The Long-Run Phillips Curve is... a Curve

Guido Ascari Paolo Bonomolo Qazi Haque

De Nederlandsche Bank and University of Pavia De Nederlandsche Bank The University of Adelaide

Inflation: Drivers and Dynamics Conference 2021

Cleveland Fed and ECB

1Views expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank
The question

An old debate: is there any trade-off between inflation and output/unemployment in the long run?

- Phelps (1967), Friedman (1968): Natural rate hypothesis
- "there is no permanent trade-off":
 \[\Rightarrow \text{the long-run Phillips curve is vertical} \]
- Cornerstone role in macroeconomic theory and practice
- The working assumption of central banks in the implementation of monetary policy
The question

It is surprising to note that:

▶ **Empirically**: There is little econometric work devoted to test the absence of a long-run trade-off.

Some literature: King and Watson (1994); Beyer and Farmer (2007); Berentsen et al. (2011); Haug and King (2014); Benati (2015)

▶ **Theoretically**: Modern macroeconomic sticky price frameworks generally do not imply the absence of a long-run relation

▶ The Generalized NK model delivers a negative relationship between steady state inflation and output. See Ascari (2004); Ascari and Sbordone (2014)
Results

What is the long-run relation between inflation and output?

1. Time series model
 ▶ The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 ▶ The key to get this result: model the LRPC as non linear
 ▶ Methodological contribution: a ”convenient” non-linear approach

2. Structural model
 ▶ GNK model (Ascari and Ropele, 2009; Ascari and Sbordone, 2014): higher trend inflation causes lower GDP in the LR
 ▶ The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 ▶ The model is also able to capture the quantitative features of the time series analysis
The time series approach: A time-varying equilibrium VAR

Generalization of Steady State VAR (Villani, 2009; Del Negro et al., 2017; Johannes and Mertens, 2021):

\[A(L) (X_t - \bar{X}_t) = \varepsilon_t \quad \varepsilon_t \sim N(0, \Sigma_{\varepsilon,t}) \]

\(X_t \) is a \((n \times 1)\) vector with observed variables at time

\(\bar{X}_t \) is the vector with the long-run values of \(X_t \)

Trend-cycle decomposition:

\[X_t = \bar{X}_t + \hat{X}_t \]

\(\hat{X}_t \) described by (1): stable component with unconditional expectation equal to zero

\[\bar{X}_t = h(\theta_t) \]

\[\theta_t = f(\theta_{t-1}, \eta_t) \quad \eta_t \sim N(0, \Sigma_{\eta}) \]
The model

- Three observables: GDP per capita, inflation and interest rate
- The short-run component: VAR with 4 lags

THE MODEL FOR THE LONG RUN

\[\bar{y}_t = y_t^* + \delta(\bar{\pi}_t) \] \text{the equilibrium level of output as function of inflation}
\[y_t^* = y_{t-1}^* + g_t + \eta_Y^t \]
\[g_t = g_{t-1} + \eta_G^t \]
\[\delta(\bar{\pi}_t) : \delta(0) = 0 \]

\[\bar{\pi}_t = \bar{\pi}_{t-1} + \eta_{\bar{\pi}}^t \] \text{trend inflation is random walk}

\[\bar{i}_t = \bar{\pi}_t + cg_t + z_t \] \text{long-run Fisher equation}
\[z_t = z_{t-1} + \eta_{z}^t \]
A non-linear long-run Phillips curve

Our choice of \(\delta(\bar{\pi}_t) \) is a piecewise linear function:

\[
\bar{y}_t = y_t^* + \delta(\bar{\pi}_t)
\]

\[
\delta(\bar{\pi}_t) = \begin{cases}
 k_1 \bar{\pi}_t & \text{if } \bar{\pi}_t \leq \tau \\
 k_2 \bar{\pi}_t + c_k & \text{if } \bar{\pi}_t > \tau
\end{cases}
\]

- It is simpler to treat: methodological contribution
- It can approximate the kind of non-linearity we have in mind without imposing strong assumptions on a specific functional form
- It is easy to interpret
A piecewise linear approach

The model can be written in state space form:

\[Y_t = D(\theta_t) + F(\theta_t) \theta_t + \epsilon_t \]
\[\theta_t = M(\theta_t) + G(\theta_t) \theta_{t-1} + P(\theta_t) \eta_t \]

(2)
(3)

where, in particular

\[
(D, F, M, G, P) = \begin{cases}
(D_1, F_1, M_1, G_1, P_1) & \text{if } \bar{\pi}_t \leq \tau \\
(D_2, F_2, M_2, G_2, P_2) & \text{if } \bar{\pi}_t > \tau
\end{cases}
\]

(4)

▶ Methodological contribution: we find the likelihood and the posterior distribution of \(\theta_t\) analytically

▶ Compromise between efficiency and misspecification
Estimation

- US data, sample from 1960Q1 to 2008Q2
- Bayesian approach

Two sources of non linearity: stochastic volatility and a piecewise linear LRPC

1. "Rao-Blackwellization", thanks to the analytical results on the piecewise linear model
2. Particle filtering also to approximate the posterior distribution of the parameters
 - Particle learning by Carvalho Johannes Lopes and Polson (2010); see also Mertens and Nason (2020)
 - Mixture of Normal distributions as approximation of the posterior of τ (Liu and West, 2001)

Estimation results - Linear model

A vertical (or flat) long-run Phillips curve

Figure: Posterior distributions of the slope of the LRPC - Linear model.
Estimation results - Non-linear model

Non linear and negatively sloped long-run Phillips curve

Figure: Posterior distributions of the slopes of the LRPC - Non-linear model.
Estimation results - Non-linear model

The threshold:

Figure: Posterior distributions of τ - Non-linear model.
A non-linear, negatively sloped long-run Phillips curve

Figure: LRPC - Non-linear model. Median and 90% probability interval.
Estimation results - non-linear model

Figure: Inflation and trend inflation - Non linear model.
The cost of trend inflation: the long-run output gap

\[\hat{Y}_t = \frac{Y_t}{\bar{Y}_t} = \frac{Y_t}{Y^*_t} \frac{Y^*_t}{\bar{Y}_t} \]

(5)

Figure: Long-run output gap estimated through the non-linear model.
The structural model

- A variant of Ascari and Ropele (2009), Ascari and Sbordone (2014) GNK model:
 - Inter-temporal Euler equation featuring (external) habit formation in consumption
 - Generalized New Keynesian Phillips curve featuring positive trend inflation
 - Taylor-type monetary policy rule

- Time varying trend inflation \Rightarrow LRPC is:
 - Non-linear
 - Negatively sloped

- When taking decisions the agents consider trend inflation as a constant parameter: anticipated-utility model (Kreps, 1998; Cogley and Sbordone, 2008)

- Stochastic volatility to the four shocks: discount factor, technology, monetary policy and trend inflation
The costs of trend inflation

- Price stickiness \Rightarrow price dispersion and inefficiency in the quantity produced

- Higher trend inflation leads to higher price dispersion and increases output inefficiency

Formally:

$$N_t = \int_0^1 N_{i,t} di = \int_0^1 \left(\frac{Y_{i,t}}{A_t} \right)^{\frac{1}{1-\alpha}} di = \int_0^1 \left(\frac{P_{i,t}}{P_t} \right)^{\frac{-\epsilon}{1-\alpha}} \left(\frac{Y_t}{A_t} \right)^{\frac{1}{1-\alpha}}$$

Aggregate output is:

$$Y_t = \frac{A_t}{s_t^{1-\alpha}} N_t^{1-\alpha}$$

with long-run price dispersion: $s_t = g(\bar{\pi}_t)$
Comparing long-run Phillips curves: VAR and GNK

The GNK model measures the costs of trend inflation consistently with the VAR

Figure: Long-run Phillips curve: median (continuous line) and 90% probability interval (dashed lines) - comparison between VAR (blue) and GNK (black) estimates.
Conclusions

- What is the long-run relation between inflation and output?
- A time series model suggests that the LRPC is:
 - Non linear
 - Negatively sloped
- We interpret these findings through the lens of a GNK model
- This model is able to measure the costs implied by the LRPC consistently with the time series model
EXTRA
Econometric strategy

We use a particle filtering strategy to approximate the joint posterior distribution of latent processes and parameters:

Latent processes: a "conditional piecewise linear model"

\[
p(\theta_t, \Sigma_{\epsilon,t} | Y_t) = \frac{p(\theta_t | \Sigma_{\epsilon,t}, Y_t)}{p(\Sigma_{\epsilon,t} | Y_t)}
\]

"optimal importance kernel" "blind proposal"

Parameters:

- Particle learning by Carvalho Johannes Lopes and Polson (2010); see also Mertens and Nason (2020)
- Mixture of Normal distributions as approximation of the posterior of \(\tau \) (Liu and West, 2001)

A fully adapted particle filter

At \(t - 1 \): \(\{ \theta_{t-1}^{(i)} \} \) approximate \(p(\theta_{t-1}|\psi, X_{1:t-1}) \)

1. Resample
 - Compute \(\tilde{w}_t^{(i)} \propto p\left(X_t|\theta_{t-1}^{(i)}, \psi, X_{1:t-1}\right) \)
 - Resample \(\{ \tilde{\theta}_{t-1}^{(i)} \} \) using \(\{ \tilde{w}_t^{(i)} \} \)

2. Propagate
 - draw \(\theta_t^{(i)} \sim p\left(\theta_t|\tilde{\theta}_{t-1}^{(i)}, \psi, X_{1:t-1}\right) \)

where:
 - \(p\left(X_t|\theta_{t-1}^{(i)}, \psi, X_{1:t-1}\right) \) is a weighted sum of Unified Skew Normal distributions (Arellano-Valle and Azzalini, 2006)
 - \(p\left(\theta_t|\tilde{\theta}_{t-1}^{(i)}, \psi, X_{1:t-1}\right) \) is a weighted sum of multivariate truncated Normal distributions
Household

The economy is populated by a representative agent with utility

\[E_0 \sum_{t=0}^{\infty} \beta^t d_t \left[\ln (C_t - hC_{t-1}) - d_n \frac{N_t^{1+\phi}}{1+\phi} \right] \]

Budget constraint is given by

\[P_tC_t + R_t^{-1}B_t = W_tN_t + D_t + B_{t-1} \]

\(d_t\) is a discount factor shock which follows an AR(1) process

\[\ln d_t = \rho_d \ln d_{t-1} + \epsilon_{d,t} \]
Final good firm

Perfectly competitive final good firms combine intermediate inputs

\[Y_t = \left[\int_0^1 Y_{i,t}^\frac{\varepsilon-1}{\varepsilon} \, di \right]^{\frac{\varepsilon}{\varepsilon-1}} \quad \varepsilon > 1 \]

Price index is a CES aggregate of intermediate input prices

\[P_t = \left[\int_0^1 P_{i,t}^\frac{1}{1-\varepsilon} \, di \right]^{\frac{1}{1-\varepsilon}} \]

The demand schedule for intermediate input

\[Y_{i,t} = \left[\frac{P_{i,t}}{P_t} \right]^{-\varepsilon} Y_t \]
Intermediate good firm

Each firm i produces according to the production function

$$Y_{i,t} = A_t N_{i,t}^{1-\alpha}$$

where A_t denotes the level of technology and its growth rate $g_t \equiv A_t / A_{t-1}$ follows

$$\ln g_t = \ln \bar{g} + \epsilon_{g,t}$$
Price setting

Firms adjust prices $P_{i,t}^*$ to maximize expected discounted profits with probability $0 < 1 - \theta < 1$

$$
E_t \sum_{j=0}^{\infty} \theta^j \beta^j \frac{\lambda_{t+j}}{\lambda_t} \left[\frac{P_{i,t}^*}{P_{t+j}} Y_{i,t+j} - \frac{W_{t+j}}{P_{t+j}} \left[\frac{Y_{i,t+j}}{A_{t+j}} \right]^{\frac{1}{1-\alpha}} \right]
$$

subject to the demand schedule

$$
Y_{i,t+j} = \left[\frac{P_{i,t}^*}{P_{t+j}} \right]^{-\varepsilon} Y_{t+j},
$$

where λ_t is the marginal utility of consumption.
The first order condition for the optimized relative price $x_t(=\frac{P_{i,t}^*}{P_t})$ is given by

$$(x_t)^{1+\frac{\varepsilon\alpha}{1-\alpha}} = \frac{\varepsilon}{(\varepsilon - 1)(1 - \alpha)} \frac{E_t \sum_{j=0}^{\infty} (\theta\beta)^j \lambda_{t+j} \frac{W_{t+j}}{P_{t+j}} \left[\frac{Y_{t+j}}{A_{t+j}} \right]^{\frac{1}{1-\alpha}} \pi_{t|t+j}^{(\alpha)}}{E_t \sum_{j=0}^{\infty} (\theta\beta)^j \lambda_{t+j} \pi_{t|t+j}^{\varepsilon-1} Y_{t+j}}.$$

where $\pi_{t|t+j} = \frac{P_{t+1}}{P_t} \times \ldots \times \frac{P_{t+j}}{P_{t+j-1}}$ for $j \geq 1$ and $\pi_{t|t} = \pi_t$.

Back
Price setting contd.

Aggregate price level evolves according to

\[
P_t = \left[\int_0^1 P_{i,t}^{1-\epsilon} \, di \right]^{\frac{1}{1-\epsilon}} \Rightarrow \\
\chi_t = \left[\frac{1 - \theta \pi_t^{\epsilon-1}}{1 - \theta} \right]^{\frac{1}{1-\epsilon}}.
\]

Finally, price dispersion \(s_t \equiv \int_0^1 (\frac{P_{i,t}}{P_t})^{-\epsilon} \, di \) can be written recursively as:

\[
s_t = (1 - \theta) \chi_t^{-\epsilon} + \theta \pi_t^{\epsilon} s_{t-1}
\]
Monetary policy

\[
\frac{R_t}{R_t} = \left(\frac{R_{t-1}}{R_t} \right)^{\rho} \left[\left(\frac{\pi_t}{\overline{\pi}_t} \right)^{\psi_\pi} \left(\frac{Y_t}{Y^n_t} \right)^{\psi_x} \left(\frac{g_t^y}{\bar{g}} \right)^{\psi_{\Delta y}} \right]^{1-\rho} e^{\epsilon_{r,t}}
\]

\[\ln \overline{\pi}_t = \ln \overline{\pi}_{t-1} + \epsilon_{\overline{\pi},t}\]

where \(\overline{\pi}_t\) denotes trend inflation, \(Y^n_t\) is the flex-price output and \(g^y_t\) is growth rate of output.
Estimates of the parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Density</th>
<th>Mean</th>
<th>Prior St Dev</th>
<th>Posterior</th>
<th>Prior St Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_π</td>
<td>Gamma</td>
<td>1.5</td>
<td>0.5</td>
<td>2.05</td>
<td>[1.83 2.3]</td>
</tr>
<tr>
<td>ψ_x</td>
<td>Gamma</td>
<td>0.125</td>
<td>0.05</td>
<td>0.1</td>
<td>[0.06 0.16]</td>
</tr>
<tr>
<td>$\psi_{\Delta y}$</td>
<td>Gamma</td>
<td>0.125</td>
<td>0.05</td>
<td>0.42</td>
<td>[0.26 0.67]</td>
</tr>
<tr>
<td>ρ</td>
<td>Beta</td>
<td>0.7</td>
<td>0.1</td>
<td>0.74</td>
<td>[0.71 0.77]</td>
</tr>
<tr>
<td>h</td>
<td>Beta</td>
<td>0.5</td>
<td>0.1</td>
<td>0.41</td>
<td>[0.36 0.46]</td>
</tr>
<tr>
<td>r^*</td>
<td>Gamma</td>
<td>2</td>
<td>0.5</td>
<td>1.88</td>
<td>[1.68 2.1]</td>
</tr>
<tr>
<td>θ</td>
<td>Beta</td>
<td>0.5</td>
<td>0.1</td>
<td>0.51</td>
<td>[0.46 0.56]</td>
</tr>
<tr>
<td>ρ_d</td>
<td>Beta</td>
<td>0.7</td>
<td>0.1</td>
<td>0.79</td>
<td>[0.74 0.83]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Density</th>
<th>Mean</th>
<th>Degree of freedom</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^2_d</td>
<td>Inverse Gamma</td>
<td>0.022</td>
<td>5</td>
<td>0.0472</td>
</tr>
<tr>
<td>δ^2_g</td>
<td>Inverse Gamma</td>
<td>0.022</td>
<td>5</td>
<td>0.0472</td>
</tr>
<tr>
<td>δ^2_r</td>
<td>Inverse Gamma</td>
<td>0.022</td>
<td>5</td>
<td>0.0292</td>
</tr>
<tr>
<td>δ^2_π</td>
<td>Inverse Gamma</td>
<td>0.022</td>
<td>5</td>
<td>0.0122</td>
</tr>
</tbody>
</table>

Posterior median and 90% credibility interval in brackets.