint event of a no-binding restriction in both periods. To do that

write the time t + 2 restriction in terms of period t variables along with time t + 1 and

t+ 2 shocks. For example, for the case of it+2; it+1 > �{; we have

ei�"t+2 � �{� ei (�+ �Xt+1)

ei�"t+2 � �{� ei [�+ �(�+ �Xt + �"t+1)]

ei (��"t+1 + �"t+2) � �{� ei
�
�+ ��+ �2Xt + ��"t+1

�
eiC

0
2� � �{� eia2;

with �; a2 and C 02 de�ned as

� =
�
"0t+1; "

0
t+2

�0
a2 � �+ ��+ �2Xt + ��"t+1

C 02 �
h
�� �

i
:
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Hence our two restrictions are

eiC
0
2� � �{� eia2

�i"t+1 � �{� �i � �iXt:

Notice that these two restrictions are a linear combination of 2�nx and nx shock variables,
respectively. Just as we reduce the dimensionality of the relevant errors to one for the

restriction at time t + 1, using the method of Tallis (1965) for the multiple constraint

case, we reduce the dimensionality the problem to two in this case. Appendix A goes

over the derivation in detail. With this transformation we can �nd the exact values of

the conditional moments, say the expected value of the short rate at t+2 given the lower

bound not binding in periods t + 1 and t + 2: From these conditional moments we can

�nd other moments such as the expected value of the short rate at t+ 2 given the lower

bound not binding in t+2 or the unconditional (time t-conditional) expected value of the

short rate at t + 2. Notice that these are exact as well. In the next section we consider

periods t+ 3 and beyond.

3.3 The ZLB constraint at t+ 3 and beyond

3.3.1 Simulation

For simulations at period t + 3 and beyond, we can continue running the law of motion

period by period, given the realization of shock processes for di¤erent simulations, and

check whether the lower bound binds or not. If it does not bind, we can use that particular

draw and continue building the path further using those values. If the lower bound binds,

however, we set the short rate to the lower bound while keeping the values of the other

endogenous variables the same and then continue building the path further using these

revised values.

3.3.2 Computing the moments

Our analysis of t+1 shows that we have two cases for this period, depending on whether

the lower bound is binding or not at this period. There are four di¤erent t + 2 cases,

depending on whether the constraint binds in either of the two periods. Similarly, there

are eight di¤erent cases in period t + 3, depending on whether the lower bound binds

in any of the t + 1; t + 2 or t + 3 periods. By the same token, the number of cases will

continue expanding at an exponential rate (it doubles every period), so that it becomes

impossible to manage even after a few periods.

10



This problem of an increasing number of states is the same as Kim (1994) faces in

his state-space regime-switching model. He proposed to solve this problem by collapsing

the distributions for the di¤erent states so that the number of cases going forward does

not expand. I follow this idea of collapsing the number of states using his method. To

be concrete suppose at period t+1 we have the distribution for the endogenous variables

in the nonbinding state (X1
t+1 in the notation of the previous section) and the binding

state (X2
t+1 in the notation of the previous section). If we track n previous periods, for

period t + s + n, we can use the distribution of X1
t+s for states that has the nonbinding

state at period t+ s: These include the distributions of X1jk
t+s+n; etc. For example, when

1 previous period is tracked, we use the distribution of X1
t+s to �nd the distributions of

X11
t+s+1 and X

12
t+s+1. Consider the �rst one" X

11
t+s+1 is the distribution of Xt+s+1 that has

a nonbinding state in both t + s and t + s + 1: Since X1
t+s is random, I characterize it

with the following:

X1
t+s = Et

�
X1
t+s

�
+ �1!t+s;

where � is the Cholesky decomposition of vart
�
X1
t+s

�
. Thus, to �nd the distribution of

X11
t+s+1, we will �nd the set of !t+s and "t+s+1 that satis�es

eiX
1
t+s � �{; ei

�
�+ �X1

t+s+1 + �"t+s+1
�
� �{:

Similarly, the distribution of X12
t+s+1 is associated with the set of !t+s and "t+s+1 that

satis�es

eiX
1
t+s � �{; ei

�
�+ �X1

t+s+1 + �"t+s+1
�
� �{:

Just as at time t+2, we have 2 restrictions, and transform the constraints on "t+1 and "t+2
using the method of Tallis (1965), following the same logic we transform the constraints

on !t+s and "t+s+1 here. One note for the cases that start with a binding state at period

t + s is in order. Since the interest rate at period t + s is always zero for those cases,

thus, nonrandom; we do not check whether it is less than the lower bound leading to one

less restriction compared to the case of a nonbinding starting value.

For n-previous period tracking at period t+s+n we have 2n+1 di¤erent cases. For ex-

ample, for one-period tracking we have the four cases ofX11
t+s+1; X

12
t+s+1; X

21
t+s+1; X

22
t+s+1. However,

for period t + s + 2, we are going to use X1
t+s+1 and X

2
t+s+1. Hence, I use Kim�s idea

to collapse the mixture distribution of X1;1
t+s+1 and. X

2;1
t+s+1 into a normal distribution of

X1
t+s+1. Appendix D computes the moments of the mixture of normals. This appendix

11



gives the appropriate formulas for the new distributions such as:

p1t+k+1 = p
1
t+kp

11
t+k+1 + p

2
t+kp

21
t+k+1

EtX
1
t+k+1 � Et [Xt+k+1j it+k+1 � �{] =

p1t+kp
11
t+k+1

p1t+kp
11
t+k+1 + p

2
t+kp

21
t+k+1

EtX
11
t+k+1

+
p2t+kp

21
t+k+1

p1t+kp
11
t+k+1 + p

2
t+kp

21
t+k+1

EtX
12
t+k+1

The �rst formula shows that the probability of the lower bound constraint not binding

at time t + k + 1, p1t+k+1 is equal to the sum of the two probabilities: The �rst term is

the probability of the lower bound constraint not binding at time t+ k + 1 given it does

not bind at time t + k; p11t+k+1 times the probability of the lower bound constraint not

binding at time t+ k. The second term is the probability of the lower bound constraint

not binding at time t + k + 1 conditional on a binding constraint at time t + k times

the probability of lower bound constraint binding at time t + k: Similarly, the expected

value of a variable when the lower bound is not binding at time t+ k+1 is the weighted

average of its expected value when the constraint does not bind in the previous period

and its expected value when the constraint binds in the previous period with the weights

computed by the Bayes formula. The collapse of the mixture of distributions induces an

inevitable approximation error. In the next section, numerical examples will show under

what conditions these approximations work best. Appendix B shows how we can �nd the

restrictions induced by di¤erent binding and nonbinding states for the case of tracking

more periods.

4 Numerical Examples

In this section I go over some numerical examples to show the performance of the method.

For the �rst three numerical examples, I consider a three-variable VAR with one lag.

These three variables are the interest rate (it), the output gap (xt), and the in�ation

rate (�t). Since the numerical examples serve the purpose of presenting the method and

the assessment of the approximation, I did not estimate a VAR using the historical data.

A VAR with historical data probably understates the importance of the ZLB because

there is only one case of the ZLB constraint binding in the postwar US data, typically

the longest span of data considered for empirical macro studies. Rather, I come up with

arbitrary but plausible coe¢ cients to enable larger chances of long periods of binding

ZLB. In the VARs employed for the analysis of monetary policy shocks, the interest rate

is ordered after the in�ation and output gap so that the shocks to the interest rate a¤ect
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the in�ation and output gap with a lag, whereas the reverse is not the case. I follow this

ordering. As the exposition above put the short rate as the �rst variable, I follow that as

well. Now, let Xt =
h
it xt �t

i0
; and the VAR coe¢ cients and the steady-state and

the initial value for the �rst numerical example are:

� =

264 0:8 �0:1 0:2

0:05 0:7 0:1

�0:2 0:1 0:7

375 ;� =
264 1:5 0:3 0:2

0 0:8 0

0 0:1 1

375 ;
�X =

264 30
1

375 ; X0 =
264 0

�3
1

375 :
I set the interest rate lower bound at zero. In Figure 1, I depict the probability of a

binding lower bound and the conditional and unconditional expectations of the three

endogenous variables. I compute the expectations using two di¤erent methods. The �rst

is the Monte Carlo simulation using 10^6 di¤erent shock realizations for each period,

and the other is the method described in this paper. I use di¤erent numbers of tracking

periods to show a) how we can increase the number of periods and can get the exact

moments and b) how we can improve the approximation accuracy for the rest of the

periods. In particular, I track up to four previous periods. The way I use this paper�s

method relies on the Kim-style approximation after the second period for tracking one

previous period, after the third period for tracking two previous periods and so on. As

such, the results of the �rst two periods are exactly the same for the simulation method

and my method. Similarly, I get the third period moment exactly for the cases of tracking

two and more previous periods. The results from the following periods show that even the

simplest case produces approximations that are reasonable, and by tracking more periods

we reduce the approximation error quite a lot. Table I shows the average approximation

error at di¤erent periods when tracking di¤erent numbers of previous periods and a

comparison of the computational time. For example, by tracking two previous periods,

we will have a 5 basis point di¤erence for the conditional expectation of the interest rate at

the nonbinding state and a 10 basis points of di¤erence for the unconditional expectation

of in�ation rates between the Monte Carlo method and the proposed analytical method

tracking at periods 20 and 40, respectively. We can further reduce the approximation

errors by tracking three and four previous periods. These come at a cost of complexity

and computational time as Table 1 shows. In particular, while two-period tracking takes

about 2 % of the computational time2 that Monte Carlo exercise with a 10^6 draws
2All computational time comparisons are done by running Monte Carlo simulation and cases of

tracking di¤erent numbers of periods10 times and averaging out the computational times of these 10

trials.
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takes, the same �gures for the three and four-period tracking are 35% and 237%. Thus

tracking two or three periods is a serious contender in terms of approximation error and

computing time vis-a-vis Monte Carlo simulation.

In Figure 2 and Table 2, I use the same VAR coe¢ cients but start with a di¤erent

initial value, which is equal to the nonstochastic steady-state value. The coe¢ cients, the

steady-state and initial value are given along with Figure 2. The �gure shows that the

approximation is also reasonable for one-period tracking and much better for the cases of

tracking more previous periods. Next, I look at a system that is more persistent. I keep

the VAR coe¢ cients of the �rst numerical example, except the VAR(1) term, where it is

now:

� =

264 0:9 �0:1 0:2

0:05 0:9 0:1

�0:2 0:1 0:8

375 :
The maximum of the absolute value of the eigenvalues of the �rst two VAR systems is

0.76, whereas that of the last model is 0.96. As Figure 3 and Table 3 show, there is

a deterioration in the approximation in the case of tracking one previous period. The

approximations become better as we increase the number of previous periods tracked.

For example,. for the two-period tracking, the deviation of the unconditional value of

the in�ation rate at period 5 is only 4 basis points, whereas at period 40 is higher at

19 basis points. However, the same �gures for the three-period tracking are 3 and 11

basis points, respectively. Hence, a highly persistent VAR system requires more periods

tracked in order to produce a good approximation.

In Figure 4 and Table 4, I present the results for a larger model. We add three

more variables but keep the maximum of the absolute eigenvalue at 0.76. In general,

the approximation from the larger model seems a little worse for the case of one-period

tracking and quite good for the case of tracking two or more periods.

5 An a¢ ne term-structure model under the ZLB

constraint

We can use the algorithm described in this paper to compute the bond prices in an a¢ ne

term structure, where the underlying law of motion, the VAR(1) model contains the

short-rate. I still use the three-variable VAR(1) model that has been used so far in the

paper: VAR(1) with the short-rate, the output gap, and the in�ation rate. Notice that

such a model can be used where the short-rate is governed not by latent factors but by
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a Taylor-rule with inertia. The state vector follows the same VAR with one lag. The

short-rate is an a¢ ne function of the state

it = �0 + �
0
1Xt;

with

�0 = 0 and �01 = e
0
i:

The nominal stochastic discount factor used for pricing nominal bonds is:

mt+1 = exp

�
�it �

1

2
�0t�t � �0t"t+1

�
;

where the market price of risk is also an a¢ ne function of the state.

�t = �0 + �1Xt;

I assume that the market price of risk depends on the present variables; thus the �rst

column of �1 is a vector of 0�s3. We can still use the Q-measure for pricing the bonds

as the ZLB is about the short-rate4. The VAR system under the Q-measure has the

parameters:

~� = �� ��0;
~� = �� ��1:

The n-period bond price can be computed as:

P nt = E
Q
t

�
exp

�
�
n�1P
i=0

it+i

��
:

Finally the (log-) yield for maturity n is:

ynt =
� log (P nt )

n
:

If there is no ZLB constraint, we can use the usual bond-pricing recursion relationships,

expressing the n-period (log) bond prices as an a¢ ne function of the state:

log (P nt ) = �n + �
0
nXt

3Notice that this assumption does not a¤ect the method�s ability to compute the expected values of

the endogenous variables or that of the bond yields.
4One can argue that other nominal rates should also have a lower bound. However, no-arbitrage

assumption takes care of that constraint for other bond yields. In the numerical examples, we shall see

that if the ZLB constraint for the short-rate is satis�ed, so is the ZLB constraint for the longer rates.
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Appendix E.1 shows that the bond-price coe¢ cients are:

�1 = 0; �n
0
1 = �ei;

�n = �n�1 + �
0
n�1~�+

1

2
�0n�1��

0�n�1;

�0n = �ei + �0n�1 ~�:

With the ZLB constraint, however, we can either use the simulation method or the

method described in this paper. We approximate the distribution of bt+n�1 =
n�1P
i=0

it+i,

which is a mixture of normals and truncated normals, with a normal approximation

where we use the expectation and the variance derived from the paper�s algorithm. In

other words, I approximate the n-period yield with

ynt
�=
�1
n
log

�
exp

��
�
n�1P
i=0

Etit+i +
1

2
vartit+i

���
=
1

n

�
Etbt+n�1 �

1

2
vart (bt+n�1)

�
with the moments coming from the method�s algorithm. In order to �nd the moments

of bt+n�1, I append it to the vector of endogenous variables, Zit+k =
�
X i0
t+k; b

i
t+k

�0
; for

each nonbinding and binding state at every period t+k. The expectation of bt+k is fairly

straightforward

bt+k � Etbt+k = Etbt+k�1 + Etit+k:

Appendix E.2 goes over the derivation of the variance of bt+k: Figure 5 and Table 5

show the results of a numerical example for the bond-yield computation with a Monte

Carlo simulation and the paper�s method. For the numerical example of Figure 4, I use

the VAR parameters of the �rst numerical example (that of Figure 1). Given the VAR

parameters, I estimate the market price of risk parameters in order to �t an upwardly

sloping yield curve at the nonstochastic steady state under the assumption of no ZLB

constraint. The yield curve I try to match has the following nonstochastic steady state

values:

Yields (percent) y1t y4t y8t y20t y40t

Objective 3:00 3:25 3:50 4:25 5:25

Fitted 3:00 3:41 3:69 3:87 3:91

Although such a simple term-structure model does not generate a large enough nominal

slope, the 10-year-1quarter slope is still about 91 basis points, which is reasonable given

the simplicity of the model. Given the VAR parameters and the market price of risk,
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I transform the law of motion from the P -measure to the Q-measure and compute the

time t-yields, where X0 is equal to that of the �rst numerical example. In Figure 5, I

compare the results of the Monte-Carlo simulation with the di¤erent cases calculated

with the method in which I allow tracking 1, 2, and 3 previous periods. The results show

that although the approximation for one-period tracking is not quite satisfactory, those

for the cases of tracking 2 and 3 periods approximate the yield curve pretty well. The

di¤erence between the Monte Carlo simulation (with 10^6 simulations) is 2.84 and 1.60

basis points at a two-year maturity,-6.84 and -3.89 basis points at a 5-year maturity and

-7.53 and -4.11 basis points at a 10-year maturity for the cases of tracking two or three

periods, respectively. The approximation error increases over the maturity horizon but is

still comparable to the usual one-standard deviation of the measurement error typically

found in the estimated for a¢ ne term structure models with a Taylor-rule5 for the case

of tracking 2 previous periods and lower for the case of tracking 3 previous periods.

6 Models with more than one lag

Although the law of motion in many a¢ ne term-structure models is a VAR with one lag,

macro forecasting generally requires VARs with more lags. In Figure 6 and Table 6, I

show the results of the method when it is applied to a VAR with two lags. I still keep

the maximum of the absolute of the eigenvalues of the system at a moderate level, 0.78.

In principle, one has to keep track of the previous period not only for the �rst lag of the

interest rate but also for the second lag. I decompose X i
t+s and X

j
t+s�1

X i
t+s = EtX

i
t+s + �

i
s!t+s

Xj
t+s�1 = EtX

j
t+s + �

j
s�1!t+s

and compute the constraints induced by the ZLB accordingly. Appendix F goes over

the derivation of these constraints for the case of VARs with more than one lag. The

approximation is still reasonable but a little bit worse than that of a one-lag model as

expected. Although the nonbinding case still performs well, the binding case performs

worse. However, since over large periods hitting the probability of the ZLB becomes lower

(for example, it is 7 percent at 20 periods for this example), the deviation of the method

with Monte Carlo simulation is -0.13 percentage point for the unconditional expectation

of the interest rate, and -0.03 percentage point for the output gap, and -0.05 percentage

point for the in�ation rate at 20 periods.

5For example, Ang and Piazzesi report 18 basis points for the measurement error�s standard deviation

for a 1-quarter yield and 6 basis points for that of a 5-year yield.
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7 Conclusion

In this paper, I develop a new analytical method to obtain forecasts from a reduced-form

VAR model under the ZLB constraint. The introduction of the ZLB in my setting in-

troduces a nonlinearity similar to the settings of Wu and Xia (2014), Priebsch (2013).

However, unlike a shadow-rate model, the ZLB constraint in my setting prevents comput-

ing the exact moments of forecasts for any forecast horizon because the variables in all of

the previous periods need to be tracked. I �rst show in a forecast exercise of a VAR under

the ZLB constraint how we can compute the exact moments for the �rst n + 1 periods

when we track n previous periods. Then, for the periods beyond n + 1; I developed an

approximation similar to the one employed by Kim (1994), which he derives for a di¤er-

ent setting, that of regime-switching. The results show that my algorithm, even for the

simplest case of tracking one-period, works pretty well when there is a moderate degree

of persistence and involves much less computational cost than a Monte Carlo simulation,

even when the initial point for the variables are quite di¤erent than the nonstochastic

steady state value. I also show that one can produce better approximations by tracking

more previous periods, though it does require more computational time. In particular, I

show that two- and three-period tracking is a viable alternative to Monte Carlo simula-

tion in terms of computational time, and produces good results for persistent cases, larger

systems, and systems with more than one lag. Going over three periods creates better

approximations but it requires more computational time than a Monte Carlo simulation

with a large number of draws.

Since most of the a¢ ne term-structure models use a VAR(1) as the law of motion for

the state variable, I also present a way to compute the yields in an a¢ ne terms structure

model where the state also contains the short-rate itself, which is subject to the ZLB

constraint. The results show that the method achieves results where the deviation from

the exact moments are lower than one-standard deviation of usual measurement error

in estimated a¢ ne term-structure models where short-rate is explained by a Taylor-type

policy rule. Hence, the method proves useful in computing bond prices for a¢ ne term-

structure models in which the lagged interest rate is among the state variables.

I would like to end with two suggestions that may improve the method in terms of ac-

curacy and computing time. The �rst relies on the mean-reverting property for the VAR

systems. By tracking more periods in the beginning -where there is a higher di¤erence

between the expected value and the ergodic (conditional) expectation- we can minimize

the approximation error where it is more important. After this initial number of periods,

we can always go back to tracking a lower number of previous periods. The second way
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is exploiting the ergodic moments coming from the VAR model with the ZLB. One can

use the ergodic moments conditional on the cases of binding and nonbinding interest rate

constraint. One can then incorporate this information and make the expectation of the

endogenous variables as a convex combination of the moment coming from the method

and the conditional ergodic moment, where the weight for the ergodic moment increases

over time.
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A Appendix A

A.1 The ZLB constraint at t+ 1

In this appendix I show the method of Tallis (1965), which provides an exact solution

to compute moments under linear constraints for multivariate normal settings. Consider

the linear constraint on "t+1

If �i + �iXt + �i"t+1 � �{ =) it = �i + �iXt + �i"t+1; and

If �i + �iXt + �i"t+1 < �{ =) it = �{:

We can equivalently write these two cases as:

If �i"t+1 � �{� �i � �iXt =) it = �i + �iXt + �i"t+1; and

If �i"t+1 < �{� �i � �iXt =) it = �{:

Accordingly, we have two sets of "t+1; on the realization of which the interest rate takes

either the minimum value (�{) or the value dictated by the VAR dynamics. These sets

are:

F1
t+1= f"t+1j�i"t+1 � �{� �i � �iXtg ;
F2
t+1= f"t+1j�i"t+1 � �{� �i � �iXtg = Rn"nF1

t+1 =
�
F1
t+1

�c
:

Whether the constraint binds or not, the value of other endogenous variables at time

t+ 1 is given by the VAR law of motion:

yt+1 = �y + �yXt + �y"t+1:

First, consider the probability:

Pr
�
"t+1 2 F1

t+1

�
=

Z
F1t+1

 ("t+1) d"t+1 =

Z
"1

:::

Z
"n"

"0is such that �i"t+1��{��iXt

 ("t+1) d"1;t+1:::d"n";t+1

Here  ("t+1) is the multinormal pdf with a mean 0 and In. Tallis�s idea was to transform

the set F1
t+1 so that the constraint would be on a single transformed shock, �1;t+1, instead

of a set of shocks. The transformation we are going to use is the orthogonal transformation

with "t+1 = H�t+1, where H has
�0i
k�ik

as its �rst column and the remaining columns

being orthogonal to �i and orthonormal amongst themselves. Then,

F1
t+1 ("t+1) � f"t+1; �i"t+1 � �{� �i � �iXtg

F1
t+1 (�1;t+1) =

�
�1;t+1; �1;t+1 � c1 �

�{� �i � �iXt

k�ik

�
F1
t+1 ("t+1) = F1

t+1 (�1;t+1) :
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Tallis showed that if "t+1 � N (0; I) ;

Pr
�
"t+1 2 F1

t+1

�
= 1�	(c1) ;

Et
�
"t+1j "t+1 2 F1

t+1

�
=

 (c1)

1�	(c1)
�0i
k�ik

;

where 	(:) is the cumulative distribution of a standard normal at c1 and  (c1) is its

density at the same point. Similarly, we can �nd the corresponding moments for the

domain F1
t+1 by multiplying both sides by -1:

F c
1 ("t+1) � f"t+1; �i"t+1 � �{� �i � �iXtg

= f"t+1;��i"t+1 � �{� �i � �iXtg

so that

Pr
�
"t+1 2 F2

t+1

�
= 1�	(�c1) = 	 (c1)

Et
�
"t+1j "t+1 2 F2

t+1

�
=

 (�c1)
1�	(�c1)

��0i
k�ik

= � (c1)
	 (c1)

�0i
k�ik

I will not show the variance computation for this case directly. However, when discussing

the multirestriction case, we transform the multi-restriction case to the case of moment

computation for the truncated multinormal distribution (Tallis, 1961) for which I provide

the computation for both the expectation and the variance.

A.2 The ZLB constraint at t+ 2

A.2.1 Simulation

Now consider the simulation of the variable at period t+ 2 :

yt+2 = �y + �yXt+1 + �y"t+2

it+2 =

(
�i + �iXt+1 + �i"t+2 if �i + �iXt+1 + �i"t+2 � �{
it+1 = �{ if �i + �iXt+1 + �i"t+2 < �{

The constraint �i + �iXt+1 + �i"t+2 � �{ de�nes a set F1
t+2 and its complement F1

t+2

F1
t+2= f"t+2j�i"t+2 � �{� �i � �iXt+1g
F2
t+2= f"t+2j�i"t+2 < �{� �i � �iXt+1g = Rn"nF1

t+2 =
�
F1
t+2

�c
However, remember that the value of Xt+1 depends on whether "t+1 belong to F1

t+1 or

its complement, F2
t+1 since

�yXt+1 = �yiit+1 + �yyyt+1

�iXt+1 = �iiit+1 + �iyyt+1
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and it+1 = �{ if "t+1 2 F2
t+1 and it+1 = �i + �iXt + �i"t+1: Thus, F1

t+2 and F2
t+2 actually

depend on F1
t+1 and F2

t+1: Thus, for the t + 2 simulations we have four cases depending

on whether "t+1 2 F1
t+1 or "t+1 2 F2

t+1: We denote these cases by using one superscript

(i) for t + 1 variables and two superscripts in the variables (i; j) ; where i and j take 1

for the case in which the lower bound does not bind or 2 for the case in which the lower

bound binds. The superscript i is for the period t+1; and j is for the period t+2. Thus,

X1
t+1 is the (simulated) value of the variable at period t+ 1 when the lower bound does

not bind, and X1;1
t+2 is the (simulated) value of the variable at period t+2 where the lower

bound does not bind in both periods. Similarly, X2;2
t+2 means the (simulated) value of the

variable where the lower bound binds in both periods. Our four cases are as follows:

1. Case 1:X1;1
t+2

y1;1t+2 = �y + �yX
1
t+1 + �y"t+2

i1;1t+2 = �i + �iX
1
t+1 + �i"t+2

2. Case 2:X1;2
t+2

y1;2t+2 = �y + �yX
1
t+1 + �y"t+2

i1;2t+k+1 = �{

3. Case 3:X2;1
t+2

y2;1t+2 = �y + �yX
2
t+1 + �y"t+2

= �y + �yi�{+ �yyy
2
t+1 + �y"t+2

i2;1t+2 = �i + �iX
2
t+1 + �i"t+2

= �i + �ii�{+ �iyy
2
t+1 + �i"t+2

4. Case 4: X2;2
t+2

y2;2t+2 = �y + �yX
2
t+1 + �y"t+2

= �y + �yi�{+ �yyy
2
t+1 + �y"t+2

i2;2t+2 = �{

A.2.2 Computing the moments

Since there are four di¤erent cases depending on whether "t+1 2 F1
t+1 or not and "t+2

2 F1
t+2 or not, we have conditional moments corresponding to those four cases. In this

section I �rst review the method to compute the moments for those conditional moments.
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I then aggregate them to �nd the conditional moment with less information going all the

way to time t conditional moments. I present the method to compute only one particular

conditional probability, that of the event that lower bound does not bind in the second

period given that it does not bind in the �rst period. Following our convention of using

the superscripts above, let p11t+2 denote this probability. i.e. p
11
t+2 = Pr (it+2 � �{j it+1 > �{).

Remember that Pr (it+2 � �{; it+1 > �{). is the probability that Pr
�
"t+2 2 F1

t+2; "t+1 2 F1
t+1

�
.

Thus, there are two linear restrictions for this event.

Pr (�i"t+2 � �{� �i � �iXt+1;�i"t+1 � �{� �i � �iXt)

Pr ((�i"t+2 � �{� �i � �iXt+1)& (�i"t+1 � �{� �i � �iXt))

We need to �nd the joint event of no binding restriction in both periods. To do that let�s

write the time t + 2 restriction in terms of period t variables along with time t + 1 and

t+ 2 shocks.

ei�"t+2 � �{� ei (�+ �Xt+1)

ei�"t+2 � �{� ei [�+ �(�+ �Xt + �"t+1)]

ei (��"t+1 + �"t+2) � �{� ei
�
�+ ��+ �2Xt + ��"t+1

�
eiC

0
2� � �{� eia2

with �; a2 and C 02 de�ned as

� =
�
"0t+1; "

0
t+2

�0
a2 � �+ ��+ �2Xt + ��"t+1

C 02 �
h
�� �

i
:

Hence our two restrictions are

eiC
0
2� � �{� eia2

�i"t+1 � �{� �i � �iXt:

Notice that these two restrictions are a linear combination of 2�nx and nx shock variables,
respectively. Just as we reduce the dimensionality of the relevant errors to one for the

restriction at time t + 1, using the method of Tallis (1965) for the multiple constraint

case, we reduce the dimensionality the problem to two in this case. De�ne

� =
h
"0t+1 "0t+2

i0
p =

h
c1 c2

i0
C =

"
�i 0

�i C 02

#
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so that

C� � p

Let B =
h
C 0 H 0

i0
;where the columns of H are again orthogonal to C and orthonormal

to each other. Finally de�ne

~� = B�

by which I transform the linear restriction of many variables into a plane truncation for

which Tallis (1961) provides the methods to compute the moments. I present the relevant

resultsof Tallis (1961) in Appendix C. Then, the 2 linear constraints of a combination

of 2 � nx normal variables is transformed to a truncated normal distribution of 2 � nx

variables where only two of them is truncated below.

A.3 The ZLB constraint at t+ 3 and beyond

First we get the Cholesky decomposition of Xt+2 for both cases:

X1
t+2 = �1X;2 + �

1!t+2

X2
t+2 = �2X;2 + �

2!t+2

In period t + 3,we have four possibilities: Let�s denote non-binding state as nb and

binding state b from here onwards and continue to write the value of X ij
t+s where i; j = 1

for non-binding and i; j = 2 for binding cases. It can be (nb; nb); (nb; b); (b; nb) and (b; b)

where the �rst symbol shows the state for the period t+ 2 and the next shows for t+ 3.

For example the interest rate for the (nb; nb) and (b; nb) cases are:

X11
t+3 = �+ �X1

t+2 + �"t+3

= �+ ��1X;2 + ��
1!t+2 + �"t+3

X21
t+3 = �+ ��2X;2 + ��

2!t+2 + �"t+3

For all of the four cases, I then solve for the set of (!t+1; "t+2) that satis�es constraints

induced by the ZLB. Notice that for the b state in period t + 2; i2t+2 = 0 thus it is not

random. Hence, for states starting with b we have only one constraint, i.e. that of period

t + 3 and for the states that start with nb state we have two constraints those of t + 2

and t+ 3: For example, the contraints for the (nb; nb) are:

�i + �i

�
�1;nbX;1 + �

1;nb
X;1!

nb
t+1

�
+ �i"t+2 � �{

ei

�
�1;nbX;1 + �

1;nb
X;1!

nb
t+1

�
� �{
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We can compute the moments accordingly. For the cases of nb� b and b� b we impose

ii2t+2 = �{ and thus have no variance. Since we are tracking one-period we collapse the

X11
t+3 and X

21
t+3 into X

1
t+3 and X

12
t+3 and X

22
t+3 into X

2
t+3: We do that using the formulas

provided in Appendix C.

B Appendix B

In this appendix, I explain how we can �nd the constraints for the cases of tracking

di¤erent number of previous periods. I will �rst go over the �rst n+ 1 periods when we

track n previous periods and then move to the periods after n+ 1.

B.1 The �rst n periods

Suppose at any branch at period k we have the following constraints for the case in which

period k is nb

eiC
0
k� � �{� eiak;

with

� = ["01; "
0
2; :::; "

0
k]
0

I compute C 0k+1 and ak+1 for period k is nb and when period k is b. In the following I

present the case where period k + 1 is nb. The case where period k + 1 is b is the same

except when the last row of both ak and C 0k is multiplied by -1.

B.1.1 Period k is nb:

If period k is nb, we have

Xk+1 = �+ �Xk + �"k+1:

Suppose I am computing the constraints for the case in which period k + 1 is nb. Then,

the constraint for period k + 1 is

ei (�+ �Xk + �"k+1) � �{:

Note that the period k constraint for eiXk > �{ is

eiC
0
k� � �{� eiak , eiXk � �{;

making

Xk = ak + C 0k�:
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Thus,

ei (�+ �Xk + �"k+1) � �{
ei (�+ �(ak + C 0k�) + �"k+1) � �{

ei (�C
0
k� + �"k+1) � �{� ei (�+ �ak) :

Thus,

ak+1 = �+ �ak

C 0k+1 =
h
�C 0k �

i
Obviously, for the case period in which k + 1 is b, we have

eiC
0
k� � ��{� eiak;

with

ak+1 = � (�+ �ak) ;

C 0k+1 = �
h
�C 0k �

i
:

B.1.2 Period k is b:

If period k is nb, we have

Xk+1 = �+ �i�{+ �yyk + �"k+1:

Then, the constraint for period k + 1 is

ei (�+ �i�{+ �yyk + �"k+1) � �{:

Using

yk = eyXk

= ey (ak + C 0k�) ;

We have

ei (�+ �i�{+ �yey (ak + C 0k�) + �"k+1) � �{
ei (�yeyC

0
k� + �"k+1) � �{� ei (�+ �i�{+ �yeyak) :
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Thus,

ak = �+ �i�{+ �yeyak;

C 0k+1 =
h
�yeyC

0
k �

i
:

Obviously, for the case period k + 1 is b, we have

eiC
0
k� � ��{� eiak;

with

ak = � (�+ �i�{+ �yeyak) ;

C 0k+1 = �
h
�yeyC

0
k �

i
:

B.2 For periods after n+ 1

Suppose we are using Xt+s as our initial period. If this initial period state is nb, we �rst

decompose it as follows:

Xt+s = mt+s + �"t+s:

Note that if we track n previous periods we will have the following (n+ 1) constraints

for periods:

eiXt+s 7 �{;
eiXt+s+1 7 �{;

:::

eiXt+s+k 7 �{:

What are they? Assume we want to check whether all of them are greater than �{, i.e.,

we are checking whether it is (nb� nb� :::� nb) Then, we have

Xt+s = mt+s + �"t+s;

Xt+s+1 = �+ �Xt+s + �"t+s+1;

:::

Xt+s+k = �+ �Xt+s+k�1 + �"t+s+k:

Then, the constraints are:

ei (mt+s + �"t+s) > �{;

ei (�+ �Xt+s + �"t+s+1) > �{;

:::

ei (�+ �Xt+s+k�1 + �"t+s+k) > �{:
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The �rst constraint can be written in the eiC 0k� � �{� eiak fashion with

as = mt+s;

C 0s = �:

Similarly, the second constraint can be written

ei (�+ �Xt+s + �"t+s+1)

= ei (�+ �(mt+s + �"t+s) + �"t+s+1) > �{

as+1 = �+ �mt+s

C 0s+1 =
h
�� �

i
Thus, with the exception of the �rst constraint, the recursion is same for the case in

which Xt+s is nb.

If Xt+s is b,by de�nition we have it+s = �{; and we have

Xt+s = mt+s + �"t+s

with a � that has its (1; 1) entry set to zero. Thus we don�t need have the constraint for

the period t+ s. For the period t+ s+ 1, we have

Xt+s+1 = �+ �i�{+ �yyt+s + �"t+s+1;

and the constraint is

ei (�+ �i�{+ �yyt+s + �"t+s+1)

= ei (�+ �i�{+ �yeyXt+s + �"t+s+1)

= ei (�+ �i�{+ �yey (mt+s + �"t+s) + �"t+s+1)

> �{:

Thus

as+1 = �+ �i�{+ �yeymt+s;

C 0s+1 =
h
�yey� �

i
:

Suppose we are computing the case for (b� nb� nb) ; for period t+ s+ 2 we have

Xt+s+2 = �+ �Xt+s+1 + �"t+s+2:
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Hence, the constraint will be

as+2 = �+ �as+1;

C 0s+2 =
h
�C 0s+1 �

i
:

To sum up, if Xt+s is b we have k constraints with the �rst constraint being

as+1 = �+ �i�{+ �yeymt+s;

C 0s+1 =
h
�yey� �

i
:

and the rest evolving as above.

C Appendix C

In this appendix, I provide the results of Tallis (1961) for the computation of the �rst and

second moment for the truncated multinormal distribution. Let X have the multivariate

normal distribution with N (0; R) with the correlation matrix R; and let Xs be truncated

at as so that X = [X1; X2; :::; Xn]
0 and X1 > a1; X2 > a2; :::; Xn > an.

� = Pr (X1 > a1; X2 > a2; ::: > Xn > an)

Then

�E (Xi) =
nP
q=1

�iq� (aq) �n�1 (Aqs : Rq)

�E (XiXj) = ��ij +
nP
q=1

�qi�qjaq� (aq) �n�1 (Aqs : Rq)

+
nP
q=1

(
�qi

 P
r 6=q
� (aq; ar; �qr)

!
�n�2 (A

q
rs : Rqr) (�rj � �qr�qj)

)
;

where �ij is the correlation coe¢ cient between Xi and Xj; �n is the normal probability

distribution function, and � is the normal cumulative distribution function for dimension

n; Rq and Rqr are the �rst and second order partial correlation coe¢ cients with

Aqs =
as � �sqaqp
1� �2sq

;

Aqrs =
as � �sq:raq � �sr:qarq�
1� �2sq

� �
1� �2sr:q

� ;
and s 6= q in �n�1 and s 6= q 6= r in �n�2:�sq:r and �sr:q are the partial regression

coe¢ cients of Xs on Xq and Xr; respectively, and �sr:q is the partial correlation coe¢ cient

between Xs and Xr for �xed Xq:
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D Appendix D

In this appendix, I derive the computation of the moments for mixed normals. Suppose

I have S mixed normals with N (�i;�i) each with probabilities �i: Note that

var (X) = EX2 � (EX)2 :

Thus,

EX2
i = �i + �i�

0
i;

�X =
SP
i=1

�i�i;

var (X) = EX2 � (EX)2

= EX2 � �X�
0
X ;

EX2 =
SP
i=1

�iEX
2
i

=
SP
i=1

�i (�i + �i�
0
i) :

Thus,

var (X) =

�
SP
i=1

�i (�i + �i�
0
i)

�
� �X�

0
X :

What about the covariance betweenX and Y; where bothX and Y are linear functions

of Z a mixed normal? Suppose

X = �+ AZ

Y = � +BZ

where S mixed normals with N (�i;�i). Then,

cov(X; Y ) = Acov(Z;Z)B0

= Avar(Z)B0

E Appendix E

This appendix provides a detailed computation for Section 5. First, I present a simple

term structure model and derive the yields for di¤erent maturities and then I explain

how we can �nd the moments of the sum of the short-rates, bt+n�1 =
n�1P
i=0

it+i under the

ZLB constraint using the method of the paper.
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E.1 A simple term-structure model with lagged interest rate,
output gap and in�ation

The state vector follows a VAR with one lag.

Xt = �+ �Xt�1 + �"t

The short-rate is an a¢ ne function of the state

it = �0 + �01Xt

The nominal stochastic discount factor iswith

mt+1 = exp

�
�it �

1

2
�0t�t � �0t"t+1

�
where the market price of risk is also an a¢ ne function of the state.

�t = �0 + �1Xt

The state vector consists of the short-rate, output gap and in�ation: Xt =
h
it gt �t

i0
I assume the market price of the risk takes the below functional form:

�0 =

264 �0;1

�0;2

�0;3

375 ; �1 =
264 0 �1;12 �1;13

0 �1;22 �1;23

0 �1;32 �1;33

375
Given the parameters �;� and �, the Q�measure is de�ned by

~� = �� ��0
~� = �� ��1

Once I have that

P nt = EQt

�
exp

�
�
n�1P
i=0

it+i

��
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E.1.1 Bond-prices under Q-measure

1-period bond

P 1t = EQt [mt+1]

= EQt

�
exp

�
�it �

1

2
�0t�t � �0t"t+1

��
= exp

�
�it �

1

2
�0t�t

�
� EQt [exp (�

0
t"t+1)]

= exp

�
�it �

1

2
�0t�t

�
� exp

�
1

2
�0t�t

�
= exp (�it)

Since

it = eiXt

Thus

log
�
P 1t
�
= a1 + b01Xt

with

�1 = 0

�01 = �ei

n-period bond

P nt = EQt

�
exp

�
�
n�1P
i=0

it+i

��

P nt = EQt

�
exp

�
�
n�1P
i=0

it+i

��
= EQt

�
EQt+1

�
exp

�
�
n�1P
i=0

it+i

���
= EQt

�
EQt+1

�
exp

�
�it �

n�1P
i=0

it+i

���
= EQt

�
EQt+1

�
exp

�
�
n�1P
i=1

it+i

��
� exp (�it)

�
= EQt

�
EQt+1

�
exp

�
�
n�2P
i=0

it+1+i

��
� exp (�it)

�
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P nt = EQt
�
P n�1t+1 � exp (�it)

�
= EQt

�
exp

�
�n�1 + �0n�1Xt+1

�
� exp (�it)

�
= exp

�
�it + �n�1 + �0n�1~�+ �0n�1

~�Xt

�
� EQt

�
exp

�
�0n�1�"t+1

��
= exp

�
�it + �n�1 + �0n�1~�+ �0n�1

~�Xt +
1

2
�0n�1��

0�n�1

�
Thus

�n = �n�1 + �0n�1~�+
1

2
�0n�1��

0�n�1

�0n = �ei + �0n�1
~�

E.1.2 Yields

ynt =
� log (P nt )

n

=
�1
n
[�n + �nXt]

E.2 Finding the moments of bt+n�1 =
n�1P
s=0
it+s under the ZLB con-

straint

In the a¢ ne term structure model of the paper, the yields are given by

exp (�nynt ) = EQt

�
exp

�
�
n�1P
s=0

it+s

��
I �rst de�ne the cumulative interest rate variable,

bt = it

bt+k = it+k + bt+k�1

and approximate the yields from the unconditional (time t�conditional) mean and the
variance of bt, i.e:

exp (�nynt ) �= exp
�
�EQt bt+n�1 +

1

2
varQt [bt+n�1]

�
The expectation term is computed directly from the algorithm:

bt = it

EQt bt+k = EQt it+k + EQt bt+k�1
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I denote the expectation of bt+s with bt+s; i.e. bt+s = Etbt+s (this is also the case for the

di¤erent cases).

bijkt+s = Et

h
bijkt+s

i
Next, I explain how the variance term is computed.

E.2.1 The variance of bt+s

Below, �rst I explain how to compute the expectation and the variance of bt+1 and then

move to the other periods.For period 1 where it > �{ (nb), I have

X1
t+1 = �+ �Xt + �"t+1with C1 holding

b1t+1 = i1t+1 + b0

Thus,

b1t+1 = constant+ ei�"t+1

b1t+1 = it + Eti
1
t+1

vart
�
b1t+1

�
= vart

�
i1t+1
�

covt
�
b1t+1; X

1
t+1

�
= covt

�
i1t+1; X

1
t+1

�
Since everything is correlated because of the constraints, these can be computed with

A = [�]
B = [�]

vart
�
b1t+1

�
= Avart ("t+1)A0

covt
�
b1t+1; X

1
t+1

�
= Avart ("t+1)B0

Hence, in order to compute the variance of bt+s, we need to compute A and B terms. For
any period and any state notice that

vart

�
bijkt+s

�
= Avart (#t+s)A0

covt

�
bijkt+s; X

ijk
t+s

�
= Avart (#t+s)B0

, where #t+s =
�
"0t+1; "

0
t+2; ::; "

0
t+s

�0
for s � n+ 1 and #t+s =

�
!0t+s�n; "

0
t+s�n+1; ::; "

0
t+s

�
for

s > n+1: Notice that the B term is computed by the paper�s algorithm; for period t+ s;
B = Cs. Thus, I need to compute current A0s from past A�s and past and current B0s
In the next section, I explain how to compute these terms for the �rst n+1 periods and

for the periods beyond n+ 1.
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E.2.2 Computing A

First n + 1 periods: Suppose we know the term Aij and we would like to compute
Aij1 and Aij2. Note that Aij1 is the coe¢ cient for the i� j � nb state so that

bij1t+3 = bijt+2 + iij1t+3

= bijt+2 + Et
�
iij1t+3
�
+ eiAij~"t+2 + eiBij1"t+3

Thus

Aij1 =
h
Aij 0

i
+ Bij1

Similarly, for i� j � 2, we have

bij2t+3 = bij2t+2 + iij2t+3 = b
ij
t+2 + eiAij~"t+2

so that

Aij2 =
h
Aij 0

i
Using the same logic for i� 1 state we have,

bi1t+3 = bit+2 + ii1t+2

= bit+1 + Et
�
ii1t+2
�
+ eiAi"t+1 + eiBi1"t+2

so that

Ai1 =
h
Ai 0

i
+ Bi1

and

Ai2 =
h
Ai 0

i
We can continue doing these if we track more periods like i-j-k-1 and i-j-k-2, like

Aijk1 =
h
Aijk 0

i
+ Bijk1

Aijk2 =
h
Aijk 0

i
The initial points (i.e. the A terms for the �rst period) are:

A1 = �
A2 = 0
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Periods after n+ 1 : In the �rst part of the Appendix E.2.2, I show how to compute

expectation and the variance of bt+k and the covariance of bt+k with other variables for

the �rst n + 1 periods. Given these, I form the vector Zit+k =
�
X i0
t+k; b

i
t+k

�0
and �nd the

distribution of Z1t+k and Z
2
t+k: For periods after n + 1, I use Cholesky decomposition to

characterize the (approximate) distribution of Z1t+k and Z
2
t+k. For example, for two-period

tracking we use the distribution of Z1t+k�2 and Z
2
t+k�2:

Z1t+k�2 = Et
�
Z1t+k�2

�
+ ~�1�t+k�2;

Z2t+k�2 = Et
�
Z2t+k�2

�
+ ~�2�t+k�2:

Note that this ordering results in the same � for vartXt+k�2: For periods t+ k � 1 and

t+k, I do not check whether bt+k�2 and bt+k�1 are greater than zero as opposed to it+k�2
and it+k�1 so that in essence I only use the �rst nx entries of �t+k�2 :

!t+k�2 = �t+k�2 (1 : nx) :

The additional part that I used in this decomposition relative to that of Xt+k�2 is the

part of the last row of ~�i;�ib row vector. I decompose ~� and �t+k�2 as follows:

Et
�
Zit+k�2

�
= mi

t+k�2 =

"
�it+k�2
bit+k�2

#
;

�t+k�2 =
�
!0t+k�2; �t+k�2

�0
;

~�i =

"
�i 0

�ib �ibb

#
so that

~�i�t+k�2 =

"
�i!t+k�2

�ib!t+k�2 + �
i
bb�t+k�2

#
:

For one-period tracking, we have

Zit+k�1 = Et
�
Zit+k�1

�
+ ~�i�t+k�1;

with

bit+k�1 = b
i
t+k�1 + �

i
b!t+k�1 + �

i
bb�t+k�1:

Then for t+ k;

bi1t+k = bit+k�1 + it+k

= bit+k�1 + Et [it+k] + �
i
b!t+k�1 + �

i
bb�t+k�1 + eiBi1:

Thus,

Ai1 =
h
Ai 0

i
+ Bi1;
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and

Ai2 =
h
Ai 0

i
:

For two-period tracking, we use

Zit+k�2 = Et
�
Zit+k�2

�
+ ~�i�t+k�2

with

bit+k�2 = b
i
t+k�2 + �

i
b!t+k�2 + �

i
bb�t+k�2:

Then for t+ k � 1;

bi1t+k�2 = bit+k�2 + it+k�1

= bit+k�2 + Et [it+k�1] + �
i
b!t+k�2 + �

i
bb�t+k�2 + eiBi1:

Thus,

Ai1 =
h
Ai 0

i
+ Bi1;

and

Ai2 =
h
Ai 0

i
:

Denote the variance of the vector % =
�
!0t+k�2; "

0
t+k�1

�0
with

vart (%) = 
:

Then,

vart
�
bi1t+k�2

�
= �ibb�

i0
bb +Ai1
Ai10;

covt
�
bi1t+k�2; X

i1
t+k�2

�
= Ai1
Ai10:

Similarly,

Aij1 =
h
Aij Bij1

i
;

Aij2 =
h
Aij 0

i
:

Thus for our eight cases, we have

Ai11 =
h
Ai 0 0

i
+
h
Bi1 0

i
+ Bi11;

Ai12 =
h
Ai 0 0

i
+
h
Bi1 0

i
;

Ai21 =
h
Ai 0 0

i
+ Bi21;

Ai22 =
h
Ai 0 0

i
:
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Since we do not directly follow B11 and B21 in the algorithm, we compute them here. B11

is the coe¢ cient for X11,

X11
t+k�1 = �+ �X11

t+k�2 + �"t+k�1;

so that

B11 =
h
�B1 �

i
:

On the other hand, things get a little interesting for B21; which is the coe¢ cient for X21,

which is

X21
t+k�1 = �+ �i�{+ �yey�X

2
t+k�2 + �"t+k�1;

so that

B21 =
h
�yeyB2 �

i
:

We can continue in this fashion and derive the A�s for di¤erent cases. In the next section
I summarize how to compute A�s for the cases of one, two and three previous period
tracking.

E.2.3 Coe¢ cients for term structure computation (A)

n periods tracking

First n+ 1 periods:

A1 = [�]
A2 = [0]

Ai1 =
h
Ai 0

i
+ Bi1

Ai2 =
h
Ai 0

i
Aij1 =

h
Aij 0

i
+ Bij1

Aij2 =
h
Aij 0

i
Aijk1 =

h
Aijk 0

i
+ Bijk1

Aijk2 =
h
Aijk 0

i
:

After n+ 1 periods:
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n = 1

Ai = Bi

Ai1 =
h
Ai 0

i
+ Bi1

Ai2 =
h
Ai 0

i
:

n = 2

Ai = Bi

Ai11 =
h
Ai 0 0

i
+
h
Bi1 0

i
+ Bi11

Ai12 =
h
Ai 0 0

i
+
h
Bi1 0

i
Ai21 =

h
Ai 0 0

i
+ Bi21

Ai22 =
h
Ai 0 0

i
;

with

B11 =
h
B1 �

i
B21 =

h
�yeyB2 �

i
:

n = 3

Ai = Bi

Ai111 =
h
Ai 0 0 0

i
+
h
Bi1 0 0

i
+
h
Bi11 0

i
+ Bi111

Ai112 =
h
Ai 0 0 0

i
+
h
Bi1 0 0

i
+
h
Bi11 0

i
Ai121 =

h
Ai 0 0 0

i
+
h
Bi1 0 0

i
+ Bi121

Ai122 =
h
Ai 0 0 0

i
+
h
Bi1 0 0

i
Ai211 =

h
Ai 0 0 0

i
+
h
Bi21 0

i
+ Bi211

Ai212 =
h
Ai 0 0 0

i
+
h
Bi21 0

i
Ai221 =

h
Ai 0 0 0

i
+ Bi221

Ai222 =
h
Ai 0 0 0

i
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with

A1111 =
h
A1 0 0 0

i
+
h
B11 0 0

i
+
h
B111 0

i
+ B1111

A1112 =
h
A1 0 0 0

i
+
h
B11 0 0

i
+
h
B111 0

i
A1121 =

h
A1 0 0 0

i
+
h
B11 0 0

i
+ B1121

A1122 =
h
A1 0 0 0

i
+
h
B11 0 0

i
A1211 =

h
A1 0 0 0

i
+
h
B121 0

i
+ B1211

A1212 =
h
A1 0 0 0

i
+
h
B121 0

i
A1221 =

h
A1 0 0 0

i
+ B1221

A1222 =
h
A1 0 0 0

i

A2111 =
h
A2 0 0 0

i
+
h
B21 0 0

i
+
h
B211 0

i
+ B2111

A2112 =
h
A2 0 0 0

i
+
h
B21 0 0

i
+
h
B211 0

i
A2121 =

h
A2 0 0 0

i
+
h
B21 0 0

i
+ B2121

A2122 =
h
A2 0 0 0

i
+
h
B21 0 0

i
A2211 =

h
A2 0 0 0

i
+
h
B221 0

i
+ B2211

A2212 =
h
A2 0 0 0

i
+
h
B221 0

i
A2221 =

h
A2 0 0 0

i
+ B2221

A2222 =
h
A2 0 0 0

i

B11 =
h
�B1 �

i
B21 =

h
�yeyB2 �

i
and

Bi11 =
h
�Bi1 �

i
Bi21 =

h
�yeyBi2 �

i
:
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F Appendix F

In this appendix, I explain how we can �nd the constraints for the di¤erent cases when

we have lags. For the illustraton of the method, I present the case for a system with two

lags, where I follow the previous two periods, which is the case in the example presented

in the paper. I �rst explain the constraints for the �rst three periods and then explain

the constraint for periods beyond three.

F.1 Systems with 2 lags

Suppose

Xt = �+ �1Xt�1 + �2Xt�2 + �"t:

F.1.1 Period 1

X1 = �+ �1X0 + �2X�1 + �"t+1

We have two cases. For nb we have

eiX1 > �{;

ei (�"t+1) > �{� ei (�+ �1X0 + �2X�1) ;

so

a1 = �+ �1X0 + �2X�1;

C 01 = �:

and for b we have

a1 = � [�+ �1X0 + �2X�1] ;

C 01 = ��:

F.1.2 Period 2

X2 = �+ �1X1 + �2X0 + �"t+2
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Previous period nb: If previous period is nb we have

X2 = �+ �1X1 + �2X0 + �"t+2

= �+ �1 (�+ �1X0 + �2X�1 + �"t+1) + �2X0 + �"t+2:

For current period nb we have

a2 = �+ �1 (�+ �1X0 + �2X�1) + �2X0;

C 01 =
h
�1� �

i
:

For current period b we have

a2 = � [�+ �1 (�+ �1X0 + �2X�1) + �2X0] ;

C 01 = �
h
�1� �

i
:

Previous period b:

X2 = �+ �1;i�{+ �1;yy1 + �2X0 + �"t+2

= �+ �1;i�{+ �1;yey (�+ �1X0 + �2X�1 + �"t+1) + �2X0 + �"t+2:

For current period nb we have

a2 = �+ �1;i�{+ �1;yey�+ �1;yey�1X0 + �1;yey�2X�1 + �2X0;

C 02 =
h
�1;yey� �

i
:

For current period b we have

a2 = � [�+ �1;i�{+ �1;yey�+ �1;yey�1X0 + �1;yey�2X�1 + �2X0] ;

C 02 = �
h
�1;yey� �

i
:

F.1.3 Period 3:

X3 = �+ �1X2 + �2X1 + �"t+3

Decompose�1 =
h
�1;i �1;y

i
such that�1Xt�1 = �1;iit�1+�1;yyt�1 and�2 =

h
�2;i �2;y

i
.

44



Previous two periods: nb-nb If previous two periods are nb-nb we have

X3 = �+ �1X2 + �2X1 + �"t+3

= �+ �1 (�+ �1X1 + �2X0 + �"t+2) + �2 (�+ �1X0 + �2X�1 + �"t+1) + �"t+3:

For current period nb we have

�eiX1 > �{;

so that

a3 = �+ �1 (�+ �1X1 + �2X0) + �2 (�+ �1X0 + �2X�1) ;

C 03 =
h
�2� �1� �

i
:

For current period b, we have

a3 = � [�+ �1 (�+ �1X1 + �2X0) + �2 (�+ �1X0 + �2X�1)] ;

C 03 = �
h
�2� �1� �

i
:

Previous two periods: b-nb If previous period is nb but two periods ago is b we have

X3 = �+ �1X2 + �2;i�{+ �2;yy1 + �"t+3

= �+ �1 (�+ �1;i�{+ �1;yey (�+ �1X0 + �2X�1 + �"t+1) + �2X0 + �"t+2)

+ �2;i�{+ �2;yey (�+ �1X0 + �2X�1 + �"t+1) + �"t+3:

If current period is nb we have

a3 =

266664
�+

�1

( 
�+ �1;i�{+ �1;yey (�+ �1X0 + �2X�1 + �"t+1)

+�2X0 + �"t+2

!)
+�2;i�{+ �2;yey (�+ �1X0 + �2X�1 + �"t+1) + �"t+3

377775 ;
C 03~" = �1 (�1;yey�"t+1 + �"t+2) + �2;yey�"t+1 + �"t+3;

C 03 =
h
�1�1;yey� + �2;yey� �1� �

i
:

If current period is b we have

a3 = �

266664
�+

�1

( 
�+ �1;i�{+ �1;yey (�+ �1X0 + �2X�1 + �"t+1)

+�2X0 + �"t+2

!)
+�2;i�{+ �2;yey (�+ �1X0 + �2X�1 + �"t+1) + �"t+3

377775 ;
C 03 = �

h
�1�1;yey� + �2;yey� �1� �

i
:
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Previous two periods:nb-b If previous period is b but two periods ago is nb we have

X3 = �+ �1;i�{+ �1;yy2 + �2X1 + �"t+3

= �+ �1;i�{+ �1;yey (�+ �1 (�+ �1X0 + �2X�1 + �"t+1) + �2X0 + �"t+2)

+ �2 (�+ �1X0 + �2X�1 + �"t+1) + �"t+3:

If current period is nb we have

a3 =

8><>:
�+ �1;i�{

+�1;yey [�+ �1 (�+ �1X0 + �2X�1) + �2X0]

+�2 (�+ �1X0 + �2X�1)

9>=>; ;

C 03~" = �1;yey (�1�"t+1 + �"t+2) + �2�"t+1 + �"t+3;

C 03 =
h
�1;yey�1� + �2� �1;yey� �

i
:

If current period is b we have

a3 = �

8><>:
�+ �1;i�{

+�1;yey [�+ �1 (�+ �1X0 + �2X�1) + �2X0]

+�2 (�+ �1X0 + �2X�1)

9>=>; ;

C 03 = �
h
�1;yey�1� + �2� �1;yey� �

i
:

Previous two periods:b-b

X3 = �+ �1;i�{+ �1;yy2 + �2;i�{+ �2;yy1 + �"t+3

= �+ �1;i�{+ �2;i�{+ �1;yey (�+ �1;i�{+ �1;yey (�+ �1X0 + �2X�1 + �"t+1) + �2X0 + �"t+2)

+ �2;yey (�+ �1X0 + �2X�1 + �"t+1) + �"t+3:

If current period is nb we have

a3 = �+ �1;i�{+ �2;i�{+ �1;yey (�+ �1;i�{+ �1;yey (�+ �1X0 + �2X�1) + �2X0)

+ �2;yey (�+ �1X0 + �2X�1) ;

C 03~" = �1;yey (�1;yey�"t+1 + �"t+2) + �2;yey�"t+1 + �"t+3;

C 03 =
h
(�1;yey�1;yey + �2;yey) � �1;yey� �

i
:
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F.1.4 Periods after 3

nb-nb We have to consider two cases di¤erently: If it is nb-nb two periods before, we

have

Xk�2 = �Xk�2 + �k�2!k�2;

Xk�1 = �Xk�1 + �k�1!k�1:

Then,

Xk = �+ �1Xk�1 + �2Xk�2 + �"k

= �+ �1
�
�Xk�1 + �k�1!k�1

�
+ �2

�
�Xk�2 + �k�2!k�2

�
+ �"k:

If current is nb

ak = �+ �1�
X
k�1 + �2�

X
k�2;

C 0k =
h
�2�k�2 �1�k�1 �

i
:

If current is b

ak = �
�
�+ �1�

X
k�1 + �2�

X
k�2
�
;

C 0k = �
h
�2�k�2 �1�k�1 �

i
:

The other periods are:

ak�1 = �Xk�1;

C 0k�1 = �k�1;

and

ak�2 = �Xk�2;

C 0k�2 = �k�2:

b-nb

Xk�2 = �Xk�2 + �k�2!k�2;

�Xk�2 =

"
�{

�yk�2

#
;�k�2 =

"
0 0

0 �k�2;yy

#
;

Xk�1 = �Xk�1 + �k�1!k�1:
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Then

Xk = �+ �1Xk�1 + �2Xk�2 + �"k

= �+ �1
�
�Xk�1 + �k�1!k�1

�
+ �2;i�{+ �2;yey

�
�yk�2 + �k�2;yy!k�2

�
+ �"k:

If current is nb

ak =
�
�+ �1�

X
k�1 + �2;i�{+ �2;yey�

y
k�2
�
;

C 0k =
h
�2;yey�k�2;yy �1�k�1 �

i
:

If current period is b

ak = �
�
�+ �1�

X
k�1 + �2;i�{+ �2;yey�

y
k�2
�
;

C 0k = �
h
�2;yey�k�2;yy �1�k�1 �

i
:

Period k � 1 is

ak�1 = �Xk�1;

C 0k�1 = �k�1:

and we do not have any restriction for the period k � 2�s b.

nb-b

Xk�2 = �Xk�2 + �k�2!k�2;

Xk�1 = �Xk�1 + �k�1!k�1;

�Xk�1 =

"
�{

�yk�1

#
;�2 =

"
0 0

0 �k�1;yy

#
:

Then

Xk = �+ �1Xk�1 + �2Xk�2 + �"k

= �+ �1;i�{+ �1;yey
�
�yk�1 + �k�1;yy!k�1

�
+ �2

�
�Xk�2 + �k�2!k�2

�
+ �"k;

If current is nb

ak = �+ �1;i�{+ �1;yey�
y
k�1 + �2�

X
k�2;

C 0k =
h
�2�k�2 �1;yey�k�1;yy �

i
:
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If current is b

ak = �
�
�+ �1;i�{+ �1;yey�

y
k�1 + �2�

X
k�2
�
;

C 0k = �
h
�2�k�2 �1;yey�k�1;yy �

i
:

We do not have any restriction for the period k � 1�s b and period k � 2 parameters are

ak�2 = �Xk�2;

C 0k�2 = �k�2:

b-b

Xk�2 = �Xk�2 + �k�2!k�2;

�Xk�2 =

"
�{

�yk�2

#
;�2 =

"
0 0

0 �k�2;yy

#
;

Xk�1 = �Xk�1 + �k�1!k�1;

�Xk�1 =

"
�{

�yk�1

#
;�2 =

"
0 0

0 �k�1;yy

#
:

Then,

Xk = �+ �1Xk�1 + �2Xk�2 + �"k

= �+ �1;i�{+ �1;yey
�
�yk�1 + �k�1;yy!k�1

�
+ �2;i�{+ �2;yey

�
�yk�2 + �k�2;yy!k�2

�
+ �"k:

If current is nb

ak =
�
�+ �1;i�{+ �1;yey�

y
k�1 + �2;i�{+ �2;yey�

y
k�2
�
;

C 0k =
h
�2;yey�k�2;yy �1;yey�k�1;yy �

i
:

If current is b

ak = �
�
�+ �1;i�{+ �1;y�

y
k�1 + �2;i�{+ �2;y�

y
k�2
�
;

C 0k = �
h
�2;y�k�2;yy �1;y�k�1;yy �

i
:

and we do not have any restrictions for the previous two periods.
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Probability of hitting the ZLB Expected values conditional on ZLB does not bind 

  
Expected values conditional on ZLB binds Unconditional (time-0 conditional) expected values 

Figure 1: The results from numerical exercise 1: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the 

mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous 

variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous 

variables. 
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Probability of hitting the ZLB Expected values conditional on ZLB does not bind 

  
Expected values conditional on ZLB binds Unconditional (time-0 conditional) expected values 

Figure 2: The results from numerical exercise 2: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the 

mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous 

variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous 

variables. 
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Probability of hitting the ZLB Expected values conditional on ZLB does not bind 

  
Expected values conditional on ZLB binds Unconditional (time-0 conditional) expected values 

Figure 3: The results from numerical exercise 3: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the 

mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous 

variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous 

variables. 
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Probability of hitting the ZLB Expected values conditional on ZLB does not bind 

  
Expected values conditional on ZLB binds Unconditional (time-0 conditional) expected values 

Figure 4: The results from numerical exercise 4: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the 

mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous 

variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous 

variables. 

  

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Simulation

1 period

2 period

3 period

4-period

-3

-2

-1

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

interest rate

inflation rate

output gap

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

interest rate

inflation rate

output gap

-3

-2

-1

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

inflation rate

interest rate

output gap



60 
 

 

 

 

 

  
Probability of hitting the ZLB Yield curve  
Figure 5: The results from numerical exercise 5: The upper left chart shows the probability of hitting the ZLB under the Q-measure. The upper 

right chart shows the term structure of nominal interest rates . 
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Probability of hitting the ZLB Expected values conditional on ZLB does not bind 

   
Expected values conditional on ZLB binds Unconditional (time-0 conditional) expected values 

Figure 6: The results from numerical exercise 6: The upper left chart shows the probability of hitting the ZLB. The upper right chart shows the 

mean of the endogenous variables conditional on the ZLB constraint does not bind. The lower left chart shows the mean of the endogenous 

variables conditional on the ZLB constraint binds. The lower right chart shows the unconditional (time 0 conditional) mean of the endogenous 

variables. 
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