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1 Introduction

1.1 Literature Review

Following Taylor (1993), there has been an intense focus on Taylor-type monetary policy rules,

such as:

it = α + φππt + φuut + et (1)

where it is the federal funds rate, πt is the annualized inflation rate from period t− 1 to period

t, ut is a measure of real activity (output gap or unemployment rate) in period t, and et is

a stationary exogenous monetary shock. There are many variants of Equation (1). Theory

often suggests forward-looking versions (e.g. Clarida, Gali and Gertler (2000)); real-time lags

in data collection motivate the use of lagged inflation and real activity, i.e., a backward-looking

monetary policy rule (e.g. McCallum (1997)); and interest rate smoothing considerations (as

well as the statistical properties of it) motivate adding lags of it to the right-hand side of (1).1 A

number of studies have used variants of Equation (1) to conclude that the central bank’s policy

changed markedly starting with Volcker; see, e.g. Clarida, Gali and Gertler (2000) and Judd

and Rudebusch (1998).2

Taylor originally developed this monetary policy rule as a descriptive device. More recently,

a Taylor-type rule (with appropriate parameter values) is found to be optimal in a dynamic New

Keynesian macroeconomic model – see Woodford (2003) or Gali (2009) for a textbook treatment.

Decades ago, however, Friedman (1968) and Phelps (1968) introduced the concept of a natural

rate of unemployment; and a related literature on the Phillips curve argues for the existence of

a time-varying natural rate of unemployment. If there is a time-varying natural rate, it implies

that not all unemployment rate movements are economically equivalent. A reasonable central

1Consolo and Favero (2009) argues, in the forward-looking context, that the inertia is an artifact of a weak-
instrument problem for expected inflation. Forward-looking monetary policy rules are not considered here,
because doing so would require a substantial number of valid instruments for πt+j and ut+j , and lagged values
do not provide useful instruments due to the identification problem discussed by Jondeau, Bihan and Galles
(2004). Rudebusch (2002) disagrees with the interest rate smoothing interpretation; using evidence from the
term structure, he shows that monetary policy inertia is more likely due to persistent shocks that the central
bank faces.

2Using the the time-varying parameter framework, Boivin (2001), Cogley and Sargent (2005), Kim and Nelson
(2006) and McCulloch (2007) come to a similar conclusion. However, Sims (2001) and Sims and Zha (2006)
find that there is less evidence for significant changes in the reaction coefficients φ if one allows for time-varying
variance in the monetary policy shock.
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bank will thus respond differently to natural rate movements than to fluctuations about the

natural rate. Hence, a linear policy rule such as Equation (1) – with a constant value for φu –

must be seriously misspecified.

One means of addressing this issue is to use an “unemployment gap” for ut in Equation (1),

as in Ball and Tchaidze (2002) and McCulloch (2007). To calculate the unemployment gap, one

needs an explicit estimate of the natural rate of unemployment. Such estimates are inherently

problematic in that they typically hinge upon untested (and perhaps untestable) auxiliary as-

sumptions about the natural rate data generating process (such as an explicit formulation of its

persistence), which may well be incorrect. They are also generally based upon two-sided filters,

which (as noted below) are known to distort the dynamics of time series relationships. Using

an output gap instead of an unemployment gap in Equation (1) does not improve matters.

Similarly, the central bank likely responded differently to more persistent innovations in

inflation than to less persistent innovations. Some analysts have attempted to address this

issue by making use of “core inflation” measures in Equation (1). This expedient is valid,

however, only if all movements in the core inflation measure are identically persistent, which is

emphatically not the case – e.g., see Bryan and Meyer (2002) and Dolmas and Wynne (2008).

Two prominent recent studies use variants of Equation (1) to understand monetary policy

behavior and its evolution over time. Orphanides (2002) uses real-time data and shows that

the Federal Open Market Committee’s (FOMC) forecast of inflation is biased during the Great

Inflation period. He finds that the Federal Reserve actually reacts aggressively to its biased

forecast; but standard analysis using ex post data leads to the conclusion that the FOMC only

responds weakly to inflation. Ball and Tchaidze (2002) ask if the FOMC behaves differently

between the ‘old economy’ period from 1987 to 1995, and the ‘new economy’ period from 1996 to

2000. Using a monetary policy rule that contains only inflation and the unemployment rate, they

find that the estimates differ considerably between the two periods: during the ‘old economy’

period the FOMC reacts strongly to both inflation and unemployment rate fluctuations. For

each one-percentage-point rise in inflation, they find that the FOMC raises the interest rate by

1.4 or 1.6 points, depending on the definition of inflation. And for each one-percentage-point

rise in unemployment rate, they find that the FOMC cuts the interest rate by almost 2 points.

In contrast, in the ‘new economy’ period they find that the FOMC’s reaction to unemployment
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rate fluctuations is much smaller. Ball and Tchaidze argue that these results are driven not

by a change in policy but by a change in the non-accelerating-inflation rate of unemployment

(NAIRU) in this later period. Allowing the estimated NAIRU to change over time and replacing

unemployment with unemployment gap in the monetary policy rule, Ball and Tchaidze find that

the FOMC’s behavior does not change between the two periods.3

1.2 The Present Paper

In this paper, we estimate the central bank’s monetary policy rule using a new method proposed

by Ashley and Verbrugge (2009), described in Section 2. This method allows for the possibility

the the policy rule reacts in different ways to fluctuations of differing persistence in the real-

time data. In particular, our method allows us to estimate whether (and how) the central bank

differentially responds in real time to perceived changes in either the unemployment rate or

the inflation rate with persistence levels varying in steps from permanent (“zero-frequency”) to

completely transitory (“high-frequency”). We use a 36-month moving window in the analysis,

which implies that persistence can vary in 19 steps, from completely “permanent” – referring to a

fluctuation with an average reversion period of more than 36 months – to “temporary,” referring

to a fluctuation with an average reversion period of just two months.4 Explicitly allowing for

varying persistence in the central bank’s responses to fluctuations in the unemployment rate

renders explicit modeling of a time-varying NAIRU unnecessary.

Because a moving window on the data set is used, our method is gracefully compatible

with the real-time data on inflation and unemployment rates which are actually available to

the central bank policymakers whose behavior is being modelled. Moreover, because our Fouri-

er decomposition of the data in the window for time t uses only the real-time data for that

rate actually available at time t, our partitioning of each rate into persistence (or frequency)

3This issue is re-visited in Section 5.4 below, where we find that allowing for frequency dependence in the
monetary policy rule relationship eliminates any need to assume a change in the NAIRU across these two
subperiods. See Tasci and Verbrugge (2014) for a current discussion of the NAIRU and NIIRU concepts.

4Sections 2 and 4 below describe how the real-time data on the inflation rate and the unemployment rate are
decomposed into frequency components which add up to the original data series. ‘Reversion period’ is intuitively
defined as follows: a fluctuation which tends to self-reverse on a time scale shorter than the reversion period
associated with a given frequency component will have little impact on this frequency component. Section 2
exposits this decomposition in detail; Section 4 motivates this concept using an explicit example with a short
(10-month) window. Table 1 summarizes the 19 frequency components and reversion periods allowed by the
36-month window actually used here.
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components is, by construction, a backward-looking (“one-sided”) filtering. Two-sided filters –

e.g., those applied to both the explanatory and dependent variables in studies such as Cochrane

(1989) – distort relationships amongst variables which are in feedback with one another, because

two-sided filtering inherently mixes up future and past values of the time series. (See Ashley

and Verbrugge (2009) for a more detailed exposition of this point.5) Thus, our analysis provides

consistent estimates of the frequency dependence in monetary policy rules even where – as one

might expect – there is feedback between the federal funds rate and the inflation/unemployment

explanatory variates in the policy rule.6

While the original Taylor-type monetary policy response function is attractive in its sim-

plicity, our frequency-dependent extension of it broadens its generality and descriptive power,

yielding novel results. More explicitly, we find that the FOMC responds differently to highly

persistent innovations in the unemployment rate – which one might largely identify with natural

rate fluctuations – than it does to more transitory innovations. Similarly, the central bank’s

responses to inflation-rate innovations are also frequency-dependent. These findings – that the

policy response coefficients in the FOMC’s policy response function were not actually constants,

but instead depended on the persistence of fluctuations in the macroeconomic variables these

coefficient are multiplying – imply that a model with constant coefficients (such as Equation (1)

above) is seriously mis-specified and hence yields inconsistent (and misleadingly unstable) pa-

rameter estimates. Appropriately allowing for frequency dependence in the monetary response

coefficients yields a clearer picture of how the FOMC’s actual policy rule has evolved over time –

e.g., how it differs for the Martin-Burns-Miller (MBM) period (roughly March, 1960 to August,

1979) versus the Volcker-Greenspan-Bernanke (VGB) period, here taken to run from September,

1979 to August, 2008. In particular, estimates of Equation (1) as it stands imply that the FOMC

was responsive to unemployment rate fluctuations in the MBM period but not in the VGB pe-

riod; in contrast, our results in Section 5.3 show that the FOMC was significantly responsive to

unemployment rate fluctuations in both periods once one allows for frequency dependence in the

response coefficients. In addition, in Section 5.4 we re-visit the Ball and Tchaidze (2002) result

5For the same reason, applying a two-sided filter to each of two time series likewise distorts the crosscorrelations
between them, even in the absence of feedback.

6For this reason – and because such calculations are incompatible with the use of real-time data – two-sided
cross-spectral estimates are not quoted here.
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described at the end of Section 1.1 above. Allowing for frequency dependence in the monetary

response coefficients, we find strong evidence that the FOMC’s responses to both inflation and

unemployment fluctuations were significant in both the “old economy” and the “new economy”

periods, without any need to posit time variation in the NAIRU.

We do not interpret our results as implying that that the FOMC explicitly decomposed

fluctuations in the inflation and unemployment rates into different frequency or persistence

levels, and then mechanically followed a Taylor-type rule of the form we estimate, although it is

certainly arguable that these policymakers had something like this in mind.7 Instead, the goal

of the paper is to utilize a richer statistical model to describe the behavior of the central bank,

allowing the data to better inform us as to the manner in which the central bank has responded

to fluctuations in these macroeconomic variables.

2 Modeling Frequency Dependence

In this section we discuss the technique used here for modeling frequency dependence in the

monetary policy rule.8 The idea of regression in the frequency domain can be traced back to

Hannan (1963) and Engle (1974, 1978), and is further developed in Tan and Ashley (1999a and

1999b), who developed a real-valued reformulation of Engle’s (1974) complex-valued framework.

Consider the ordinary regression model:

Y = Xβ + e e ∼ N(0, σ2I) (2)

where Y and e are each T × 1 and X is T ×K. Now define a T × T matrix A, whose (s, t)th

7For example, Meyer, Venkatu and Zaman (2013) at the Federal Reserve Bank of Cleveland comment that:
“By specifying the inflation threshold in terms of its forecasted values, the FOMC will still be able to ‘look
through’ transitory price changes, like they did, for example, when energy prices spiked in 2008. At that time,
the year-over-year growth rate in the Consumer Price Index (CPI) jumped up above 5.0 percent but subsequently
plummeted below zero a year later when the bottom fell out on energy prices. At the time, the Committee
maintained the federal funds rate target at 2.0 percent, choosing not to react to the energy price spike.”

8See Ashley and Verbrugge (2009) for details; this section (and an analogous section in Ashley and Tsang
(2012) provide the most up-to-date descriptions, however. Additional descriptions are given in Ashley and
Verbrugge (2007a,b)and in Ashley and Li (2014).
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element is given by:

as,t =

( 1
T

)
1
2 for s = 1;

( 2
T

)
1
2 cos(πs(t−1)

T
) for s = 2, 4, 6, ..., (T − 2) or (T − 1);

( 2
T

)
1
2 sin(π(s−1)(t−1)

T
) for s = 3, 5, 7, ..., (T − 1) or T ;

( 1
T

)
1
2 (−1)t+1 for s = T when T is even.

(3)

It can be shown that A is an orthonormal matrix, so its transpose is its inverse and Ae is still

distributed N(0, σ2I). Pre-multiplying the regression model (2) by A thus yields,

AY = AXβ + Ae→ Y ∗ = X∗β + e∗, e∗ ∼ N(0, σ2I) (4)

where Y ∗ is defined as AY , X∗ is defined as AX, and e∗ is defined as Ae. The dimensions of

the of Y ∗, X∗, and e∗ arrays are the same as those of Y , X, and e in Equation (1), but the

T components of Y ∗ and e∗ and the rows of X∗ now correspond to frequencies instead of time

periods.

To fix ideas, we initially focus on the jth component of X, i.e., column j of the X matrix,

corresponding to the j − 1st explanatory variable if there is an intercept in the model. The

T frequency components are partitioned into M frequency bands, and M T × 1 dimensional

dummy variable vectors, D∗1, ..., D∗M , are defined as follows: for elements that fall into the sth

frequency band, D∗s,j equals X∗{j}, and the elements are zero otherwise. The regression model

can then be written as:

Y ∗ = X∗{j}β{j} +
M∑
m=1

βj,mD
∗m,j + e∗ (5)

where X∗{j} is the X∗ matrix with its jth column deleted and β{j} is the β vector with its jth

component deleted.

To test whether the jth component of β is frequency-dependent (i.e., to test whether the

effect of the jth variable in X on Y is frequency or persistence dependent) one can then simply

test the null hypothesis that H0 : βj,1 = βj,2 = ... = βj,M .

In the present application, we focus on two columns of X: the real-time inflation rate and

the real-time inflation rate; these columns are denoted j and k below. By the same reasoning
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used above, one can quantify (and test for) frequency dependence in the two model coefficients

βj and βk corresponding to these two columns by re-writing the regression model (Equation 5)

as:

Y ∗ = X∗{j,k}β{j,k} +
M∑
m=1

βj,mD
∗m,j +

M∑
m=1

βk,mD
∗m,k + e∗. (6)

To make this regression equation a bit more intuitive, one can back-transform Equation (6)

back into the time domain by pre-multiplying both sides of this equation with the inverse of A,

which (because A is an orthonormal matrix) is just its transpose:

A′Y ∗ = A′X∗{j,k}β{j,k} + A′
M∑
m=1

βj,mD
∗m,j + A′

M∑
m=1

βk,mD
∗m,k + A′e∗. (7)

This yields the time-domain specification:

Y = X{j,k}β{j,k} +
M∑
m=1

βj,mD
m,j +

M∑
m=1

βk,mD
m,k + e. (8)

where X{j,k} is the original X matrix, omitting columns j and k and β{j,k} is the original β

vector, omitting components j and k

Note that now the dependent variable is the same time series (Y ) as in the original model,

Equation (1). Similarly, all of the explanatory variables – except for the jth and kth – are the

same as in the original model. Indeed, the only difference is that these two explanatory variables

have each been replaced by M new variables: i.e., the explanatory variable Xj has been replaced

by D1,j...DM,j and the the explanatory variable Xk has been replaced by D1,k...DM,k. Each of

these M variables can be viewed as a bandpass-filtered version of the original data (the jth or

kthcolumn of the X matrix), with the nice property that the M frequency component variables

corresponding to column j of the X matrix add up precisely to the jth column of X and the M

frequency component variables corresponding to column k of the X matrix add up precisely to

the kth column of X.

In other words, the jth column of X – for example – is now partitioned into M parts.

Reference to definition of the A matrix in Equation (3) shows that the first (low-frequency)
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component (corresponding to m = 1) is proportional to the sample average of the data for this

explanatory variable. Similarly, the last component (corresponding to m = M) is essentially

a sequence of changes in the data, and hence is the highest-frequency component that can be

extracted from the data on this variable.9 To test for frequency dependence in the regression

coefficient on this jth regressor, then, all that one need do is test the joint null hypothesis that

βj,1 = βj,2 = ... = βj,M . Similarly, Xk is replaced by D1,k...DM,k and one tests the null hypothesis

that βk,1 = βk,2 = ... = βk,M .

However, because the A transformation mixes up past and future values (as in any Fourier-

based bandpass filter), it can be shown that these M frequency components are correlated with

the model error term e if there is feedback between Y and either of these two explanatory vari-

ables, leading to inconsistent estimation of the parameters βj,1, βj,2, ...βj,M and βk,1, βk,2, ...βk,M

in that case. Feedback between the federal funds rate and inflation or unemployment rates is

certainly likely, so this is an important issue here. To avoid this problem in general, Ashley

and Verbrugge (2009) suggest modifying the procedure described above in order to obtain a

one-sided filter for partitioning a variable into its frequency components. In particular, they

suggest decomposing Xj, the jth explanatory variable data vector, into frequency components

by applying the transformation described above within a moving three-year window, retaining

only the most recent frequency component values calculable from this window. This leads to a

one-sided, rather than a two-sided bandpass filter; the filtering of Xk is modified analogously.

Thus, in the results reported below, the transformation matrix A defined in Equation (3) is

of dimension T = 36×36 months and this windowing causes the lowest frequency component of

each filtered series to now become a moving average, flexibly allowing for any (possibly nonlinear)

trend in the original data.

This moving-window approach is used in the present paper for an additional, crucial reason:

the moving window makes it possible to use real-time data for the values of Xj and Xk used

in each window; in this way the analysis is consistent in each period with the data which were

available to the policymakers at the time.

9The average for the m = 1 component becomes a moving average of the data once windowing is introduced
immediately below. Because the data used here are so very persistent – so as to match the specification of a
typical Taylor-type monetary policy rule – an estimated linear trend is removed from the data for each window
prior to the application of the filter; this would be unnecessary with the clearly I(0) data to which our procedure
would ordinarily be applied.
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Restricting the length of the window to T = 36 implies that the lowest frequency (longest

period) component of Xj or Xk cannot distinguish between fluctuations with a reversion period

of 36 months and fluctuations with reversion periods longer than this.10 On the other hand, it has

the nice feature that the matrix A defined in Equation (3) involves only 19 distinct frequencies,

so that M is at most 19. Hence, Equation (8) involves the estimation of at most 2(19 − 1)

additional coefficients in order to model any frequency dependence in the two relationships. This

total of 19 distinct frequencies includes the 36-month moving average formed by the first row of

A (corresponding to a frequency of zero) and 18 distinct positive frequencies, corresponding to

the remaining rows of A, taken pairwise where the sine and cosine yield distinct rows. Section 4,

below, illustrates this calculation of the number of distinct frequencies – and also supplies more

of the intuition behind the frequency components – for the special case where the window length

is set to ten for expositional simplicity; Table 1 tabulates the 19 frequency components possible

with a the 36-month window length used here, explicitly relating each one to its reversion period

and to the corresponding row (or rows) of the A matrix.

Thus, it is is feasible in this moving-window framework to estimate all of the possible distinct

coefficients – i.e., βj,1, βj,2, · · · βj,19 and βk,1, βk,2, · · · βk,19 – without selecting frequency bands.

This choice is not necessarily optimal, however, because the estimation of 2×19 = 38 coefficients

can use up so many degrees of freedom in the dataset as to adversely, and needlessly, impact

the precision with which inferences can be made. Moreover, reference to Table 1 makes it clear

that, although the frequencies associated with these 19 components are equally spaced on the

interval from zero to π, the corresponding reversion periods (which are proportional in each case

to the reciprocal of the frequency) are quite unevenly spaced. In particular, note that the five

components corresponding to βj,13, · · · βj,19 all have reversion periods of between two and three

months. While it is an empirical issue whether or not the FOMC pays any attention to it or ut

fluctuations this brief, we find that it is not useful to estimate six additional coefficients for each

of these two variables in an attempt to quantify the degree to which the FOMC distinguishes

between fluctuations with periods between two and three months in length. For this reason we

routinely aggregate the seven highest frequency components for each of the two variables into

10Similar empirical results to those reported below were obtained using a 48-month window as a robustness
check. These results are available from the authors upon request.

10



a single component; this is, in effect, assuming that βj,13, · · · βj,19 are all essentially equal and

that βk,13, · · · βk,19 are all essentially equal.

In addition, one might be interested in even more highly aggregated frequency bands so

as to facilitate exposition of one’s results on economic or intuitive grounds, as in Ashley and

Tsang (2013) and Ashley and Li (2014), where the frequency components are aggregated into

just three bands. Here we will do the same, defining a “low frequency band” corresponding to

fluctuations with reversion periods in excess of 36 months, a “medium frequency” band with

reversion periods between 12 and 36 months, and a “high frequency” band corresponding to

reversion periods of less than 12 months. Looking ahead at Tables 1 and 4 in Section 5, the

low frequency band consists of the first component; the medium frequency component is the

sum of the components for reversion periods of 12, 18, and 36 months; and the high frequency

component comprises the sum of the remaining 15 components, which all revert more quickly.

Yes, this particular partitioning of the 19 bands into just three is, in a sense, a bit arbitrary.

On the other hand, these three aggregated bands are interpretable in terms of the roughly the

same calendar that the FOMC’s policymakers live on.

Lastly, when decomposing Xj using a window, one must confront the problem of “edge

effects” near the window endpoints. As in Dagum (1978) and Stock and Watson (1999), this

problem is dealt with by augmenting the window data with projected data, here for an additional

3 months. Thus, the 36-month window incorporating the real-time data on Xj as of period t

includes 33 past values of Xj – as known at time t – plus projections (forecasts) of its values for

months t + 1 to t + 3. This window of data is then used, as described above, to compute the

M components of Xj – i.e., the vectors D1,j...DM,j. The 33d element of each of these vectors is

then used as the period-t filtered value of Xj for this particular frequency. We find that the the

estimated values of βj,1, βj,2, ...βj,M and their estimated standard errors are not sensitive to the

number of projection periods (as long as at least one month of projections is used), nor to the

details of how the projections (forecasts) are produced.11 Since it is well known that the FOMC

11In this paper both the unemployment and inflation series are projected by combining several distinct,
backward-looking forecasting models using a model-averaging technique. This choice is not particularly con-
sequential, however. For example, we find that using an AR(4) model with monthly dummies – or an AR(3) or
AR(5) model instead – yields similar results with respect to the βj,1, βj,2, ...βj,M estimates. Details regarding
these projection models – and RATS code implementing the frequency decomposition in this way – are avail-
able from the authors. A ready-to-use Windows-based executable file implementing the decomposition using
projection based solely on seasonal dummies plus an AR(p) model is also available.
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makes extensive use of forecasts in its decision-making, utilizing projections of this nature in

our windowed bandpass filters seems particularly appropriate.

This is a good point at which to contrast the frequency decomposition used here with su-

perficially similar procedures in the existing literature. For example, in contrast to trend-cycle

decomposition methods (e.g., Beveridge-Nelson), our approach does not decompose an explana-

tory variable like Xj into just two components: an arbitrarily-persistent I(1) or I(1)-like trend

and a stationary I(0) fluctuation. Our decomposition instead produces M components (adding

up to Xj) which span the complete range of persistence levels permitted by the chosen window

length. And it allows the data itself – via regression analysis – to quantify how the coefficients

βj,1, ..., βj,M vary across all of these persistence levels. Further, our decomposition still yields

consistent parameter estimation where (as is typically the case with economic relationships) one

cannot rule out feedback (or reverse-causality) – in contrast to the earlier spectral regression

models cited at the outset of this section, which employ two-sided filtering. Finally, our approach

is uniquely appropriate to the present analysis of the FOMC’s Taylor Rule behavior, because the

central bank surely bases its actual policy decisions on real-time data. In particular, the current

real-time history of each of the relevant explanatory variables (the inflation and unemployment

rates) corresponds exactly to the data which we use in each window for the decomposition of

the current value of each variable into its frequency/persistence components.

We note, in this context, that an analogous kind of analysis based on the gain and phase of a

transfer function model for the federal funds rate – as in Box and Jenkins (1976, Part III) – would

be problematic because such models characteristically involve lagged values of the dependent

and explanatory variables. For one thing, models containing lagged variables are inherently

awkward when using real-time data because it is not clear whether the period-t datum to be

used for Xj lagged, say, two periods should be the value of for that period as known currently

(i.e., in period t) or at the time (i.e., in period t − 2). In addition, transfer function gain and

phase plots are substantially more challenging to interpret than our βj,1, ..., βj,M coefficients,

especially where (as here) bi-directional causality is likely. For example, Granger (1969) notes,

“in many realistic economic situations, however, one suspects that feedback is occurring. In

these situations the coherence and phase diagrams become difficult or impossible to interpret,
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particularly the phase diagram.”12

3 The Appeal of this Frequency-based Approach to Dis-

aggregation by Persistence Level

The focus of this paper is to investigate, in a data-driven way, the degree and manner to which

the FOMC has responded to persistent innovations in the unemployment rate and the inflation

rate differently than it has to more transitory fluctuations in those variables. Thus the objective

of partitioning two of the explanatory variable time series – Xj and Xk in Section 2 above,

which are the unemployment and inflation rates in the present application – is not the bandpass

filtering per se. Rather, we decompose the unemployment and inflation rates into frequency

components so that we can separately estimate the impact of fluctuations of distinctly different

persistence levels in these two variables on the federal funds rate and make inferences concerning

these differential impacts.

No representation is made here that the bandpass filtering described in Section 2 above

is asymptotically optimal – e.g., as in Koopmans (1974) or Christiano and Fitzgerald (2003)

– although the relevance of asymptotic optimality in filtering data which here are of sample

length ca. 36 is debatable.13 On the other hand, our method of decomposing a time series into

M frequency components has several very nice characteristics, which make this decomposition

approach overwhelmingly well-suited to the present application:

1) The M frequency components that are generated from an explanatory variable (i.e., from a

column of X) by construction partition it. That is, these M components add up precisely to the

original observed data on this column of X. This makes estimation and inference with regard to

frequency dependence (or its inverse, persistence dependence) in the corresponding regression

12These difficulties notwithstanding, some transfer function model results with the present data are given in
Appendix 1, available from the authors. (And at the end of this manuscript.)

13In this context we note that it feasible – albeit somewhat awkward – to iteratively employ a Christiano-
Fitzgerald (2003) low-pass filter to partition the data in such a way that the frequency components still add up to
the original data. This procedure involves applying the filter repeatedly, at each iteration varying the frequency
threshold and applying the filter to the residuals from the previous iteration. This procedure is, of course, no
longer even asymptotically optimal, but it does yield frequency components which still add up to the original
data – as ours do automatically. Experiments with decompositions along these lines did not yield noticeably
distinct results with regard to inferences on the regression model coefficients.
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coefficient particularly straightforward: one can simply replace this explanatory variable in the

regression model by a linear form in the M components and analyze the resulting M coefficient

estimates.

2) Due to the moving windows used, this particular way of partitioning the data on an explana-

tory variable into these M frequency components by construction utilizes backward-looking

(i.e., one-sided) filters. As demonstrated in Ashley and Verbrugge (2009), this feature is crucial

to consistent OLS coefficient estimation where there is bi-directional Granger-causality (i.e.,

feedback) between the dependent variable and the explanatory variable being decomposed by

frequency. The dependent variable in the present context is the federal funds rate, which is

quite likely to be in a feedback relationship with the unemployment and inflation rates.

3) Finally, this way of partitioning the data on an explanatory variable into frequency/persistence

components is not just mathematically valid and straightforward, it is also intuitively appealing.

In particular – in contrast to many analyses in the frequency domain – our decompositions are

not a ‘black box.’ The next section illustrates this point with a simple example.

4 An Illustrative Example with a Very Short Window

An example with a window ten periods in length illustrates the sense in which the frequency

components defined above are extracting components of, say, Xj of differing levels of persistence.

This window length is sufficient large as to illustrate the point, while sufficiently small as to

yield an expositionally manageable example.14 In particular, Table 2 displays the multiplication

of the matrix A – whose elements are defined in Equation (3) – by the ten-component sub-vector

of Xj corresponding to a window beginning in the particular period 21 and ending in period 30.

The first row of the A matrix is just a constant. The operation of this row of A on this

particular ten-dimensional sub-vector of Xj is just calculating the sample mean over these ten

observations. Thus, as this window progresses through the entire sample of data Xj, the first

component of the vector formed by multiplying each ten-dimensional sub-vector of Xj on the

left by A represents a one-sided, real-time, nonlinear trend estimate based (in this example)

14As described above, the empirical implementation in this paper uses a window 36 months in length. See Table
1 for an explicit listing of the component frequencies, the corresponding reversion periods, and the corresponding
A matrix rows for this 36-dimensional A matrix.
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on a 10-period moving average. This is the “zero-frequency” component of the full Xj vector,

corresponding to a sinusoidal reversion period unbounded in length. This component of Xj

includes all of its variation at frequencies so low (i.e., reversion periods so large) that they are

essentially invisible in a window which is only ten periods in length.

Higher-frequency components of Xj are, conversely, distinguishable using this window. The

“Period” column in Table 1 is the number of observations over which the sine or cosine used in

the corresponding row of the A matrix completes one full cycle. This is ten observations for rows

two and three of this A matrix, 10
2

= 5 observations for rows four and five, 10
3

= 31
3

observations

for rows six and seven, 10
4

= 21
2

observations for rows eight and nine, and 10
5

= 2 observations for

row ten.15 In the most common convention, the frequency is defined as π
2

times the inverse of

cycle length (period) of the corresponding sine or cosine for that row of the A matrix, in which

case the frequencies run from zero (for row one) to π for row ten.

To see intuitively why multiplication of the Xj vector by, for example, rows two and three

extract only slowly-varying fluctuations in Xj, notice that these two rows are smoothly varying

weights that will be applied to the ten components of Xj in forming its dot (or scalar) products

with these two rows. Slowly-varying fluctuations in Xj will thus have a large impact on these

two dot products, whereas rapidly-reverting variations in Xj will have little effect on the values

of these two dot products. Hence, components two and three of the matrix product AXj will

‘contain’ only those parts of Xj which are slowly varying.

Conversely, it is evident upon inspection of the last row of the A matrix that only high-

frequency fluctuations – i.e., fluctuations which reverse in just two months or so – will contribute

significantly to the tenth component of AXj.

Thus, the first rows of the A matrix are distinguishing and extracting what are sensibly the

“low-frequency” or “large period”or “highly persistent” or “relatively permanent” components

of this ten-month Xj sub-vector as the window moves through the sample. Concomitantly,

the last rows of the A matrix are distinguishing and extracting what are sensibly the “high-

frequency” or “small period”or “low persistence” or “relatively temporary” components of this

Xj sub-vector.

15The number of observations in the sub-vector is an even integer – ten – in this example, implying that the
sine and cosine terms are multiples of one another for what becomes a singleton last (tenth) row of the A matrix.
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5 Empirical Results

5.1 Data Description and Plan of This Section

We use real-time data on the unemployment rate (ut) and the inflation rate (πt) from St. Louis

Federal Reserve Bank ALFRED data set, so that the data we are analyzing correspond closely

to those which were available to the FOMC at the time it set the federal funds rate (it).
16 The

federal funds rate itself is not revised; thus, the end-of month observations available from the

St. Louis FRED dataset are used for this variable.17

More specifically, we use the civilian unemployment rate for ut and we use the inflation rate

defined as the 12-month growth rate in percentage terms – i.e., 100ln(CPIt/CPIt−12) – where

CPIt is the non-seasonally adjusted Consumer Price Index for urban wage earners and clerical

workers until February 1978 and the Consumer Price Index for all urban consumers thereafter.18

The availability of real-time observations for use in constructing ut and πt constrains our sample

period to begin in March 1960; our sample period ends in August 2008, just prior to the point

when the sample variation in it becomes minimal.

Following Clarida, Gali, and Gertler (2000), we primarily consider two sub-sample periods.

The first of these is March 1960 to August 1979, which roughly corresponds to the Martin-Burns-

Miller period and is here denoted ‘MBM’.19 The second sub-sample runs from September 1979

to August 2008; it covers Volcker’s, Greenspan’s and part of Bernanke’s tenures; it is hence here

denoted denoted ‘VGB’. Most of the VGB period is also referred to as the ‘Great Moderation’

– see McConnell and Perez-Quiros (2000) and Kim and Nelson (1999) – as it is characterized

by low variance in most macroeconomic variables. Since the onset of the Great Recession, of

course, most macroeconomic variables have become more volatile.

We also, at the end of this section, estimate and compare models utilizing two sub-samples

(one running from September 1987 to December 1995 and another running from January 1996

16Source: http://research.stlouisfed.org/fred2/. See Orphanides (2001) for evidence that estimated monetary
policy rules are likely not robust to the vintage of the data.

17Source: http://alfred.stlouisfed.org/.
18As noted above, real-time values data are used, so the value for CPIt−12 in πt is that which was available

when CPIt was released. Also, since inflation and unemployment data become available with a 1-month lag, we
match the federal funds rate in each month with the data released in that month. For example, in April 2009
we use the inflation and unemployment data for March 2009.

19See Meltzer (2005) for a discussion of the high inflation rate during the latter part of this period.
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to December 2000), so as to match up with the ‘old economy’ and ‘new economy’ periods defined

in Ball and Tchaidze (2002). These results shed light on whether the FOMC’s monetary policy

rule in fact shifted between these two sub-periods, once we account for the frequency dependence

in the policy rule.

Each observation on ut and πt is decomposed into frequency (persistence) components as

described in Section 2. These are used to obtain the empirical results for the paper, organized

as follows in the remainder of this section:

• Section 5.2 Results for an Ordinary (But Dynamic) Taylor-type Policy Rule Model Ignoring

Possible Frequency Dependence

• Section 5.3 Results for the Frequency Dependent Model

– 5.3.1 “Full Disaggregation” Results

– 5.3.2 “Polynomial Smoothed” Results

– 5.3.2 “Three-Band Model” Results

• Section 5.4 ‘New Economy’ Versus ‘Old Economy’ Comparison

In Section 5.2 the usual Taylor-type monetary policy rule model discussed as Equation (1) in

Section 1.1 is generalized to allow for dynamics, in the form of lags in it. The latter generalization

is econometrically necessary, so as to yield model errors free from serial correlation; and it is

economically interesting, in that such dynamics correspond to the FOMC acting so as to smooth

the time path of the federal funds rate. In Section 5.3 the model is extended to allow for frequency

dependence in the coefficients on πt and ut – as in Equation (8) of Section 2. There, and in

Section 5.4, we obtain and discuss the central empirical results of the paper.

Finally, before focusing on regression model estimates, it is useful to consider time plots

and log-spectrum plots of the frequency component time series of πt and ut, obtained using

the one-sided real-time decomposition analysis described in Section 2. The time plots of these

components should be smoother for the lower frequency components, and more noisy-looking

for the higher frequency components. Concomitantly, the log-spectrum plots should indicate

that the spectral power peaks up at zero frequency for the lowest frequency component and that

this peak should move to higher frequencies for the higher frequency components.
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Displaying these results for all nineteen frequency component time series of both πt and ut

would require 19× 4 = 76 plots, so we here present these plots for what we call the “calendar-

based 3-band” decomposition below. In this decomposition the nineteen frequency components

are aggregated into just three:

• “Low-Band” corresponding to reversion periods greater than 36 months

• “Mid-Band” corresponding to reversion periods between 12 and 36 months, inclusive

• “High-Band” corresponding to reversion periods less than 12 months

The 19 frequencies allowed by a 36-month window are equi-spaced; reference to Table 1, however,

shows that (because they are proportional to the reciprocals of the frequencies) the correspond-

ing reversion periods are decidedly not equi-spaced. Consequently, these three bands contain

(aggregate together) unequal fractions of the 19 distinct frequency components. In particular,

the low-band contains only the zero-frequency component, which is basically a nonlinear trend

extracted using a 36-month moving average. The mid-band contains three frequency compo-

nents, with reversion periods of 12, 18, and 36 months; and the high-band consists the remaining

fifteen distinct frequency components, with reversion periods ranging from 2 to 9 months.

The time plots for these three components, partitioning πt and ut and displayed as Figures

1 and 2, behave just as one might expect: the low-band plots are quite smooth, the high-band

plots look very noisy, and the mid-band plots are intermediate in smoothness.

Figures 3 and 4 display the corresponding log-spectrum plots. Notice how the spectral power

in the log-spectrum plots for the two low-band components piles up over the greater-than-36

months abscissa, because the largest period resolvable by the windows used here is 36 months.

Next note how the log-spectrum plot for the mid-band component of each of the two time series

has most of its area (spectral power) to the left of the 9-month period abscissa and that it

features a notable peak between 12 and 36 months. The little peaks in the log-spectrum plot

for the mid-band component of πt at reversion periods less than 6 months are likely artifacts

of the fact that these spectral estimates are obtained using all of the sample data on each of

these six components, whereas the bandpass filtering was done using a moving window passing

through the data set. The log-spectrum plots for the high-band components of the two series are,
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in contrast, relatively featureless with, again, a few minor artifactual variations. Overall, these

plots reflect the fact that both πt and ut are quite persistent, leading to log-spectral values which

are much larger for the low-band components; there is also clear evidence of some structure in

the mid-band components; the high-band components, in contrast, appear to consist mostly

consist of noise.

5.2 Results for an Ordinary (But Dynamic) Taylor-type Policy Rule

Model Ignoring Possible Frequency Dependence

The federal funds rate (it) is highly persistent; we therefore re-specify the simple Taylor-type

monetary rule given as Equation (1) in Section 1.1 to include enough lags in it as to yield serially

uncorrelated fitting errors. Two lags sufficed:

it = δ1it−1 + δ2it−2 + (1− δ1 − δ2)(α + φππt + φuut) + et. (9)

This equation is arranged so that lagged values of πt and ut need not be included; this is

overwhelmingly appropriate in view of the use of real-time data on these two variables here,

but engenders the minor complication that Equation (9) must be estimated via non-linear least

squares (NLS) instead of OLS. The term (α + φππt + φuut) can be interpreted as the target

interest rate, with the central bank eliminating a fraction (1− δ1 − δ2) of the gap between the

current target and the current federal funds rate each month.20

Table 3 displays NLS estimates of δ1, δ2, φπ, and φu separately over the MBM and VGB

subperiods defined in Section 5.1. As noted above, the inclusion of two lags in it in this model

(and in the models discussed in Sections 5.3 and 5.4 below, as well) suffices to yield serially

uncorrelated model fitting errors; Eicker-White standard errors are quoted for all coefficient

20Equation (9) implicitly assumes that it, πt, and ut are all stationary – i.e., I(0) – time series. Empirically, it
is difficult to reject the null of a unit root for these variables over the full sample, given that all of them display
a good deal of persistence over time and that unit root tests have low power. These unit root null hypotheses
are all strongly rejected, however, in each of the MBM and VGB subperiods when these periods are considered
separately. This is in keeping with what one might expect, given the arguments in Clarida, Gali and Gertler
(1999) to the effect that stationarity for these variables is implied by the theoretical models in which Taylor-type
monetary policies play a role. Partitioning the sample also to some degree alleviates the problem of time-varying
variance mentioned in Sims and Zha (2001, 2006), but we use Eicker-White standard error estimates throughout
nevertheless.
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estimates, here and below, to account, at least asymptotically, for any heteroskedasticity in εt.
21

The coefficients δ1 and δ2 can be taken to quantify ‘interest rate smoothing’ behavior by the

FOMC, so it is noteworthy that the null hypothesis that both of these coefficients are zero can

be rejected with P < 0.0005 in these two models and, indeed, in all of the models estimated

here.

Ignoring – as is, of course, standard in the literature – any possible dependence of φπ and

φu on the persistence of the fluctuations in the observed values of πt and ut, the coefficient

estimates in Table 3 indicate that the FOMC exhibited statistically significant policy responses

to fluctuations in π in both the MBM and VGB periods. The FOMC’s response to inflation

rate fluctuations was notably larger in the MBM than in the VGB period, however: on average

the FOMC increased the federal funds rate by only 0.70% for every 1% increase in the inflation

rate in MGM period, whereas in the VGB period the estimated response is 1.4%. In contrast,

the FOMC’s response to a 1% increase in the unemployment rate is statistically significant only

in the MBM period, and of only modest economic significance (−0.91%) even then.

Section 5.3 below presents evidence that these results are actually artifactual: allowing for

frequency dependence in the two policy reaction coefficients yields interestingly different results,

indicating that the omission of distinct frequency components of πt and ut in Equation (9) is

so substantially mis-specifying this Taylor-type monetary policy as to yield seriously misleading

conclusions as to the FOMC’s past behavior.

5.3 Results for the Frequency Dependent Model

Here we re-specify the conventional Taylor-type monetary rule of Equation (1) to both incor-

porate dynamics – i.e., interest rate smoothing, in the form of lags in it – and to allow for the

possibility that the coefficients on πt and ut depend on the persistence levels of the fluctuations

21Possible parameter estimation distortion due to three outlying observations in the fitting errors – for July
1973, May 1980, and Feb 1981 – was addressed using dummy variables to shift the intercept. The estimated
coefficients on these dummy variables were always highly significant – and (negative, negative, positive) in signs,
respectively – but their exclusion did not substantively affect the inference results reported below. Consequently,
the listing of these coefficient estimates – and the model intercept term (α) – is, for simplicity, suppressed in the
results tables here.
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in these variates. This yields the model:

it = δ1it−1 + δ2it−2 + (1− δ1 − δ2)

(
α +

13∑
j=1

φπ,jπ
j
t +

13∑
k=1

φu,ku
k
t

)
+ εt. (10)

This regression model equation is, of course, just a special case of Equation (8), derived in

Section 2 above; the 13 components of the real-time inflation rate (π1
t , ..., π

13
t ) and of the real-

time unemployment rate (u1t , ..., u
13
t ) were obtained as detailed in that section.22

5.3.1 “Full Disaggregation” Results

In the columns headed “Full Disaggregation” Table 4 presents our NLS estimation results for the

inflation-rate policy response coefficients (φπ,1, ..., φπ,13) and unemployment-rate policy response

coefficients (φu,1, ..., φu,13) over the two sample sub-periods, MBM and VGB.

Identifying the lowest-frequency component of the unemployment rate – i.e., (u1t ) – in this

model as the ‘natural rate of unemployment,’ and supposing, as is commonly done, that the

FOMC responds weakly or not at all to perceived fluctuations in this natural rate, one would

expect that φu,1 would be negligible. This expectation is satisfied for both the MBM period

coefficient (−0.247± 0.159) and for the VGB period coefficient (−0.070± 0.441).

The rows at the foot of Table 4 display the p-values at which two null hypotheses with

regard to the inflation response coefficients (φπ,1, ..., φπ,13) and the unemployment rate response

coefficients (φu,1, ..., φu,13) can be rejected.

The first set of tests address the issue of whether the FOMC’s policy reaction function pays

any attention at all to fluctations the inflation and unemployment rates: if the coefficients on

φπ,1, ..., φπ,13 are all zero, then there is no dependence in the FOMC’s reactions to fluctuations

in πt. Similarly, if the coefficients on φu,1, ..., φu,13 are all zero, then there is no dependence

in the FOME’s reactions to fluctuations in ut. Note that there is very strong evidence that

the FOMC pays attention to fluctuations in the inflation rate in both periods. With regard

to fluctuations in the unemployment rate, in contrast, there is very strong evidence that the

FOMC pays attention to these fluctuations in the during the VGB period, but no evidence for

22Recall that the seven highest-frequency components, with reversion periods less than or equal to three
months, are aggregated together. Thus, there are only 13 components for each of these variates in Equation (10)
rather than 19. See Table 1 for details.

21



any response at all to unemployment rate fluctuations during the MBM period.

The second set of tests address the issue of frequency dependence: if the coefficients on

φπ,1, ..., φπ,13 are all equal, then there is no frequency (or persistence) dependence in the FOM-

C’s reactions to fluctuations in πt. Similarly, if the coefficients on φu,1, ..., φu,13 are all equal,

then there is no frequency (or persistence) dependence in the FOMC’s reactions to fluctuations

in ut. Note that there is no evidence for frequency dependence of either kind for the model esti-

mated over the data from the MBM period, whereas there is very strong evidence for frequency

dependence in the unemployment rate response coefficient using the data for the VGB period.

The interpretation of the individual estimated response coefficients for particular frequency

bands – e.g. φ̂u,9 = −5.736 for the model estimated using data from the MBM – is not par-

ticularly useful. This is because actual fluctuations in the inflation rate themselves contain an

array of persistence levels: one is never going to see an inflation rate fluctuation which is a pure

sinusoid with a period of 4.5 months. Still, one expects to find that the individual φ̂π,1, ..., φ̂π,13

coefficients are mostly either positive or statistically insignificant and this is so for both the MB-

M and VGB periods. Similarly, one expects to find that the individual φ̂u,1, ..., φ̂u,13 coefficients

are mostly either negative or statistically insignificant and this, too, is so for both the MBM

and VGB periods.

The testing results discussed above clearly indicate that there is a non-constant pattern

– i.e. frequency or persistence dependence – in the unemployment rate reaction coefficients

(φu,1, ..., φu,13) during the VGB period. Discerning and interpreting this pattern, however, is

hindered by the substantial amount of sampling variation in the individual coefficient estimates.

5.3.2 “Polynomial Smoothed” Results

The substantial sampling variation in the φ̂π,1, ..., φ̂π,13 and φ̂u,1, ..., φ̂u,13 coefficient estimates mo-

tivated us to smooth (and sharpen) these estimates by assuming that they vary smoothly across

the 13 frequency bands. This smoothing was implemented by assuming that the frequency vari-

ation in each of these parameter groups can be captured by a kth order polynomial and instead

estimating the (k + 1) coefficients in each polynomial. This tactic both smooths the parameter

variation across the frequency bands and – presuming that k � 13 – also substantially reduces

the number of parameters to be estimated. Here we found that the coefficient corresponding
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to k = 3 was statistically insignificant in all four cases, so quadratic polynomial smoothing was

used.23 These estimates are displayed in the two “Polynomial Smoothed” columns of Table 4.

Now two distinct patterns in the response coefficients emerge for the two sample periods.

During the MBM period, the FOMC basically responded positively to inflation shocks and

negatively to unemployment shocks. There is also some modest statistical evidence – at the 4%

level – for frequency dependence with respect to the response to inflation fluctuations during this

period, in that the FOMC apparently ignored inflation rate fluctuations with reversion periods

of four months or less.

During the VGB period, in contrast, the statistical evidence for frequency dependence with

respect to the inflation rate is stronger, with the null hypothesis of no frequency dependence

rejected at P = .024. And the evidence for frequency dependence with respect to fluctuations in

the unemployment rate is extremely strong in this period: the null hypothesis of no frequency

dependence is rejected with P = .005. Looking at the two (smoothed) patterns of coefficient

estimates for the VGB period, the estimated coefficient pattern for the inflation responses is

stark: only the very lowest frequency inflation rate fluctuations prompted a response from the

FOMC. For the unemployment rate reaction coefficient variation in the VGB period, our results

suggest that the FOMC ignored unemployment rate fluctuations with reversion periods larger

than three years – presumably as being due to changes in the natural rate of unemployment –

whereas for less-persistent fluctuations it reacted with interest rate cuts fairly robustly.

5.3.3 “Three-Band Model” Results

In this section we analyze the estimated frequency response coefficients (φ̂π,1, ..., φ̂π,13 and

φ̂u,1, ..., φ̂u,13) aggregated and smoothed in a different way. This approach is more ‘calendar

driven’ than the polynomial-smoothing approach – and thus, perhaps, a bit ad hoc – but it like-

ly corresponds fairly closely to the way the FOMC itself views the real-time data with which it

conducts actual monetary policy. In particular, we aggregate the full number of mathematically

distinct frequency components implied by our 36-month moving window into just three bands:

• “Low Frequency Band (reversion periods: > 36 months)

23This kind of smoothing was introduced by Almon (1965); see Johnston (1972, pp. 294-295) for a condensed
description.
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• “Medium Frequency Band (reversion periods: ≥ 12 months and ≤ 36 months)

• “High Frequency Band (reversion periods: < 12 months)

The Low Frequency band comprises what we think the FOMC takes to be ‘long-term’ or even

‘permanent’ fluctuations. The Medium Frequency band – consisting of the three components

with reversion periods of 12, 18, and 36 months – comprise the fluctuations which we think the

FOMC considers ‘business cycle variations.’ And the High Frequency band – consisting of all

the components with reversion periods ranging from 2 months up to 9 months – comprise what

we think the FOMC considers to be a combination of current news (‘shocks’) and measurement

noise.

Returning to Table 4, note that the this aggregation did not noticeably impact the adjusted

R2 for the regression model, so the parameter restrictions imposed by this aggregation are not

materially affecting the model’s ability to model the it variation in either period. Consistent

with this observation, the pattern of the inference results – both with regard to testing the null

hypotheses that the response coefficients are zero and with regard to testing whether they vary

across the frequency bands – are all quite similar to those reported for the ‘polynomial smoothed’

approach. In particular, there is strong evidence that observed fluctuations in the inflation rate

affect the FOMC’s behaviour – and in a significantly frequency dependent manner – in both the

MGM and VGB periods. The same is true for observed fluctuations in the unemployment rate,

but only in the VGB period.

Turning to the coefficient estimates for the individual bands, the Low Frequency band coeffi-

cient on unemployment rate fluctuations is statistically insignificant for both periods, supporting

the notion that the FOMC considers these to primarily be changes in the natural rate. The

statistical evidence for the FOMC responding to unemployment rate fluctuations in the Medi-

um and High frequency bands is very weak, although at least of a sensible sign, for the MGM

period, but much stronger – and especially for the High Frequency band fluctuations – in the

VGB period.

With regard to the inflation rate reaction coefficients, in the MGM period the FOMC appears

to respond, but strongly, only to Low Frequency band fluctuations. In the VGB period, the

FOMC’s response to Low Frequency band fluctuations is even larger. We note, however, that
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there is some evidence here that the FOMC actually tended to lower the federal funds rate for a

High Frequency band inflation rate shock in the VGB period; this result is not all that strong,

however, so it could simply be sampling error in an estimate of a coefficient with a population

value of zero.

5.4 Comparison with the Ball and Tchaidze (2002) Results

As mentioned at the end of Section 1.1 Ball and Tchaidze (2002) find it necessary to invoke a

time-varying NAIRU in order to explain their observation that a Taylor-type policy rule based

on a constant NAIRU implies that the FOMC responded to unemployment rate fluctuations in

the ‘old economy’ (from 1987 to 1995) but does not appear to respond to unemployment rate

fluctuations in the ‘new economy’ – which is to say, after the end of 1995.

Table 5 presents Taylor-type rule coefficient estimates which essentially reproduce these Ball

and Tchaidze results in the context of a model not allowing for frequency dependence in the

response coefficients. Table 6 presents inference p-value results obtained from re-estimating this

model over these two sub-periods and using the methods described above to allow for “Three-

band Model” frequency dependence. There, in contrast, we find very strong evidence that the

FOMC responded to fluctuations of both types during both the ‘old economy‘ and the ‘new

economy‘ time periods. Evidently, there is no need to posit – and try to separately estimate

– a time-varying NAIRU once one appropriately accounts for the dependence of the response

coefficients on the persistence in the inflation and unemployment rate fluctuations.

6 Conclusions

This paper presents the practical implementation of a new way of specifying an econometric re-

gression model, allowing for flexible disaggregation of one or more of the explanatory variables –

which may be real-time measures and/or in feedback with the dependent variable – into frequen-

cy (or persistence) components which add up to the original sample data. This decomposition

allows us obtain richer conclusions as to how fluctuations in these explanatory variables with a

distinct level of persistence will impact the dependent variable.

This new estimation technology is here applied to the estimation and analysis of Taylor-type
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monetary response policy functions recently used by the U.S. central bank, first in the Martin-

Burns-Miller (MBM) period and then in the Volcker-Greenspan-Bernanke (VGB) period. We

find strong evidence for frequency dependence in the FOMC’s inflation and unemployment rate

response coefficient.

In particular, the FOMC in both periods varied the federal funds rate in response to a

current movement in the real-time inflation rate if and only if this change was observed to be a

low-frequency – i.e., highly persistent – fluctuation. In contrast, the FOMC essentially ignored

inflation rate fluctuations with reversion periods of 36 months or less.

With regard to the FOMC’s responses to real-time unemployment rate movements, we find

that the FOMC’s monetary policy rule was still frequency/persistence dependent, but in a

distinct way during each chairmanship period. Consistent with the notion of a natural rate,

the FOMC did not significantly respond to low frequency unemployment rate fluctuations –

with reversion periods of 36 months or more – in either period. In contrast, in the MBM

period the FOMC’s responses to middle-frequency fluctuations in the unemployment rate – i.e.,

with reversion periods in the range of 12 to 36 months – are statistically significant and more

significant than its responses to high frequency fluctuations. And in the VGB period the FOMC

responded significantly to higher frequency unemployment rate fluctuations, with the overall

evidence for frequency dependence in the unemployment rate reaction coefficient much more

marked in this period than in the MBM period.

In contrast, a model ignoring the frequency dependence in these Taylor-type monetary re-

sponse functions can only distinguish in the data that the FOMC was less responsive to unem-

ployment rate fluctuations in the VGB period.

Thus, we reach two general conclusions in this paper:

1) Frequency dependence is statistically and economically important in analyzing the FOMC’s

historical monetary policy rules. Policy has clearly distinguished between (and react differen-

tially to) inflation and unemployment rate fluctuations of varying degrees of persistence, with

the pattern of these differential reactions interestingly specific to which chairmanship period is

addressed.

2) The empirical analysis of historical monetary policy reaction rules and – by extension – other

macroeconomic relationships, without giving the data a chance to appropriately allow for fre-
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quency/persistence dependence in at least some key coefficients, is quite likely to miss out on

uncovering some interesting features in the data. Distorted, and unnecessarily over-simplified

inferences are thus likely consequences of ignoring frequency dependence in estimating such re-

lationships.
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Figure 3: Log Spectra of the Three Aggregate Frequency Components of Inflation Rate∗

∗A solid line is plotted for the medium frequency component and a dashed line is used for the
high frequency component.
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Figure 4: Log Spectra of the Three Aggregate Frequency Components of Unemployment Rate∗

∗A solid line is plotted for the medium frequency component and a dashed line is used for the
high frequency component.
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Frequency Component Frequency Reversion Perioda Row Number(s) in Ab

1 0 >36 1
2 π/18 36/1 = 36.00 2,3
3 2π/18 36/2 = 18.00 4,5
4 3π/18 36/3 = 12.00 6,7
5 4π/18 36/4 = 9.00 8,9
6 5π/18 36/5 = 7.20 10,11
7 6π/18 36/6 = 6.00 12,13
8 7π/18 36/7 = 5.14 14,15
9 8π/18 36/8 = 4.50 16,17
10 9π/18 36/9 = 4.00 18,19
11 10π/18 36/10 = 3.60 20,21
12 11π/18 36/11 = 3.27 22,23
13 12π/18 36/12 = 3.00 24,25
14 13π/18 36/13 = 2.77 26,27
15 14π/18 36/14 = 2.57 28,29
16 15π/18 36/15 = 2.40 30,31
17 16π/18 36/16 = 2.25 32,33
18 17π/18 36/17 = 2.12 34,35
19 18π/18 36/18 = 2.00 36

Table 1: Frequencies and Reversion Periods for a 36-Month Window aIn months,
calculated as 2π divided by the frequency. The sinusoids comprising the elements of the row(s)
of the A matrix corresponding to this reversion period complete a full cycle in this many months.
Thus, the scalar product of such a row with a time-series vector whose fluctuations self-reverse
substantially slower than this will be very small. bThe A matrix is defined in Equation (3).
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Period Matrix A Data
> 10 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 Xj(21)
10 0.45 0.36 0.14 -0.14 -0.36 -0.45 -0.36 -0.14 0.14 0.36 Xj(22)
10 0.00 0.26 0.43 0.43 0.26 0.00 -0.26 -0.43 -0.43 -0.26 Xj(23)
5 0.45 0.14 -0.36 -0.36 0.14 0.45 0.14 -0.36 -0.36 0.14 Xj(24)
5 0.00 0.43 0.26 -0.26 -0.43 0.00 0.43 0.26 -0.26 -0.43 Xj(25)

3.3 0.45 -0.14 -0.36 0.36 0.14 -0.45 0.14 0.36 -0.36 -0.14 Xj(26)
3.3 0.00 0.43 -0.26 -0.26 0.43 0.00 -0.43 0.26 0.26 -0.43 Xj(27)
2.5 0.45 -0.36 0.14 0.14 -0.36 0.45 -0.36 0.14 0.14 -0.36 Xj(28)
2.5 0.00 0.26 -0.43 0.43 -0.26 0.00 0.26 -0.43 0.43 -0.26 Xj(29)
2 0.32 -0.32 0.32 -0.32 0.32 -0.32 0.32 -0.32 0.32 -0.32 Xj(30)

Table 2: An Example With a Window of Length Ten Periods. The first row of A time the
data vector simply yields 1/

√
T times the sample mean of the data in this ten-period window.

As the window moves through the data set, this operation extracts any, possibly nonlinear, trend
as a moving average. Rows two and three take a weighted average of the window data, using
smoothly-varying weights which take a full ten periods to reverse, so any fluctuation in window
data that reverses in a couple of periods yields a small value. The product of row ten and the
window data is essentially calculating five changes in the data which occur during the window
period. A long, smooth variation in the window data yields a small value for this frequency
component.

Sample δ1 δ2 φπ φu R̄2

MBM Period 0.578 (0.089) 0.246 (0.081) 0.702 (0.163) -0.913 (0.289) 0.893

VGB Period 0.611 (0.126) 0.292 (0.116) 1.420 (0.497) 0.202 (0.505) 0.912

Table 3: Estimates for the Non-Frequency-Dependent Taylor-type Model: Equation
(9) of Section 5.2. Nonlinear least squares estimates are quoted for Equation (9), with White-
Eicker standard errors in parentheses. The estimates for the intercept term and the dummy
variables used to eliminate the three outliers are not quoted.
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Full Disaggregation Polynomial Smoothed Three-Band Model
MBM Period VGB Period MBM Period VGB Period MBM Period VGB Period
estimate
(std.error)

estimate
(std.error)

estimate
(std.error)

estimate
(std.error)

estimate
(std.error)

estimate
(std.error)

δ1 1.220
(0.094)

1.297
(0.069)

1.250
(0.090)

1.299
(0.073)

1.264
(0.087)

1.328
(0.073)

δ2 −0.309
(0.091)

−0.346
(0.070)

−0.330
(0.096)

−0.355
(0.075)

−0.349
(0.089)

−0.384
(0.076)

p (H0 : δ1 = δ2 = 0 ) 0.000 0.000 0.000 0.000 0.000 0.000
Period (months)

φπ,1 > 36 0.751
(0.117)

1.867
(0.474)

0.826
(0.161)

1.90
(3.88)

0.796
(0.140)

1.817
(0.443)

φπ,2 36 2.281
(0.716)

1.190
(1.802)

1.732
(0.460)

−0.195
(0.753) 1.875

(0.440)
0.273
(1.390)φπ,3 18 2.689

(1.249)
−0.095
(2.122)

2.565
(0.792)

−1.719
(1.257)

φπ,4 12 1.734
(2.266)

−7.792
(3.508)

3.324
(1.062)

−2.742
(1.645)

φπ,5 9.0 1.453
(2.501)

−8.777
(3.189)

4.010
(1.295)

−3.264
(1.931)

2.216
(2.038)

−5.361
(2.423)

φπ,6 7.2 −0.369
(3.221)

−3.754
(4.586)

4.622
(1.533)

−3.285
(2.169)

φπ,7 6.0 −1.724
(6.299)

−5.331
(10.241)

5.161
(1.827)

−2.805
(2.443)

φπ,8 5.1 3.749
(4.297)

1.506
(4.998)

5.626
(2.221)

−1.825
(2.855)

φπ,9 4.5 7.623
(5.596)

−11.651
(11.038)

6.018
(2.747)

−0.343
(3.485)

φπ,10 4.0 −0.785
(10.673)

9.432
(17.328)

6.336
(3.420)

1.639
(4.374)

φπ,11 3.6 −1.879
(11.015)

−1.786
(6.428)

6.580
(4.245)

4.122
(5.530)

φπ,12 3.3 5.569
(7.140)

5.365
(11.642)

6.752
(5.220)

7.105
(6.946)

φπ,13 ≤ 3.0 2.800
(3.443)

7.146
(7.707)

6.849
(6.345)

10.590
(8.610)

φu,1 > 36 −0.247
(0.159)

−0.070
(0.441)

−0.370
(0.182)

−0.167
(0.305)

−0.309
(1.771)

−0.172
(0.374)

φu,2 36 −2.232
(1.390)

−3.513
(2.934)

−2.987
(1.415)

−4.953
(1.938) −2.449

(1.190)
−4.254
(2.685)φu,3 18 −3.878

(1.862)
−7.500
(6.710)

−5.131
(2.513)

−8.982
(3.340)

φu,4 12 −5.814
(3.428)

−36.189
(12.242)

−6.802
(3.392)

−12.254
(4.387)

φu,5 9.0 −19.031
(8.752)

−8.396
(13.805)

−8.000
(4.053)

−14.770
(5.092)

−7.870
(4.498)

−14.187
(6.179)

φu,6 7.2 −15.195
(8.752)

−52.189
(19.956)

−8.725
(4.505)

−16.528
(5.482)

φu,7 6.0 −5.002
(9.750)

−16.692
(22.387)

−8.977
(4.759)

−17.529
(5.600)

φu,8 5.1 −16.722
(9.408)

−8.752
(18.034)

−8.757
(4.836)

−17.773
(5.530)

φu,9 4.5 −5.736
(8.871)

−62.290
(23.682)

−8.064
(4.769)

−17.261
(5.416)

φu,10 4.0 −15.454
(10.521)

−38.180
(29.569)

−6.898
(4.613)

−15.991
(5.496)

φu,11 3.6 0.760
(8.800)

−21.177
(15.995)

−5.259
(4.462)

−13.964
(6.058)

φu,12 3.3 −9.167
(11.752)

−26.754
(22.039)

−3.147
(4.462)

−11.180
(7.298)

φu,13 ≤ 3.0 0.540
(3.808)

−9.183
(11.215)

−0.563
(4.782)

−7.639
(9.234)

Testing for Zero Coefficients
p (H0 : φπ,j = 0 ∀j) 0.000 0.006 0.000 0.000 0.000 0.000
p (H0 : φu,j = 0 ∀j) 0.568 0.001 0.116 0.012 0.157 0.012

Testing for Frequency Dependence
p (H0 : φπ,j = φπ,k ∀j 6= k) 0.749 0.224 0.039 0.024 0.000 0.012
p (H0 : φu,j = φu,k ∀j 6= k) 0.787 0.000 0.136 0.005 0.150 0.004

R̄2 0.981 0.988 0.981 0.987 0.981 0.987

Table 4: OLS Estimates for the Frequency-Dependent Taylor Rule: Equation(10) of
Section 5.3. White-Eicker standard errors are quoted in parentheses. The estimate for the
intercept term and the dummy variables used to eliminate the three outliers are not quoted.
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Sample δ1 δ2 φπ φu R̄2

Sep 1987 - Dec 1995 0.419 (0.159) 0.254 (0.119) 0.678 (0.384) -2.058 (0.333) 0.902

Jan 1996 - Dec 2000 0.190 (0.089) 0.243 (0.093) 0.444 (0.172) -0.121 (0.25) 0.232

Table 5: Estimates for the Non-Frequency-Dependent Taylor-type Rule: ‘Old’ Versus
‘New’ Economy. Nonlinear least squares estimates are quoted for Equation (9), using the Ball
and Tchaidze (2002) sub-periods; see discussion in Section 5.5. White-Eicker standard errors
are quoted in parentheses; the estimates for the intercept term and the dummy variables used
to eliminate the three outliers are not quoted.

Sample Unemployment Rate Inflation Rate

Sep 1987 - Dec 1995 0.000 0.000

Jan 1996 - Dec 2000 0.001 0.000

Table 6: Test of Taylor-type Rule Policy Unresponsiveness in the ‘Old’ Versus the
‘New’ Economy, Allowing for Frequency Dependence in the Relationship. Rejection
p-values for the null hypothesis that the coefficients on the three aggregate frequency components
for inflation or unemployment rate are all zero. These are results from re-estimation of Equation
(10), using the Ball and Tchaidze (2002) sub-periods; see discussion in Section 5.5.
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Appendix: Gain and Phase of Transfer Function Models

The “Full Disaggregation” model of Section 5.3.1 is estimated, to obtain

it = δ̂1it−1 + δ̂2it−2 + (1− δ̂1 − δ̂2)

(
α̂ +

13∑
j=1

φ̂π,jπ
j
t +

13∑
j=1

φ̂u,ju
j
t

)
+ εt. (11)

Here, we construct the gain and phase of linear transfer functions that approximate the filters

of the unemployment rate and inflation rate series implied by this estimated equation during

the VGB period. In particular, we utilize our estimated values for φ̂π,1...φ̂π,13 and φ̂u,1...φ̂u,13 to

construct the left-hand side variables used in estimating:

13∑
j=1

φ̂π,jπ
j
t =

A(L)

C(L)
πt + U1,t,

13∑
j=1

φ̂u,ju
j
t =

B(L)

D(L)
ut + U2,t.

where πt is the real-time inflation rate, ut is the real-time unemployment rate, and where the

U1,t and U2,t are error processes which may have moving average components. We then compute

the gain and phase of the estimated lag polynomial quotients A(L)
C(L)

and B(L)
D(L)

; these functions are

plotted versus period below.24

Interpreting these plots, however, is somewhat of a challenge. Indeed, that is why the body of

this paper concentrates solely on the estimated frequency components φ̂π,1...φ̂π,13 and φ̂u,1...φ̂u,13,

as each of these bears a clear and straightforward interpretation. For example, φ̂π,4 in Table 4

of Section 5 is the estimated Taylor-type policy rule coefficient for fluctuations in the inflation

rate with a period of 12 months; thus, a negative value for this estimated coefficient indicates

inflation accommodation with respect to inflation fluctuations which tend to self-reverse on a

time-scale of 12 months.

In contrast, the gain and phase of the A(L)
C(L)

and B(L)
D(L)

filters whose calculation is described

above are not so easy to interpret. For one thing – outside of elementary cases – gain and phase

24Using the standard Box-Jenkins (1976) methodology, our final model for C(L) consists of 14 consecutive
lags, while our model of A(L) consists of 19 non-consecutive lags between 0 and 24, with U1,t modeled with four
MA terms. This model effectively removes significant partial autocorrelation in the residuals out to 24 months
and yields an adjusted R2 of 99%. Our final model for D(L) consists of 9 lags, while our model of B(L) consists
of 18 lags between 0 and 25, with U2,t modeled with three MA terms. This model again effectively removes
significant partial autocorrelation in the residuals out to 24 months and yields an adjusted R2 of 93%. The
moving average representations of these transfer functions were estimated out to 100 lags (in ut) and to 200 lags
in (πt), and then Fourier-transformed. In keeping with standard practice, the Fourier transforms of the transfer
functions - here, complex series of length 192 - were smoothed with a flat window prior to computing the implied
gain and phase displayed in the figures.

39



Figure A: Gain and Phase Plots for Inflation and Unemployment Rates

plots are well-known to be relatively opaque objects. Moreover, a feature of our study is that

real-time data on πt and ut are used. But this implies that the operation of a lag operator – e.g.,

L5 in the A(L)
C(L)

lag operator on πt defined above – is immediately problematic: does it produce

the inflation rate lagged five periods as known now or does it produce the then-currently-known

value of the inflation rate from five periods ago?
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