# Can Currency Competition Work?

Jesus Fernandez-Villaverde University of Pennsylvania Daniel Sanches

Federal Reserve Bank of Philadelphia

September 18, 2017

#### Motivation

- The appearance of cryptocurrencies have triggered a wave of interest in privately issued monies: *Bitcoin*, *Ethereum*, and *Litecoin*
- 1 bitcoin is traded at \$4,254 (as of September 12)
- Available supply: 16,560,625
- Market cap: \$70.35 billion (Hershey Co market cap is 22.28 billion)
- Other 5 cryptocurrencies (*Ethereum*, *Steem*, *Ripple*, *Ethereum classic*, and *Litecoin*) have market caps over \$100 million

# An Intriguing Phenomenon for a Monetary Economist

- What are cryptocurrencies?
  - Cryptocurrencies are an outside money (of fiat nature) issued by a private agent
  - An intrinsically worthless asset (e.g., a Lucas tree that pays no dividend)
- Properties of cryptocurrencies:
  - Decentralized mechanism for transferring electronic tokens in bilateral trades (i.e., no trusted third party is required)
  - "Solves" double-spending problem

#### **Inside and Outside Money**

#### **Outside money**

Is either of a fiat nature (unbacked) or backed by some asset that is not in zero net supply within the private sector

#### **Examples:**

**1.** Gold or silver (commodity money)

- 2. U.S. dollar bills
- **3.** Reserves issued by the Federal Reserve

#### Inside money

Is an asset backed by any form of private credit that circulates as a medium of exchange (in zero net supply within the private sector)

#### **Examples:**

- 1. Bills of exchange
- 2. Bank notes
- 3. Bank deposits
- 4. Checkable mutual funds

# Friedman versus Hayek

- Friedman (1959): Government should provide outside money to construct the foundation of the monetary structure. Private banks issue inside money as required by market forces.
  - Friedman's "good reasons"
- Hayek (1976): Supply of outside money can be left to private market participants. Governments abuse the monopoly on outside money creation.
  - Market discipline provides incentives for agents to create "good" brands of money

# Research Questions

- Will a system of privately issued outside monies deliver price stability?
- Will the market provide the (socially) optimum quantity of money?
- Will one currency drive all others from the market? Or will several of these currencies coexist along the equilibrium path?
- Do private monies require a commodity backing?
- Can private monies and a government-issued money coexist?

#### Literature

- Free banking: Selgin and White (1994); White (1995)
- Search-theoretic models of exchange: Lagos and Wright (2003, 2005)
- Inside money: Cavalcanti, Erosa, Temzelides (1999); Cavalcanti and Wallace (1999); Williamson (1999)
- **Privately issued outside money:** Berentsen (2006); Martin and Schreft (2006)
- Liquidity provision by productive firms: Holmstrom and Tirole (2011); Dang, Gorton, Holmstrom, Ordonez (2014)

# Road Map

- Study positive and normative properties of purely private arrangement
- Introduce government-supplied outside money
  - Implementation of monetary policy
  - Can the government implement an efficient allocation when competing with private currencies?
- Automata
- Productive capital



Meeting with probability  $\sigma \in (0,1)$ 

Meeting with probability  $\sigma \in (0,1)$ 

- Discrete time  $t = 0, 1, 2, \dots$
- Continuum of buyers and sellers
- N types of entrepreneurs: [0, 1]-continuum of each type
- Each period contains two subperiods
- Centralized market (CM) in the first subperiod

- Decentralized market (DM) in the second subperiod
  - Buyer is randomly matched with a seller with probability  $\sigma \in (0,1)$  and vice versa
  - Entrepreneurs remain idle
- Two perishable commodities
  - CM good is produced in the first subperiod
  - DM good is produced in the second subperiod

- Buyers and sellers can produce the CM good using a linear technology that requires labor
- Buyer wants to consume the DM good but cannot produce it
- Seller can produce the DM good but does not want to consume it
- Entrepreneur cannot produce either good

- There exists a technology to create (electronic) tokens
  - Their authenticity can be verified at zero cost (cryptography techniques)
  - No counterfeiting
- $N \in \mathbb{N}$  distinct types of tokens with identical production functions
- $c: \mathbb{R}_+ \to \mathbb{R}_+$  denotes the cost function associated with the minting of tokens

• A buyer's preferences are represented by

$$U^{b}\left(x_{t}^{b}, q_{t}\right) = x_{t}^{b} + u\left(q_{t}\right)$$

• A seller's preferences are represented by

$$U^{s}\left(x_{t}^{s},q_{t}\right)=x_{t}^{s}-w\left(q_{t}\right)$$

• Entrepreneur has preferences represented by

$$U^{e}\left(x_{t}^{i}, \Delta_{t}^{i}\right) = x_{t}^{i} - c\left(\Delta_{t}^{i}\right)$$

- Buyers and sellers are anonymous
  - Their identities are unknown and trading histories are privately observable
  - Precludes credit in the DM
- The total amount of each type of token is publicly observable

- Solve portfolio problem to obtain *money demand* function
- Let  $\phi^i_t \in \mathbb{R}_+$  denote the real value of token i in terms of the CM good
- Value function in the CM is

$$W^{b}\left(\mathbf{M}_{t-1}^{b}, t\right) = \max_{\left(x_{t}^{b}, \mathbf{M}_{t}^{b}\right) \in \mathbb{R} \times \mathbb{R}_{+}^{N}} \left[x_{t}^{b} + V^{b}\left(\mathbf{M}_{t}^{b}, t\right)\right]$$

subject to the budget constraint

$$\phi_t \cdot \mathbf{M}_t^b + x_t^b = \phi_t \cdot \mathbf{M}_{t-1}^b$$

• Value function in the DM is

$$V^{b}\left(\mathbf{M}_{t}^{b},t\right) = \sigma\left[u\left(q\left(\mathbf{M}_{t}^{b},t\right)\right) + \beta W^{b}\left(\mathbf{M}_{t}^{b}-\mathbf{d}\left(\mathbf{M}_{t}^{b},t\right),t+1\right)\right] + (1-\sigma)\beta W^{b}\left(\mathbf{M}_{t}^{b},t+1\right)$$

• Terms of trade are given by

$$q\left(\mathbf{M}_{t}^{b},t\right)\in\mathbb{R}_{+}$$

 $\mathsf{and}$ 

$$\mathbf{d}\left(\mathbf{M}_{t}^{b},t\right) = \left(d^{1}\left(\mathbf{M}_{t}^{b},t\right),...,d^{N}\left(\mathbf{M}_{t}^{b},t\right)\right) \in \mathbb{R}_{+}^{N}$$

- Terms of trade are determined by Nash bargaining
- Solve

$$\begin{split} \max_{\substack{(q,\mathbf{d}) \in \mathbb{R}^{N+1}_+} \left[ u\left(q\right) - \beta \times \phi_{t+1} \cdot \mathbf{d} \right]^{\theta} \left[ -w\left(q\right) + \beta \times \phi_{t+1} \cdot \mathbf{d} \right]^{1-\theta} \\ \text{subject to} \\ u\left(q\right) - \beta \times \phi_{t+1} \cdot \mathbf{d} \geq \mathbf{0} \end{split}$$

$$egin{aligned} -w\left(q
ight)+eta imesoldsymbol{\phi}_{t+1}\cdot\mathbf{d}\geq\mathbf{0}\ \ \mathbf{d}\leq\mathbf{M}_{t}^{b} \end{aligned}$$

#### Surplus in the Decentralized Market



#### Terms of Trade in the Decentralized Market



• First-order conditions are

• 
$$L_{\theta} : \mathbb{R}_+ \to \mathbb{R}_+$$
 is given by

$$L_{\theta}(A) = \begin{cases} \sigma \frac{u'(m^{-1}(\beta A))}{m'(m^{-1}(\beta A))} + 1 - \sigma \text{ if } A < \beta^{-1} \left[\theta w\left(q^{*}\right) + (1 - \theta) u\left(q^{*}\right)\right] \\ 1 \text{ if } A \ge \beta^{-1} \left[\theta w\left(q^{*}\right) + (1 - \theta) u\left(q^{*}\right)\right] \end{cases}$$

• Kareken and Wallace (1981): In the absence of portfolio restrictions and barriers to trade, the exchange rate between two currencies is indeterminate

#### Entrepreneur's Problem

- Solve entrepreneur's problem to derive *money supply* function
- Law of motion for currency  $i \in \{1, ..., N\}$  is

$$M_t^i = \Delta_t^i + M_{t-1}^i$$

• Budget constraint is given by

$$x_t^i + \sum_{j \neq i} \phi_t^j M_t^{ij} = \phi_t^i \Delta_t^i + \sum_{j \neq i} \phi_t^j M_{t-1}^{ij}$$

• Entrepreneur does not hold other currencies in portfolio:

$$x_t^i = \phi_t^i \Delta_t^i$$

#### Entrepreneur's Problem

- Entrepreneur takes prices as given
- Solve profit-maximization problem

$$\boldsymbol{\Delta}_{t}^{*,i} \in \arg\max_{\boldsymbol{\Delta} \in \mathbb{R}_{+}} \left[ \phi_{t}^{i} \boldsymbol{\Delta} - c\left(\boldsymbol{\Delta}\right) \right]$$

• Existence and uniqueness depends on the properties of  $c:\mathbb{R}_+\to\mathbb{R}_+$ 

# Equilibrium

• A perfect-foresight monetary equilibrium is an array  $\left\{\mathbf{M}_t, \mathbf{M}_t^b, \mathbf{\Delta}_t^*, \phi_t\right\}_{t=0}^{\infty}$  satisfying

# Positive Analysis

- Make assumptions on preferences such that money demand function is strictly decreasing in the inflation rate
- PROPOSITION: Suppose that c : ℝ<sub>+</sub> → ℝ<sub>+</sub> is strictly convex. Then, there is no monetary equilibrium consistent with price stability.
- "A fiduciary currency would thus probably tend through increased issue to degenerate into a commodity currency – into literal paper standard – there being no stable equilibrium price level short of that at which the money value of currency is no greater than that of the paper it contains." Friedman (1959)

#### **Entrepreneur's Profit Maximization Problem**



Strictly convex cost function

#### **Entrepreneur's Profit Maximization Problem**



Weakly convex cost function

#### **Entrepreneur's Profit Maximization Problem**



Weakly convex cost function

Positive Analysis

- PROPOSITION: Suppose that c : ℝ<sub>+</sub> → ℝ<sub>+</sub> is locally linear in a neighborhood [0, Δ'] ⊂ ℝ<sub>+</sub>. Then, there is a monetary equilibrium consistent with strong price stability.
- Cryptocurrency protocol that holds the marginal cost of mining initially constant
- Partial vindication of Hayek

# Positive Analysis

- There exists a continuum of equilibria in which the sequence  $\left\{\phi_t^i\right\}_{t=0}^{\infty}$  converges monotonically to zero.
  - Self-fulfilling inflations
- There exist asymmetric equilibria with the property that a unique private currency circulates in the economy
  - This occurs because the market share across different types of money is indeterminate

#### Dynamic System: One Fiat Currency in Fixed Supply



#### Dynamic System: One Fiat Currency in Fixed Supply



Perfect Cycles

#### Dynamic System: One Fiat Currency in Fixed Supply



Cycles and Crash

# Normative Analysis

- **PROPOSITION:** There is no stationary monetary equilibrium with a strictly positive real return on money.
- Positive real return on money requires either deflation or interest payments on currency
  - Private agents have no incentives to pursue these goals
- Purely private arrangement is inconsistent with an efficient allocation
  - Pecuniary externality in the creation of tokens

#### Government and Private Monies

- Government enters the currency-issuing business, referred to as N+1
- Government budget constraint:

$$\phi_t^{N+1} \Delta_t^{N+1} + \tau_t = c \left( \Delta_t^{N+1} \right)$$

• Follows money-growth rule:

$$M_t^{N+1} = (1 + \omega) M_{t-1}^{N+1}$$

# Government and Private Monies

- **PROPOSITION:** There is no stationary equilibrium in which (i) at least one private currency is valued and (ii) the real return on money is strictly positive
- Implementation of monetary policy through a money-growth rule is significantly impaired by competing currencies
- Profit-maximizing entrepreneurs frustrate the government's attempt to implement a positive real return on money through deflation

#### Government and Private Monies

- Pegging the real value of government money
- Assume the government issues currency to satisfy

$$\phi_t^{N+1}\bar{M}_t^{N+1}=m$$

- **PROPOSITION:** There exists a unique stationary equilibrium with a constant positive real return on money provided *m* is sufficiently large. In this equilibrium, government money drives private money out of the economy
- Unique implementation requires the provision of "good" government money

# Productive Capital

- Is it possible to implement an efficient allocation in the absence of government intervention if we introduce productive capital in the economy?
- Lucas tree that yields a constant stream of dividends  $\kappa > 0$  in terms of the CM good
- $\bullet$  Suppose that there exist J automata, each programmed to follow a predetermined plan
  - Each automaton has an equal claim on the real asset

- Yields a predetermined dividend plan 
$$\left\{f_t^j\right\}_{t=0}^{\infty}$$

**Productive Capital** 

• Budget constraint is

$$\phi_t^j \Delta_t^j + \frac{\kappa}{J} = f_t^j$$

• Law of motion for currency j is

$$H_t^j = \Delta_t^j + H_{t-1}^j$$

• Suppose  $f_t^j = \frac{f}{J}$  for all  $j \in \{1, ..., J\}$ , with  $0 \le f \le \kappa$ 

Productive Capital

• Obtain the dynamic system:

$$egin{aligned} &z\left(\gamma_{t+1}
ight)-\gamma_t z\left(\gamma_t
ight)+\kappa-f=0\ &z\left(\gamma_t
ight)\geq 0\ η\gamma_t z\left(\gamma_t
ight)\leq w\left(q^*
ight) \end{aligned}$$

• **PROPOSITION:** There exists a unique equilibrium allocation with  $\gamma_t = \gamma^s$  for all  $t \ge 0$  and  $1 < \gamma^s \le \beta^{-1}$ .

#### Dynamic System: Productive Capital



# Conclusions

- A system of private competing currencies can work
- Discussed price stability and efficiency of private money arrangement in a competitive environment
- Just scratched the surface
  - Study different transaction costs among currencies
  - Structure of settlement and clearing systems
  - Entry and exit in the industry