The complexity of skills and the future of work

Morgan R. Frank
The complexity of skills and the future of work

Morgan R. Frank

Everybody Dance Now (arXiv:1808.07371)

Source Subject
*Challenging due to missed detections
Skill biased technological change

Surgeons & Robotics

Engineers & Drones

Bank Tellers & ATMs
A framework for skills, labor, and cities

- differential impact of automation
- skill & wealth disparity
- spatial career mobility

Local Labor Markets

Occupations & Employment
- Executive
- Programmer
- Bartender

Tasks & Skills
- Persuasion
- Stamina
- Mathematics
- Vision
- Computer Vision

- career trajectories
- viable retraining
- job polarization
- interaction with technology
- skill complementarity
- education

Frank et al., PNAS (2019)
The complexity of skills and the future of work

Morgan R. Frank

7

The structure of workplace skills

Occupations

j1

j2

j3

Skills

S1

S2

S3

Workers

j1

j2

j3

Skills

S1

S2

S3

S4

S5

S6

The Product Space

\[\text{rca}(j, s) = \frac{\sum \text{onet}(j', s')}{\sum \text{onet}(j', s)} \]

\[I(j, s) = \begin{cases} 1, & \text{if } \text{rca}(j, s) > 1 \cr 0, & \text{otherwise} \end{cases} \]

Science Advances (2018)
Unpacking the polarization of workplace skills

Science Advances (2018)
Skill polarization explains occupational polarization

Increasing annual wages

$$\text{cognitive}_j = \frac{\sum_{s \in C} \text{onet}(j, s)}{\sum_{s \in S} \text{onet}(j, s)}$$

Science Advances (2018)

The complexity of skills and the future of work

Morgan R. Frank
Skill polarization explains urban polarization

Increasing median household income (also population)

\[\text{cognitive}_j = \frac{\sum_{s \in C} \text{onet}(j, s)}{\sum_{s \in S} \text{onet}(j, s)} \]

Science Advances (2018)
Explaining low- and high-skill employment

The “hollowing of the middle class”
Skill polarization and career mobility

- Waitstaff
- Bartender
- Mechanics Supervisor
- Mechanical Tool Setter
- Low Cognitive Skill
- Mid Cognitive Skill
- High Cognitive Skill
- Sales Engineer
- Retail Supervisor

The complexity of skills and the future of work

Morgan R. Frank
The complexity of skills and the future of work

Morgan R. Frank

Local Labor Markets

Occupations & Employment

Tasks & Skills

Executive

Persuasion

Stamina

Vision

Programmer

Bartender

Mathematics

Computer Vision

di
dferential impact of automation

skill & wealth disparity

spatial ca
cer mobility

different occupations & employment

tasks & skills

differential impact of automation skill & wealth disparity spatial career mobility
The structure of occupations

\[
\text{onet}(j, s)/ \sum_{s' \in S} \text{onet}(j, s')
\]

\[
rca(j, s) = \frac{\sum_{j' \in J} \text{onet}(j', s)/ \sum_{j' \in J, s' \in S} \text{onet}(j', s')}{\sum_{s' \in S} \text{onet}(j, s')/ \sum_{s' \in S} \text{onet}(j, s')}
\]

\[
I(j, s) = \begin{cases}
1, & \text{if } rca(j, s) > 1 \\
0, & \text{otherwise}
\end{cases}
\]
Skill similarity predicts worker mobility

\[
\text{skillsim}(j, j') = \frac{\sum_{s \in S} I(j, s) \cdot I(j', s)}{\sum_{s \in S} \left(I(j, s) + I(j', s) - I(j, s) \cdot I(j', s) \right)}
\]
The polarized structure of occupations

Example Job Titles:

<table>
<thead>
<tr>
<th>Cognitive</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawyer</td>
<td>Bus Driver</td>
</tr>
<tr>
<td>Mathematician</td>
<td>Bartender</td>
</tr>
<tr>
<td>Software</td>
<td>Dancer</td>
</tr>
<tr>
<td>Developer</td>
<td>Carpenter</td>
</tr>
<tr>
<td>Surgeon</td>
<td>Car Mechanic</td>
</tr>
<tr>
<td>Microbiologist</td>
<td>Security Guard</td>
</tr>
<tr>
<td>Chief Executive</td>
<td>Janitor</td>
</tr>
<tr>
<td>Statistician</td>
<td></td>
</tr>
</tbody>
</table>

The complexity of skills and the future of work

Morgan R. Frank
The complexity of skills and the future of work

Morgan R. Frank

Frank et al., PNAS (2019)
Projecting cities onto the job network

Boston, MA (N=311)

Houston, TX (N=317)

Overlap Network
(N=125)

Madera, CA (N=103)

Seattle, WA (N=330)

(N=23)
Skills determine spatial mobility

tightness(c, c') = \sum_{j,j' \in J^2} \frac{\text{skillsim}(j, j') \cdot (I(c, j) + I(c', j))}{2 \cdot \sum_{i,i' \in J^2} \text{skillsim}(i, i')}
Structural economic resilience

- Densely-Connected Labor Force
- Sparsely-Connected Labor Force

Current Employment
Tipping Point

Low Employment

Occupations & Employment
- Executive
- Programmer
- Bartender

Tasks & Skills
- Persuasion
- Vision
- Computer Vision
- Machine Vision

Annual Wage Percentile
B
C

Skills & Wealth Disparity
Spatial Career Mobility

Differential Impact of Automation

Career Trajectories
Viable Retraining
Job Polarization

Interaction with Technology
Skill Complementarity
Education
The complexity of skills and the future of work

Morgan R. Frank

MEASURING SKILL DEMAND
- structured representative survey (e.g. per job title, O*NET)
- microscopic skill perturbations (e.g. patent data)
- unstructured real-time skills data (e.g. per worker or employer, online job postings and resumes)

REGIONAL / URBAN LABOR DEPENDENCIES
- employment distribution
- location-specific career data
- longitudinal employment trends

Frank et al., PNAS (2019)
• Can retraining programs be more efficient?
• Which workplace activities will be automated?
• What creates economic resilience in cities?
• How can firms maximize returns on investment in technology?