
Appendix to “Lingering Residual Seasonality in GDP Growth” by Kurt G. Lunsford 
 
This appendix accompanies the Federal Reserve Bank of Cleveland Economic Commentary 

entitled “Lingering Residual Seasonality in GDP Growth,” by Kurt G. Lunsford.  This appendix provides 
the details for testing for residual seasonality in GDP growth. 
 The Commentary assumes that GDP growth follows 
 

𝑦𝑦𝑡𝑡 = 𝑐𝑐𝑡𝑡 + 𝑠𝑠𝑡𝑡 + 𝑖𝑖𝑡𝑡, 
 
where 𝑐𝑐𝑡𝑡 denotes the business cycle component of the data, 𝑠𝑠𝑡𝑡 denotes the seasonal component of the 
data, and 𝑖𝑖𝑡𝑡 denotes the irregular component of the data.  In the terminology of the Census Bureau’s X-13 
seasonal adjustment filter, the business cycle component may also be referred to as the “trend” 
component.  As noted in the Commentary, the testing procedure follows four steps: 
 

1. Estimate the business cycle component of GDP growth and subtract it from GDP growth 
from 1985 to 2015. 
 

2. Collect the difference of GDP growth and its cyclical component by quarter of the year. 
 
3. Estimate the average of the quarter-by-quarter difference between GDP growth and the cycle. 
 
4. Use Müller and Watson’s (2008, 2015) low-frequency econometrics to test if the averages 

from step 3 are statistically distinct from zero over the 1985 to 2015 sample.1 
 
Each step is now covered in more detail 

The first step estimates and removes the business cycle component of GDP growth, using the 
following linear regression 
  

𝑦𝑦𝑡𝑡 = 𝛼𝛼𝑜𝑜 + 𝛼𝛼1𝑥𝑥1,𝑡𝑡 + ⋯+ 𝛼𝛼𝐽𝐽𝑥𝑥𝐽𝐽,𝑡𝑡 + 𝑒𝑒𝑡𝑡, 
 
where 𝑥𝑥1,𝑡𝑡, … , 𝑥𝑥𝐽𝐽,𝑡𝑡 is a sequence of cosine waves.  These cosine waves are given by 𝑥𝑥𝑗𝑗,𝑡𝑡 = √2 cos(𝜋𝜋𝜋𝜋𝑟𝑟𝑡𝑡) 
where 𝑟𝑟𝑡𝑡 = (𝑡𝑡 − 1/2)/𝑇𝑇, and 𝑇𝑇 denotes the sample size of 124.  This equation is estimated with least 
squares.  The estimated parameters are denoted by 𝛼𝛼�0, 𝛼𝛼�1, … , 𝛼𝛼�𝐽𝐽, and the estimated business cycle 
is  𝑐̂𝑐𝑡𝑡 = 𝛼𝛼�0 +  𝛼𝛼�1𝑥𝑥1,𝑡𝑡 + ⋯+ 𝛼𝛼�𝐽𝐽𝑥𝑥𝐽𝐽,𝑡𝑡.   

The following figure shows the first four cosine waves used in this regression.  The first wave 
completes half of a cycle from 1985 to 2015, giving it a period of 62 years; the second wave completes a 
whole cycle from 1985 to 2015, giving it a period of 31 years; and so on.  Following this pattern, each 
cosine wave has a shorter period than the one before it.  31 cosine waves are used in the regression so that 
the wave with the shortest period has a period of 2 years.  Thus, the linear regression and the 
corresponding estimate of the business cycle account for patterns in GDP growth that have periods of 2 
years or longer.  Using more cosine waves with periods down to 1.5 years does not change the primary 
results of the Commentary.  Similarly, using fewer cosine waves with periods down to 3 years does not 
change the primary results of the Commentary. 

1 The methodology used in this Commentary is based on the assumption that the quarter-by-quarter differences 
between GDP growth and the business cycle are stationary.  This assumption is supported by Müller and Watson’s 
(2008, 2015) low-frequency stationarity (LFST) and low-frequency unit root (LFUR) tests, which are not reported 
here for brevity. 
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Figure 1: The first four cosine waves used in the linear regression. 

 
I note here that the 31 cosine waves used in this step greatly exceed the number of cosine waves 

used in Müller and Watson (2008, 2015).  However, the estimated coefficients on these cosine waves will 
not be used for inference as in Müller and Watson (2008, 2015).  Inference will not be performed until 
step 4.  Rather, the regression on the cosines in this step is simply meant to capture the patterns in GDP 
growth that have periods of 2 years or longer.  In more technical terms, the estimated business cycle acts 
as a band-pass filter on GDP growth that includes frequencies of 2 years and longer.  Other band pass 
filters may also be used in this step.  However, I use the above regression because it a particularly simple 
way to capture the relevant frequencies.  A brief comparison of the cosine regression to band-pass filters 
is given in Müller and Watson (2015). 

The second step in the process for testing for residual seasonality is to collect the difference 
between GDP growth and its estimated business cycle (the data in the bottom panel of Figure 1 of the 
Commentary) by quarter of the year.  Define  𝑦𝑦�𝑞𝑞,𝑛𝑛 to be the difference between GDP growth and the 
estimated cycle in quarter 𝑞𝑞 of year 𝑛𝑛.  Then, the third step takes the average of the quarter-by-quarter 
differences between GDP growth and its cycle, which is given by 
 

𝑠̅𝑠𝑞𝑞 = � 𝑦𝑦�𝑞𝑞,𝑛𝑛

2015

𝑛𝑛=1985

, 

for 𝑞𝑞 = 1, … ,4.  Here, 𝑠̅𝑠𝑞𝑞denotes the average seasonal effect for quarter 𝑞𝑞. 
The fourth step produces confidence intervals for 𝑠̅𝑠𝑞𝑞. The methodology for producing these 

confidence intervals is as follows.  First, estimate the regression  
 

𝑦𝑦�𝑞𝑞,𝑛𝑛 = 𝛽𝛽𝑜𝑜 + 𝛽𝛽1,𝑞𝑞𝑥𝑥�1,𝑛𝑛 + ⋯+ 𝛽𝛽𝐾𝐾,𝑞𝑞𝑥𝑥�𝐾𝐾,𝑛𝑛 + 𝑒̃𝑒𝑞𝑞,𝑛𝑛 
 
by least squares where 𝑥𝑥�1,𝑡𝑡, … , 𝑥𝑥�𝐾𝐾,𝑡𝑡 is a sequence of cosine waves.  This sequence is given by 𝑥𝑥�1,𝑛𝑛 =
√2 cos(𝜋𝜋𝜋𝜋𝑟𝑟𝑛𝑛) and 𝑟𝑟𝑛𝑛 = (𝑛𝑛 − 1/2)/𝑁𝑁 for 𝑛𝑛 = 1, … ,𝑁𝑁 where 𝑁𝑁 is the number of years in the sample.  
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These cosine waves have the same properties as those used in step 1.  Unlike in step 1 however, the 
regression coefficients in this regression will be used for inference.  Because of this, I choose a small 
number of cosine waves as in Müller and Watson (2008, 2015).  Specifically, I choose 𝐾𝐾 = 6 so that the 
shortest cosine wave in the regression has a period of about 10 years.   

Next, Müller and Watson (2008, 2015) show that √𝑁𝑁 times 𝛽̂𝛽1,𝑞𝑞, … , 𝛽̂𝛽𝐾𝐾,𝑞𝑞 behave as independent 
and identically distributed normal random variables with mean zero and variance 𝜎𝜎𝑞𝑞2.  This variance is the 
long-run variance of 𝑦𝑦�𝑞𝑞,𝑛𝑛, which will be used to test the null hypotheses that 𝑠̅𝑠𝑞𝑞 = 0 for 𝑞𝑞 = 1, … ,4.  To 
estimate the long-run variance, I use  
 

𝜎𝜎�𝑞𝑞2 =
𝑁𝑁
𝐾𝐾
�� 𝛽̂𝛽𝑘𝑘,𝑞𝑞

2
𝐾𝐾

𝑘𝑘=1

�. 

 
Then, the standard error of 𝑠̅𝑠𝑞𝑞 is given by  
 

𝑠𝑠𝑒𝑒𝑞𝑞 = �𝜎𝜎�𝑞𝑞
2

𝑁𝑁
. 

 
Finally, the 10% confidence interval is  
 

𝐶𝐶𝐼𝐼10 = �𝑦𝑦�𝑞𝑞 − 1.94𝑠𝑠𝑒𝑒𝑞𝑞, 𝑦𝑦�𝑞𝑞 + 1.94𝑠𝑠𝑒𝑒𝑞𝑞�, 
 
and the 5% confidence interval is  
 

𝐶𝐶𝐼𝐼5 = �𝑦𝑦�𝑞𝑞 − 2.45𝑠𝑠𝑒𝑒𝑞𝑞, 𝑦𝑦�𝑞𝑞 + 2.45𝑠𝑠𝑒𝑒𝑞𝑞�. 
 
Note that the scaling on the confidence intervals, 1.94 and 2.45, are different than those for 10% and 5% 
confidence intervals from a standard normal distribution, which would be 1.64 and 1.96.  That is because 
the confidence intervals in this Commentary follow a student’s 𝑡𝑡 distribution, and 1.94 and 2.45 are 
relevant critical values for a 𝑡𝑡 distribution with 6 degrees of freedom. 
 
 
References 
 
Müller, Ulrich K. and Mark W. Watson. 2008. “Testing Models of Low-Frequency Variability.” 
Econometrica 76(5): 979-1016. 
 
Müller, Ulrich K. and Mark W. Watson. 2015. “Low-Frequency Econometrics.” NBER Working Paper, 
No. 21564. 

3 
 


