Banking on Carbon: Corporate Lending and Cap-and-Trade Policy

Ivan Ivanov†, Mathias Kruttli†, and Sumudu Watugala‡

† The Federal Reserve Board of Governors
‡ Cornell University

November 19, 2021

Views expressed in this presentation are those of the speaker and not necessarily of the Federal Reserve Board of Governors.
Motivation

- Debate on climate change and financial stability.

- Discussion centers around physical and transition risks.
 - “… transition risks: the financial risks which could result from the process of adjustment towards a lower-carbon economy” (Carney, 2015).
 - Tradeoff between physical and transition risks.

- Banks are among the largest stakeholders in the transition to a low-carbon economy:
 - Mandatory emissions reductions could adversely affect borrowers.
 - Concerns about transition risks could prevent climate change regulation.
 - Does climate change regulation affect bank health and financial stability?
Our paper

- Focus on a prominent policy tool in climate change regulation: cap-and-trade programs.

- Study cap-and-trade bills as they move through the legislative process.
 - Isolate period of high transition risk.
 - Heterogeneous treatment of firms.

- Analyze how banks manage exposure to affected private and public firms.
 - Assess bank expectations of program impact on firms.
 - Important evidence for architects of cap-and-trade programs.

- Examine the California and Waxman-Markey cap-and-trade bills.
 - Different time periods and treatment dimensions help assess external validity.
The California cap-and-trade bill

Passed in 2011 and implemented in 2013.
The Waxman-Markey cap-and-trade bill

Passed the House in June 2009 and, after high probability of passing the Senate, ultimately failed in July 2010.
Main results

▶ Banks gain flexibility to revoke credit in response to cap-and-trade regulation. Covered firms have:
 – Shorter loan maturity
 – Decrease in share of term loans
 – Interest rates increase
 – Total loan commitments and utilization unchanged

▶ Results concentrated within private firms.
 – Banks expect private firms to face greater challenges.

▶ Banks also appear to reduce transition risks exposure by:
 – Selling loans to shadow banks.
 – Monitoring firms more closely.
Outline

Overview

Data

Empirical strategy and baseline results

Other channels and robustness

Conclusion
Data

▶ California analysis
 – Federal Reserve’s Y-14 Collection:
 • Covers both syndicated and bilateral loans >$1 million since 2011.
 • Has interest rate data and includes smaller private firms.

 – Emissions data from the EPA
 • Mandatory reporting by facilities emitting ≥25,000MT/yr CO₂ equiv.
 • Covers both direct and indirect emissions → facilities that produce material that emit ≥25,000MT when combusted.
 • Aggregate firms to the parent level and map to credit data.

▶ Waxman-Markey analysis
 – Shared National Credit (SNC) Program
 • Covers virtually entire syndicated loan market, including private firms.
 • Provides a complete view of lending syndicate, including non-bank participants.
Outline

Overview

Data

Empirical strategy and baseline results

Other channels and robustness

Conclusion
Identification strategy: California cap-and-trade bill

- **First difference**: Compare lending in Q3-4 2011 (pre) to Q3-4 2012 (post).

- **Second difference**: Use EPA data to determine firms with large share of high emission facilities in California (Bartram, Hou, and Kim, 2021).
 - Threshold 1: Firm’s CA emission > 25%
 - Threshold 2: Firm’s CA emission > 50%
California regression specification

Baseline regression specification:

\[y_{i,q} = \lambda I_{CA_{Emissions i} > 50\%} \times I_{Post \ CA \ bill} + Controls_{i,q} + \psi_i + \phi_{q,ind} + \epsilon_{i,q}. \]

- \(I_{CA_{Emissions i} > 50\%} \) is 1 if firm \(i \) has a CA emission share of > 50%, 0 otherwise.
- Dependent variables are equilibrium outcomes of the loan contracting process between banks and firms:
 - Credit commitment
 - Maturity
 - Fraction of term loans (vs. credit lines)
- \(\lambda \) is negative if banks cut credit commitment or seek higher contract flexibility.
California analysis

<table>
<thead>
<tr>
<th></th>
<th>Log committed credit</th>
<th>Maturity (in months)</th>
<th>Term loans share (0 to 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>$I_{CA_Emissions_{i} > 25%} \times I_{Post \ CA \ bill}$</td>
<td>0.015</td>
<td>-3.905**</td>
<td>-0.245***</td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
<td>(1.670)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>$I_{CA_Emissions_{i} > 50%} \times I_{Post \ CA \ bill}$</td>
<td>0.030</td>
<td>-4.946***</td>
<td>-0.262***</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(1.633)</td>
<td>(0.043)</td>
</tr>
</tbody>
</table>

	Observations	2,717	2,717	2,717	2,717	2,717	2,717
R2	0.965	0.965	0.807	0.808	0.717	0.719	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Industry-Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Firms with large CA emissions have:

- 4–5 months shorter maturity
- 0.25 lower term loan share
Private vs. public firms

- Results so far consistent with banks paying attention to transition risks.

- Explore heterogeneity in the effect of cap-and-trade programs on firms:
 - Important knowledge for the design of cap-and-trade policies.

- Different effects for public versus private firms?
 - Private (smaller) firms tend to be more financially constrained.
 - Economies of scale in regulation compliance.
 - Private firms tend to use older equipment and are likely less efficient.
Emissions inefficiency higher for private firms

Corporate Lending and Cap-and-Trade Policy
Effects for private firms are substantially larger.
California analysis - public firms only

<table>
<thead>
<tr>
<th>Log committed credit</th>
<th>Maturity (in months)</th>
<th>Term loans share (0 to 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>(l_{CA_{Emissions_i} > 25%} \times l_{Post CA bill})</td>
<td>0.223** (0.086)</td>
<td>1.617 (3.160)</td>
</tr>
<tr>
<td>(l_{CA_{Emissions_i} > 50%} \times l_{Post CA bill})</td>
<td>0.058 (0.113)</td>
<td>-1.788 (4.234)</td>
</tr>
</tbody>
</table>

Observations 822 822 822 822 822 822
R2 0.977 0.978 0.810 0.811 0.829 0.829
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Industry-Quarter FE Yes Yes Yes Yes Yes Yes

No effects for public firms.
California analysis - impact on interest rates

<table>
<thead>
<tr>
<th></th>
<th>Full sample</th>
<th>Private firms</th>
<th>Public firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>[I_{CA_{Emissions_i} > 25%} \times I_{Post \text{ CA bill}}]</td>
<td>0.667*</td>
<td>0.538*</td>
<td>1.748**</td>
</tr>
<tr>
<td></td>
<td>(0.395)</td>
<td>(0.270)</td>
<td>(0.719)</td>
</tr>
<tr>
<td>[I_{CA_{Emissions_i} > 50%} \times I_{Post \text{ CA bill}}]</td>
<td>0.294</td>
<td>0.137</td>
<td>2.299**</td>
</tr>
<tr>
<td></td>
<td>(0.662)</td>
<td>(0.523)</td>
<td>(1.031)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,191</td>
<td>1,191</td>
<td>1,191</td>
</tr>
<tr>
<td>R2</td>
<td>0.911</td>
<td>0.910</td>
<td>0.919</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Industry-quarter FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Banks require compensation from private firms for bearing transition risks.
Identification strategy: Waxman-Markey bill

- **First difference**: Compare lending in 2008 (pre) to 2009 (post).

- **Second difference**: Exploit difference in how high-emission manufacturing firms would be impacted by the law (Meng, 2017).
 - Manufacturing firms from sectors (6-digit NAICS) with an energy intensity of above 5% get allocated “free permits” for emissions.
 - Firms below the threshold are treated. Firms above the threshold are controls.

- Examine manufacturing firms close to the 5% threshold.
Waxman-Markey analysis: private firms

<table>
<thead>
<tr>
<th></th>
<th>Log committed credit</th>
<th>Maturity (in months)</th>
<th>Term loans share (0 to 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>$I_{i \in Treated} \times I_{t=2009}$</td>
<td>-0.049</td>
<td>-10.317*</td>
<td>-0.240***</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(5.181)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>$I_{i \in TreatedWide} \times I_{t=2009}$</td>
<td>0.053</td>
<td>-8.354*</td>
<td>-0.214***</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(4.573)</td>
<td>(0.052)</td>
</tr>
</tbody>
</table>

- Observations: 170, 276, 170, 276, 170, 276
- R2: 0.965, 0.954, 0.820, 0.852, 0.868, 0.842
- Controls: Yes, Yes, Yes, Yes, Yes, Yes
- Firm FE: Yes, Yes, Yes, Yes, Yes, Yes
- Year FE: Yes, Yes, Yes, Yes, Yes, Yes
- Lead bank FE: Yes, Yes, Yes, Yes, Yes, Yes

Again, substantially stronger effect for private firms:
- 9 months shorter maturity
- 0.20 lower term loan share
Waxman-Markey analysis: public firms

<table>
<thead>
<tr>
<th></th>
<th>Log committed credit</th>
<th>Maturity (in months)</th>
<th>Term loans share (0 to 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>$I_{i \in Treated} \times I_{t=2009}$</td>
<td>0.108 (0.088)</td>
<td>-0.532 (2.304)</td>
<td>0.060 (0.056)</td>
</tr>
<tr>
<td>$I_{i \in TreatedWide} \times I_{t=2009}$</td>
<td>0.066 (0.062)</td>
<td>1.969 (2.368)</td>
<td>0.041 (0.051)</td>
</tr>
</tbody>
</table>

	Observations 172	348	172 348	172 348	172 348
R2	0.945 0.963	0.926 0.858	0.876 0.858		
Controls	Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes			
Firm FE	Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes			
Year FE	Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes			
Lead bank FE	Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes			

No effect for public firms.
Outline

Overview

Data

Empirical strategy and baseline results

Other channels and robustness

Conclusion
Banks manage transition risks in alternative ways

- So far, results consistent with banks managing transition risk by increasing contract flexibility.

- Banks have alternative ways to mitigate exposure to firms covered by a cap-and-trade program.

- Sell syndicated loans on the secondary loan market.
 - SNC comprehensively covers the participants in lending syndicates over the life of the loan.
 - Observe dynamics for both banks and shadow banks.

- Unlike equilibrium outcomes of the loan contracting process, banks can unilaterally decide to sell loans.
 - Isolate banks expectations for firm outcomes.
Loan sales and the Waxman-Markey bill

1. Lenders with higher ex ante exposure to GHG-emitting firms participate less in covered firms’ syndicates and more likely to sell loans.

2. Shadow bank share increases by about 0.07 (avg. 0.15).

<table>
<thead>
<tr>
<th></th>
<th>All firms</th>
<th>Private firms</th>
<th>Public firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_i \in Treated \times I_t = 2009)</td>
<td>0.054** (0.026)</td>
<td>0.071* (0.037)</td>
<td>0.026 (0.029)</td>
</tr>
<tr>
<td>(I_i \in TreatedWide \times I_t = 2009)</td>
<td>0.067*** (0.022)</td>
<td>0.107*** (0.026)</td>
<td>0.019 (0.027)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>342</td>
<td>624</td>
<td>170</td>
<td>276</td>
<td>172</td>
<td>348</td>
</tr>
<tr>
<td>R2</td>
<td>0.877</td>
<td>0.883</td>
<td>0.841</td>
<td>0.844</td>
<td>0.928</td>
<td>0.927</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lead bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Placebo tests

- Do treated and control groups exhibit similar trends before treatment occurred?

- Using two different natural experiments with similar findings alleviates this concern.

- Placebo regressions for Waxman-Markey analysis.
 - “Falsify” treatment in the years before the bill’s passage.
 - We should see reversal of effects in 2010 when the bill fails the Senate.
Placebo test: remaining maturity
Placebo test: term loans share

![Graph showing coefficient estimates over years 2005 to 2010.]

Corporate Lending and Cap-and-Trade Policy
Placebo test: shadow bank share
Other results

- Lenders monitor high-emission firms more closely and impose cash flow covenants.

- Firm balance sheet effects under CA bill:
 - Following passage: covered firms increase cash, capex
 - Following implementation: cash, capex revert to pre-passage levels
Outline

Overview

Data

Empirical strategy and baseline results

Other channels and robustness

Conclusion
Conclusion

▶ We isolate high transition risk periods around cap-and-trade bills moving through the legislative process.

▶ We show that banks act swiftly to reduce transition risks
 – Gain flexibility to cut credit exposure.
 – Require additional compensation for bearing transition risk.
 – Reduce syndicate participation in favor of shadow banks.
 – Transition risks unlikely to pose systemic stability risks for banking sector.

▶ Effects concentrated within the subsample of private firms.

▶ Adverse effects of cap-and-trade programs on affected private firms:
 – Evidence potentially useful for design of cap-and-trade policies.