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Introduction 

In modern Western democracies, economic and political institutions 

often have been criticized on moral grounds. The arguments pinpoint the 

resulting inequalities and inefficiencies as the evidence of these 

institutions' inadequacy to provide justice. However, evaluating institutions 

in retrospect (ex post), by contrasting their ex-post resource allocation with 

other allocations known to be feasible ex post, is misleading. Social 

decisions must be made under conditions of uncertainty. Hence, institutions 

must be evaluated before the uncertainty is resolved (ex ante), i.e., 

according to their expected performance, as delimited by the information 

available at the time decisions are made. So an institution can be condemned 

only if an alternative one exists yielding preferable outcomes (by any measure 

to be decided upon) under the same ex-ante information set. 

This view is mainly endorsed by economists in the latter part of the 

twentieth century. However, it ignores the process by which a given 

institution is to be chosen. The process is itself an institution, so that 

the statement of the problem embeds in an infinite regress: The process must 

itself be the object of choice of some process which, once again, is itself an 

institution and therefore the object of choice of another process. Unless this 

infinite regress is resolved, further inquiries on social-choice theory will 

be limited in scope. Furthermore, because institutional decisions are actually 

made, a proper theoretical account must capture the process. 

This paper is concerned with the solution of the infinite regress 

problem as it arises in social-choice theory. My approach is to draw on 
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arguments that consider social choices in game-theoretic environments where 

information is decentralized, and whose fundamental outcomes are the 

procedures conducive for players to coordinate decisions. In the tradition of 

game theory, these procedures are called mechanisms. The objective is to 

establish the existence of a universal mechanism, i.e., a mechanism whose 

strategy spaces include all possible proposals to change the mechanism. 

Section I outlines what I have termed the "Gauthier framework" and 

elaborates how the infinite regress arises. Section I1 maps out a general 

style for solving recursive specifications, with category theory providing the 

concepts needed for the construction of a universal mechanism. Section I11 

adapts the universal mechanism construction, in Vassilakis (1989), to the Nash 

demand game, which can be seen as a formal Gauthier bargaining setup. 
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I. The Infinite Regress Statement Within Gauthier's Framework 

The analogy between individual choice and social choice has been aptly 

formulated by John Rawls (1971): As each individual rationally decides what 

constitutes his own good, a society must decide on its system of justice. 

Thus, a society must be modeled as if it has an objective function. In 

decision theory, the view supporting rational individual choice is that of 

expected utility maximization. The task of social-choice theory is to 

construct an objective function from individual utility functions. Social 

choice then must be a product of meditated choice by its individuals. 

To extract a social-objective function (social-welfare function), 

Rawls suggests putting any rational individual behind the veil of ignorance 

and asking that person to select the basic rules for a society. This person's 

chosen rules are the principles of justice, to which all persons should agree. 

As David Gauthier remarked, Rawls' approach is not a viable solution for the 

rational-choice problem because it requires individuals to form a concept of 

justice prior to the original agreement. From the parallel between the 

individual and social choice, such a prior concept cannot be justified. It is 

itself a principle of justice and should be the outcome rather than the 

assumption of the theory. 

The individual preferences (utilities) must be the only argument of 

the social-welfare function. If society's preference is represented by a 

mapping, then the question becomes how should it depend on individual utility 

functions? 
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My stand echoes Gauthier's (1984, p. 255): "...the principles of 

justice are those principles for making social decisions or choices to which 

rational individuals, each seeking to cooperate with her fellows in order to 

maximize her own utility, would agree." A desirable social welfare function is 

not the outcome of single optimization problems, but the outcome of mutually 

consistent optimization problems. The mutual consistency is formalized by the 

solution concept of a game. 

Gauthier proceeds to propose a bargaining game in the spirit of a Nash 

demand game. However, the game ' s bargaining procedures are exogenously 

specified (see Gauthier [1982], p. 256). For example, he insists that all 

parties must be equally able to advocate and advance their intere'sts (fair 

play). Furthermore, all agents must have an identical information set when 

decisions are made. He then shows that all players have the same dominant 

strategy, whose outcome is individually rational (weakly preferred by all 

agents over nonparticipation), and incentive compatible (truthful reporting is 

a dominant strategy for all players). 2 

There are two ways to build on Gauthier's work. The first is to relax 

the complete information assumption. In bargaining games, allocations are type 

contingent (an agent's type is usually characterized by his preferences and 

information set). In general, agents will not take the same actions in 

* * * * * * * * * * * *  

Length constraints preclude a presentation of a formal account of 
Gauthier's game. Please see the referenced work for a full exposition. 

' Gauthier does not explicitly use these terms. However, by a Coasian 
argument, these results can be directly extracted. 
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equilibrium because their actions reveal their private information, which 

might have an adverse effect on their payoff. This, in turn, restricts the set 

of feasible mechanisms. To illustrate, the appendix contains a simple voting 

game, first advanced by Holmstrom and Myerson (1983). 

Second, the comments directed at Rawls' veil of ignorance can be 

channeled against any exogenous condition that the philosopher imposes. Fair 

play (on the procedural level) is itself a principle of justice and hence 

should not be assumed. One could surmise that fair play must be agreed upon by 

some prior bargaining session, but the rules of this session cannot be 

exogenously imposed either. Therefore, we must construct yet another 

bargaining mechanism to solve the problem at this level.3 Clearly, this 

problem will appear at every level. The resulting infinite regress must be 

dealt with by constructing a mechanism in which strategy spaces contain 

proposals for amending the rules of any game; I call this mechanism universal. 

This argument is beyond a mere technicality. If we are to extract the 

principles of justice from the equilibrium of a game based on a given 

mechanism, then it is imperative to show that such a mechanism is not only 

feasible, but that it is chosen exclusively by the players, and not introduced 

exogenously by the analyst through the procedural rules. Consider a game, 

representing a society, with n agents faced with the problem of allocating the 

resources in their economy. I refer to this game as the underlying game. 

Initially, all agents have a given endowment and a set of strategies. If play 

* * * * * * * * * * * *  

This idea is advanced in Crawford (1985). 
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takes place noncooperatively, i.e., a "war of all against all" scenario, the 

resulting Nash equilibrium is usually Pareto inefficient. As a parable, we can 

think of the well-known prisoners' dilemma game. The Nash equilibrium 

coincides with both players confessing, which is clearly suboptimal to both 

not confessing.4 Now, agents can suggest Pareto improvements by attempting 

preplay negotiations. Players try to coordinate their actions through 

mechanisms that determine the play of the underlying game. Preplay 

negotiations can be viewed as a separate round of bargaining over mechanisms, 

but there is no guarantee that an agreement will be reached in this game 

either. The point is that whatever procedural constraints the philosopher 

wishes to introduce, he must show them to be the outcome of a previous stage 

of bargaining. Furthermore, this point remains valid whether the constraints 

are introduced on the procedures of the underlying game or on the procedures 

of the subsequent preplay negotiations. 

This section concludes with a brief discussion concerning the solution 

concept of a game and Nash equilibria. Although it may appear that this paper 

has identified a Nash equilibrium as the solution to a game, this view is 

misleading. Instead, I present the concept of a Nash equilibrium along the 

same lines as Kreps (1990): "The concept (of a Nash equilibrium) is advanced 

as an answer to the question: If there is an obvious way to play the game (a 

way that all players can figure out and all expect the others to do the same), 

* * * * * * * * * * * *  

Once again, length constraints forbid offering a full account of the 
prisoners' dilemma game. However, this game is popular enough to be found in 
almost any book related to game theory. 
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what proper t ies  must the"solutionl  possess?" The answer, adopted i n  t h i s  

paper, i s  t ha t  the Nash equilibrium concept i s  the  necessary, ye t  not 

s u f f i c i e n t ,  condition fo r  an outcome t o  be a solut ion.  
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11. Resolving the Infinite Regress Problem 

The previous section concluded by asserting that the solution to a 

game must be a Nash equilibrium. This section introduces the concept that 

game theory and, subsequently, economic theory have been employed to prove the 

existence of equilibria. I then proceed to offer a general style (general 

approach) for solving infinite regress, while introducing the associated 

mathematical notions. 

Given a noncooperative game G=(I,S,U), where I is the set of players, 

S the vector of strategy spaces, and U:II(S)--->R a utility function for 

each agent, we can define a best reply map for all its in I.5 The best 

reply map provides a natural relation to equilibrium points. An equilibrium 

point must be a best reply to itself, and any strategy combination that is a 

best reply to itself must be an equilibrium point. The following lemma 

formalizes this concept. 

1. Lemma: (Friedman [I9861 p. 36) Let G=(I,S,B) be a noncooperative game. 

s E S is an equilibrium point of G iff s E f(s), i.e., s is a fixed 

point of f. 

So, given the mathematical specification of a game, the problem of 

solving for the equilibria reduces to the existence of fixed points. 

The best reply mapping for player i is defined as a relationship 
associating each strategy combination of s E S with si E Si according 
to the following rule: fi(s)=(ti E S, Ui(s\ti)=max U(s\sti)). The best 
reply mapping is f(s)=fl(s)x . . .  xfn(s). 
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Conditions for uniqueness, stability, and parametric dependence of the fixed 

point are sought thereafter. 6 

Let us now investigate a bargaining game. Suppose we have two agents 

(1 and 2), and one perfectly divisible good (X). Agents have identical utility 

functions, and without loss of generality we let Ul(x)=U2(x)=x. The players 

must agree on a division of the good. They simultaneously announce a demand 

D(xi) E R+, with i=l, 2. If agreement is achieved, the agreed-upon 

division is implemented. If no agreement is achieved, the good is evenly split 

between the players: 1 gets X/2 and 2 gets X/2. For the moment, we assume the 

players know each other's utility functions. Therefore, players know each 

other's reaction function f :R+- - ->R+; in addition, the players know that f is 

common to both. The fixed point solution of this game is rather trivial 

because 

~(xi)=f(~(xj ) )  

and D(xj)=f (D(xi) ) , with xi=xj2x/2. 

Let us complicate the situation by relaxing the common knowledge assumption 

and by postulating that if no agreement is achieved, then neither player 

receives anything, so U1=U2=0. Now players have an incentive to coordinate 

their announcements, by suggesting mechanisms that induce cooperative play. 

However, equilibrium expectations are too important to ignore. Agents do not 

have the knowledge of each other's reaction functions, so 1 (2) cannot decide 

on a mechanism unless he forms beliefs on 2 (1)'s reaction function over 

By stability, I mean that starting with an arbitrary initial point, the 
system will converge to the fixed point. 

www.clevelandfed.org/research/workpaper/index.cfm



mechanisms. In essence, 1 (2) must assess the probability that 2 (1) agrees to 

a given mechanism. Let S be the set of all possible mechanisms. Let P(S) be 

the set of probability measures on S, such that for V s E S, s is 

1 assigned a probability p(s). So 1's beliefs belong to Dl(x )=P(S), and 2's 

2 beliefs belong to Dl(x )=p(S). Yet, 2 (1)'s reaction function is itself a 

function of his beliefs. So 1 (2) needs to form beliefs on 2 (1)'s beliefs 

about 1 (2)'s reaction function. Thus: 

o2 (x1)=~(~x~,(x2) ) 

2 1 and D2(x )=P(SxDl(x ) ) .  

Proceeding in this way, we get a system of difference equations: 

D~+~(~~)=P(S~D~(~~)) 

2 1 Dt+l(x )=P(SxDt(x ) ) ,  t2l 

with D~(X~))=P(S) for i=l, 2. 

1 2 Clearly, Dt(x )=Dt(x )=Dt(x), t21, and we can write 

Dt+l(x>=P(SxDt(x>>=F,(D(x)). 

We can interpret each F-(D(x)) as an attempt at coordinating actions J 

in Fj-l(D(x)), that is, F-(D(x))=F(S-l(D(x))). In this formulation, the J 

players' suggestions about mechanisms are a function of their beliefs about 

each other's reaction mapping. Using arrows, we can represent the system 

diagramatically: 

2. Diagram: 

Fo(D(x) )t-- F1(D(x) )+ F2 (D(x) )+ . . .+ Fn(D(x) )+ Fn+l(D(~)) - - - 
with FO(D(x)) being the original game played noncooperatively. 
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Unfortunately, traditional analysis cannot provide a solution for this 

system of difference equations. Consequently, traditional fixed-point theorems 

cannot be invoked. First, the left-hand side is a set of points in R+, while 

the right-hand side is a set of probability measures. Second, the domain of F 

cannot be restricted to be a set anymore, since for a fixed point of F to 

exist, F must map sets (rather than the elements between them). So the domain 

of F must be the collection of all sets, which is not a set, by the Russell 

paradox. The mathematical tool of categories provides a proper setting. 7 

Indeed, as will be seen later, category theory provides appropriate notions of 

continuity, limits and fixed points. 

3. Definition: A category K is defined by 

i-a class of objects: x,y, . . . ;  denoted by obj(K). 

ii-a class of arrows (morphisms) between those objects: f,g, . . . ;  

denoted by K(x,y) for each x and y in obj(K). 

An associative operation called composition that associates to each 

pair of morphisms f:x--->y, g:y--->z a morphism fg:x--->z, and for every 

object x, a morphism i&:x--->x, the identity on x, such that fi&=f and 

i&g=g . 

Note that the object class of a category provides a setting for the 

domain of F (defined in section I11 as a collection of strategy sets). We can 

define a structure preserving relation between categories. 

For a rigorous treatment of category theory, see Arbib and Manes (1975) 
and Mac Lane (1971). 
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4. Definition: Given two categories K and C, a functor F:K--->C assigns to 

Vx E obj(K) F(x) E obj(C), and to each morphism f E K(xl,x2) a 

morphism F(f) E C(F(xl),F(x2)), in such a way that composition and 

identity are preserved: 

F(fg)= (Ff) (Fg) 

F(i%)=Fi%. 

We can think of a functor F as giving a representation of K in C. Now 

we introduce a concept that translates the representation F to another 

representation G:K--->C. 

5. Definition: Given two functors F:K-->C ,and G:K-->C, a collection of 

morphisms in C <xn: xF-->xG with x E obj(K)> is a natural transformation 

from functor F to G if for all xl x2 in obj(K) and for any f E K(xl,x2) 

the following diagram commutes, that is, if different paths yield the same 

overall function. 

I concentrate on (right and left) chains in a category C, then study their 

relation to fixed-point concepts. A right chain is an arbitrary sequence 

<c,/eO> of morphisms of the form 
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Co->C1->C2 ->. . . . 
6. Definition: Given a category K we define its dual (opposite) category KOP 

by 

obj (kOp)=obj (k) 

~'P(a,b)=(b-->a': f E K(a,b)) 

with composition defined by c-->b-->a=c-->a; identities are the same as K with 

arrows reversed. 

A left chain in COP is a right chain in C. 

7. Examples: 

We can readily think of a category whose morphisms are left chains. 

Let W be the category with 

i-obj(w)=N (all natural numbers). 

ii-Vj&i E obj(w), if jsi, 3 exactly one arrow from i to j 

(there are no other morphisms). 

If i-->j-->k, for i,j,k E obj(w), define composition to be the 

unique arrow i-->k. Identity arrow is i-->i, for all i20. 

The dual wOP is obtained simply by changing the order of arrows: if j>i, there 

is exactly one morphism from j to i, i20. 

Diagram 2, developed earlier, is an example of left chains. If we can 

construct an X such that the above diagram commutes at every level, then we 

would have a candidate for a universal mechanism. In diagrammatic form, we 

wish to construct 
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8. Diagram: 

with all triangles commuting. 

If vo . . .  vn are natural transformations, then X would be the limit of 

functor F. Under the proper specification, X turns out to be the desired fixed 

point. We have motivated the following definitions. 

9. Definition: A constant functor Ic:K--->C is a functor that assigns to 

k E obj(K) the same c E obj(C), and to each morphism in K the identity 

morphism idk on k. 

10. Definition: Let F:K--->C be a functor. A limit of F is an object c E C 

and a natural transformation u: 1,--->F with the following universal property: 

If c' E obj(C) such that c' # c and ut:IC--->F is any other natural 

transformation, 3 a unique morphism f:c'--->c in C that makes the 

following diagram commute tr k E obj(K). 
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Recall that the objective in this section has been to show how the 

concepts of limits and fixed points can be generated outside the realm of 

traditional analysis, which can be built only on well-founded sets. So far, a 

definition of these terms has been offered using categories (objects and 

arrows) and functors. The relation between the limit and the fixed point(s) of 

a functor is formalized by the generalized Kleene fixed-point theorem. First, 

we must introduce some new concepts 

11. Definition: Given x&y E obj(K), f:x-->y is said to be an isomorphism 

if 3 a g:y--->x such that fg=idy and gf=idx. In diagrammatic form, 

commutes. 

12. Definition: Given a functor F:K--->K, an object x of K is a fixed point of 

K if 3 an isomorphism f:x--->F(x) in K. 

13. Definition: A terminal object in a category K is an object denoted by 1 

such that V x E obj(K), 3 a unique morphism !:x--->l. An initial 

object in K is a terminal object in KOP. 

14. Definition: A functor F:C-->K is continuous if whenever C,:C,<---C,+~ is a 

left chain in C and (U,u) is a limit for <cn>, then (mT,Fu) is a limit for 

<FCn> . 
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15. Generalized Kleene Fixed-Point Theorem: Let K be a category with an 

initial object 1 such that every right chain has a colimit. Then every 

continuous functor F:C--->C has a least fixed point the colimit of the right 

chain 

. . . 4 - ~ 2 ( 1 )  'F(1) -1. 

Proof. (see Manes and Arbib [1986], p. 270). 

Note that the Kleene fixed-point theorem applies to right chains. But 

as indicated in diagram 8, we are interested in the limit of a left chain. 

Theorem 16 establishes a fundamental result of category theory that allows us 

to state the dual of the fixed-point.theorem without a reference to any proof. 

16. Dualitv Principle for Category Theory (Arbib and Manes [1975]): 

Let T be any construct defined for any category K. Then the dual of T, 

called COT, is the construct defined for any category K by defining T in KOP 

and reversing all arrows. 

If T is a theorem true for all categories K, then the dual of T, 

obtained by reversing all the arrows of T, is true for all categories KOP, and 

thus (since (KOP)OP=K) is true for all categories. 

17. Dual: Let K be a category with a terminal object D(x) and such that every 

left chain has a limit. Then every continuous functor F:K--->K has a greatest 

fixed point the limit of the left chain 

FO(D(x))+ F1(D(x))t--- F2(D(x))- ...+-. Fn(D(x))+ Fn+l(D(~)).... 

Stability of the fixed point is the result of it being an 

approximation from the iteration process represented by the left chain. The 

uniqueness of the greatest fixed point is settled by the following results. 
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18. Theorem: Limits are unique up to isomorphism. 

19. Corollarv: The greatest fixed point of F:K-->K is unique up to 

isomorphism. 

Note that F may have other fixed points; however, they cannot be obtained as a 

limit of the same chain. 

20. Proposition: This specification guarantees that the fixed point (if it 

exists) is continually dependent on the parameters of the game. 

Proof. As a limit X is contingent on the underlying game by the construction 

of the left chain. 

Manes and Arbib (1986) present a reference for the adaptation of 

categorical techniques to computations of data types. Vassilakis (1989, 1990) 

provides categorical constructions relevant to economic theory. 
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111. A "Revised" Nash Demand Game 

The previous section showed how the existence of a universal mechanism 

reduces to the existence of the fixed point of a functor. I have not 

explicitly constructed that functor; nor have I determined its proper domain 

and range categories. This section presents an adaptation of the universal 

mechanism constructed in Vassilakis (1989). The underlying game consists of 

the Nash demand game. Agents simultaneously announce a demand vector xi E 

Xi, the dimension of which is determined by the number of traded goods in that 

economy. Every player has an initial endowment ei. A von Neuman-Morgenstern 

utility function is defined. If the demand matrix x=(x l...xn) is such that 

Cxi 5 Cei, i.e., markets clear, then every agent receives his demand, 

thus a utility of Ui(xi). Otherwise, if Exi > Cei then the game is 

played noncooperatively: every player consumes his endowment and receives a 

utility of Ui(ei) 5 Ui(xi). The Nash equilibria form the set of demand 

matrices yielding Pareto-efficient outcomes. 

This specification of Nash equilibria eliminates suboptimal equilibria 

similar to the equilibrium arising in the prisoners' dilemma game. However, 

the game has multiple equilibria. Every matrix x with the specification 

Cxi = Cei is Pareto optimal and hence an equilibrium. Players can 

suggest different mechanisms to chose among the equilibria by playing a game 

over mechanisms. Yet, as argued earlier, it must also be shown that the latter 

game yields a solution. Eventually, we are led to an infinite regress. The 

construct, presented in Vassilakis (1989), considers an aggregate revision 

functor that gives every player the power to suggest a new outcome at every 
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level of play. Recall that the objective is to extract the existence of a 

fixed point of a functor over mechanisms. 

Let I be the following category: 

Obj(I)=players, denoted by an integer i=l, . . . ,  n 

K(i,i)=idi, for all i in obj(1). There are no other morphisms. 

Categories with only identity morphisms are called discrete. 

Let a collection of strategy spaces be a functor S:I-->K, where K is a 

category whose objects are abstract sets and whose morphisms are abstract 

input/output programs. A given S(i) specifies player its strategy space. One 

of the benefits of choosing category I to be discrete is that it enables us to 

define the aggregate strategy space as SlxS2x . . .  Sn= II Si (X 

denotes the product). 

I define a mechanism to be a triple (S,f,O), where S= II Si , 

0 E obj(K) is an outcome space, and f: II Si--->O is a morphism in K. A 

primitive mechanism can be depicted as a triple ( A , ~ , R ~ )  with A E obj (K) 

such that 

A= II Ai = 11 [0, Cei 1 ;  

a: II [0, Cei 1--->Rn , 

a(xl,x2, . . . ,  xn)=(xl,x2, . . . ,  xn) if Exi 5 Cei 

and (el,e2, . . . ,  en) if Exi > Cei. 

Here the primitive mechanism denotes the play of the Nash demand game (the 

underlying game) without cooperation, capturing all the multiple equilibria. 

In order to relate the ideas developed so far, the next section introduces 

some new concepts. 
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Definition: The category of functors from I to K ,  denoted by [I-->K], has as 

objects all functors F:I--->K and as morphisms all natural transformations 

between them. In this instance I call - ->  the functor space constructor. 

Definition: Given categories K and C, I construct the product category KxC 

as follows: <k,c> E obja(xC> if k E obj(K) and c E obj (C). A 

morphism of KxC is a pair <f,g,> with f a morphism in K and g a morphism 

in C. Composition is defined in terms of the composites in K and C: 

<f',gfXf,g,> = <f'f,glg>. 

Definition: A coproduct is a colimit of a functor F:I--->K on a discrete 

category I. For example, in the category Set, whose objects are all sets and 

whose morphisms are the inclusion map, coproduct is the disjoint union. The 

coproduct of two objects is denoted by "+". 

Definition: A polynomial functor F:K--->K is a functor that can be constructed 

from constant or identity functors through the use of products, coproducts and 

compositions. 

Each agent must be endowed with the capability of either proposing to 

coordinate in a given mechanism or proposing to coordinate on the proposals in 

that mechanism. So an agent's revision functor is defined as 

Ri:[I-->K]xK--->KxK by Ri(S,O)=(S',Of), where 

Of= [II Si--->0] is a new outcome space 

and S'= Ofx[O'x . . .  xOf-->O'] 

is a new strategy space for each player i. The revision functor defines what 

each agent can propose. This definition captures the fact that given a game 

with strategy space S and outcome space 0, each agent i can simultaneously 
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make two proposals. The first proposal is a mechanism f E O f ,  that is, i's 

proposal on how to coordinate actions on the original game (S,O). The second 

proposal is a mechanism that selects one out of n proposals in 0'. 

The aggregate revision functor 

R:[I-->K]xK--->[I-->K]xK 

is defined by R(S,O)=(A,Rn)+(~',O'), where Sf:I-->K with II S'(i)=S1; S' 

and 0' are defined as above. A universal mechanism (S,f,O) must be a fixed 

point of that functor: (S,O)-(A,Rn)+R(s,O). The meaning of the fixed point 

equation is that a strategy is either primitive or a revision strategy for 

each i in obj(I), where Si-Ai+[O1x . . .  x0'-->01] with O1=[II S-->O], 

and that an outcome is either primitive or an outcome of the revision 

mechanism X-Rn+[II Si--->O]. 

To satisfy the statement of the functorial fixed-point theorems, a 

a category K is needed that satisfies the following: 

1. K has limits of the left chains. 

2. K has a terminal object. 

3. K has polynomial functors, all of which are continuous. 

4. K has a functor (called a function space constructor) -->: KxK--->L 

defined on two objects x and y in obj(K) by -->(x,y)=[x-->y], such that 

- - >  is continuous. Note that the morphism space does not belong to K but to 

a larger category L of which K is a subcategory. In other words, L is the 

category with the desired function space. However, L has too many morphisms 
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for [L-->L] to be made into a functor. Thus, I restrict the set of 

morphisms in L to K and obtain functoriality (see Manes and Arbib [1986], 

p. 313). 

To state the main theorem of this section, again, some new concepts 

must be identified. I turn to partially ordered sets (posets). A poset can be 

seen as a specialization of a category that allows for much insight about 

general categories with minimal loss of generality. When posets are regarded 

as categories, a monotone map (function) represents the same concept as a 

functor. 

Definition: A partially ordered set, poset, is a pair (P,R) where P is a set 

and R is a binary relation on P, which is a partial order on P. Then the 

following axioms hold: 

i- Reflexivity: xRx 

ii- Transitivity: xRy A yRz + xRz 

iii- Antisymmetry: xRy A yRx -+ xEy. 

Note that posets are themselves categories; examples are W and wOP. 

Definition: A poset is a domain if it has a least element and if whenever 

(xn: n=1,2,3, . . . )  is an ascending chain in P (i.e., 5 xn+l), then a least 

upper bound (LUB) {xn) exists. 

Definition: Given domains D and D', let [D-->Dl] be the set of all continuous 

functions f:D-->Dl partially ordered by fRg o f(x)Rg(x), V x E D. 

Proposition (Manes and Arbib [1986]): [D-->D1] is a domain under R. I call 

[D- ->Dl ] a function space domain. 

Definition: Given domains Dl, . . . ,  Dn, define 
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i- Dlx . . .  xDn=(xl, . . . ,  xn) with xi E D, (xl, ...,% ) I (yl, ...,y n) 

iff xiRyi E Di. 

ii- Dl+. . .+D~={~)U(~)XD~U.. .u(n)xDnl where 4 2 ,  

V z in Dl+. . .+Dn, while (i ,x)R(j ,y) if i=j and xRy in Di. 

Proposition: Dlx . . .  xDn and Dl+ . . .+ Dn are both domains. 

Definition: Categories of Domains 

i- Let Domc be the category with 

obj (Dom,) =domains 

and K(D,D1)=continuous maps. 

ii- Let Dom be the category with 

ob j (Dom) =domains 

and K(D,D1)=strict maps. 

iii- Let Domadj be the category with 

ob j (Domadj )=domains 

and K(D,D1)=maps having an adjoint. 

Remark: Domadj is a subcategory of Dam,. 

Fact: Both Domc and Dom have limits (colimits) of left (right) chains, as well 

as an initial (terminal) object. 

Fact: Any polynomial functor Dome-->Dome is co-continuous and therefore has a 
least fixed point. 

Proof (sketch). Constant functors and the identity functor are 

co-continuous, and so is any composition of co-continuous functors. The 

product of co-continuous functors is continuous in closed categories. The 

coproduct of co-continuous functors is also co-continuous. 
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The necessary and sufficient resources are now in place to provide a 

category that can capture the universal mechanism I have, so far, been 

seeking. 

Theorems : 

i- D--->[D-->Dl extends to a functor Domadj-->Domadj. 

ii- The terminal object in Dom is terminal Domadj. 

iii- Given a left chain in Domadj with limit (a,n) in Dom, it follows that 

(a,n) is its limit in Domadj. 

iv- The functor [D-->Dl is continuous. 

v- Every polynomial functor Dom-->Dom maps Domadj into Domadj. 

P r o o f .  Manes and Arbib (1986), pp. 311-317. 

Indeed, by inspection Domadj satisfies d e s i d e r a t a  1-4 enumerated 

earlier in this section. However, I have not yet shown the existence of the 

fixed point . 

Corollarv: (Vassilakis [1989]) A universal mechanism exists. 

P r o o f .  (S,O) is defined as a fixed point of a functor defined by the 

continuity-preserving operations on left-chain functors (the product operation 

preserves continuity). The outcome function f: II Si--->X is arbitrary. 

It must still be shown that the transformation of the proposals into 

outcomes is well defined. 

Corollary: (Vassilakis 1989) If (S,f,O) is a universal mechanism, then there 

exists a unique outcome function f' : II S' i+A- ->o'+R~ (with S' and 0' 

defined as above) that is consistent with f, in the sense of making the 

following diagram commute: 
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X* 
g 

O'+ 0 

where O:S1+A-->S and g : ~ ' + ~ n - - > ~  are the fixed-point isomorphisms. 

Proof. f~=~-l(f (0)) is well defined. Note that f' transforms proposals 

into outcomes. 

Hence, f' extends uniquely to an outcome function on the proposed 

revisions of f. This completes the specification of the "revised" Nash demand 

game . 

So far, I have defined f to be an input/output morphism of K (a 

function of Domadj). An explicit specification of f is tantamount to an 

explicit specification of the game, but this must be addressed in future 

research. 
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IV. Conclusion 

This paper has  attempted t o  show how category theory provides t h e  

t o o l s  f o r  so lv ing  the  i n f i n i t e  r eg ress  t h a t  appears i n  t h e  s ta tement  of many 

soc ia l - cho ice  t h e o r i e s .  A r e v i s i o n  functor  was cons t ruc ted  and s p e c i f i e d  on 

t h e  Nash demand game. Solving t h e  " revised"  Nash demand game is  beyond the  

scope of the  p resen t  p r o j e c t  and w i l l  have t o  be explored i n  another  paper .  

The aim here  was simply t o  o u t l i n e  the  main d i f f i c u l t i e s  f ac ing  soc ia l - cho ice  

t h e o r i e s  and t o  show how c a t e g o r i c a l  t o o l s  can be used f o r  cons t ruc t ing  the  

appropr i a t e  models by providing a s e t t i n g  f o r  the  concepts of c o n t i n u i t y ,  

l i m i t s ,  and f i x e d  p o i n t s .  

The d i scon ten t  with moral philosophy has  been a r t i c u l a t e d  by Williams 

(1985). I n  h i s  account ,  t he  d i f f i c u l t i e s  a r e  rooted i n  the  f a c t  t h a t  modern 

mora l i ty  theor i e s  a r e  " . . .governed by a dream of a community of reason t h a t  is 

t o o  f a r  removed . . . "  (p.  197).  I n  our case ,  t he  exogenous bargain ing  

procedures and the  "nice" p r o p e r t i e s  they must have i n  order  f o r  the  Gauthier 

r e s u l t s  t o  go through a r e  e s s e n t i a l l y  the  embodiment of t h a t  community of 

reason.  The novelty i n  t h i s  paper stems from i t s  a b i l i t y  t o  provide a 

cons t ruc t ion  t h a t  escapes the  a n a l y s t ' s  b i a ses .  

Other p e r t i n e n t  problems can be s e t t l e d  by the  same techniques;  f o r  

example, bounded r a t i o n a l i t y  and universa l  b e l i e f s  spaces (see  Mertens and 

Z a m i r  [1985]) .  While the re  remains much t o  be done t o  expand t h e  boundaries 

o f  moral philosophy, I hope t o  have of fered  a promising approach. 
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Appendix 

This game illustrates how information leakages restrict the set of 

feasible mechanisms. In this game, agents' information sets are not 

identical. I define an incentive-efficient mechanism as an incentive- 

compatible mechanism such that there is no other incentive-compatible 

mechanism that is at least as good for all agents, and strictly better for at 

least one agent, in the truthful equilibrium. The term ex ante refers to a 

situation in which agents have not yet observed their types; interim refers to 

the case in which agents have observed only their types and not other agents' 

types. 

Consider the two-agent economy, where an agent is either type a or 

type b with equal probability. Suppose we have three decisions {A,B,C). The 

utility of each agent under every decision is self regarding and a function of 

his respective type as represented in table 1. 

Table 1 

Let D be the following decision rule: 

D(la,2a)=A, D(la,2b)=B, D(lb,2a)=C, D(lb,2b)=B. 

Decision rule D selects C only if agent two's type is la. Otherwise, if two is 

type 2b, then only decision B is chosen. Rule D is incentive compatible, 
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which can be confirmed by inspection. For types la, lb, and 2b, it is trivial 

to show that an honest reporting is the dominant strategy. Type 2a can either 

get B with probability one, by actually reporting his false type, or get A or 

C with equal probability by honestly reporting his type. Since the expected 

utility of both prospects is identical for type 2a, he is willing to report 

his type honestly when D is implemented (under risk neutrality). Decision 

rule D is interim incentive-efficient. However, if agent one knows that he is 

type la, then he knows that both he and player two prefer decision A over the 

outcome proposed by decision rule D. Thus, agent two would expect (with 

probability one) agent one to call for decision A if one was type la. If 

agent one insists on D then agent two can infer that type one is lb. In this 

event, agent two is better off reporting 2b, regardless of his true type, in 

order to avoid decision C altogether; decision D's incentive-compatibility 

property is thereby destroyed. Because of its simplicity, this example does 

not show an even stronger case where an ex-ante incentive efficiency is not 

interim incentive-efficient; however, it should be clear that such a case is 

possible. 
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