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Abstract

We develop a model of the feedback between mutual fund outflows and asset illiquidity.

Alert investors anticipate the impact on a fund’s net asset value (NAV) of other investors’

redemptions and exit first at favorable prices. This first-mover advantage may lead to fund

failure through a cycle of falling prices and increasing redemptions. Our analysis shows that (i)

the first-mover advantage introduces a nonlinear dependence between a market shock and the

aggregate impact of redemptions on the fund’s NAV; (ii) as a consequence, there is a critical

magnitude of the shock beyond which a run brings down the fund; (iii) properly designed swing

pricing transfers liquidation costs from the fund to redeeming investors and, by removing the

nonlinearity stemming from the first-mover advantage, it reduces these costs and prevents fund

failure. Achieving these objectives requires a larger swing factor at larger levels of outflows.

The swing factor for one fund may also depend on policies followed by other funds.
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1 Introduction

The size of the open-end mutual fund industry has increased substantially in recent years. In the

United States, the total assets managed by open-end mutual funds grew by $6.8 trillion over the

last decade.1 In particular, fixed income mutual funds posted significant net inflows: 16.3% of
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1See the Flow of Funds Accounts, Z.1 Financial Accounts of the United States, published by the Federal Reserve

Board. Compare the table L.122 for March 2006, reporting that the total value of financial assets held by mutual
funds in 2005 is $6.05 trillion, with the table for March 2016, which indicates that the total value of assets held by
mutual funds in 2015 is $12.9 trillion.
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outstanding corporate bonds held in the U.S. are owned by mutual funds as of 2017, up from 3.5%

in 1990.2

Liquidity management by funds has attracted regulators’ attention, because of the structural

liquidity mismatch in open-end mutual funds: funds offer same-day liquidity to their investors, but

the assets they hold may not be as easy to sell on short notice, such as in the case of corporate and

emerging market bond funds. To meet investor redemptions, a fund may be forced to sell assets at

reduced prices, but investors’ redeemed shares are paid at the end-of-day net asset value (NAV),

which may not account for the total liquidation costs incurred in subsequent days. The liquidity

mismatch creates an incentive for investors to redeem their shares early, as they anticipate that the

cost of other investors’ redemptions will be reflected in the future NAV of the fund.

In extreme stress scenarios, this first-mover advantage can trigger a fund run. A prominent

example is the junk-bond fund Third Avenue Focused Credit. Impacted by heavy redemptions,

from July to December 2015, the fund lost more than half of its market value, falling below $1

billion from an initial value of $2.1 billion. In December, Third Avenue suspended redemptions and

began liquidating the fund because it could not meet withdrawal requests by selling shares of its

assets at “rational” prices. In its application to the SEC for the approval of the redemption block,

Third Avenue wrote:

If the relief is not granted, and the Fund is unable to suspend redemptions, the insti-

tutional investors would likely be best positioned to take advantage of any redemption

opportunity, to the detriment of those investors – most likely, retail investors – who

remain in the Fund. These remaining investors would suffer a rapidly declining net

asset value and an even further diminished liquidity of the Fund’s securities portfolio.

The relief would help avoid such an outcome.

In October 2016, the Securities and Exchange Commission announced the adoption of amend-

ments to Rule 22c-1 to promote liquidity risk management in the open-end investment company

industry. The rule, effective on November 19, 2018, allows open-end funds to use “swing pricing”

under certain circumstances. Swing pricing allows a fund to adjust (“swing”) its net asset value per

share to effectively pass on the costs stemming from shareholder purchase or redemption activity

to the shareholders associated with that activity; see Securities and Exchange Commission (2016).

We develop a theoretical framework for the analysis of this rule and its implications for finan-

cial stability. Our analysis shows the following. (i) The first-mover advantage magnifies fire sale

effects and introduces a crucial nonlinear dependence between the aggregate price impact due to

redemptions and an initial market shock. (ii) There is a critical threshold for the market shock

beyond which the fire-sale driven amplification leads to the failure of the fund, in the sense that

the fund is unable to repay shares of redeeming investors at the promised NAV. (iii) Swing pricing,

under an ideal implementation, transfers the cost of liquidation from the fund to the redeeming

investors, and – importantly – reduces this cost by removing the nonlinear amplification stemming

2See Table L.213, respectively Table L.212, in the Flow of Funds Accounts, Z.1 Financial Accounts of the United
States, published by the Federal Reserve Board in September 2017, respectively in September 1996.
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from the first-mover advantage. (iv) Swing pricing as currently applied in practice may not achieve

these objectives, because funds apply a fixed adjustment instead of an adjustment that increases

with the number of investors’ redemptions. (v) In an economy with multiple funds which all adopt

swing pricing, the NAV adjustment required to remove all cross-fund externalities would be lower

than in the case that some funds do not apply swing pricing while others charge a swing price that

removes only their own fund’s externalities.

Our analysis builds on empirical work exploring the connection between market liquidity, mu-

tual fund performance, and investor flows. Several studies, including Chordia (1996), Ferson and

Schadt (1996), Sirri and Tufano (1998), and Warther (1995) have documented relationships between

investor flows and fund performance; Edelen (1999) in particular finds that negative abnormal re-

turns in open-end mutual funds can be explained by the liquidation costs induced by investor flows.

Other important contributions include Chen et al. (2010) and Goldstein et al. (2017), which study

the sensitivity of outflows to underperformance in the context of equity and fixed income funds,

respectively. Goldstein et al. (2017) compare the flow-to-performance relation of funds holding

liquid assets with that of funds holding illiquid assets. They show that the funds holding illiquid

assets are more sensitive to bad performance, because the liquidity mismatch and the externalities

imposed by the first redeeming investors on those who remain in the fund create an incentive to

exit the fund.

Few other works have explored the theoretical underpinnings of the interactions between asset

illiquidity, market stress, and redemption flows. In Chen et al. (2010), the authors present a model

to explain why only some investors redeem in response to a fund’s bad performance. They attribute

this behavior to informational asymmetries: investors receive different signals about the fund’s

future performance; some investors believe that improved future performance can compensate for

the costs of liquidation in the face of an immediate redemption, while others believe the opposite.

Chordia (1996) studies the use of load fees to discourage redemptions in a model with redemptions

driven by investor liquidity shocks, rather than by fund performance; load fees are fixed and, unlike

swing pricing, do not respond to the level of redemptions. Lewrick and Schanz (2017b) develop

an equilibrium model which yields the welfare-optimal swing price, and discuss its dependence

on trading costs and investors’ liquidity needs. In contrast to these models, all building on the

foundational work on bank runs by Diamond and Dybvig (1983), in our study a run arises from

the withdrawal of forward-looking investors in response to an initial market shock. Zeng (2017)

develops a dynamic model of an open-end mutual fund that holds illiquid assets and manages its

cash buffer over time. He argues that even if redeeming investors were internalizing the liquidation

costs they create, there would still be a negative externality imposed on the fund, which needs to

rebuild its cash position at a later date by selling illiquid assets, a costly operation. While the

focus of Zeng (2017) is on the cash management policy and its dynamic relation with shareholder

redemptions, our focus is on how the feedback between market and liquidity shocks is reinforced

through the first-mover advantage and stopped by an appropriate swing pricing rule. Different

from Zeng (2017), the redemption mechanism in our study is triggered by an exogenous market
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shock which not only reduces the value of a fund share, but also exerts downward pressure on

the price of the asset, and in extreme scenarios brings the fund down. Morris et al. (2017) study,

both theoretically and empirically, how asset managers manage liquidity when they interact with

redeeming investors. They analyze the trade-off between cash hoarding and pecking order liquidity

management. They find that if the costs of future fire sales are high relative to the liquidity discount

that applies to instantaneous liquidation, funds hoard cash and liquidate more assets than necessary

to meet current redemptions.

Our paper is also related to the literature studying the asset pricing implications of forced sales

by leveraged financial institutions (e.g., banks), which need to comply with prescribed balance

sheet requirements (e.g., Adrian and Shin (2010)). The typical mechanism works as follows: After

an initial market shock, leverage ratios may deviate from their targets, prompting the institutions

to sell illiquid assets to return to their targets. The aggregate impact of asset liquidation on

prices is linear in the size of the exogenous market shock (see Capponi and Larsson (2015), Duarte

and Eisenbach (2015) and Greenwood et al. (2015)). The mechanism of fire sales triggered by

redemptions of mutual funds, however, is different due to their unique institutional structure:

because of the first-mover advantage, the value of a fund share and the price of an asset share

depend nonlinearly on the initial market shock. A larger shock creates a stronger incentive to

redeem early, forcing the fund to liquidate superlinearly with respect to the size of the shock. Our

model shows that only in an idealized setting without a first-mover advantage (or, equivalently, with

an appropriate swing price) is the impact of redemptions on prices linear. These findings imply that

treating the mutual fund structure like that of a bank, and ignoring institutional features of the

first-mover advantage, would underestimate the effects.3 The asset pricing implications of investor

redemptions may be significant, especially in periods of market stress or if the fund is managing

illiquid assets, such as high-yield or emerging market corporate debt.

We build an analytically tractable model that mimics the redemption mechanism identified by

the empirical literature on mutual fund flows and use it to explain the effects of the liquidity mis-

match in open-end mutual funds. Our model features a continuum of investors with heterogeneous

levels of tolerance to the fund’s performance: a decrease in the fund’s NAV leads to an increasing

fraction of investors exiting the fund, consistent with the empirical studies of Chen et al. (2010) and

Goldstein et al. (2017).4 We capture the first-mover advantage by assuming that some investors

are sophisticated and anticipate the impact on the fund’s NAV of other investors’ redemptions. We

refer to those investors as first movers. In response to a negative shock to the fund’s NAV, investors

redeem their shares: the fund may be forced to sell shares of its assets at unfavorable prices, leading

to a further drop in the fund’s NAV. The first movers anticipate this drop in the NAV and sell

before it materializes, thus imposing an even larger externality on the fund (see Figure 2).

3Cetorelli et al. (2016a), Cetorelli et al. (2016b) and Fricke and Fricke (2017) quantify the impact of mutual fund
fire sales on asset prices, and conclude that the funds’ aggregate vulnerability of U.S. open-end mutual funds is small
(compared to banks). Their analysis, however, does not account for the first-mover advantage.

4This heterogeneity may be caused by different levels of risk aversion, investment horizons, liquidity needs or, as
in the theoretical model of Chen et al. (2010), different beliefs on the long-term ability of the fund to recover from
an instantaneous shock.
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We show that if the initial market shock exceeds a certain critical threshold, the front-running

incentive and the number of early redemptions become so large that the fund is unable to repay

investors at the nominal NAV, because of the significant price drop of its asset shares. For brevity,

we refer to this outcome as a fund failure.5 Our model can thus be adopted as a reverse stress

testing tool: after calibrating it to fund flow data, via econometric specifications proposed in the

empirical literature (e.g., Goldstein et al. (2017) and Ellul et al. (2011)), we can find the critical

shock size that triggers the fund failure for each given level of asset illiquidity. Notably, our model

can be used to design stress testing scenarios that explicitly incorporate the risk of a financial

run. This in turn enables the positive analysis of regulatory measures targeting fund stability and

prevention of fund runs, such as minimum cash requirements and adoption of swing pricing.

We propose a formal definition of swing pricing that captures the adjustment to the end-of-

day NAV required to remove the first-mover advantage. While stylized, our definition embodies

the salient features of the amended SEC 22c-1 Rule. We show that, to eliminate the first-mover

advantage, the swing price should be linear in the size of redemptions, with a slope determined

by the illiquidity of the asset. This linear specification makes swing pricing effective even under

scenarios of extreme market stress. In fact, swing pricing turns the one-sided first-mover advantage

into a trade-off: by redeeming early, investors avoid the costs imposed by their redemptions on the

fund’s future NAV; on the other hand, a crowding of redemptions results in a larger swing price for

redeemers. The major benefit of swing pricing stems from the reduction in the magnitude of early

redemptions: by removing the first-mover advantage, a smaller number of investors exit the fund,

and the fund is required to sell less of its assets at a discount. Swing pricing results not only in a

transfer of the liquidation cost, but also – and more importantly – in a reduction of this cost. In

particular, our model shows that swing pricing removes incentives to run that could lead to a fund

failure.

Many European mutual funds adopt a flat swing price when redemptions hit a certain threshold

(Lewrick and Schanz (2017a)). The empirical results in Lewrick and Schanz (2017a) show that such

a swing price is effective in normal times. However, in periods of heavy outflows, like during the

2013 U.S. “taper tantrum”, funds appear not to have benefited from the adoption of the swing price

rule. These empirical observations are consistent with our theoretical predictions: to be effective

in periods of intense market stress, the swing price should be strictly increasing in the amount of

redemptions. The empirical studies by Chernenko and Sunderam (2016), Chernenko and Sunderam

(2017), and Jiang et al. (2017) discuss more traditional liquidity management policies followed by

mutual funds such as cash buffering and cost-effective liquidation strategies.

Our study sheds some light on how open-end mutual funds may pose a threat to financial

stability. As argued by Feroli et al. (2014), the absence of leverage is not enough to dismiss potential

financial risks: in a downturn scenario, intermediaries that exhibit a procyclical behavior exert an

additional adverse pressure on the market. Empirical evidence (Chen et al. (2010)) indicates that

5In explaining its liquidity rules, the SEC frequently refers to “reducing the risk that funds would be unable to
meet redemption and other legal obligations.” See, for example, Federal Register, November 18, 2016, vol. 81, no.
223, p.82158 and p.82235.)

5



when returns are negative, mutual funds tend to liquidate assets, thus magnifying market shocks as

opposed to absorbing them. Portfolio commonality exposes funds to similar market risks, and hence

large capital outflows often occur simultaneously at several funds. This exacerbates the impact of

redemptions on the fund and asset performance (Coval and Stafford (2007), Koch et al. (2016)).

In illiquid markets where the presence of the mutual fund industry is prominent (for instance,

U.S. corporate bonds), financial distress can escalate and lead to market tantrums, with negative

consequences on the real economy. Feroli et al. (2014) discuss a model where funds’ fire sales are

triggered by relative performance concerns. Our study instead analyzes the fire-sales amplifications

driven by the first-mover advantage. In an extension of our baseline model to multiple funds, we

show how portfolio commonality and simultaneous redemptions generate cross-fund externalities

and exacerbate the price pressure from mutual funds’ asset sales. A fund’s swing pricing rule should

therefore not only account for the externalities imposed on the fund by its own redeeming investors,

but also for those imposed by redeeming investors of other funds. Interestingly, we show that if a

fund charges a swing price that accounts for the externalities imposed by all funds’ first movers and

all other funds do the same, then such a price would be lower than in the case where other funds do

not adopt swing pricing, even if the swing price charged by the fund were to account only for the

externalities imposed by its own first movers. The intuition underlying this phenomenon is that no

amplification due to first-mover redemptions occurs when all funds apply swing pricing. If some

of these funds were not to apply swing pricing, then their first movers’ redemptions would amplify

the pressure on prices imposed by first movers of other funds which did apply swing pricing, hence

requiring a larger adjustment to the end-of-day NAV.

The rest of the paper is organized as follows. We present the model in Section 2. Section 3

introduces swing pricing and analyzes its preventive role against fund failure. We study how first-

mover advantage gets amplified in the presence of multiple funds in Section 4. Section 5 concludes

the paper. Additional discussions and proofs of technical results are delegated to the Appendix.

2 The Model

An open-end mutual fund holds and manages Q0 units of an illiquid asset (each unit of the asset

can be thought of as a unit of the portfolio managed by the fund), and it holds an amount C0 of

cash. The market price at time 0 of an asset share is P0. Investors hold N0 mutual fund shares,

which they may redeem (sell back to the fund) at any time. The value of one fund share at time 0

is S0 = Q0·P0+C0

N0
, i.e., the total wealth of the fund, including its total asset value and cash, divided

by the number of shares issued by the fund. For example, if Vanguard holds 100 IBM shares and

issues 200 fund shares then Q0 = 100 and N0 = 200.

We assume that selling shares of the asset impacts the price by an amount

∆P = γ∆Q,

where ∆Q is the number of traded shares of the asset, ∆P is the resulting price change, and γ > 0
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is a measure of the asset’s illiquidity (when γ = 0, the asset is perfectly liquid). The parameter

γ can also be viewed as the slope of the inverse demand curve.6 Investors redeem fund shares in

response to bad short-term performance of the fund: the number ∆R of redeemed fund shares is

assumed to be proportional to the (negative) change in value of a fund share ∆S:

∆R = −β∆S,

where β represents the sensitivity of alert investors to bad performance.7 We focus on negative

market shocks and take β > 0.8

There are two types of redeeming investors: first movers and second movers. First movers are

fast and forward-looking: they observe a negative shock to the market, anticipate other investors’

redemptions, compute the overall impact on the value of a fund share, and immediately react

by redeeming their shares. The fund pays redeeming investors the cash value of their shares at

the end-of-day NAV.9 Because costly asset liquidations have not yet occurred, the first movers’

position is valued at an NAV that does not account for these costs. The forward-looking behavior

of some investors provides an explanation for the redemption patterns observed empirically in Chen

et al. (2010): first movers anticipate that asset liquidation worsens the fund performance especially

if the fund manages illiquid assets, therefore the amount of shares they redeem grows with the

illiquidity of the underlying asset (see Section 3.1 and Figure 4). Second movers are slow and react

mechanically to observed bad performance of the fund: they redeem gradually, hence the fund can

anticipate their actions and liquidate assets simultaneously with their redemptions. First movers

would typically be institutional investors, while the behavior of second movers mimics that of most

retail investors.10 We illustrate the timeline of the model in Figure 1.

We assume a continuum of investors, and use π ∈ (0, 1) to denote the proportion of first movers

and 1 − π for the proportion of second movers. At time 0 there is a negative market shock ∆Z,

which translates into a shock ∆S0 := C0+Q0(P0+∆Z)
N0

− S0 = Q0

N0
∆Z to the value of a fund share. In

the remainder of the section, we discuss the mechanism through which an exogenous market shock

6The linear dependence of the price impact on the traded volume emerges in equilibrium in the seminal paper of
Kyle (1985), and is the predominantly used assumption in the empirical literature on fire sales. Greenwood et al.
(2015) and Duarte and Eisenbach (2015) calibrate a linear price impact model of fire-sales spillovers resulting from
banks deleveraging; Coval and Stafford (2007) estimate the price impact coefficient using forced purchases and sales
of stocks by mutual funds; Ellul et al. (2011) use similar methodologies in other asset markets.

7Throughout the paper, we work under the natural conditions P0 ≥ 0, −∆Q ≤ Q0, ∆R ≤ N0 and −∆S ≤ S0.
Violation of these conditions imply the failure of the fund, as defined in Section 3.1.

8Our model can also be used to study the effect of positive market shocks and capital inflow. Sensitivity of flows
to past performance is not symmetric: it tends to be convex (see, for instance, Ippolito (1992)) for funds specialized
in more liquid assets, and concave (see, for instance, Goldstein et al. (2017)) for funds specializing in more illiquid
assets. Hence, depending on the sign of ∆S, different sensitivity parameters β can be used.

9SEC rule 22c-1 requires an open-end mutual fund to redeem shares based on the next NAV calculated after a
redemption request is received, and it requires that the NAV be calculated daily. This calculation is typically done
at the end of the day.

10In revising rules for money market funds, the SEC wrote that “the first investors to redeem from a stable value
money market fund that is experiencing a decline in its NAV benefit from a ‘first-mover advantage’,” and also
comments that “We further believe history shows that, to date, institutional investors have been significantly more
likely than retail investors to act on this incentive.” See Federal Register, August 14, 2014, vol. 79, no. 157, p.47774.
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Exogenous

shock

First movers' 
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Asset 

liquidation to 

repay first 

movers

1st round of 

second movers' 

redemptions and 

corresponding asset 

liquidation

2nd round of 

second movers' 

redemptions and 

corresponding asset 

liquidation

Figure 1: Timeline of the model.

triggers a fund run. We also discuss how the fire-sale amplification driven by redeeming investors of

the mutual fund is fundamentally different from that of leverage constrained financial institutions,

due to the unique institutional structure of a mutual fund.

Any model of fire sales relies on some friction that constrains or deters arbitrageurs from stepping

in to buy when an asset price falls below fundamental value. In our setting, the potential buyers

include fund investors who choose not to sell. Our model abstracts from the underlying source

of market illiquidity and captures these effects in reduced form through the parameter γ and the

actions of the first movers. In other words, γ measures price impact net of any buying by bargain

shoppers, and the liquidation by first movers anticipates the extent to which second movers will

sell as the share price falls.

2.1 Second Movers

To describe the behavior of second movers, we begin with the case π = 0, a fund without first

movers. While first movers would redeem their shares immediately after the shock, before the fund

starts liquidating the asset, redemptions by second movers are slower and happen simultaneously

with the liquidation executed by the fund. This captures the behavior of investors who do not

exploit the fund’s liquidity mismatch. Their redemptions proceed through multiple rounds: each

round of redemptions drives down the price and, in turn, triggers a new round. Concretely, in

the n-th round, second movers observe a change ∆Ssmn in the value of a fund share and redeem

accordingly. To pay back the redeemed shares, the fund liquidates shares of the asset. Costly

liquidation affects the value of the fund, causing an additional change ∆Ssmn+1 in the value of a fund

share, and hence further redemptions by second movers.

Throughout the paper, we study the baseline model of a mutual fund which holds a zero cash

buffer, i.e., C0 = 0. The inclusion of a cash buffer does not alter the main findings, and is studied

in Section 3.5 and Appendix C. We also assume that, initially, the number of shares issued by the

fund equals the number of asset shares, i.e., N0 = Q0. This assumption does not qualitatively

impact our conclusions, but leads to more interpretable expressions.

In response to the change in value of a fund share at the n-th round, ∆Ssmn , second movers

redeem

∆Rsmn+1 = −β∆Ssmn
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shares of the fund. Second movers incur the liquidation costs of their redemptions (they do not

enjoy the first-mover advantage) and receive the cash amount ∆Rsmn+1× (Ssmn + ∆Ssmn + ∆Ssmn+1); in

practice, this means that each round of redemptions may unfold over a few days, so the liquidation

costs are incurred as these investors sell. The number of shares the fund needs to liquidate to repay

second movers is

∆Qsmn+1 = −∆Rsmn+1

Ssmn + ∆Ssmn+1

P smn + ∆P smn+1

, (2.1)

where ∆P smn+1 := γ∆Qsmn+1 is the price impact generated by the liquidation of shares needed to repay

second movers, and

∆Ssmn+1 =
(Qsmn + ∆Qsmn+1)(P smn + ∆P smn+1)

N sm
n −∆Rsmn+1

− Ssmn . (2.2)

The change in value ∆Ssmn+1 of a fund share will trigger a new round of redemptions, yielding

Qsmn+1 = Qsmn + ∆Qsmn+1, P smn+1 = P smn + ∆P smn+1, Ssmn+1 = Sn + ∆Ssmn+1, N sm
n+1 = N sm

n −∆Rsmn+1, where

N sm
n is the number of fund shares before the n-th round of second movers’ redemptions.

As the number of liquidation rounds increase, the change in price of the asset and of a fund

share converges to a fixed point (∆P smtot ,∆S
sm
tot ) which can be explicitly computed.

Proposition 2.1. Assume π = 0 and γβ < 1. Given an initial market shock ∆Z < 0, the aggregate

impact of the redemptions by second movers on the price of the asset and of a fund share is

∆P smtot = ∆Ssmtot =
∆Z

1− γβ
.

Notice that there are two levels of ownership: an investor can own the asset either directly or

through the fund. Because N0 = Q0, the two modes of ownership are initially equivalent: a share of

the fund has the same value as the price of a share of the asset in the market. Proposition 2.1 states

that in the absence of first movers, the market price of the asset and the value of a fund share also

coincide at the end of the liquidation process. The execution costs of second movers simultaneously

drive the asset price and the value of a fund share, and there is no additional externality imposed

on the fund.

The liquidation costs due to second movers’ redemptions grow linearly with the exogenous

market shock ∆Z, and increase both with the illiquidity of the asset γ and with the sensitivity to

the fund’s performance β. The liquidation of asset shares in response to a negative market shock

is not caused by the institutional structure of the mutual fund, because investors would have sold

the asset anyway even if they were holding it directly without the fund’s intermediation. For small

values of γ > 0, the change in value of a fund share ∆Ssmtot caused by all second movers’ redemptions

admits the representation

∆Ssmtot ≈ ∆Ssm0 + γβ∆Ssm0 + γ2β2∆Ssm0 + · · · . (2.3)

Each term of the sum reflects a new round of redemptions. Each round has an impact on the value

of a fund share, and the final value is the aggregate outcome of the redemption and liquidation
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process.

2.2 First Movers

Prior to investors’ redemptions, the value of a fund share changes to reflect the exogenous shock.

First movers observe this change, and additionally foresee the overall impact of other investors’

redemptions on the fund performance. Hence, they react not to the initial change ∆S0, but to the

final change in value of a fund share, ∆Stot, that takes into account all liquidation costs due to

other investors’ redemptions. In fact, first-mover investors who would exit the fund if the change

in its NAV were ∆Stot but would remain in the fund if it were ∆S0, know that they would only

receive the cash equivalent of the diluted NAV if they redeemed after other investors’ redemptions.

Hence, they redeem before the aggregate impact of redemptions on the NAV, ∆Stot, is realized. By

doing so, they receive the cash amount S0 + ∆S0 per redeemed fund share.

Assume that there are only first movers, i.e. π = 1. The exogenous market shock ∆Z induces

an immediate change ∆Sfm0 := ∆Z in the value of a fund share. Although all first movers redeem

jointly prior to the fund’s asset liquidation, some of them react to the initial observed shock, while

others redeem anticipating the impact of other investors’ redemptions on the fund’s NAV. We

compute the total number of first movers recursively: at each iteration we include the first movers

who redeem anticipating the impact on the fund’s NAV of the first movers identified in the previous

iteration. First movers reacting to the initial shock redeem ∆Rfm0 = −β∆Sfm0 shares of the fund.

The fund has not yet started to liquidate asset shares to repay investors, but is legally obliged to

repay the cash equivalent of the NAV of a fund share. Thus, the fund would need to liquidate

∆Qfm0 units of the asset to raise the level of cash needed to repay these investors:

−∆Qfm0 × (P0 + ∆Z + γ∆Qfm0 ) = ∆Rfm0 × (S0 + ∆Sfm0 ).

The left-hand side is the revenue for the fund after selling the asset and taking into account the

execution costs. The right-hand side is the amount of cash that the fund owes to these redeeming

investors, and thus it does not account for the execution costs of the fund. Notice that because

liquidation is costly, the fund needs to sell more units of the asset to account for these deadweight

losses. Since first movers exit at an NAV which has not yet internalized the liquidation costs, these

costs need to be absorbed by the fund. The drop in the fund’s NAV is

∆Sfm1 =
(Q0 + ∆Qfm0 )× (P0 + ∆Z + γ∆Qfm0 )

N0 −∆Rfm0

− S0.

Because of the price impact and the liquidity mismatch, the change in value of a fund share after

these first movers’ redemptions ∆Sfm1 is larger than the initial change ∆Sfm0 . Because first movers

are forward-looking, they redeem not only in response to the initial shock, but also anticipating the

impact of those redemptions: these two groups of first movers together redeem ∆Rfm1 = −β∆Sfm1

shares. This larger number of redemptions causes an even larger reduction ∆Sfm2 in the value

10
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Figure 2: Description of the mechanism that gives rise to the first-mover advantage. The number
∆Rfmn of early redemptions leads to a further drop in the fund’s NAV. In response to this drop,
other investors would redeem fund shares. These investors are aware that if they were not to redeem
immediately, their shares would be valued at a lower NAV. Hence, they join early redeemers and
withdraw their investment simultaneously with them, imposing an even larger externality on the
fund and the investors that remain in the fund.

of a fund share. Hence, a higher number of investors redeem fund shares. Taken to the limit,

this iterative procedure ends at a fixed point (see Figure 2), which is attained precisely when

the aggregate change in value of a fund share coincides with the change first movers anticipate.

Formally, in the n-th iteration,

∆Rfmn = −β∆Sfmn , [investors redeem]

−∆Qfmn × (P0 + ∆Z + γ∆Qfmn ) = ∆Rfmn × (S0 + ∆Sfm0 ), [fund sells assets]

∆Sfmn+1 =
(Q0 + ∆Qfmn )× (P0 + ∆Z + γ∆Qfmn )

N0 −∆Rfmn
− S0. [share value falls]

If the sequence ∆Sfmn converges, the limit ∆Sfmtot is a fixed point of the system

∆Rfmtot = −β∆Sfmtot ,

−∆Qfmtot × (P0 + ∆Z + γ∆Qfmtot ) = ∆Rfmtot × (S0 + ∆Sfm0 ),

∆Sfmtot =
(Q0 + ∆Qfmtot )× (P0 + ∆Z + γ∆Qfmtot )

N0 −∆Rfmtot
− S0.

2.3 With First and Second Movers

We consider now a fund with both first and second movers (0 < π < 1). First and second movers

react to a change in value of a fund share ∆S by redeeming, respectively, ∆Rfm = −πβ∆S and

∆Rsm = −(1− π)β∆S fund shares. The actions of first and second movers are intertwined:

(i) second movers are slower and redeem their shares after first movers’ withdrawals. Hence, the
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initial change in value of a fund share they observe depends on the amount redeemed by first

movers;

(ii) first movers are forward-looking: they anticipate the liquidation costs due not only to other

first movers, but also to second movers.

We illustrate the model timeline in Figure 1. We present the exact mathematical formulation of this

mechanism in Appendix A. The aggregate outcome of the liquidation procedure which accounts

for both first and second movers’ redemptions – if it converges – results in the final asset price

change ∆Ptot and final fund share value change ∆Stot. We characterize these changes for small γ

in Proposition 2.2.

Proposition 2.2. For small γ, the changes in asset price and value of a fund share after redemp-

tions by first and second movers are

∆Ptot = ∆Z + γβ∆Z + γ2

(
β2∆Z − β π2β2∆Z2

N0 + πβ∆Z
− π2β2∆Z2

P0 + ∆Z

N0 + β∆Z

N0 + πβ∆Z

)
+ o(γ2), (2.4)

∆Stot = ∆Z + γ

(
β∆Z − π2β2∆Z2

N0 + πβ∆Z

)
+ o(γ). (2.5)

To quantify the externalities imposed by the first movers on the fund, compare the expres-

sion (2.5) to the asymptotic expansion (2.3), recalling that ∆Ssm0 = ∆Z in the absence of first

movers. As expected, the impact of the liquidation process on the value of a fund share is higher

when some investors are first movers, because first movers do not internalize the costs imposed on

the fund by their redemptions. As a consequence, a share of the fund will be worth less than a share

of the asset after first movers’ redemptions. The term γ π2β2∆Z2

N0+πβ∆Z is, at the first order, the fraction

of the liquidation cost due to first movers’ redemptions that needs to be absorbed by each remaining

investor in the fund. This may be understood as follows. The numerator π2β2∆Z2 captures the

cost incurred by the fund when it liquidates shares to repay first movers. In fact, at the first order,

first movers redeem ∆Rfmtot ≈ πβ∆Z fund shares and the fund trades ∆Qfm ≈ πβ∆Z shares of the

underlying asset to repay first movers. The price per share of the asset is P fm = P0+∆Z+γ∆Qfm,

hence the liquidation cost due to first movers is γ∆Qfm×∆Qfm ≈ γπ2β2∆Z2. The cost is quadratic

in quantities, because price impact per share is linear in quantities. The denominator N0 + πβ∆Z

represents the amount of outstanding shares after redemptions by first movers.

Interestingly, the first-mover advantage not only reduces the value of a fund share, but also

negatively affects the market price of the asset. However, the asset price in the presence of first

movers differs from that in the absence of first movers only at the second order in γ (see equa-

tion (2.4)). This is because the first-mover advantage affects the asset price only indirectly, while it

directly impacts the value of a fund share: as more investors exit the fund in response to the NAV

drop caused by the first-mover advantage, the fund needs to further liquidate asset shares hence

exacerbating price impact.

More precisely, there are two forces contributing to price impact. The first is the higher flow

of investors’ redemptions, including both first and second movers, triggered by the first-mover

12



advantage: because the return of a fund share ∆Stot is lower in the presence of first movers, the

number of shares redeemed by first and second mover investors is higher, triggering more fire

sales by the fund, and leading to a worse market price for the asset, as captured by the term

β π2β2∆Z2

N0+πβ∆Z . The second force is the increased amount of asset sales required to meet investors’

redemptions: to repay first movers, the fund needs to liquidate an additional number γ π
2β2∆Z2

P0+∆Z

of asset shares, on top of the number of redeemed shares ∆Rfmtot , to cover the liquidation costs

(∆Qfm ≈ ∆Rfmtot + γ π
2β2∆Z2

P0+∆Z ). This yields a second order effect on market prices. A proportion of

this cost is borne by second movers, so it is normalized by N0+β∆Z
N0+πβ∆Z , which is the number of shares

held by the remaining investors in the fund over the number of shares held by remaining investors

and second-mover redeemers.

2.4 Redemption Outflows Versus Bank Deleveraging

Existing literature has analyzed price linkages arising when financial institutions manage their

balance sheets to comply with prescribed leverage requirements. Greenwood et al. (2015) show

that the amplification effects on prices arising when banks liquidate assets to target their leverage

are linear in the exogenous shock, if one takes into account only the first round of deleveraging.

Capponi and Larsson (2015) confirm this linear dependence even if one accounts for higher order

effects caused by repeated rounds of deleveraging needed to restore banks’ leverages to their targets.

The banks’ deleveraging mechanism is essentially equivalent to the redemption mechanism of the

fund in the absence of first movers: each round of deleveraging has an impact on the price, and leads

to a successive round of asset liquidation because it depresses prices. In the absence of first movers

(π = 0), the aggregate impact of redemptions on prices is still linear (see Proposition 2.1). The

iterative redemption procedure executed by second movers converges to a fixed point if γβ < 1.11

The presence of first movers introduces an important structural difference between the fire

sale mechanism imposed by leverage targeting and that triggered by mutual fund redemptions.

After accounting for the first-mover advantage, Proposition 2.2 shows that the aggregate impact

of liquidation on asset prices is no longer linear in the exogenous shock. This point is illustrated

in Figure 3, which compares the total price drop −∆Ptot resulting from a shock ∆Z with (solid)

and without (dashed) first movers, for two different liquidity regimes. Additionally, in the presence

of first movers, the condition required for the convergence of this procedure takes a more complex

form and depends crucially on the size of the initial shock.

11Such a condition is equivalent to assuming that the matrix in equation (4) in Greenwood et al. (2015) (or the
systemicness matrix defined in Equation (2.2) of Capponi and Larsson (2015)) has spectral radius smaller than 1. In
economic terms, this means that a round of deleveraging causes another round of deleveraging that is smaller than
the previous one. In particular, the condition for the convergence of this liquidation procedure is independent of the
initial market shock ∆Z.
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Figure 3: The graphs show the aggregate impact on market prices of an initial market shock,
for π = 75% (solid line) and π = 0 (dashed line). The asset illiquidity parameter γ is 0.5 × 10−8

(left panel) and 2× 10−8 (right panel). These values of γ correspond to typical liquidity levels for
corporate bonds, as reported in the empirical study by Ellul et al. (2011). The flow-performance
relation β

N0
is chosen to be 0.859, consistently with the estimates in Goldstein et al. (2017). In the

presence of first movers, the impact on prices grows superlinearly with the size of the shock, if the
asset is illiquid.

3 Fund Failure, Swing Pricing, and Stress Testing

The incentive to redeem early increases with the illiquidity of the asset managed by the fund. If the

fund’s asset is too illiquid, the first-mover advantage may induce enough early redemptions to bring

down the fund. Swing pricing is intended to stop the transfer of liquidation costs from first movers

to investors remaining in the fund. In this section, we provide a formal definition of the swing price

which achieves this objective. We also construct a stress testing scenario to demonstrate how swing

pricing can prevent the fund failure.

3.1 Redemption Flow and Fund Failure

Investors redeem shares in response to bad performance by the fund. If the asset managed by the

fund is illiquid, then the feedback between fund performance, redemption flow, and asset liquidation

increases the incentive to redeem early. Hence, for a given initial shock, a higher illiquidity of the

asset triggers a larger redemption outflow (see Figure 4). This prediction of our model is consistent

with the flow-to-performance relation in the mutual funds industry identified by empirical literature

(Chen et al. (2010), Goldstein et al. (2017)).

In the absence of first movers, the redemption procedure converges if γβ < 1, which ensures

that each subsequent round of redemption is smaller than the previous one. If first movers are

present, convergence is not guaranteed even if γβ < 1, and it strongly depends on the size ∆Z of

the initial shock. The procedure fails to converge if a shock of large size forces the failure of the

fund.12

12The fund may decide to suspend redemptions if it foresees that they would be insufficient to repay exiting
investors. This happened in the case of Third Avenue Focused Credit, a junk-bond fund which experienced heavy

14



2% 4% 6% 8% 10%
-DS0

2%

4%

6%

8%

10%

12%

DR
fm
�N0

Figure 4: The graph shows the outflow due to first movers in response to an exogenous shock on
the fund’s NAV. The flow-to-performance relation depends on the liquidity of the asset held by the
fund: the asset illiquidity parameter γ is 0.5 × 10−8 (dotted line), 1.5 × 10−8 (dashed line), and
2.5× 10−8 (solid line).

Proposition 3.1. Assume π > 0 and a negative shock ∆Z < 0. There exists a critical value

∆Z∗ < 0 such that the iterative redemption procedure converges if and only if |∆Z| ≤ |∆Z∗|.
Furthermore, |∆Z∗| decreases with the illiquidity parameter γ of the asset.

If π > 0 and the exogenous shock ∆Z is sufficiently large, the number of investors that redeem

early is so high that the fund becomes unable to repay them. This can be intuitively understood as

follows. For each additional fund share redeemed by first movers, the marginal cost of liquidation

is increasing while the marginal proceeds of first movers stay constant. The fund may eventually

run short of asset shares or obtain negligible marginal revenue from asset sales.

Figure 5 plots the relation between the critical value ∆Z∗ and the asset illiquidity parameter

γ. We set β
N0

= 0.859 in all numerical examples, consistently with the estimates provided in the

empirical study by Goldstein et al. (2017). If the asset is perfectly liquid (γ = 0), there is no first-

mover advantage. As γ increases, so does the risk of a fund run. In particular, if the illiquidity of

the asset is larger, the critical threshold on the shock size that leads to a fund run, and consequently

to the fund’s failure, is smaller (in absolute value).

Figure 6 illustrates how the iterative liquidation procedure that yields the total change in value

of a fund share fails to converge if the asset is not sufficiently liquid.13

Despite the temporary nature of price impact, the fund may still be unable to meet investors’

redemptions before prices revert to fundamentals. Even if the fund survives the run, its NAV never

recovers completely. We refer to Appendix B for a detailed discussion on temporary and permanent

NAV losses.

redemptions in the period from July to December, 2015.
13We have assumed a fixed γ for tractability. If a fund were to sell its more liquid assets first, γ would increase as

the fund sold more assets, further amplifying the effects in the figures.
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Figure 5: The graph shows the critical level ∆Z∗ as a function of the illiquidity parameter γ. The
horizontal axis reports the price impact per $1 million. The proportion π of first movers is 75%.
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Figure 6: The graph shows the iterative liquidation procedure that yields the aggregate changes
in fund share value and asset price for γ = 2.4 × 10−8 (solid line), and for γ = 3 × 10−8 (dashed
line). The liquidation procedure ends at a fixed point if γ = 2.4 × 10−8, while the fund becomes
unable to repay its redeeming investors if γ = 3× 10−8. The proportion π of first movers is 75%.
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3.2 Swing Pricing

Let ∆Ssw be the adjustment applied to the value of a fund share when first movers are paid: the

fund makes a (negative) adjustment to the fundamental value of a fund share S0 + ∆Z and it pays

back S0 + ∆Z + ∆Ssw for each share redeemed by first movers.

Definition 3.2. Let ∆Sπ=0
tot be the aggregate change in value of a fund share in the absence of first

movers (that is, with π = 0). For π > 0, assume that the fund pays first movers a cash amount

equal to S0 + ∆Z + ∆Ssw for each redeemed share. The adjustment ∆Ssw is a swing price if the

resulting aggregate change in value of a fund share ∆Stot is equal to ∆Sπ=0
tot .

Swing pricing is thus the adjustment to the value of a fund share that makes the first movers

internalize all externalities imposed on the fund. Recall that in the absence of first movers, the

value change of a fund share is

∆Stot =
∆Z

1− βγ
.

Proposition 3.3. The swing price, as specified in Definition 3.2, is uniquely given by

∆Ssw = γ
πβ∆Z

1− βγ
.

Viewed as a function of the number of redemptions from first movers, the swing price takes the

form

∆Ssw = −γ∆Rfmtot . (3.1)

Notice that the use of swing pricing not only removes the first mover’s advantage but also

removes the adverse effect that first movers have on the price of an asset share: when swing prices

are used, ∆Ptot coincides with the price change in the absence of first movers. Hence, not only does

swing pricing benefit the fund, it also mitigates the negative impact on the price of an asset share

caused by first movers’ redemptions.14

The swing price is high if there is a large redemption outflow or a strong amplification of

the exogenous shock. To see this, notice that the quantity πβ∆Z is the number of fund shares

withdrawn by first movers during their first round of redemptions. Hence, γπβ∆Z is the price

impact from the first round of these redemptions. The term 1
1−βγ quantifies how the exogenous

shock is amplified: a change ∆S in the value of a fund share triggers investors’ redemptions, which

in turn causes a further drop in value and leads to additional redemptions. The aggregate outcome

of this process is a change in value ∆S
1−βγ , which coincides with the change in value observed in a

fund consisting only of second movers (see the result in Proposition 2.1).

Eq. (3.1) indicates that the swing price can be expressed in terms of the number of first-mover

redemptions.15 This is an endogenous, but approximately observable, quantity. To compute the

14Stale prices for assets held by a mutual fund distort the fund’s NAV to the benefit of certain investors, as in
Zitzewitz (2006). Swing pricing can be seen as correcting soon-to-be-stale prices.

15The swing price is proportional to the number of redeemed shares because of the linearity of the inverse demand
function. In general, the swing pricing formula would depend on the specification of the inverse demand function.

17



swing price, the fund does not need to know the sensitivity β to bad fund performance. The fund

only needs to estimate the level of illiquidity γ of its asset and observe the quantity of redemptions

from first movers – the redemptions that occur before the fund starts liquidating shares of the asset,

as indicated in the timeline in Figure 1. In practice, it may be difficult to distinguish first-mover

redemptions from other transactions, but the fund would know the quantity of redemptions from

institutional and retail accounts and could compare an account’s transactions with its past activity.

Using the aggregate flow of redemptions, both from first and second movers, our swing pricing rule

would yield a more conservative adjustment.

If the fund applies swing pricing, the externalities imposed by first movers are no longer borne

by the remaining investors, but instead internalized by first movers. Crucially, first movers who

would have redeemed in anticipation of the diluted NAV caused by other redemptions no longer do

so in the presence of swing pricing. Thus, by removing the benefits of front-running, swing pricing

reduces the total liquidation costs.

If γ is large, the initial amount ∆Rfm0 of shares redeemed in response to the market shock

may account only for a small fraction of the total first movers’ redemptions. In other words,

the liquidation cost eliminated by swing pricing may be much larger than the cost that is merely

transferred from one set of investors to another.

3.3 Swing Pricing Practices

Starting in November 2018, the amendments to Rule 22c-1 by the Securities and Exchange Com-

mission allow U.S.-based mutual funds to adopt swing pricing. Swing pricing is already used in

other jurisdictions, particularly Luxembourg. The vast majority of funds adopt a swing pricing

rule defined by a redemption threshold and a pre-determined swing factor: when net redemptions

exceed the threshold, the fund applies a fixed percentage adjustment to its NAV. Such an adjust-

ment differs from the swing pricing formula in Proposition 3.3. Therefore, it does not remove the

first-mover advantage and cannot guarantee prevention of a fund run and failure; see Figure 7.

According to the survey by Association of the Luxembourg Fund Industry (2015), some asset man-

agers already apply or are considering applying multiple swing factors, depending on the level of

redemptions. Our study supports such an implementation of swing pricing. Our analysis identifies

two important features that yield an effective swing price:

1) The adjustment should take into account the dependence of the asset price on traded quanti-

ties. As the liquidation cost per traded share increases with the number of liquidated shares,

the swing price should also increase with the flow of redemptions. A fixed swing price may

have limited efficacy during periods of heavy outflows.

2) Investors should be informed about a fund’s swing pricing mechanism. Liquidation costs

are reduced, and not just transferred, only when investors understand that the first-mover

advantage has been eliminated. In practice, the disclosed information should not allow any

investor to use the implemented swing pricing mechanism to their advantage: funds rarely
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Figure 7: The graph shows the change in value of a fund share with the swing price specified in
Proposition 3.3 (dotted line), without swing price (dashed line), and with a fixed NAV adjustment
applied when more than 5% of investors exit the fund (solid line). The proportion π of first movers
is 75%.

disclose their swing thresholds, and they do not report the specific days on which the NAV

was swung.16

A few asset managers have expressed concerns that swing pricing may increase the volatility of

a fund’s NAV; see Securities and Exchange Commission (2016), Section III-C. Our analysis shows

that an effective swing price alleviates fire sales and prevents NAV dilution, hence mitigating large

fluctuations in the fund’s NAV, particularly in periods of market stress. For additional information

on swing pricing practices, we refer to Malik and Lindner (2017), Investment Company Institute

(2016), and Association of the Luxembourg Fund Industry (2015).

3.4 A Stress Testing Example

We illustrate how a calibrated version of our model can be used for stress testing. We quantify the

first-mover advantage for both high and low liquidity regimes, and we compute the threshold on

the shock size beyond which redemptions would lead to fund failure.

We calibrate the model parameters using empirical estimates from the literature on fund flows

and abnormal returns due to fire sales for corporate bond funds. We normalize the initial price

of the asset and the value of a fund share to $1, so P0 = S0 = $1. Goldstein et al. (2017)

estimate the flow-performance relation for corporate bond mutual funds: in the case of negative

fund performance, the value of β
N0

is approximately 0.859. This relation is asymmetric in the fund’s

performance: if the fund performance is positive, the corresponding value is 0.238.

To estimate the illiquidity parameter γ we follow Ellul et al. (2011), who analyze the impact

of fire sales in the corporate bond market. To estimate deviations of prices from (unobservable)

fundamentals, the authors analyze the temporary drop of bond prices after a downgrade and their

16In 2013, the Autorité des marchés financiers allowed the use of swing pricing in France, explicitly requiring the
fund to not disclose details that would let investors place strategic orders, taking advantage of the swing pricing
mechanism.
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rebound to the fundamental value. The price impact per $1 million is on the order of 1% (ranging

from 0.4% to 1.9% in different years and with different sets of controls). We consider two illiquidity

regimes for the asset: a regime of typical liquidity with price impact of 1% per $1 million, and a

regime of high illiquidity with price impact of 2.5% per $1 million. We assume that the fund holds

$30 million in the asset, and apply a market shock that reduces the current asset price by 5%, so
∆Z
P0

= −5%.

By the endogenous shock, we mean ∆Sπtot−∆Z, which is the difference between the total change

in value of a fund share after all redemptions and the initial shock ∆Z. As before, π refers to the

fraction of first movers. Table 1 decomposes the endogenous shock into contributions from the

first, second, and third round of second mover redemptions, in the absence of first movers (π = 0).

Recall that the second movers respond to and then contribute to a sequence of price declines. Their

cumulative impact generates endogenous shocks of 1.74% and 9.05%, for price impact parameters

of 1× 10−8 and 2.5× 10−8, respectively. Without first movers, the change in value of a fund share

and of the asset are identical.

3.4.1 Impact of first-mover advantage and fund run

Figure 8 highlights the additional impact on the value of a fund share triggered by first movers’

redemptions. When the price impact parameter γ and the proportion of first movers π are both

large, the recursive procedure that determines the number of shares redeemed by first movers does

not converge, and the value of a fund share collapses. Recall that the cash obtained from selling

shares of the asset is a quadratic function of the number of shares sold. When the fund sells a large

quantity of the asset and the price impact is high, the marginal revenue from the sale might become

negative: by selling an additional share, the fund may experience a lower revenue compared to not

doing so, because of the significant drop in the share price caused by this additional sale. Figure 8

illustrates a situation in which the fund fails to retrieve the cash amount required to repay the first

movers.

3.4.2 Swing pricing prevents fund runs

The adoption of swing pricing prevents a fund run. To see this, compare Figures 8 and 9. When

the price impact parameter is 1 × 10−8, the impact of first movers (when all redeeming investors

are first movers) is roughly 0.08% and the swing price is below 1.80%. Intuitively, if 5% of the

investors are redeeming their shares and the fund decides to apply swing pricing, the externalities

generated by first movers – previously imposed on the whole fund – are now internalized by the

first movers. This means that the swing price should roughly be 0.08%× 1
5% = 1.60%, which is not

too far from the exact swing price displayed in Figure 9. This argument does not apply if the price

impact is higher and equal to 2.5× 10−8. Under these circumstances, the externalities imposed by

first movers on the fund are 50 times larger. The swing price, however, is only five times higher.

When price impact is small, the recursive procedure that determines the number of shares

redeemed by first movers converges very quickly. If price impact is large, the convergence is slow
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Price Impact Endogenous Shock First Round Second Round Third Round

1×10−8 -1.74% -1.29% -0.33% -0.09%

2.5×10−8 -9.05% -3.22% -2.08% -1.34%

Table 1: Endogenous shock ∆Stot −∆Z caused by fire sales when there are no first movers, and
contributions of successive rounds of redemptions to this shock.
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Figure 8: The graphs show the impact of first movers’ redemptions on the value of a fund share,
i.e. ∆Sπtot−∆S0

tot. We set the price impact parameter γ = 1×10−8 (left panel), and γ = 2.5×10−8

(right panel). For the larger value of γ, the impact diverges if π ≥ 70%.

(or the procedure may not even converge). The swing price removes the first-mover advantage in

that it stops the recursive procedure after the first round: if the first movers that react to the shock

∆Sfm0 := ∆Z have to pay the swing price, there is no liquidation cost transferred to the fund,

hence no reason why first movers who would react to subsequent drops in NAV in the absence of

swing pricing should redeem their shares early. While swing pricing may not have a strong effect

when the fund holds liquid assets, it acts as a stabilizing force if the fund holds illiquid assets. The

swing price adjustment is relatively small compared to the enormous costs of a fund run triggered

by first movers.

3.5 Swing Pricing in the Presence of a Cash Buffer

Holding a cash buffer allows open-end mutual funds to meet redemptions without the immediate

need of costly asset liquidation. However, the fund does not necessarily avoid asset sales completely.

This means that the presence of a cash buffer does not eliminate the first-mover advantage. The

fund may still be susceptible to a run under stressed market conditions, and asset liquidation is still

necessary if the value of redeemed fund shares exceeds the amount of cash held by the fund. Even

if cash buffers and swing pricing are both tools to mitigate the downward pressure on prices, they

have different economic roles. If the fund manages liquidity through a cash buffer, the externalities

from redemptions are not internalized by the redeeming investors, but imposed on the remaining

investors in the fund.

We discuss how the model from Section 2 generalizes to the case that the fund holds an amount
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Figure 9: The swing price as a function of π. We set the price impact parameter γ = 1 × 10−8

(left panel), and γ = 2.5× 10−8 (right panel).

C0 of cash resources, in addition to shares of the illiquid asset. Assume that the fund uses cash

first to pay redeeming investors. Once the cash resources are exhausted, the fund sells shares of

the illiquid asset to raise the level of cash needed to meet the remaining redemptions. Depending

on the amount of redemptions, the cash buffer C0 can be used to cover both first and second mover

redemptions, only first mover redemptions, or neither of those. For a given initial market shock

∆Z, there exist levels of cash C∗ and C∗ such that one of the following situations happens.

(i) C0 > C∗. The fund holds enough cash to repay all redeeming investors.

(ii) C∗ > C0 > C∗. The fund holds enough cash to repay first movers, but shares of the asset

need to be sold to repay second movers.

(iii) C0 < C∗. The fund needs to liquidate asset shares to repay first movers.

In case (i), no asset liquidation occurs and hence the price change reflects fundamentals: ∆Ptot =

∆Z. In case (ii), the fund sells shares of the asset only to repay second movers, hence there is no

liquidation cost passed from first movers to other investors. In case (iii), the first-mover advantage

arises. Its impact on the price of the asset and of a fund share remain qualitatively the same (see

Appendix C for details). Next, we describe how the swing price changes in the presence of a cash

buffer. In the following, x+ denotes the positive part of x.

Proposition 3.4. Assume Q0 = N0 and define L := S0+∆Z
P0+∆Z , a conversion factor between the value

of a fund share and the price of the asset. In the presence of a cash buffer C0, the swing price is

∆Ssw = −γL2

(
∆Rfmtot −

C0

S0 + ∆Z

)+

,

where ∆Rfmtot = −πβ∆Stot, and ∆Stot is the change in value of a fund share after accounting for

all redemptions.
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The presence of a cash buffer introduces a threshold on redemptions beyond which the swing

price is charged to first movers. Additionally, the total quantity of redemptions is lower because

the presence of a cash buffer mitigates the self-reinforcing feedback mechanism between share

redemptions and asset liquidation (compare the expression of ∆Stot in Proposition C.1 with that

in Proposition 2.1).

4 Systemic Amplification of the First-Mover Advantage

A fund’s liquidity mismatch not only negatively affects its own non-redeeming investors, but also

other funds holding the same asset. Early redemptions by first movers of a fund increase the

incentive of other funds’ investors to redeem early, hence driving down the price of the asset. The

resulting cross-fund negative externalities magnify the negative pressure imposed on the price of

an asset share. Section 4.1 studies swing pricing in an economy with multiple funds. Section 4.2

analyzes the benefits resulting from the simultaneous application of swing pricing by all funds.

4.1 First-Mover Advantage with Common Asset Ownership

We consider two funds that hold the same illiquid asset; the asset may be thought of as repre-

sentative of their entire portfolios. Let β1 and β2 denote the sensitivity to bad performance of

investors in fund 1 and 2, respectively. We use π1 and π2 to denote the fractions of first movers

in fund 1 and 2, respectively. Consistent with previous sections, we make the assumption that the

initial number of asset shares equals the initial number of fund shares for each fund: Q0,i = N0,i for

i = 1, 2. The simplified setting of two funds with common asset ownership allows us to highlight

the amplification channel of fire-sale externalities across funds.

For i = 1, 2, let ∆Stot,i be the aggregate change in NAV of fund i caused by all redemptions,

both of fund 1 and 2. The redemptions by first movers of a fund exacerbate liquidation losses of

the other fund, which simultaneously experiences redemptions of its own first movers in response

to the same negative market shock of the asset. The total impact of these redemptions on the value

of a share of fund 1 is (omitting terms of higher order in γ)

∆Stot,1 ≈ ∆Z + γ

(
β1∆Z − (β1π1∆Z)2

N0,1 + β1π1∆Z

)
︸ ︷︷ ︸

Own Impact

+ γ

(
β2∆Z − (β2π2∆Z)(β1π1∆Z)

N0,1 + β1π1∆Z

)
︸ ︷︷ ︸

Other Fund’s Impact

.

In addition to the price impact due to an individual fund, as in equation (2.4), there is a

cross-fund price impact which imposes additional negative pressure on the asset price:

∆Ptot ≈ ∆Z + (Impact from Fund 1) + (Impact from Fund 2) + (Cross-impact),

where the analytical expressions of the above price impact terms are given in Remark D.4.

If investors of multiple funds holding overlapping asset portfolios redeem fund shares simul-
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taneously, the feedback between fund performance, outflow and asset liquidation is reinforced.

Additionally, the first movers of each fund anticipate the other fund’s outflow and redeem a higher

number of shares compared to the case when each fund liquidates in isolation. This cross-fund

liquidity effect increases the downward pressure imposed on the price. To eliminate the first-mover

advantage, each fund needs to consider the impact of the other fund. If both funds implement

swing pricing, the adjustment is17

∆Sswboth = −γ(∆Rfmtot,1 + ∆Rfmtot,2). (4.1)

Hence, the swing price charged by two funds with common asset ownership is higher than the swing

price in the case of a single fund; compare equations (3.1) and (4.1).

4.2 The Benefits of Cooperative Swing Pricing

Swing pricing may not be adopted uniformly across the mutual fund industry. A fund implementing

swing pricing may apply an adjustment that only neutralizes the execution costs imposed on the

fund by the redemptions of its own first movers, or it may apply an adjustment that also anticipates

the effect of other funds’ first movers. In the former case, the fund is still impacted by a run at

another mutual fund.

If only one fund were to adopt swing pricing, the NAV adjustment it would need to offset

the impact of first movers at all funds would be larger than the adjustment required if the fund

operated in isolation. If both funds adopt swing pricing, the NAV adjustment required to remove

all first-mover externalities would be smaller than in the case that one fund does not apply swing

pricing while the other does; in fact, it is even smaller than the adjustment required for one fund

to remove its own first movers’ externalities (see Figure 10).

To make these statements precise, suppose only fund 2 adopts swing pricing. Let ∆Sswloc be the

NAV adjustment that makes fund 2’s first movers internalize their liquidation costs. This is the

swing price leading to the same change in NAV as if π1 > 0 and π2 = 0. Let ∆Sswglob be the swing

price for fund 2 that offsets the effect of first movers at both funds, leading to the same change in

NAV as if π1 = 0, π2 = 0. (See Appendix D for mathematical details.) We now have the following

result.

Proposition 4.1. Suppose π1, π2 > 0, and suppose that only fund 2 applies swing pricing. For

small γ,

|∆Sswboth| ≤ |∆Sswloc | ≤ |∆Sswglob|.

The intuition underlying this result is as follows: The externalities imposed on a fund by its

first movers are amplified by other funds’ first movers. Hence, if only a single fund applies swing

pricing, the NAV adjustment required to eliminate these externalities needs to account for the

fire-sale amplification driven by other funds’ first movers. On the other hand, if each fund were to

adopt swing pricing, cross-fund amplification due to first movers’ redemptions would be eliminated.

17see Proposition D.5
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Figure 10: Comparison of the swing prices ∆Sswboth (dotted line), ∆Sswloc (dashed line) and ∆Sswglob
(solid line) for different levels of illiquidity γ. The horizontal axis reports the price impact per $1
million. The proportion of first movers in each fund is π1 = π2 = 75%.

A mutual fund that does not adopt swing pricing still benefits from the implementation of swing

pricing by other funds, because of the reduced selling pressure imposed on it by the other funds’

first movers. The presence of mutual funds that do not implement swing pricing imposes a cost on

the first movers of funds that do adopt swing pricing, because their exit NAV is smaller than in

the case that all funds cooperate in the adoption of swing pricing.

5 Concluding Remarks

Our study models and quantifies the externalities stemming from the liquidity mismatch in open-

end mutual funds. By analyzing the interactions between fund performance, net outflows, and asset

liquidity, we provide a unified framework that delivers several predictions:

• The first-mover advantage amplifies the effects of fire sales and introduces a nonlinear relation

between the aggregate price impact and the magnitude of the exogenous shock.

• The first-mover advantage may trigger a cascade of redemptions following bad fund perfor-

mance, leading to asset sales that further drive down prices and generate further redemptions,

potentially to a point where the fund may be unable to repay redeeming investors, and thus

fails.

• Our definition of swing pricing neutralizes the first-mover advantage. It does so by transferring

the costs of liquidation to redeeming investors. Importantly, it also reduces these costs by

eliminating the incentive for investors to redeem earlier. At large levels of redemptions, the

required swing adjustment is larger than the fixed adjustment seen in practice.

The major policy implication of our study is the provision of an ideal yet simple swing pricing

rule, which is based on roughly observable quantities. Funds only need to account for the net

outflows of first movers and estimate the illiquidity of the asset to decide how much to adjust their
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NAV. We have assumed a single level of liquidity for all of a fund’s holdings. Extrapolating to more

general cases, our proposed adjustment suggests a need to partition a fund’s portfolio into liquidity

buckets. The current SEC 22e-4 Rule requires funds to divide their assets into buckets based on

time for liquidation, but our analysis points to the importance of distinguishing by liquidation costs

as well, because a fund may be forced to sell assets quickly to meet redemptions.

The amendments to the SEC 22c-1 Rule on swing pricing impose a 2% cap, relative to the

fund’s NAV, on the swing factor. Such a constraint may limit the efficacy of swing pricing in

periods of severe market illiquidity. To prevent an overly aggressive use of swing pricing, other

forms of regulatory oversight such as an appropriate disclosure clause on the adopted swing pricing

mechanism should be considered.

Our analysis shows that greater benefits are attained if swing pricing is consistently applied by

all mutual funds. Under these circumstances, the externalities imposed on the funds are internalized

by their first movers at a lower cost, compared to the case when some funds apply swing pricing

but others do not. The discretionary adoption of swing pricing is likely to affect the distribution

of investor flows. For example, funds that do not implement swing pricing may appeal to alert

investors that can exit the fund at zero cost, but be less attractive for inattentive investors who

would prefer to be safeguarded against a fund run and therefore lean towards funds with swing

pricing. Modeling this behavior may lead to a separation between institutional investors (often

first movers) concentrated at funds that do not adopt swing pricing, and retail investors (typically

second movers) participating in funds that adopt swing pricing.

Because of portfolio commonality, mutual funds act as a channel of contagion across assets,

and conversely common assets are a channel of contagion across funds. After a shock to an asset’s

price, a fund that is required to repay its redeeming investors may also liquidate other assets in its

portfolio, thus creating an endogenous selling pressure on assets that are not directly impacted by

the initial market shock. Hence, even mutual funds that do not hold assets affected by the initial

market shock may be impacted, if their portfolio is composed of other assets that were liquidated

in response to that shock. This indirect mechanism of contagion due to overlapping portfolios

is not specific to mutual funds, but common across intermediaries constrained by regulatory or

contractual obligations. We leave the construction of such a richer framework for future research.

A The Mechanics with First and Second Movers’ Redemptions

If the recursive redemption procedure followed by first movers converges, the total amount of fund

shares they redeem is

∆Rfmtot = −πβ∆Stot, (A.1)

where ∆Stot is the aggregate change in fund share value, which includes the shock ∆Z and accounts

for the externalities imposed on the fund both by first and second movers’ redemptions. The number

of shares ∆Qfmtot the fund needs to trade to repay first movers, and the change ∆Sfmtot in the value

26



of a fund share after first movers’ redemptions are given by the following equations:

−∆Qfmtot × (P0 + ∆Z + γ∆Qfmtot ) = ∆Rfmtot × (S0 + ∆Sfm0 ),

∆Sfmtot =
(Q0 + ∆Qfmtot )× (P0 + ∆Z + γ∆Qfmtot )

N0 −∆Rfmtot
− S0. (A.2)

Second movers start their recursive withdrawal procedure after the fund has met first movers’

redemptions. Hence, ∆Ssm0 = ∆Sfmtot , i.e., the initial change in value of a fund share observed by

second movers is equal to ∆Sfmtot , which includes the shock ∆Z and accounts for the externalities

imposed by the first movers on the second movers. These externalities reflect the aggregate impact

on prices generated by the liquidation process by first movers. In the limit (if it exists), the recursive

procedure followed by second movers converges to the solution to the system of equations

∆Rsmtot = −(1− π)β∆Stot,

∆Qsmtot = −∆Rsmtot
S0 + ∆Stot
P0 + ∆Ptot

, (A.3)

∆Ptot = ∆Z + γ(∆Qfmtot + ∆Qsmtot ),

∆Stot =
(Q0 + ∆Qfmtot + ∆Qsmtot )(P0 + ∆Ptot)

N0 −∆Rfmtot −∆Rsmtot
− S0.

B Swing Pricing Removes Permanent NAV Losses From Tempo-

rary Asset Losses

We think of the fundamental drop in asset price from P0 to P0 + ∆Z as permanent. Further drops

in the asset price due to forced selling are temporary. We consider a loss in the fund’s share price

temporary if it is recovered once the asset price returns to P0 + ∆Z. Otherwise, the loss in the

fund’s NAV is permanent: the fund does not recover the loss when the fire-sale effect is undone.

The following proposition decomposes ∆Stot into a temporary and a permanent component.

We show that the adoption of swing pricing reduces the permanent component so that prices only

reflect changes due to fundamentals, i.e. it is only driven by the initial shock ∆Z. The permanent

change in value of a fund share is

∆Sp :=
(Q0 + ∆Qfmtot + ∆Qsmtot )(P0 + ∆Z)

N0 −∆Rfmtot −∆Rsmtot
− S0,

where the asset shares held by the fund are valued at the fundamental price P0 + ∆Z, instead of

the fire sale price P0 + ∆Ptot.

Proposition B.1. The following statements hold:

• If π = 0 or the fund adopts swing pricing, then ∆Sp = ∆Z.
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• If π > 0, then at first order in γ18

∆Sp = ∆Z − γ π2β2∆Z2

N0 + πβ∆Z
+ o(γ).

The temporary price impact can be devastating if the fund does not survive the run. If the

initial market shock equals the critical threshold ∆Z∗, the fund survives the run and the temporary

component of the price impact may dominate over the permanent component. However, a phase

transition would occur if |∆Z| > |∆Z∗|. Under this condition, the fund is unable to repay its first

movers.

It is worth noticing that second movers only indirectly, i.e., through the forward looking behavior

of first movers, affect the permanent component of the NAV loss. If the asset price has already

(partly) recovered before second movers redeem, the first movers would redeem less. As a result, the

temporary price impact would be lower. Moreover, the fund would need to sell a smaller quantity

of asset shares to repay first movers at par, and thus the permanent NAV loss would also be lower.

Hence, early price recovery partly mitigates the feedback effect in our model.

C First-Mover Advantage in the Presence of a Cash Buffer

To quantify the impact of the first-mover advantage, we consider first the case π = 0 without first

movers. We introduce some notation to make the final expressions more readable: P∆Z := P0 +∆Z

is the price of the asset after the shock, S∆Z := C0+P∆ZQ0

N0
is the value of a fund share after the

shock, K := C0

S∆Z is the maximum amount of shares that can be redeemed without triggering

liquidation of asset shares, E := −(−β∆Z Q0

N0
−K) is (at order 0 in γ) the amount of shares that

need to be liquidated after the cash buffer is depleted, and L := S∆Z

P∆Z is a conversion factor between

the value of a fund share and the price of the asset.

Proposition C.1. Assume π = 0 and −βQ0

N0
∆Z > K. The aggregate change in asset price ∆Ptot

and fund share value ∆Stot are

∆Ptot = ∆Z + γL
E

1− βγL2
,

∆Stot =
Q0

N0
∆Z + γL2 E

1− βγL2
.

For small γ, the asymptotic expansions for ∆Stot and ∆Ptot are

∆Ptot = ∆Z + γLE + γ2βL3E + o(γ2),

∆Stot =
Q0

N0
∆Z + γL2E + γ2βL4E + o(γ2).

18The second order term is γ2β(πβ∆Z)2
(

2π∆Z
(N0+πβ∆Z)(P0+∆Z)

− 1−π
N0+πβ∆Z

− πN2
0

(N0+πβ∆Z)3
− N0

(N0+πβ∆Z)2

)
.
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We now consider the case when first movers’ redemptions exceed the cash level, ∆Rfmtot > K,

and study the impact on the value of fund shares and on the asset price arising in the presence of

the first mover advantage.

Proposition C.2. Assume that ∆Rfmtot > K. The aggregate change in asset price ∆Ptot and fund

share value ∆Stot are

∆Ptot = ∆Z + γLE + γ2

(
βL3E − βL3 E2

π

N0 + β∆Z Q0

N0
π
− L2

N0 + β∆Z Q0

N0

N0 + β∆ZπQ0

N0

E2
π

P∆Z

)
+ o(γ2),

∆Stot =
Q0

N0
∆Z + γL2

(
E − E2

π

N0 + β∆Z Q0

N0
π

)
+ o(γ),

where Eπ := −(−βπ∆Z Q0

N0
−K) is (at order 0 in γ) the amount of shares that needs to be liquidated

to repay first movers.

The impact of the first-mover advantage when the fund holds both risky assets and cash is

similar to the case that the fund does not hold any cash. The first-mover advantage affects the

price of the asset only at second order in γ. The term βQ0

N0
∆Zπ+K represents the amount of shares

redeemed by first movers that cannot be paid back with cash and that, therefore, cause liquidation

of asset shares. The impact of these sales on the value of a fund share is quadratic and has to be

normalised by the amount of remaining shares of the fund.

C.1 The Cost of Cash Replenishment

If the fund desires to maintain a target level of cash and has used its available cash to repay

redeeming investors, it may eventually need to sell assets to restore its original cash position.

While the fund is time constrained by contractual agreements to repay redeeming investors, it is

arguably not in immediate need of reinstating its target cash level. Even funds that invest in illiquid

assets and are not subject to time constraints may reduce the cost of raising cash; for example,

they can decide not to reinvest maturing bonds, wait for an opportunity to sell assets at favorable

prices, or keep the flow of cash from entering investors uninvested.

The findings of our analysis would remain qualitatively the same if the cost for replenishing

the fund’s cash buffer were to be modeled. We present an extension of the baseline model which

provides evidence that this cost is small compared to the overall change in the fund’s NAV triggered

by the initial market shock ∆Z. We model the longer time frame at disposal of the fund to revert

to the target cash-to-asset ratio by assuming that the fund sells asset shares with a market price

impact equal to γCR = ε× γ, where ε ∈ [0, 1]. This reflects the fact that the liquidity depends not

only on the asset itself, but also on the time window available to the fund to liquidate the asset.

Without stringent time constraints, the fund incurs a lower cost to liquidate asset shares, and hence

the asset illiquidity parameter is lower.

Let cprop := C0
C0+P0Q0

be the initial proportion in cash of the fund’s assets. The fund aims at this

target in the long run. We assume that after all rounds of redemptions from first and second movers
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Figure 11: Impact on the fund’s NAV of asset sales to replenish cash position for various values of
asset illiquidity (ε is long-term asset illiquidity over short-term asset illiquidity). The initial shock
size is 5% and γ = 2.5× 10−8.

have concluded, the asset price slowly recovers from its sell-off value P0 + ∆Ptot to its fundamental

value P0 + ∆Z. Hence, after all cash has been depleted due to redemptions and the asset price has

rebounded, the fund’s NAV is

Sf :=
(Q0 + ∆Qfmtot + ∆Qsmtot )(P0 + ∆Z)

N0 −∆Rfmtot −∆Rsmtot
.

The number of asset shares ∆QCR the fund needs to sell to reinstate the cash allocation cprop is

given by the solution of the system:

Cf

Cf + (Q0 + ∆Qfmtot + ∆Qsmtot + ∆QCR)(P0 + ∆Z)
= cprop,

−∆QCR(P0 + ∆Z + γCR∆QCR) = Cf .

The cost of cash replenishment on the fund’s NAV is

∆SCR :=
Cf + (Q0 + ∆Qfmtot + ∆Qsmtot + ∆QCR)(P0 + ∆Z)

N0 −∆Rfmtot −∆Rsmtot
− Sf

Figure 11 illustrates the cost of cash replenishment on the fund’s NAV for ε ranging from 0 to

1. The cost is small compared to the size of the initial asset market shock.

D Multiple Funds and Swing Pricing

Consider two funds that hold shares of the same asset. First movers of each fund i = 1, 2 redeem

∆Rfmtot,i fund shares, and fund i liquidates ∆Qfmtot,i asset shares to meet these redemption requests,
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where

∆Rfmtot,i = −βiπi∆Stot,i (D.1)

−∆Qfmtot,i × (P0 + ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2)) = ∆Rfmtot,i(S0,i + ∆Z).

Second movers of each fund i redeem ∆Rsmtot,i fund shares and, consequently, fund i liquidates ∆Qsmtot,i
asset shares, where

∆Rsmtot,i = −βi(1− πi)∆Stot,i (D.2)

∆Qsmtot,i = −∆Rsmtot,i
S0 + ∆Stot,i
P0 + ∆Ptot

.

The change in value ∆Stot,i of a fund i’s share, for i = 1, 2, and the change in price of an asset

share ∆Ptot, are given by the solution to the following system of equations:

∆Ptot = ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2 + ∆Qsmtot,1 + ∆Qsmtot,2),

∆Stot,1 =
(Q0 + ∆Qfmtot,1 + ∆Qsmtot,1)(P0 + ∆Ptot)

N0 −∆Rfmtot,1 −∆Rsmtot,1
− S0,1, (D.3)

∆Stot,2 =
(Q0 + ∆Qfmtot,2 + ∆Qsmtot,2)(P0 + ∆Ptot)

N0 −∆Rfmtot,2 −∆Rsmtot,2
− S0,2.

Proposition D.1. Let ∆Ri := −βi∆Stot,i be the amount of redeemed shares. Assume that π1 =

π2 = 0, and that the number of asset shares equals the number of fund shares for each fund: Qi = Ni

for i = 1, 2.

The change in value of fund i’s share ∆Stot,i (for i = 1, 2) and the change in the asset price ∆Ptot

are

∆Stot,i = ∆Z + γ
E1 + E2

1− (β1 + β2)γ
, (D.4)

∆Ptot = ∆Z + γ
E1 + E2

1− (β1 + β2)γ
,

where Ei = βi∆Z.

Remark D.2. Cross-price impact effects are important. The impact on the funds’ share value and

the asset price imposed by the simultaneous liquidation procedure of multiple funds is larger that

the sum of the impacts of each individual fund without accounting for spillover effects:

∆Ptot ≈ ∆Z + γE1 + γ2β1E1︸ ︷︷ ︸
Fund 1 Impact

+ γE2 + γ2β2E2︸ ︷︷ ︸
Fund 2 Impact

+ γ2(β1E2 + β2E1)︸ ︷︷ ︸
Cross-impact

.

Proposition D.3. Assume that π1, π2 > 0. Define Ei = βi∆Z, Eπi = βiπi∆Z, Remπ
i = Ni +

βiπi∆Z the number of remaining shares after first mover redemptions at order 0 in γ and Remi =
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Ni + βi∆Z the number of remaining shares after first and second mover redemptions at order 0 in

γ.

For small γ, the change in value of fund i’s share is

∆Stot,i = ∆Z + γ

(
(E1 + E2)− Eπi (Eπ1 + Eπ2 )

Remπ
i

)
+ o(γ).

For small γ, the change in the asset price is

∆Ptot = ∆Z + γ(E1 + E2) + γ2

(
(β1 + β2)(E1 + E2)

− β1E
π
1

Eπ1 + Eπ2
Remπ

1

− β2E
π
2

Eπ1 + Eπ2
Remπ

2

− Eπ1
Eπ1 + Eπ2
P0 + ∆Z

Rem1

Remπ
1

− Eπ2
Eπ1 + Eπ2
P0 + ∆Z

Rem2

Remπ
2

)
+ o(γ2).

Remark D.4. The expressions in Proposition D.3 can be restated as

∆Stot,1 ≈ ∆Z + γ

(
E1 −

(Eπ1 )2

Remπ
1

)
︸ ︷︷ ︸

Own Impact

+ γ

(
E2 −

Eπ2E
π
1

Remπ
1

)
︸ ︷︷ ︸
Other Fund’s Impact

,

∆Ptot ≈ ∆Z + γE1 + γ2

(
β1E1 − β1

(Eπ1 )2

Remπ
1

− (Eπ1 )2

P∆Z

Rem1

Remπ
1

)
︸ ︷︷ ︸

Impact from Fund 1

+ γE2 + γ2

(
β2E2 − β2

(Eπ2 )2

Remπ
2

− (Eπ2 )2

P∆Z

Rem2

Remπ
2

)
︸ ︷︷ ︸

Impact from Fund 2

+ γ2

(
β1E2 + β2E1 − β1

Eπ1E
π
2

Remπ
1

− β2
Eπ1E

π
2

Remπ
2

− Eπ1E
π
2

P∆Z

Rem1

Remπ
1

− Eπ1E
π
2

P∆Z

Rem2

Remπ
2

)
︸ ︷︷ ︸

Cross-impact

.

Proposition D.5. Assume that π1, π2 > 0, and that the number of asset shares equals the number

of fund shares for each fund: Qi = Ni for i = 1, 2. Assume both fund 1 and fund 2 apply swing

pricing. The swing price of fund i = 1, 2 is

∆Sswboth = γ
Eπ1 + Eπ2

1− (β1 + β2)γ
.

Viewed as a function of the number of redemptions from first movers, the swing price takes the

form

∆Sswboth = −γ(∆Rfmtot,1 + ∆Rfmtot,2), (D.5)

where ∆Rfmtot,i is the number of shares redeemed by first movers of fund i = 1, 2.

Proposition D.6. Assume that π1 > 0 and π2 = 0, and that the number of asset shares equals
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the number of fund shares for each fund: Qi = Ni for i = 1, 2. For small γ, the change in value of

fund 2’s share ∆Stot,2 is

∆Stot,2 = ∆Z + γ(β1 + β2)∆Z + γ2

(
(β1 + β2)2∆Z − (Eπ1 )2 Rem1 + β1(P0 + ∆Z)

(P0 + ∆Z)Remπ
1

)
+ o(γ2).

(D.6)

If only one fund applies swing pricing, the fund may decide to implement an adjustment that

removes either the impact of first movers of both funds or only the impact of its own first movers.

Swing price ∆Sswloc is computed such that the fund attains the change in NAV (D.6), while swing

price ∆Sswglob is computed such that the fund’s NAV change is (D.4).

Proposition D.7. Assume that π1, π2 > 0, and that the number of asset shares equals the number

of fund shares for each fund: Qi = Ni for i = 1, 2. Assume that only fund 2 applies swing pricing.

For small γ,

∆Sswloc = ∆Sswboth + γ2E
π
1 (β1(P0 + 2∆Z)(Remπ

2 −∆Zπ1(β1π1 + β2π2)) +N1(N2 − β1∆Zπ1))

(P0 + ∆Z)Remπ
1

+ o(γ2),

∆Sswglob = ∆Sswloc + γ2β1π1

β2π2

Remπ
2

Remπ
1

Eπ1 (β1(P0 + ∆Z) + Rem1)

P0 + ∆Z
+ o(γ2).

E Technical Proofs

Lemma E.1. Assume that first movers redeem ∆Rfmtot fund shares and the fund trades ∆Qfmtot asset

shares to repay first movers. After first movers’ redemptions, the fund holds Qfm := Q0 + ∆Qfmtot
asset shares and there are Nfm := N0 −∆Rfmtot outstanding fund shares, the change in asset price

is ∆P fm := ∆Z + γ∆Qfmtot and the change in value of a fund share is ∆Sfm := QfmP fm

Nfm − S0.

Assume that βγ(1− π)
(
Qfm

Nfm

)2
< 1. The changes in asset price and fund share value after second

movers’ redemptions are given by

∆Ptot = ∆P fm + βγ(1− π)
Qfm

Nfm

∆Sfm

1− βγ(1− π)
(
Qfm

Nfm

)2 ,

∆Stot =
∆Sfm

1− βγ(1− π)
(
Qfm

Nfm

)2 .

Proof. After all first movers have redeemed their shares, second movers observe the change in

value of a fund share ∆Ssm0 := QfmP fm

Nfm − S0 and the change in asset price ∆P sm0 := ∆P fm.

At each round of redemptions, second movers redeem ∆Rsmn+1 = −β(1 − π)∆Ssmn shares and the

fund sells ∆Qsmn+1 = −∆Rsmn+1
Ssmn +∆Ssmn+1

P smn +∆P smn+1
, where ∆P smn := γ∆Qsmn and Ssmn (resp. P smn ) is defined

recursively as Ssmn := Ssmn−1 + ∆Ssmn with Ssm0 := S0 + ∆Ssm0 (resp. P smn := P smn−1 + ∆P smn with
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P sm0 := P0 + ∆P sm0 ). The change in value of a fund share after the n-th round of redemptions

is ∆Ssmn+1 =
(Qsmn +∆Qsmn+1)(P smn +∆P smn+1)

Nsm
n −∆Rsmn+1

− Ssmn , where Qsmn (resp. N sm
n ) is defined recursively as

Qsmn := Qsmn−1 + ∆Qsmn with Qsm0 := Qfm (resp. N sm
n := N sm

n−1 −∆Rsmn with N sm
0 := Nfm). It can

be immediately verified that at each iteration, we obtain

∆Ssmn+1 = γβ(1− π)

(
Qfm

Nfm

)2

∆Ssmn ,

∆P smn+1 = γβ(1− π)
Qfm

Nfm
∆Ssmn ,

with ∆P sm0 = ∆P fm and ∆Ssm0 = ∆Sfm. The result follows from the equalities ∆Ptot =∑∞
n=0 ∆P smn and ∆Stot =

∑∞
n=0 ∆Ssmn .

Proof of Proposition 2.1. It follows directly from Lemma E.1 after setting π = 0, Q0 = N0,

∆Qfm = 0, ∆Rfm = 0, ∆P fm = ∆Z, and ∆Sfm = ∆Z.

Proof of Proposition 2.2. The change in value of a fund share following all redemptions is computed

iteratively. Because we assume Q0 = N0, the initial negative shock to the value of a fund share

is ∆S0 = ∆Z. If first movers anticipate a negative change ∆Sn in the value of a fund share after

the n-th round of redemptions, then they redeem ∆Rfmn+1 = −βπ∆Sn fund shares. To repay first

movers, the fund has to trade ∆Qfmn+1 asset shares, where −∆Qfmn+1 × (P0 + ∆Z + γ∆Qfmn+1) =

∆Rfmn+1(S0 + ∆S0). Notice that the number of redemptions ∆Rfmn+1 (resp. the negative change in

holdings ∆Qfmn+1) decreases (resp. increases) with ∆Sn. By rewriting the equation as
Q0+∆Qfmn+1

N0−∆Rfmn+1

=

1 − γ
P0+∆Z

(∆Qfmn+1)2

N0−∆Rfmn+1

, we can immediately see that the fraction
Q0+∆Qfmn+1

N0−∆Rfmn+1

is strictly increasing in

∆Sn. The smallest number of asset shares the fund has to trade to repay first movers is

∆Qfmn+1 = −
P0 + ∆Z −

√
(P0 + ∆Z)2 − 4γ∆Rfmn+1(P0 + ∆Z)(Q0/N0)

2γ
.

The change in value of a fund share due to first movers’ redemptions is

∆Sfmn+1 =
(Q0 + ∆Qfmn+1)(P0 + ∆Z + γ∆Qfmn+1)

N0 −∆Rfmn+1

− S0.

The redemptions by second movers further amplify the downward pressure on the value of a fund

share: using Lemma E.1 we obtain that, after second mover redemptions, the change in value of a

fund share is

∆Sn+1 =
∆Sfmn+1

1− βγ(1− π)

(
Q0+∆Qfmn+1

N0−∆Rfmn+1

)2 . (E.1)

Since
Q0+∆Qfmn+1

N0−∆Rfmn+1

increases with ∆Sn, we obtain that ∆Sfmn+1 and ∆Sn+1 also increase with ∆Sn.
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After plugging the expressions for ∆Sfmn+1, ∆Qfmn+1 and ∆Rfmn+1 into ∆Sn+1, we may rewrite the

expression for ∆Sn+1 as

∆Sn+1 = fγ(∆Sn), (E.2)

where

fγ(x) =
2βπ∆Zx+N0(∆Z − P0 +

√
P0 + ∆Z

√
P0 + ∆Z + 4βπγx)

2(N0 + βπx)(1− β(1−π)(P0+∆Z−2γN0−
√
P0+∆Z

√
P0+∆Z+4βπγx)2

4γ(N0+βπx)2 )
. (E.3)

Because ∆Sn+1 is strictly increasing in ∆Sn, the function fγ(x) is strictly increasing when x < 0.

Furthermore, it can be immediately verified that fγ(∆Z) ≤ fγ(0) = ∆Z
1−βγ(1−π) < ∆Z. By iterating

the relation (E.2), it follows that the sequence {∆Sn}n≥0 is strictly decreasing: if ∆Sn < ∆Sn−1,

then ∆Sn+1 = fγ(∆Sn) < fγ(∆Sn−1) = ∆Sn. The limit of this sequence, if it exists, must be a fixed

point ∆Stot of the function fγ(·), i.e. ∆Stot = fγ(∆Stot). Notice that f0(x) := limγ→0+ fγ(x) = ∆Z.

Hence, the initial shock ∆S0 = ∆Z is a fixed point of fγ(·) when γ = 0. Because the dependence

of fγ(·) on γ is continuous, there exists γ∗ > 0 such that for 0 < γ < γ∗ there exists a solution to

the fixed point equation x = fγ(x).

We can Taylor expand the fixed point ∆Stot(γ) around γ = 0 to obtain ∆Stot(γ) = ∆Stot(0) +

γ ∂∆Stot(γ)
∂γ |γ=0 + o(γ). Since limγ→0+ fγ(∆Stot(γ)) = ∆Z, we get that ∆Stot(0) = ∆Z. By dif-

ferentiating both sides of the fixed point equation ∆Stot(γ) = fγ(∆Stot(γ)) with respect to γ,

we obtain ∂∆Stot
∂γ =

∂fγ(∆Stot)
∂γ +

∂fγ(∆Stot)
∂∆Stot

∂∆Stot
∂γ . It can be verified that

∂fγ(∆Stot)
∂∆Stot

|γ=0 = 0 and
∂fγ(∆Stot)

∂γ |γ=0 = β∆Z − π2β2∆Z2

N0+πβ∆Z . Hence, ∆Stot = ∆Z + γ
(
β∆Z − π2β2∆Z2

N0+πβ∆Z

)
+ o(γ).

From Lemma E.1, we get that ∆Ptot = ∆Z + γ∆Qfm + βγ(1− π)Q0+∆Qfm

N0−∆Rfm
∆Stot, where both

∆Qfm and ∆Rfm are functions of ∆Stot. Given the asymptotic expansion in γ for ∆Stot, we

can compute the expansion for ∆Ptot: limγ→0+ ∆Ptot = ∆Z, limγ→0+
∆Ptot−∆Z

γ = β∆Z and

limγ→0+
∆Ptot−∆Z−γβ∆Z

γ2 = β2∆Z − β π2β2∆Z2

N0+πβ∆Z −
π2β2∆Z2

P0+∆Z
N0+β∆Z
N0+πβ∆Z .

Proof of Proposition 3.1. In the proof of Proposition 2.2, we have shown that ∆Stot is the limit,

if it exists, of the sequence {∆Sn}n≥0, defined as ∆Sn+1 = fγ(∆Sn), with fγ given in (E.3) and

∆S0 = ∆Z. It can be verified immediately that if ∆Z = 0, then ∆Stot = 0 is the unique fixed

point of fγ(·).
Notice that the maximum amount of cash the fund can retrieve from asset sales is max∆Q ∆Q(P0+

∆Z + γ∆Q) = (P0+∆Z)2

4γ . Hence, the fund becomes unable to repay first movers when ∆Rfm(S0 +

∆S0) > (P0+∆Z)2

4γ , where the left-hand side is the amount of cash the fund owes to first movers.

In other words, if first movers redeem ∆Rfm = −βπ∆S in response to an anticipated final change

in value of a fund share ∆S, this solvency-type condition reads as ∆S < −P0+∆Z
4γπβ (recall that

Q0 = N0). Hence, if ∆S0 = ∆Z < − P0
1+4γβπ , the fund becomes unable to meet its first movers’

redemption requests.

Throughout the proof, we will write fγ(x,∆Z) to highlight the dependence of fγ(x) on ∆Z. De-

fine the solvency set S := {∆Z : ∀n ∆Sn ∈ [−P0+∆Z
4βπγ , 0], where ∆Sn+1 = fγ(∆Sn,∆Z) and ∆S0 =

∆Z}. This is the set of initial shocks ∆Z such that the fund remains solvent after each iteration of

the procedure yielding the aggregate change in the value of a fund share ∆Stot. We have already
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shown that if ∆Z < − P0
1+4γβπ , then ∆Z does not belong to S.

Define ∆Z∗ := inf S. We have already argued that − P0
1+4γβπ ≤ ∆Z∗. In order to prove that the

fund remains solvent for any initial shock ∆Z ≥ ∆Z∗, it is sufficient to show that fγ(x,∆Z) is an

increasing function of ∆Z for any x ∈ [−P0+∆Z
4γπβ , 0]. For a given quantity of first movers’ redemptions

∆Rfm, it can be seen immediately that the amount of asset shares ∆Qfm the fund trades to repay

first movers is an increasing function of ∆Z. Hence, ∆Sfm := (Q0+∆Qfm)(P0+∆Z+γ∆Qfm)
N0−∆Rfm

− S0

is also an increasing function of ∆Z, and so, combining equations (E.1) and (E.2), we obtain

fγ

(
−∆Rfm

βπ ,∆Z
)

= ∆Sfm(∆Z)

1−βγ(1−π)

(
Q0+∆Qfm(∆Z)

N0−∆Rfm

)2 . In other words, for any x ∈ [−P0+∆Z
4γπβ , 0], fγ(x,∆Z)

is increasing in ∆Z. It follows that if ∆Z2 < ∆Z1 and ∆Z1 /∈ S, then ∆Z2 /∈ S. This shows that

the fund remains solvent for any ∆Z ≥ ∆Z∗.

To highlight the dependence of the solvency set S on γ, we write Sγ . It can easily be seen that

fγ(x,∆Z) is decreasing in γ for any ∆Z ∈ [− P0
1+γβπ , 0] and any x ∈ [−P0+∆Z

4γπβ , 0]. Let γ1 < γ2.

Because fγ(x,∆Z) is decreasing in γ and −P0+∆Z
4βπγ is increasing in γ, we obtain that Sγ2 ⊂ Sγ1 .

This implies that ∆Z∗(γ2) ≥ ∆Z∗(γ1) and concludes the proof.

Proof of Proposition 3.3. Assume the fund adjusts its NAV by ∆Sadj when first movers redeem.

The final asset price change ∆Ptot and final fund share value change ∆Stot are the solution to the

system of equations (A.1–A.2–A.3), where the first line of (A.2) gets replaced by −∆Qfmtot × (P0 +

∆Z + γ∆Qfmtot ) = ∆Rfmtot × (S0 + ∆Sfm0 + ∆Sadj).

It can be immediately verified that (∆Sadj ,∆Ptot,∆Stot) =
(
γ πβ∆Z

1−βγ ,
∆Z

1−βγ ,
∆Z

1−βγ

)
is a solution

to this system of equations. This means that γ πβ∆Z
1−βγ is a swing price. Since ∆Rfmtot = −πβ∆Stot =

−πβ ∆Z
1−βγ , we get that ∆Ssw = −γ∆Rfmtot .

Notice that ∆Qfmtot is a strictly decreasing function of ∆Sadj . Since ∆Stot increases with ∆Qfmtot ,

also ∆Stot is a strictly decreasing function of ∆Sadj . This implies that the swing price is unique.

Proof of Proposition 3.4. Notice that if ∆Rfmtot ≤ C0
S0+∆Z , the fund has enough cash to repay first

movers, therefore in this case the swing price is 0. Assume that ∆Z and C0 are such that

∆Rfmtot ≥ C0
S0+∆Z . Since the fund first uses cash to repay first movers, it needs to liquidate as-

sets to raise only the cash equivalent of ∆Rfmtot − C0
S0+∆Z fund shares. Hence, the final change

∆Ptot in asset price and the final change ∆Stot in the fund share value are given by the solu-

tion to the system of equations (A.1–A.2–A.3), where the first line of (A.2) gets replaced by

−∆Qfmtot × (P0 + ∆Z + γ∆Qfmtot ) = (∆Rfmtot − C0
S0+∆Z )(S0 + ∆Sfm0 + ∆Sadj). It can be verified that

(∆Sadj ,∆Ptot,∆Stot) =
(
−γL2(∆Rfm − C0

S0+∆Z ),∆Z + γL E
1−βγL2 ,∆Z + γL2 E

1−βγL2

)
is a solution

to this system of equations. Since ∆Stot is also the change in value of a fund share in the absence

of first movers (see Proposition C.1), the adjustment corresponds to the swing price.

Proof of Proposition 4.1. The second order terms in the expansion formulas given in Proposition

D.7 are strictly negative. The result follows immediately.

Proof of Proposition B.1. Notice that ∆Sp = (S0 + ∆Stot) × P0+∆Z
P0+∆Ptot

− S0. Assume first π = 0.
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Because Q0 = N0, we have P0 = S0. From Proposition 2.1, we get ∆Ptot = ∆Stot. It follows

immediately that ∆Sp = ∆Z.

Assume now π > 0. From Proposition 2.2, we get the asymptotic expansions in γ of ∆Ptot and

∆Stot. Plugging these expressions into ∆Sp yields the result.

Proof of Proposition C.1. Notice that if −βQ0

N0
∆Z ≤ K, the fund is not required to liquidate asset

shares to repay investors who react to the initial market shock. Hence, there is no pressure imposed

on the asset price, and ∆Ptot = ∆Stot = ∆Z. This implies that ∆Rsmtot = −βQ0

N0
∆Z.

If −βQ0

N0
∆Z > K, the fund sells asset shares after all available cash has been used to repay

redeeming investors: ∆Qsmtot = −(∆Rsmtot −K)S0+∆Stot
P0+∆Ptot

, where ∆Rsmtot = −β∆Stot > K. The change

in value of a fund share solves ∆Stot =
(Q0+∆Qsmtot )(P0+∆Ptot)

N0−∆Rsmtot
− S0, while the change in price of an

asset share solves ∆Ptot = ∆Z + γ∆Qsmtot . It can be verified that the pair (∆Ptot,∆Stot), where

∆Ptot = ∆Z + γL
E

1− βγL2
,

∆Stot =
Q0

N0
∆Z + γL2 E

1− βγL2
,

is a solution to these equations.

Proof of Proposition C.2. Since ∆Rfmtot > K, the fund needs to sell asset shares to repay first

movers. The change in value of a fund share ∆Stot and the change in price of an asset share ∆Ptot

are given by the solution of the system of equations (A.1–A.2–A.3), where the first line of (A.2)

gets replaced by −∆Qfmtot × (P0 + ∆Z + γ∆Qfmtot ) = (∆Rfmtot −K)(S0 + Q0

N0
∆Z), or equivalently by

∆Qfmtot = −
P0 + ∆Z −

√
(P0 + ∆Z)2 − 4γ(∆Rfmtot −K)(S0 + ∆ZQ0/N0)

2γ
.

As in the proof of Proposition 2.2, we find an approximate solution (∆Ptot,∆Stot) for small

γ: ∆Ptot(γ) = ∆Ptot(0) + γ ∂∆Ptot(γ)
∂γ |γ=0 + γ2

2
∂2∆Ptot(γ)

∂γ2 |γ=0 + o(γ2) and ∆Stot(γ) = ∆Stot(0) +

γ ∂∆Stot(γ)
∂γ |γ=0 + o(γ). The last two equations in the system (A.3) may be rewritten as ∆Ptot =

gP (γ,∆Ptot,∆Stot) and ∆Stot = gS(γ,∆Ptot,∆Stot) for appropriately defined functions gP and gS .

By letting γ to 0+ in these equations and solving for ∆Ptot(0) and ∆Stot(0), we obtain the so-

lutions ∆Ptot(0) = ∆Z and ∆Stot(0) = Q0

N0
∆Z. Differentiating both sides of each equation with

respect to γ and evaluating the derivatives at γ = 0, we obtain ∂∆Ptot(γ)
∂γ |γ=0 = LE, ∂∆Stot(γ)

∂γ |γ=0 =

L2(E − E2
π

N0+β∆Z
Q0
N0

π
) and ∂2∆Ptot(γ)

∂γ2 |γ=0 = 2

(
βL3E − βL3 E2

π

N0+β∆Z
Q0
N0

π
− L2

N0+β∆Z
Q0
N0

N0+β∆Zπ
Q0
N0

E2
π

P∆Z

)
.

Proof of Proposition D.1. The proof proceeds along similar lines as the proofs of Lemma E.1 and

Proposition C.1. The change in asset price ∆Ptot and the change in fund i’s NAV ∆Stot,i, for i = 1, 2,

are given by the solution of the system of equations (D.1–D.2–D.3) with πi = 0, and therefore

∆Rfmtot,i = 0 and ∆Qfmtot,i = 0, for i = 1, 2. It can be verified that a solution to these equations is given

by the triplet (∆Stot,1,∆Stot,2,∆Ptot) defined as ∆Stot,1 = ∆Stot,2 = ∆Ptot = ∆Z+γ E1+E2
1−(β1+β2)γ .
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Proof of Proposition D.3. The proof follows the same lines as the proofs of Proposition 2.2 and

Proposition C.2. The change in asset price ∆Ptot and the change in fund i’s NAV ∆Stot,i, for i = 1, 2,

are given by the solution of the system of equations (D.1–D.2–D.3). We rewrite the equations in the

system (D.3) as ∆Ptot = gP (γ,∆Ptot,∆Stot,1,∆Stot,2), ∆Stot,1 = gS,1(γ,∆Ptot,∆Stot,1,∆Stot,2) and

∆Stot,2 = gS,2(γ,∆Ptot,∆Stot,1,∆Stot,2) for appropriately defined functions gP , gS,1 and gS,2. Dif-

ferentiating both sides of these equations with respect to γ and evaluating them at γ = 0, yields the

coefficients of the asymptotic expansions ∆Ptot(γ) = ∆Ptot(0) +γ ∂∆Ptot(γ)
∂γ |γ=0 + γ2

2
∂2∆Ptot(γ)

∂γ2 |γ=0 +

o(γ2) and ∆Stot,i(γ) = ∆Stot,i(0) + γ
∂∆Stot,i(γ)

∂γ |γ=0 + o(γ), for i = 1, 2.

Proof of Proposition D.5. The proof follows the same lines as the proofs of Proposition 3.3 and

Proposition 3.4. The NAV that fund i’s first movers receive is adjusted by an amount ∆Sadji ,

for i = 1, 2. Hence, the change in asset price ∆Ptot and the change in fund i’s NAV ∆Stot,i, for

i = 1, 2, are given by the solution of the system of equations (D.1–D.2–D.3), where the second line

of the system (D.1) gets replaced by −∆Qfmtot,i× (P0 + ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2)) = ∆Rfmtot,i(S0,i +

∆Z + ∆Sadji ), for i = 1, 2. It can be verified that ∆Sadji = γ
Eπ1 +Eπ2

1−(β1+β2)γ , ∆Qfmtot,i =
Eπi

1−(β1+β2)γ , for

i = 1, 2, and ∆Stot,1 = ∆Stot,2 = ∆Ptot = ∆Z + γ E1+E2
1−(β1+β2)γ solve the system of equations. It

follows that ∆Sswboth := γ
Eπ1 +Eπ2

1−(β1+β2)γ is the swing price. The swing price also satisfies the relation

∆Sswboth = −γ(∆Rfmtot,1 + ∆Rfmtot,2).

Proof of Proposition D.6. The proof follows the same lines as the proofs of Proposition 2.2, Propo-

sition C.2 and Proposition D.3. By assumption, it is only fund 1 to have first-mover investors.

Hence, the change in asset price ∆Ptot and the change in fund i’s NAV ∆Stot,i, for i = 1, 2, are

given by the solution to the system of equations (D.1–D.2–D.3) with π2 = 0. Therefore, ∆Rfmtot,2 = 0

and ∆Qfmtot,2 = 0. The asymptotic expansions for ∆Ptot, ∆Stot,1 and ∆Stot,2 can be computed as in

the proof of Proposition D.3.

Proof of Proposition D.7. The NAV that fund 2’s first movers receive is adjusted by an amount

∆Sadj . Fund 1’s NAV does not get adjusted. Hence, the change in asset price ∆Ptot and the

change in fund i’s NAV ∆Stot,i, for i = 1, 2, are given by the solution of the system of equations

(D.1–D.2–D.3), where the second line of the system (D.1) gets replaced by the equations

−∆Qfmtot,1 × (P0 + ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2)) = ∆Rfmtot,1(S0,1 + ∆Z),

−∆Qfmtot,2 × (P0 + ∆Z + γ(∆Qfmtot,1 + ∆Qfmtot,2)) = ∆Rfmtot,2(S0,2 + ∆Z + ∆Sadj).

We rewrite the equations in the system (D.3) as

∆Ptot = gP (γ,∆Sadj ,∆Ptot,∆Stot,1,∆Stot,2),

∆Stot,1 = gS,1(γ,∆Sadj ,∆Ptot,∆Stot,1,∆Stot,2), (E.4)

∆Stot,2 = gS,2(γ,∆Sadj ,∆Ptot,∆Stot,1,∆Stot,2).

38



Next, we compute the asymptotic expansion for small γ of ∆Sswglob = ∆Sswglob(0) + γ
∂∆Sswglob(γ)

∂γ |γ=0 +

γ
2

∂2∆Sswglob(γ)

∂γ2 |γ=0 + o(γ2). Proposition D.1 states that, for π1 = π2 = 0, the change in NAV of fund

2 is

∆Stot,2 = ∆Z + γ(β1 + β2)∆Z + γ2(β1 + β2)2∆Z + · · · . (E.5)

By definition, the adjustment ∆Sswglob is the one that fund 2 needs to apply to guarantee that

∆Stot,2 admits the asymptotic expansion E.5. Hence, if ∆Sadj = ∆Sswglob, then ∆Stot,2(0) = ∆Z,
∂∆Stot,2(γ)

∂γ |γ=0 = (β1+β2)∆Z and
∂2∆Stot,2(γ)

∂γ2 |γ=0 = 2(β1+β2)2∆Z. By letting γ to 0+ on both sides

of each equation in E.4 and using that ∆Stot,2(0) = ∆Z, we get that ∆Ptot(0) = ∆Stot,1(0) = ∆Z

and ∆Sadj = 0. By differentiating both sides of each equation in E.4 with respect to γ, evaluating

the derivatives at γ = 0 and using that
∂∆Stot,2(γ)

∂γ |γ=0 = (β1 + β2)∆Z, we obtain the values for
∂∆Ptot(γ)

∂γ |γ=0,
∂∆Stot,1(γ)

∂γ |γ=0 and ∂∆Sadj(γ)
∂γ |γ=0. By differentiating the same equations again, we can

compute ∂2∆Sadj(γ)
∂γ2 |γ=0. The resulting values for ∆Stot,2(0),

∂∆Stot,2(γ)
∂γ |γ=0 and

∂2∆Stot,2(γ)
∂γ2 |γ=0 are

the coefficients in the asymptotic expansion of ∆Sswglob.

Proposition D.6 states that if π1 > 0 and π2 = 0, then fund 2’s change in NAV is

∆Stot,2 = ∆Z + γ(β1 + β2)∆Z + γ2

(
(β1 + β2)2∆Z − (Eπ1 )2 Rem1 + β1(P0 + ∆Z)

(P0 + ∆Z)Remπ
1

)
+ · · · . (E.6)

The same methodology used to compute the asymptotic expansion for ∆Sswglob, can be applied to

determine the expansion for ∆Sswloc . Because the adjustment ∆Sswloc is such that ∆Stot,2 admits

the asymptotic expansion E.6, in this case ∆Stot,2(0) = ∆Z,
∂∆Stot,2(γ)

∂γ |γ=0 = (β1 + β2)∆Z and
∂2∆Stot,2(γ)

∂γ2 |γ=0 = 2
(

(β1 + β2)2∆Z − (Eπ1 )2 Rem1+β1(P0+∆Z)
(P0+∆Z)Remπ

1

)
. The coefficients for the asymptotic

expansion of ∆Sswloc can now be found repeating the same procedure used for ∆Sswglob.
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