
Over most of the last fi ve years, infl ation as measured by 
the price index for personal consumption expenditures 
(PCE) has been less than 2 percent. Many forecasters dur-
ing this time expected that infl ation would turn up, only to 
be repeatedly surprised. Recent forecasts from professional 
economists again have infl ation rising to 2 percent over the 
next two to three years. What is the likelihood that such a 
forecast will come to pass?

To answer this question, this Commentary examines the infl a-
tion forecasts coming from a range of statistical models that 
historically have performed well in forecasting infl ation, and 
it shows both the point forecasts and the densities, or prob-
abilities, around those forecasts. 

In fi ve of the six models we consider, the probability that infl a-
tion will be at least 2 percent over the next three years is less 
than 50 percent. Specifi cally, the estimated likelihood that PCE 
infl ation will be at least 2 percent ranges from 11 percent to 
49 percent by the end of 2017, 16 percent to 51 percent by the 
end of 2018, and 18 percent to 49 percent by the end of 2019. 
These results vary widely, but because all six models demon-
strate comparable historical forecasting accuracy, we cannot 
adjudicate between these competing models and forecasts.

Recent Infl ation Data and Forecasts
Infl ation as measured by the PCE has averaged 1.4 percent 
on a trailing four-quarter basis since the recovery began in 
2009:Q3—0.6 percentage points below the Federal Open Mar-
ket Committee’s (FOMC) long-run objective of 2 percent. By 
comparison, over the 10-year period preceding the fi nancial 
crisis, PCE infl ation averaged 2.0 percent (see fi gure 1). 
Meanwhile, infl ation excluding food and energy (core PCE) 
averaged 1.5 percent and 1.8 percent over the same periods, 
respectively. 

Not only has PCE infl ation been below 2 percent for most 
of the recent past, it has also persistently come in below 
many economists’ forecasts. For example, in 2013:Q1, the 
median forecast from the Survey of Professional Forecasters 
(SPF) was 2.0 percent for 2014:Q4 and 2015:Q4, whereas 
actual infl ation turned out to be 1.2 percent and 0.4 percent, 
respectively. Similarly, the median forecast for core infl ation 
was 1.9 percent for both 2014 and 2015, while actual core 
infl ation was 1.6 percent and 1.4 percent, respectively. Pro-
jections made by FOMC participants around the same time 
display similar forecast misses.
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Figure 1. US Infl ation over the Last 20 Years
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Looking ahead, most forecasts again call for infl ation to rise 
toward 2 percent. At the September 2016 FOMC meeting, 
the median projection in the FOMC’s Summary of Econom-
ic Projections (SEP) for PCE infl ation was 1.9 percent for 
2017:Q4 and 2.0 percent for both 2018:Q4 and 2019:Q4. 
For core PCE, the median projections were 1.8 percent, 
2.0 percent, and 2.0 percent, respectively. Projections from 
the 2016:Q4 SPF were similar, with the median forecasts for 
PCE infl ation rising from 1.9 percent in 2017:Q4 to 2.0 percent 
in 2018:Q4, and for core PCE infl ation rising to 1.9 percent in 
2017:Q4 and remaining fl at through 2018:Q4. 

Comparisons with Statistical Forecasting Models
The infl ation forecasts of economists and policymakers 
are often informed by statistical models. While there is no 
agreement on a single “best” model for the infl ation process, 
we chose for our analysis six statistical models that have 
been shown to forecast infl ation well over the medium term 
(i.e., two to three years); this forecasting horizon seems to be 
the most appropriate for monetary policy.1 

To improve forecasting accuracy, the models we consider 
include stochastic volatility, or a time-varying standard devia-
tion of the size of the shocks hitting the economy. An increas-
ing body of research has shown that incorporating stochastic 
volatility into macroeconomic models improves the precision 
of both point and density forecasts of infl ation.2 

All the models are estimated with quarterly data through 
2016:Q3.3 We run these six models twice: The fi rst run uses 
PCE infl ation as our infl ation variable, the second uses core 
PCE infl ation. This allows us to generate an outlook for 
both of these infl ation indicators.4

Our fi rst model is the univariate unobserved components 
model of Stock and Watson (2007). This model assumes 
that at any point in time infl ation (headline or core) is the 
sum of two underlying unobservable components: trend 
infl ation and temporary fl uctuation around this trend. The 
trend component follows a random walk process, which 
varies over time in response to unexpected shocks. The 
standard deviation of the size of these unexpected shocks is 
allowed to vary over time. The other component, the tem-
porary deviation from the trend, is assumed to be serially 
uncorrelated. The standard deviation of the shocks that are 
responsible for these transitory deviations also varies over 
time. The model uses infl ation’s own history to estimate the 
two components. The estimated value of the trend compo-
nent at each point in time is the point forecast of infl ation far 
into the future, implying a perfectly fl at path for the point 
forecast. One notable property of this forecasting model is 
that the estimated trend can be infl uenced by a persistent se-
quence of observations that the model interprets as resulting 
from a change in the underlying trend. One period’s blip up 
or down can be perceived as “noise,” whereas a sequence of 
higher infl ation rates can alter the estimate of the trend. We 
denote this model UCSV.

Our second model is a bivariate unobserved components 
model as in Chan, Clark, and Koop (2015). This model 
is an extension of the Stock and Watson (2007) univariate 
UCSV model as it uses both infl ation’s own history and the 
data from long-run infl ation expectations to estimate trend 
infl ation.5 The model allows for time-variation in the rela-
tionship between trend infl ation and the long-run forecast of 
infl ation in addition to stochastic volatility. We denote this 
model TVP-Bi-UCSV.

Our third model is the unobserved components model as 
in Tallman and Zaman (forthcoming). This model exploits 
a Phillips-curve relationship that may be relevant for some 
infl ation subaggregates but not others. Specifi cally, forecasts 
of aggregate infl ation are produced by separately forecasting 
services infl ation and goods infl ation, using two different 
models, and then aggregating the forecasts.6 The model 
used to forecast services infl ation is a bivariate unobserved 
components model that exploits the Phillips curve relation-
ship between services infl ation and the unemployment rate. 
The model for goods infl ation is a univariate UCSV model 
as in Stock and Watson (2007) but applied to goods infl a-
tion. We denote this model Services and Goods UCSV.7 

Our fourth model closely follows the model laid out in 
Clark (2011). The model is a small-scale vector autoregres-
sion estimated using Bayesian methods and a steady-state 
prior. The model consists of the following four variables: 
the unemployment rate, real GDP growth, the federal funds 
rate, and PCE infl ation (or core PCE infl ation).8 Both the 
infl ation rate and the unemployment rate enter the model as 
deviations from their respective trends (i.e., gaps), where the 
trends are taken from external sources.9 In this model, the 
equation for the infl ation gap is a function of its own lags 
and the lags of other variables including the unemployment 
gap. The advantage of modeling infl ation this way—that is, 
as a gap—is that infl ation forecasts in the medium- to long-
term remain anchored around the exogenous trend rate. 
Research has shown that this method helps improve infl a-
tion forecast accuracy. We denote this model SS-SV-BVAR. 

Our fi fth model is a time-varying parameter vector autore-
gression as in D’Agostino et al. (2013).10 This model has 
three variables: the unemployment rate, the federal funds 
rate, and infl ation. As the name suggests, it allows for the 
possibility of changing relationships among the economic 
variables of interest over time in addition to changing 
volatility of the shocks hitting the economy. Infl ation in this 
model at any point in time is a function of its own lags and 
the lags of the other variables. We denote this model TVP-
SV-BVAR. 

Finally, our sixth model is an autoregressive (AR) gap model 
similar to that of Faust and Wright (2013) but augmented 
to allow stochastic volatility as detailed in Chan, Clark, and 
Koop (2015). Specifi cally, infl ation is modeled as the deviation 
from long-run infl ation expectations (denoted as the infl ation 
gap), which is assumed to follow an autoregressive process 
with a single lag. We denote this model AR1-SV-Gap.
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Point Forecasts
Each of these six models is estimated using data through 
2016:Q3 and then simulated to obtain thousands of forecast 
paths up to 13 quarters out in order to match the SEP pro-
jection horizon (i.e., from 2016:Q4 to 2019:Q4).11 The mean 
of these thousands of forecast paths is denoted as the point 
forecast; it refl ects the most likely forecast of future infl ation 
generated by a given model.12 

Table 1 reports the point forecasts for four-quarter trailing 
infl ation rates at three set of dates from our set of six models. 
It also reports the simple arithmetic average of the forecasts 
from the six models. Forecasts from the SPF and the FOMC 
SEP are provided for comparison. The three representative 
dates match the forecast dates reported in the SEP and SPF. 

The point forecasts for PCE infl ation over the next three 
years display notable differences across the models. For 
example, for 2017:Q4 (as well as for 2019:Q4) infl ation pro-
jections range anywhere from 1.0 percent to 2.0 percent.

For context, the fi rst three models under consideration 
belong to the class of models called the “unobserved com-
ponents” model. In these models, the infl ation forecast is 
driven mainly by the value of the infl ation trend component 
estimated at the time the forecast is made. The UCSV mod-
el assumes that the “point” forecast of infl ation arbitrarily 
far into the future is the current estimate of the trend infl a-
tion. Given that infl ation has been relatively low for a while, 
both the UCSV model and the Services and Goods UCSV 
model estimate a low level of trend infl ation and hence fore-
cast low future infl ation. In the TVP-Bi-UCSV, the inclusion 
of infl ation expectations that are stable at 2 percent strongly 
infl uences the estimate of trend infl ation.

The remaining three models belong to the class of vector au-
toregressive models (VARs); forecasts from VARs are essen-
tially glide paths that begin from the recent actual value of a 
variable and converge to these models’ own estimates of the 
variable’s (in our case infl ation’s) long-run value.13 In two 
of the three models, the long-run infl ation rate or trend rate 
comes from outside the model instead of being estimated, 
and with that trend currently at 2 percent, these two models 
return closer to 2 percent in the medium to long term.14 The 
forecasts from these three models are all generally higher 
than those coming from the fi rst three models: 1.7 percent 
to 2.0 percent for 2017:Q4, 1.8 percent to 2.1 percent for 
2018:Q4, and 1.8 percent to 2.0 percent for 2019:Q4. They 
are also within the range of the FOMC projections reported 
in the September SEP (see table 1).

The forecasting literature has shown that historically these 
six models have delivered comparable forecast accuracy. 
Given this competitiveness, all the information in these 
models’ forecasts can be combined and used at the same 
time by averaging them into a single forecast. When each 
forecasting model’s prediction is equally weighted, the 
resulting forecast is low—PCE infl ation is projected to be 1.6 
percent over the next three years (table 1). That forecast is 
about four-tenths lower than the SEP’s median projection.

For core PCE infl ation, the models’ combined forecast for 
infl ation is 1.7 percent for the next three years, roughly three-
tenths lower than the median SEP projection value.

Density Forecasts and Quantifying the Likelihood of 
Infl ation Crossing 2 Percent 
Figure 2 presents the point (mean) forecasts of PCE infl ation 
along with the 70 percent and 90 percent probability bands 
around them. Figure 3 does the same for core PCE infl ation. 
The fi gures show the FOMC’s long-run infl ation goal of 
2 percent to give a visual sense of where it lies in the prob-
ability interval. We make three observations.

First, each forecast entails considerable uncertainty. Based 
on data through 2016:Q3, the narrowest forecast probabil-
ity bands are associated with the TVP-Bi-UCSV model, 
whereas TVP-SV-BVAR has the widest probability bands. 

Second, half of the forecasts for PCE infl ation assign a small 
probability to the prospect of returning to 2 percent. Among 
the forecasts from the fi rst three models, the line at 2 percent 
is either outside or just barely touching the 70 percent prob-
ability bands. Forecasts from all three of these models would 
put the odds of infl ation’s being greater than or equal to 
2 percent at less than 25 percent (table 2).15 

However, the remaining three models are somewhat more 
sanguine about the infl ation outlook. In these cases, the 
2 percent line is inside the 70 percent probability band and 
closer to the point forecast, suggesting a greater likelihood 
when compared with the forecasts from models one through 
three that infl ation will exceed or equal 2 percent. The SS-
SV-BVAR model forecasts a slightly greater than 50 percent 
probability that infl ation will be 2 percent or higher, a proba-
bility which is consistent with that model’s point forecasts of 
2.0 percent to 2.1 percent reported in table 1. However, the 
probabilities in the other two models are less than 50 percent 
throughout the forecast horizon. Thus, fi ve of the six models 
considered here place a less than 50 percent probability on 
PCE infl ation’s rising above 2 percent. For core PCE infl a-
tion, all six models place a less than 50 percent probability 
on such an outcome. 

Conclusion
Infl ation has been running at low levels for most of the past 
fi ve years and has failed to move higher as expected. This 
Commentary assesses the likelihood that infl ation will increase 
to at least 2 percent over the next three years by using six 
forecasting models that research has shown to be accurate 
for forecasting infl ation. For PCE infl ation, fi ve of the six 
models suggest that there is a less than 50 percent probabil-
ity that infl ation will be greater than or equal to 2 percent in 
the next three years. For core PCE infl ation, all six models 
currently estimate a less than 50 percent probability that 
infl ation will be greater than or equal to 2 percent.

In all of our model simulations, there are wide probability 
bands around the forecasts, indicating a considerable degree 
of uncertainty. Infl ation in the future could rise above the 
forecasts, and if the increase were persistent—that is, infl a-

ec 2016-14.indd   5 11/28/2016   11:50:28 AM



PCE infl ation 2017:Q4 2018:Q4 2019:Q4

UCSV 1.1 1.1 1.1

TVP-Bi-UCSV 1.7 1.7 1.7

Services and Goods UCSV 1.2 1.1 1.1

SS-SV-BVAR 2.0 2.1 2.0

TVP-SV-BVAR 1.7 1.8 1.9

AR1-SV-Gap 1.9 1.9 1.8

Average of above models 1.6 1.6 1.6

SPF (median) 1.9 2.0 n.a.

FOMC SEP (median) 1.9 2.0 2.0

Core PCE infl ation

UCSV 1.7 1.7 1.7

TVP-Bi-UCSV 1.6 1.6 1.6

Services and Goods UCSV 1.7 1.6 1.6

SS-SV-BVAR 1.8 1.8 1.8

TVP-SV-BVAR 1.7 1.6 1.6

AR1-SV-Gap 1.8 1.8 1.8

Average of above models 1.7 1.7 1.7

SPF (median) 1.9 1.9 n.a.

FOMC SEP (median) 1.8 2.0 2.0

PCE infl ation 2017:Q4 2018:Q4 2019:Q4

UCSV 10.6 15.6 18.9

TVP-Bi-UCSV 19.7 19.7 20.8

Services and Goods UCSV 14.0 17.3 17.5

SS-SV-BVAR 48.9 50.7 48.5

TVP-SV-BVAR 35.6 42.0 44.9

AR1-SV-Gap 44.7 43.9 42.9

Core PCE infl ation

UCSV 15.6 21.1 23.8

TVP-Bi-UCSV 3.2 4.7 5.8

Services and Goods UCSV 13.1 17.7 20.5

SS-SV-BVAR 26.5 29.2 26.5

TVP-SV-BVAR 22.7 29.4 32.9

AR1-SV-Gap 25.4 29.4 29.7

Table 2. The Likelihood of Infl ation’s Being 2 Percent or Higher

Notes: Infl ation refers to four-quarter trailing infl ation. The numbers reported 
are percentages (probabilities).

Table 1. Infl ation Point Forecasts

Notes: All numbers show four-quarter infl ation rates. Model forecasts use data 
through 2016:Q3. The SPF (median) corresponds to the 2016:Q4 Survey of Pro-
fessional Forecasters. The FOMC SEP (median) corresponds to the September 
2016 Summary of Economic Projections.

Figure 2. Density Forecasts for PCE Infl ation Figure 3. Density Forecasts for Core PCE Infl ation
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tion surprises to the upside—then these infl ation observa-
tions would likely alter the forecasts as well as the related 
likelihoods to the upside.

Footnotes
1. The forecasting superiority of these models is docu-
mented in the following recent studies: Clark, 2011; Faust 
and Wright, 2013; Clark and Doh, 2014, Chan, Clark, and 
Koop, 2015; and Tallman and Zaman, forthcoming.

2. See Stock and Watson, 2007; Clark, 2011; D’Agostino 
et al., 2013; and Tallman and Zaman, forthcoming. To get 
a sense of how forecast uncertainty differs between models 
with and without time-varying volatility see Knotek et al., 
2015, who look at the evolution of infl ation forecast uncer-
tainty across a variety of models including some with and 
without time-varying volatility. Three of the models used in 
this analysis were also used in that study.

3. The start date of the estimation varies by model. We 
keep the same start date as it was set in the cited studies; see 
footnote 11 for details. In principle, we could augment the 
models with infl ation nowcasts for Q4 using the infl ation 
nowcasting model of Knotek and Zaman (forthcoming), 
but given that the models’ Q4 forecasts of core infl ation are 
identical to the nowcasts and similar for PCE infl ation, the 
models’ forecasts would not be changed materially.

4. We model these two infl ation rates separately to be con-
sistent with the cited studies that estimate models using only 
one infl ation indicator at a time.

5. The long-run infl ation expectations come from the Survey 
of Professional Forecasters (SPF).

6. The forecasts of the two components are combined into 
the forecast for aggregate infl ation using the real-time com-
ponent weights available as of the forecast date. The weights 
are the relative share of services infl ation and goods infl ation 
in overall PCE infl ation. The weight for services infl ation 
is computed as the nominal share of personal consumption 
expenditures of services divided by nominal PCE, and the 
weight for goods infl ation is one minus the services’ share. 
As of 2016:Q3, goods infl ation was assigned a weight of 
32 percent and services infl ation 68 percent; similarly, core 
goods’ share was 26 percent and core services’ share 
74 percent.

7. Specifi cally, goods infl ation is decomposed into a random 
walk trend component and serially uncorrelated transitory 
component, both of whose variances are allowed to vary 
over time.

8. For this analysis, we imposed the following steady states: 
real GDP growth of 2.0 percent; nominal federal funds rate 
of 3.25 percent; infl ation of 2.0 percent; and an unemploy-
ment rate of 5.0 percent. 

9. Specifi cally, the unemployment rate trend comes from the 
natural rate series available from the Congressional Budget 
Offi ce (CBO), and the infl ation trend comes from the long-
run infl ation expectations from the Federal Reserve Board’s 
econometric model. This series is nicknamed “PTR.” It is 
a construct based on estimates from Kozicki and Tinsley 
(2001) and 10-year forecasts from the SPF.

10. This time-varying parameter model was originally 
developed by Cogley and Sargent (2005) and Primiceri 
(2005). D’Agostino et al. (2013) use this model to document 
its superior forecasting capability especially for infl ation 
against a constant parameter BVAR and other univariate 
benchmarks. 

11. The UCSV, TVP-Bi-UCSV, and AR1-SV-Gap are 
estimated with data beginning 1959:Q2; the Services and 
Goods UCSV is estimated with data beginning 1960:Q1; 
the SS-SV-BVAR is estimated with data beginning 1985:Q1; 
and TVP-SV-BVAR is estimated with data beginning 
1959:Q2, with the fi rst 10 years used as the training sample 
for determining the priors.

12. The simulated paths refl ect both shock and parameter 
uncertainty. Parameter uncertainty is accounted for by 
drawing different a set of parameters for each simulated 
path. Shock uncertainty is refl ected by drawing a set of 
shocks specifi c to the model’s estimation of historical data. 

13. The estimated (unrestricted) long-run values for the 
variables in the VAR are the unconditional sample mean 
of the variable. Therefore, the model’s estimated long-run 
value will depend on the sample period used for estimation. 
In our steady-state BVAR, a long-run value for infl ation of 
2 percent is imposed; as a result, this model goes toward 
2 percent very quickly. This model is called a steady-state 
BVAR because we could choose to impose long-run values 
on any or all of the variables that comprise it. 

14. The models do not necessarily converge precisely to 
2 percent because the presence of a constant term in the 
infl ation gap equation captures the long-run historical devia-
tion of the infl ation gap from zero within the estimation 
sample. The estimated value of the constant term will be 
positive if infl ation has exceeded the infl ation trend on aver-
age during the sample, while it will be negative if infl ation 
has been below trend on average. 

15. These likelihoods refl ect the probability, computed as 
the fraction of the simulations, that infl ation is greater than 
or equal to 2 percent at those specifi c dates.
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