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Appendix to 

“Using Advance Layoff Notices as a Labor Market Indicator”  

by Pawel M. Krolikowski, Kurt G. Lunsford, and Meifeng Yang 

Federal Reserve Bank of Cleveland, Economic Commentary, 2019-21 

This appendix provides some details of the dynamic factor model (DFM) and the regressions used 

to produce Table 1. 

The DFM is as follows.  Let 𝑊𝐴𝑅𝑁𝑠,𝑡 denote the number of workers affected by WARN notices 

in state 𝑠 and in month 𝑡.  As noted in the Commentary, these data are seasonally adjusted.  Then, define 

𝑧𝑠,𝑡 = ln(𝑊𝐴𝑅𝑁𝑠,𝑡) and 𝑧𝑡 = [𝑧1,𝑡, … , 𝑧𝑁,𝑡]
′
, in which 𝑁 is the number of states in the data.  We treat 𝑧𝑠,𝑡 

as unobserved if 𝑊𝐴𝑅𝑁𝑠,𝑡 = 0.  The DFM takes the following structure:

𝑧𝑡 = 𝑑 + Λ𝑡𝑓𝑡 + 𝜖𝑡 ,

in which 𝑓𝑡 is the scalar national WARN factor.  In addition, 𝑑 = [𝑑1, … , 𝑑𝑁]′ is an 𝑁 × 1 vector, Λ𝑡 =

[𝜆1,𝑡, … , 𝜆𝑁,𝑡]
′
 is an 𝑁-dimensional process of factor loadings, and 𝜖𝑡 = [𝜖1,𝑡, … , 𝜖𝑁,𝑡]

′
 is an 𝑁-

dimensional process of state-specific shocks.  We assume that ϵ𝑡 is an independent and identically

distributed multivariate normal process with mean zero and a diagonal covariance matrix. 

Because labor market data often display some persistence, we assume that the WARN factor 

follows an AR(1) process: 

𝑓𝑡 = 𝐴𝑓𝑡−1 + 𝜂𝑡 ,

with |𝐴| < 1 and in which 𝜂𝑡 is an independent and identically distributed normal process with mean

zero.  We allow for 𝐴 = 0, implying that the AR(1) assumption does not impose persistence on 𝑓𝑡.

The above equations compose our DFM.  We estimate 𝑑𝑠 by taking the average of 𝑧𝑠,𝑡 over the

sample in which 𝑧𝑠,𝑡 is observed.  We then subtract 𝑑 from 𝑧𝑡 and use an expectation maximization (EM)

algorithm to estimate the covariance matrix of 𝜖𝑡, the value of 𝐴, and the variance of 𝜂𝑡 by maximum

likelihood.  We then use these maximum likelihood estimates to produce an estimate of the WARN 

factor, {𝑓𝑡}
𝑡=1

𝑇
.  We follow the EM algorithms in Shumway and Stoffer (1982) and Bańbura and Modugno 

(2014), which allow for some observations of 𝑧𝑠,𝑡 to be unobserved.  We produce estimates of the WARN

factor from a Kalman filter and smoother, implying that current information is incorporated into the 

estimates of past values of the WARN factor.  That is, 𝑧𝑠,𝑇 is allowed to affect the estimate of 𝑓𝜏 for 𝜏 ≤

𝑇.  As part of the EM algorithm, we impose that the unconditional variance of 𝑓𝑡 equals 1.  We do not

estimate Λ𝑡. Rather, let 𝐸𝑠,𝑡 denote the level of employment in state 𝑠 and in month 𝑡.  Then, we impose
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that Λ𝑡 is proportional to [ln(𝐸1,𝑡−1) , … , ln(𝐸𝑁,𝑡−1)]
′
/ ∑ ln(𝐸𝑠,𝑡−1)50

𝑠=1 .1  We impose these loadings so 

that the DFM puts more weight on larger states when estimating 𝑓𝑡 with the intent of having the WARN 

factor be nationally representative.  Following the spirit of Solon, Haider, and Wooldridge (2015), our 

intent is to make the WARN factor “representative of the target population,” which is the whole United 

States. 

 Before discussing the regressions in Table 1, we produce mean squared errors for the estimates of 

𝑓𝑡.  We do this using a parametric bootstrap.  Within each bootstrap loop, we simulate {𝜖𝑡}𝑡=1
𝑇  and 

{𝜂𝑡}𝑡=1
𝑇   from the distributions implied by the maximum likelihood estimates.  Then, we simulate a value 

of 𝑓0 from its unconditional distribution and use these simulated variables along with the estimate of 𝑑 

and Λ𝑡 to create simulated values of {𝑓𝑡}𝑡=1
𝑇  and {𝑧𝑡}𝑡=1

𝑇 .  Then, we re-estimate 𝑑 and re-run the EM 

algorithm with the simulated values of {𝑧𝑡}𝑡=1
𝑇 .  In this process, we impose the same pattern of missing 

data on the simulated values of {𝑧𝑡}𝑡=1
𝑇  that exists for the actual values of {𝑧𝑡}𝑡=1

𝑇 .  The last step in each 

bootstrap loop is to use the bootstrapped maximum likelihood parameters from the EM algorithm to 

produce a bootstrapped {𝑓𝑡}𝑡=1
𝑇 .  We run 500 bootstrap replications and compute the mean squared errors 

of {𝑓𝑡}𝑡=1
𝑇  using equations (7) and (8) in Pfeffermann and Tiller (2005).  We denote these mean squared 

errors with 𝜎𝑡
2 = 𝐸(𝑓𝑡 − 𝑓𝑡)

2
, and our parametric bootstrap gives us an estimate of  {𝜎𝑡

2}𝑡=1
𝑇 . 

 For the regressions in Table 1, 𝑈𝐼𝑡 denotes national initial unemployment insurance (UI) claims 

in month 𝑡,2 Δ𝑈𝑡 = 𝑈𝑡 −  𝑈𝑡−1 denotes the change in the national unemployment rate in month 𝑡, and 

Δ𝐸𝑡 = 𝐸𝑡 − 𝐸𝑡−1 denotes the change in the level of national private employment in month 𝑡.  For 

notation, define 𝑋𝑡 = [𝑈𝐼𝑡, Δ𝑈𝑡 , Δ𝐸𝑡]′.  We estimate three regressions for Table 1: 

 

𝑈𝐼𝑡 = 𝛽0 + ∑ 𝑋𝑡−𝑖
′ 𝛽𝑖

𝑝

𝑖=1
+ ∑ 𝑓𝑡−𝑗𝛾𝑗

𝑞

𝑗=1
+ 𝑣𝑡 , 

 

(Δ𝑈𝑡+2 + Δ𝑈𝑡+1 + Δ𝑈𝑡)

3
= 𝛽0 + ∑ 𝑋𝑡−𝑖

′ 𝛽𝑖

𝑝

𝑖=1
+ ∑ 𝑓𝑡−𝑗𝛾𝑗

𝑞

𝑗=1
+ 𝑣𝑡+2, 

 

and 

 

(Δ𝐸𝑡+2 + Δ𝐸𝑡+1 + Δ𝐸𝑡)

3
= 𝛽0 + ∑ 𝑋𝑡−𝑖

′ 𝛽𝑖

𝑝

𝑖=1
+ ∑ 𝑓𝑡−𝑗𝛾𝑗

𝑞

𝑗=1
+ 𝑣𝑡+2. 

 

                                                           
1 We already impose that 𝑓𝑡 has an unconditional variance of 1. This normalization implies that we can impose Λ𝑡  
only up to proportion, but we have to let the scale of Λ𝑡  adjust to allow for 𝑓𝑡 having an unconditional variance of 
1. 
2 We use monthly averages of the weekly UI data from the FRED database in our regressions. 
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In all equations, we use 𝑝 = 3 and 𝑞 = 3.  We estimate one equation at a time so that the 𝛽s and 𝛾s can 

be different for each equation.  We use ordinary least squares and treat {𝑓𝑡}
𝑡=1

𝑇
 as the true value of {𝑓𝑡}𝑡=1

𝑇  

when estimating these coefficients.  We show the estimates of the 𝛾s in Table 1. 

 We adjust the standard errors and 𝑝-values of the Wald tests to account for the fact that we use 

{𝑓𝑡}
𝑡=1

𝑇
 and not {𝑓𝑡}𝑡=1

𝑇 .  We do this following the spirit of Murphy and Topel (1985).  Consider the 

general linear regression 

 

𝑦𝑡 = 𝑋𝑡
′𝛽 + 𝐹𝑡

′𝛾 + 𝑣𝑡 , 

 

in which 𝑋𝑡 is a 𝐾-dimensional process of control variables and 𝐹𝑡 = [𝑓𝑡−1, … , 𝑓𝑡−𝑞]
′
.  Then, the 

estimates of the regression coefficients are given by 

 

[
𝛽̂
𝛾

] = (∑ [
𝑋𝑡

𝐹̂𝑡
] [𝑋𝑡

′ 𝐹̂𝑡
′]

𝑇

𝑡=𝑞+1
)

−1

(∑ [
𝑋𝑡

𝐹̂𝑡
] 𝑦𝑡

𝑇

𝑡=𝑞+1
), 

 

in which 𝐹̂𝑡 = [𝑓𝑡−1, … , 𝑓𝑡−𝑞]
′
.  The above two equations imply 

 

𝑇
1
2 ([

𝛽̂
𝛾

] − [
𝛽
𝛾

]) = (𝑇−1 ∑ [
𝑋𝑡

𝐹̂𝑡
] [𝑋𝑡

′ 𝐹̂𝑡
′]

𝑇

𝑡=𝑞+1
)

−1

(𝑇−
1
2 ∑ [

𝑋𝑡

𝐹̂𝑡
] ((𝐹𝑡

′ − 𝐹̂𝑡
′)𝛾 + 𝑣𝑡)

𝑇

𝑡=𝑞+1
). 

 

We assume that 𝑇−1 ∑ [
𝑋𝑡

𝐹̂𝑡
] [𝑋𝑡

′ 𝐹̂𝑡
′]𝑇

𝑡=𝑞+1  converges in probability to a matrix 𝑄 and that 

𝑇−
1

2 ∑ [
𝑋𝑡

𝐹̂𝑡
] ((𝐹𝑡

′ − 𝐹̂𝑡
′)𝛾 + 𝑣𝑡)𝑇

𝑡=𝑞+1  converges in distribution to a multivariate normal with mean zero 

and covariance matrix Ω.   

We now discuss the estimation of Ω.  We assume that Ω =  Ω𝑓 + Ω𝑣, in which 

𝑇−
1

2 ∑ [
𝑋𝑡

𝐹̂𝑡
] (𝐹𝑡

′ − 𝐹̂𝑡
′)𝛾𝑇

𝑡=𝑞+1  converges in distribution to a multivariate normal with mean zero and 

covariance Ω𝑓 and 𝑇−
1

2 ∑ [
𝑋𝑡

𝐹̂𝑡
] 𝑣𝑡

𝑇
𝑡=𝑞+1  converges in distribution to a multivariate normal with mean zero 

and covariance Ω𝑣.  We estimate Ω𝑣 in the standard way using the Bartlett kernel with a truncation 

parameter of 4 (Newey and West, 1987).  Ω𝑣 is the conventional long-run variance of [
𝑋𝑡

𝐹̂𝑡
] 𝑣𝑡, and it 

would be sufficient for inference if 𝑓𝑡 were not a generated regressor.  However, because 𝑓𝑡 is a generated 

regressor, we also compute Ω𝑓, which we now turn to. 
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For Ω𝑓, note that 𝐹𝑡
′ − 𝐹̂𝑡

′ = [(𝑓𝑡−1 − 𝑓𝑡−1), … , (𝑓𝑡−𝑞 − 𝑓𝑡−𝑞)], 𝑓𝑡 − 𝑓𝑡 is serially uncorrelated, the 

expectation of (𝑓𝑡 − 𝑓𝑡)
2
 is equal to 𝜎𝑡

2, which we estimate above with the parametric bootstrap, and 

[
𝑋𝑡

𝐹̂𝑡
] (𝐹𝑡

′ − 𝐹̂𝑡
′)𝛾 = [

𝑋𝑡

𝐹̂𝑡
] [(𝑓𝑡−1 − 𝑓𝑡−1)𝛾1 + ⋯ + (𝑓𝑡−𝑞 − 𝑓𝑡−𝑞)𝛾𝑞].  Then, we compute 

 

Γ̂0 = 𝑇−1 ∑ [
𝑋𝑡

𝐹̂𝑡
] [𝑋𝑡

′ 𝐹̂𝑡
′]

𝑇

𝑡=𝑞+1
(𝜎̂𝑡−1

2 𝛾1
2 + ⋯ + 𝜎̂𝑡−𝑞

2 𝛾𝑞
2), 

 

Γ̂1 = 𝑇−1 ∑ [
𝑋𝑡

𝐹̂𝑡
] [𝑋𝑡−1

′ 𝐹̂𝑡−1
′ ]

𝑇

𝑡=𝑞+2
(𝜎̂𝑡−2

2 𝛾̂1𝛾̂2 + ⋯ + 𝜎̂𝑡−𝑞
2 𝛾̂𝑞−1𝛾̂𝑞), 

 

⋮ 

 

Γ̂𝑞−1 = 𝑇−1 ∑ [
𝑋𝑡

𝐹̂𝑡
] [𝑋𝑡−𝑞+1

′ 𝐹̂𝑡−𝑞+1
′ ]

𝑇

𝑡=2𝑞
𝜎̂𝑡−𝑞

2 𝛾1𝛾̂𝑞 , 

 

in which 𝜎̂𝑡
2 is the bootstrapped estimate of 𝜎𝑡

2 and 𝛾𝑗 is the ordinary least squares estimate of 𝛾𝑗.  Then, 

we compute  Ω̂𝑓 = Γ̂0 + 𝑘(1/𝑞)(Γ̂1 + Γ̂1
′) + ⋯ + 𝑘((𝑞 − 1)/𝑞)(Γ̂𝑞−1 + Γ̂𝑞−1

′ ), in which 𝑘(𝑗/𝑞) = (𝑞 −

𝑗)/𝑞 is the Bartlett kernel. 

 For standard errors, we compute 𝑉̂ = 𝑄̂−1Ω̂𝑄̂−1 = 𝑄̂−1(Ω̂𝑓 + Ω̂𝑣)𝑄̂−1, divide by 𝑇 − 1 − 3𝑝 −

𝑞, and take the square root of diagonal elements.  Because 𝑝 = 3 and 𝑞 = 3, we divide by 𝑇 − 13. We do 

this to match the degrees-of-freedom adjustment in Stata.  For Wald statistics in Table 1, consider the 

selection matrix 𝑅 such that 𝛾 = 𝑅 [
𝛽̂
𝛾

].  Then, define 𝑉̂𝛾 = 𝑅𝑉̂𝑅′.  The Wald statistic is 

(𝑇 − 1 − 3𝑝 − 𝑞)𝛾′𝑉̂𝛾
−1𝛾̂, which we treat as distributed 𝜒𝑞

2 to compute the 𝑝-values. 
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