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1 Introduction

A classical topic in monetary economics is measuring the burden that in�ation imposes on society.

The standard methodology, pioneered by Bailey (1956) and Friedman (1969) and reviewed in Lucas

(2000), consists of estimating a reduced-form money demand function and measuring the welfare

cost of in�ation as the area underneath money demand.1 The rationale for this approach is based

on competitive general equilibrium models where money enters the utility function, or a cash-

in-advance constraint.2 Unfortunately, as pointed out by Wallace (2001), such models contain

hidden inconsistencies and they are ill-suited for normative analysis as they fail to account for

the social bene�ts that monetary exchange provides to the economy. To illustrate quantitatively

the importance of this critique, Lagos and Wright (2005) � denoted LW hereafter � calibrate a

model with microfoundations for monetary exchange and provide estimates for the annual cost of

10 percent in�ation. Their estimates are multiple times larger than those of standard reduced-form

monetary models, up to 5 percent of GDP. This result led Williamson and Wright (2010) in their

review article on New Monetarist Economics to conclude that �the intertemporal distortion induced

by in�ation may be more costly than many economists used to think.�

The quantitative insights of LW, however, are subject to the caveat of Hu, Kennan, and Wallace

(2009), regarding the trading mechanisms that are typically assumed when measuring the welfare

cost of in�ation. The problem is that these trading mechanisms are socially ine¢ cient, which raises

the concern that the large welfare costs of in�ation are not due to the frictions that make money

essential but to the adoption of ine¢ cient mechanisms (e.g., the Nash bargaining solution). It is

for this reason and others �namely, to establish the essentiality of money and the robustness of

policy prescriptions � that Wallace (2001, 2010) recommends that monetary theory be pursued

by applying mechanism design. The objective of this paper is to do precisely that, i.e., to use

mechanism design to determine the part of the welfare cost of in�ation that can be attributed to

monetary frictions alone �the irreducible cost of in�ation. I will derive the money demand that is

part of a constrained-e¢ cient allocation, check whether the model can �t the data, and measure

1For an application of this method to the recent behavior of U.S. money demand, see Ireland (2009).
2For recent examples of general equilibrium models with cash-in-advance constraints or money-in-the-utility-

function, see Dotsey and Ireland (1996), Burstein and Hellwig (2008) and da Costa and Werning (2008).
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the cost of in�ation.3

I show that the money demand generated by the LW model under socially optimal mechanisms

takes the form of a correspondence. Below a threshold for the in�ation rate, there is an interval

of real balances that are consistent with the implementation of the �rst-best allocation, and the

measure of this interval shrinks with in�ation. Above a threshold for the in�ation rate money

demand is a singleton, and real balances and welfare are decreasing with the in�ation rate.

When calibrated to �t the data, based on the methodology of Lucas (2000), I �nd parametriza-

tions such that all the annual observations in the data for the U.S. over 1900-2006 are consistent

with the model. For such parameterizations the welfare cost of 10 percent in�ation is 0. Thus, for

plausible calibrations of the LW model moderate in�ation generates no burden for society when

the only frictions in the environment are the ones that make money essential. This result turns

on its head the prevailing wisdom that monetary environments generate large costs of in�ation:

they only do so to the extent that suboptimal mechanisms are employed. It also con�rms that

the standard approach to estimating the cost of in�ation, the area underneath money demand, has

dubious foundations.

I check the robustness of the results to di¤erent extensions. For instance, I consider di¤erent

assumptions regarding the observability of agents�money holdings. I also introduce match-speci�c

heterogeneity (idiosyncratic preference shocks) and private information. Finally, I re�ne money

demand by introducing a participation decision that endogenizes the frequency at which agents

trade. This extension provides a natural way to pin down the transfer of real balances in bilateral

matches. The model generates a downward-sloping money demand consistent with the data and, for

some parametrizations, the cost of in�ation is zero. This is in contrast to Shi (1997) and Rocheteau

and Wright (2009), who showed that under bargaining, social welfare can be nonmonotonic with

in�ation and small in�ation can be bene�cial, thereby justifying departures from the Friedman rule.

There is a growing literature, surveyed in Craig and Rocheteau (2008), measuring the welfare

cost of in�ation in the context of microfounded models of monetary exchange under di¤erent trading

mechanisms.4 In contrast to this literature I endogenize the trading mechanism in decentralized

3 In the context of the labor market, the idea of imposing a socially optimal mechanism when calibrating a search-

theoretic model can be found in Shimer (2005).
4Rocheteau and Wright (2009) compute the welfare cost of in�ation under di¤erent mechanisms and with en-

dogenous participation decisions. Reed and Waller (2006) introduce a risk-sharing motive. Aruoba, Waller, and

Wright (2010) calibrate versions of the model with capital. Aruoba and Chugh (2010) show that the Friedman rule

2



markets so that it implements a constrained-e¢ cient allocation.5 Relative to Hu, Kennan, and

Wallace (2009), I characterize money demand and calibrate the model under di¤erent assumptions

regarding the observability of money holdings. I introduce match-speci�c heterogeneity and private

information, and endogenous participation decisions to re�ne money demand.

The paper is organized as follows. The environment is described in Section 2. The optimal

mechanism and the money demand correspondence are characterized in Section 3. The model is

calibrated in Section 5. Match-speci�c heterogeneity and endogenous participation decisions are

introduced in Sections 6 and 7, respectively.

2 The environment

The environment is similar to the one in Lagos and Wright (2005). Time is discrete and continues

forever. There is a continuum of in�nitely-lived agents with measure one. Each period is divided

into two stages. In the �rst stage agents trade in a decentralized market with pairwise meetings,

denoted DM, while in the second stage they trade in a centralized market, denoted CM.

In the DM, an agent is either a buyer, with probability n 2 (0; 1), or a seller, with probability

1�n. Up to Section 7 n is exogenous, while in Section 7 the composition of the market is endogenous.

Buyers and sellers are matched bilaterally: a buyer meets a seller with probability �b, while a seller

meets a buyer with probability �s, with n�b = (1�n)�s. In the CM, agents, who are price-takers,

trade a perishable good, called the numéraire good, labor and money.

Agents�preferences are represented by the following utility function:

E
1X
t=0

�tU(qt; et; ct; ht);

is not optimal, and the long-run capital income tax is not zero. Boel and Camera (2009) extend the model to obtain

an equilibrium dispersion in wealth and show that the impact of in�ation varies across segments of society. Boel

and Camera (2010) compute the cost of in�ation across OECD countries. Chiu and Molico (2010) introduce costly

liquidity management and show that the cost of in�ation is signi�cantly lower than previous estimates, thanks to

redistributional e¤ects.
5Kocherlakota (1998) and Kocherlakota and Wallace (1998) were the �rst to use implementation theory to prove

the essentiality of money. Applications of mechanism design to monetary theory include Cavalcanti and Wallace

(1999) and Mattesini, Monnet, and Wright (2010) on banking and inside money, Cavalcanti and Erosa (2008) on

the propagation of shocks in monetary economies, Cavalcanti and Nosal (2009) on cyclical monetary policy, Koeppl,

Monnet, and Temzelides (2008) on settlement, and Deviatov and Wallace (2001) and Deviatov (2006) on the welfare

gains of money creation. A related, but partial equilibrium, analysis was provided in Berentsen and Rocheteau (2002)

in the context of a model with divisible money.
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where � � (1 + r)�1 2 (0; 1) is the discount factor, qt is DM consumption, et is the DM level

of e¤ort, ct is CM consumption, and ht is the supply of hours in the CM. For tractability, U is

additively separable and linear in hours, U(q; e; c; h) = u(q) � (e) + U(c) � h. The technology in

the DM is such that q = e. The utility function is well-behaved, and q� = argmax[u (q) �  (q)].

I also assume without loss in generality that u(0) =  (0) = 0. Output in the CM is produced

according to a linear production function in labor, which implies the (real) wage rate is equal to 1.

All goods are perishable across both stages and time. Agents cannot commit to future actions,

and individual histories are private information. These assumptions rule out credit arrangements

and generate an essential role for money. The quantity of �at money per capita at the beginning

of period t is Mt > 0, with Mt+1 = 
Mt. The money growth rate, 
 � 1 + �, is constant and new

money is injected by lump-sum transfers (or taxes if 
 < 1) in the CM.6 I will not impose that the

money growth rate is chosen optimally since my focus is on socially optimal trading arrangements

under di¤erent in�ation rates. The price of goods in terms of money in the CM is denoted pt.

Agents�money holdings in a match are not observable: an agent can hide his money holdings

or overstate them.7 This assumption limits the ability of the mechanism to punish the seller in

a bilateral match who does not hold su¢ cient real balances. Also, it will be consistent with the

de�nition of money that includes demand and checkable deposits, M1, when I calibrate the model.

3 Constrained-e¢ cient allocations

I �rst consider a version of the model in which each agent receives an idiosyncratic shock at the

beginning of the DM that determines whether he is a buyer (he wants to consume but cannot

produce) with probability n, or a seller (he can produce but does not want to consume) with

probability 1� n. I set n = 1=2, so that each agent is equally likely to be a buyer or a seller in the

DM, and � = �b = �s, which is implied by bilateral matching, and denote � = �=2.

The terms of trade in the DM are determined according to the following game. In the �rst

stage the buyer and the seller announce simultaneously their real balances, zb and zs, respectively.

6 In the case where � < 0, the government has the power to impose in�nite penalties on agents who do not pay

taxes. The government, however, does not have the technology to monitor DM and CM trades and cannot observe

agents�real balances. Hu, Kennan, and Wallace (2009) and Andolfatto (2010) study the case where agents can choose

whether or not to participate in the CM and pay taxes.
7 In Section 4 I determine the set of incentive-feasible allocations with unobservable money holdings.
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A mechanism in the DM, [q; d] : R2+ ! R+ � R+, maps the announced real money holdings of

the buyer and the seller in a proposed allocation, (q; d) 2 R+ �
�
�zs; zb

�
, where q is the quantity

produced by the seller and consumed by the buyer and d is a transfer of real balances from the

buyer to the seller. The allocation is restricted to the pairwise core of the meetings in the DM.8

In the second stage of the game the buyer and the seller simultaneously say "yes" or "no" to the

proposed allocation. If they both say "yes," and if the transfer of money is feasible given the buyer�s

actual money holdings, then the trade takes place. Otherwise, there is no trade. This second stage

guarantees that both agents can walk away from the proposed trade.

I consider stationary, symmetric allocations. Such an allocation is de�ned by a triple (qp; dp; zp),

where (qp; dp) is the trade in all matches in the DM and zp is agents�real balances or, equivalently,

the production of the CM good by agents not holding money at the beginning of the CM. By the

clearing of the money market in the CM, Mt=pt = zp, which implies pt+1 = 
pt.

Given a mechanism, [q; d], Bellman�s equation for an agent in the DM holding z = m=p units

of real balances is

V (z) = � fu [q(z; zp)] +W [z � d (z; zp)]g+

� f� [q (zp; z)] +W [z + d (zp; z)]g+ (1� 2�)W (z); (1)

where W (z) is the value function of the agent in the CM. Equation (1) has the following interpre-

tation. An agent is a consumer who meets a producer with probability �. He consumes q units

of goods and delivers d units of real balances (expressed in terms of CM output) to his trading

partner. The terms of trade (q; d) depend on the (truthfully) announced real balances of the buyer

and the seller in the match. With probability �, the agent is a producer who meets a consumer.

He produces q for his trading partner and receives d real balances. With probability 1 � 2�, no

trade takes place.

The CM problem of the agent is

W (z) = max
c;ẑ

fU(c)� c+ T + z � 
ẑ + �V (ẑ)g ; (2)

8Zhu (2008) proposes a coalition-proof game that guarantees that any trade in the DM is in the pairwise core.

This game works as follows. First, the buyer and the seller in the match announce simultaneously their real money

holdings. Second, an allocation that depends on the announced money holdings is proposed. The buyer and the seller

simultaneously accept or reject the proposed allocation. If it is rejected by one of the two players, the game ends.

Otherwise, the seller makes a counterproposal. Third, the buyer can choose which trade is carried out, the seller�s

countero¤er or the initial o¤er.

5



where T is the lump-sum transfer (expressed in numéraire goods), and ẑ is the real balances taken

into the next DM. I have used the budget constraint according to which the CM supply of hours

is h = c+ 
ẑ � z � T and the relative price of real balances next period in terms of current-period

CM output is pt+1=pt = 
. From (2), the maximizing choice of ẑ is independent of z; and W is

linear in z, with Wz = 1.

Substituting V (ẑ) by its expression given by (1), using the linearity of W (z), and ignoring the

constant terms, one can reformulate the agent�s problem in the CM as

max
z�0

f�
z + � f� fu [q(z; zp)]� d (z; zp)g+ � fd (zp; z)�  [q (zp; z)]g+ zgg :

Divide the previous expression by � and denote i � (1+ �)(1+ r)� 1, which can be interpreted as

the nominal interest rate that would be paid on an illiquid bond, to get:

max
z�0

f�iz + � fu [q(z; zp)]� d (z; zp)g+ � fd(zp; z)�  [q(zp; z)]gg : (3)

Given a mechanism, [q(�; �); d(�; �)], a seller reports the level of real balances that maximizes

his expected surplus, taking as given that the buyer will report his own real balances truthfully,

ẑs 2 argmaxz fd(zp; z)�  [q(zp; z)]g = dp �  (qp). A necessary condition for the mechanism to

be incentive-compatible is that the seller�s expected surplus is independent of his announced real

balances. Consequently, for any incentive-compatible mechanism, the choice of real balances, (3),

can be reexpressed as

max
z�0

f�iz + � fu [q(z; zp)]� d (z; zp)gg : (4)

The optimal choice of real balances maximizes the expected surplus of a buyer in the DM net of

the cost of holding real balances.

While a seller can overstate his real balances without fear of negative consequences, the same

is not true for a buyer. If a buyer holding zb announces ẑb and it turns out that d
�
ẑb; zs

�
> zb

then the trade is not feasible and cannot be carried out. The optimal announcement of a buyer

who holds zb is then ẑb 2 argmaxz fu [q(z; zp)]� d (z; zp)g Ifd(z;zp)�zbg, where Ifd�zbg is an indicator

function that is equal to one if d � zb.

Given that money holdings are unobservable, agents will not hold more money than what they

intend to spend, zp = dp. From (4), a necessary condition for the allocation to be incentive feasible

is

�idp + � [u (qp)� dp] � 0: (5)
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The left side of (5) is the expected surplus of a buyer in the DM, net of the cost of holding

real balances according to the proposed allocation. A deviation that is always feasible consists

of not accumulating money in the CM and not trading as a buyer in the DM. The expected

payo¤ associated with this defection is 0. The allocation must also satisfy the seller�s participation

constraint,

� (qp) + dp � 0: (6)

There is a similar condition for buyers, u (qp)� dp � 0, but it is implied by (5) and dp � 0.

At this point it is useful to characterize the pairwise core of a meeting between a buyer holding

zb real balances and a seller holding zs real balances. The pairwise core, denoted C(zb; zs), is the

set of all feasible allocations, (q; d) 2 R+ �
�
�zs; zb

�
, such that no alternative feasible allocations

exist that would make the buyer and the seller in the match better o¤, with at least one of the two

being strictly better o¤. Formally:

C(zb; zs) =
n
(q; d) 2 argmax [u(q)� d] s.t. d 2

h
�zs; zb

i
and �  (q) + d � U s for some U s � 0g :

This gives:

C(zb; zs) = fq�g � [ (q�); u(q�)] if zb � u(q�)

= fq�g �
h
 (q�); zb

i
[
h
u�1(zb); q�

i
� fzbg if zb 2 [ (q�); u(q�))

=
h
u�1(zb);  �1(zb)

i
� fzbg if zb <  (q�):

If the buyer�s real balances are larger than the amount he is willing to pay for the �rst-best level

of output, u(q�), then any allocation in the pairwise core implements the e¢ cient level of output,

and the transfer of real balances is between the seller�s cost and the buyer�s willingness to pay. If

the buyer�s real balances are less than his willingness to pay for the �rst-best level of output, u(q�),

but greater than the seller�s cost,  (q�), then the �rst-best allocation is achieved provided that the

seller�s surplus is not too large; otherwise, the buyer transfers all of his real balances, and output is

less than the e¢ cient level. Finally, if the buyer�s real balances are not large enough to compensate

the seller for the cost of producing the �rst-best level of output, then any allocation in the pairwise

core is such that the buyer transfers all his real balances, and the output level is ine¢ ciently low.
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Lemma 1 Any allocation (qp; dp; zp) such that zp = dp and (qp; dp) 2 C(zp; zp) that satis�es (5)

and (6) can be implemented by the following coalition-proof trading mechanism:h
q(zb; zs); d(zb; zs)

i
= arg max

q;d�zb
[d�  (q)] s.t. u(q)� d � u(qp)� dp if zb � dp; (7)

= arg max
q;d�zb

[d�  (q)] s.t. u(q)� d = 0 otherwise. (8)

According to (7) if the buyer holds more than dp real balances, then the mechanism speci�es a

pairwise Pareto-e¢ cient allocation that gives the buyer a surplus that is at least equal to what he

would obtain under the trade (qp; dp). According to (8) if the buyer holds less than dp real balances,

then the mechanism chooses the allocation that maximizes the seller�s surplus subject to the buyer

being indi¤erent between trading or not trading. Figure 1 represents graphically the mechanism in

(7)-(8). The buyer�s surplus is U b = u(q) � d, while the seller�s surplus is U s = � (q) + d. The

pairwise core (in the utilities space) is downward-sloping and concave. The utility levels associated

with the proposed trade, (qp; dp), are denoted �U b and �U s. If the buyer holds more than zp real

balances, then the Pareto frontier shifts outward. The mechanism selects the point on the Pareto

frontier marked by a circle that assigns the same utility level, �U b, to the buyer. If the buyer holds

less than zp real balances, the Pareto frontier shifts downward. The mechanism selects the point

on the frontier that assigns no utility to the buyer, U b = 0.

The proof of Lemma 1 is contained in Figure 2. The top panel of Figure 2 represents the

buyer�s surplus as a function of his real balances. The buyer�s surplus is (weakly) monotonically

increasing in his real balances, which implies that the buyer has no incentive to hide some of his

money holdings. He has no incentive to overstate his real balances either since for all z � dp the

buyer�s surplus is constant and if the buyer holds less than dp but reports ẑ � dp then the trade

is not feasible. The bottom panel represents the buyer�s surplus net of the cost of holding real

balances. From (3) and the bottom panel of Figure 2 it is easy to check that the agent will choose

z = dp if (5) holds.

I de�ne an optimal mechanism as a trading mechanism described in Lemma 1 that maximizes

society�s welfare, denoted W.

De�nition 1 An optimal mechanism is a [q (�; �) ; d (�; �)] de�ned by (7)-(8); where (qp; dp) 2 C(dp; dp)
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bU

sU
pb zz >

pb zz <
pb zz =

bU

sU

Figure 1: Implementation of coalition-proof trades

solves:

(qp; dp) 2 argmax
q;d

W = � [u(q)�  (q)] + U(c�)� c� (9)

s.t. �  (q) + d � 0 (10)

�id+ � [u (q)� d] � 0: (11)

The solution to (9)-(11) is in the pairwise core; otherwise, qp > q� and one could reduce both q

and d so as to increase the seller�s surplus in (10), the buyer�s expected surplus net of the cost of

holding money in (11), and the whole match surplus in (9). The optimal mechanism proposes the

DM allocation that maximizes the period expected utility of a representative household subject to

the individual rationality constraints of the seller, (10), and the buyer, (11). It corresponds to the

highest q � q� so that (10) and (11) hold. The solution is

(qp; dp) 2 fq�g �
�
 (q�);

�

i+ �
u(q�)

�
if  (q�) � �

i+ �
u(q�) (12)

2 fq(i)g � f [q(i)]g otherwise, (13)

where q(i) is the positive solution to  (q) = �
i+�u(q). So while the output level is uniquely deter-
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Figure 2: An incentive-feasible mechanism

mined, the transfer of real balances is not always unique. If the �rst-best level of output is feasible,

qp = q�, then there is a range of real balances that are incentive feasible. This is simply saying

that provided that an agent�s participation constraint in the CM is not binding, there are many

ways one can split the surplus of a bilateral match, u(q�) �  (q�). In contrast, when the agent�s

participation constraint in the CM binds, then output and real balances are uniquely determined.

The solution to (9)-(11) is represented in Figure 3. If  (q�) � �
i+�u(q

�) then q = q� and there

is an interval of real balances, between the curves  (q) and �
i+�u(q), that are consistent with the

�rst-best allocation. If  (q�) > �
i0+�u(q

�), then the �rst-best allocation is not implementable and

the quantity traded is q(i0) < q� at the intersection of  (q) and �
i0+�u(q). The level of real balances
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is  [q(i0)].
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Figure 3: Constrained-e¢ cient allocations

Denote Dp(i) the money demand correspondence de�ned as:

Dp(i) =

�
 (q�);

�

i+ �
u(q�)

�
if  (q�) � �

i+ �
u(q�)

= f [q(i)]g otherwise.

It speci�es the set of real balances that are consistent with an optimal mechanism for a given

in�ation rate. The next proposition characterizes how money demand, output, and welfare vary

with in�ation.

Proposition 1 There is

�{ =
� [u(q�)�  (q�)]

 (q�)
> 0 (14)

such that

1. For all i 2 [0;�{), qp(i) = q�, @W@i = 0, and D
p(i) � Dp(i0) for all i0 < i;

2. For all i > �{, @q
p

@i < 0,
@dp

@i < 0, and
@W
@i < 0.

The quantity �{ is the highest nominal interest rate below which the �rst-best level of output is

incentive-feasible. The right side of (14) can be interpreted as the expected nonpecuniary rate of
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return of money. It is the probability that an agent is a buyer in the DM times the �rst-best surplus

of a match expressed as a fraction of the cost to produce the �rst-best level of output. So the larger

the nonpecuniary rate of return of money, the larger the range of in�ation rates consistent with

the �rst-best allocation. The �rst part of Proposition 1 also shows that money is super-neutral for

low in�ation rates, and money demand is decreasing in the sense that the set of implementable real

balances at higher in�ation rates is contained in the set of implementable real balances at lower

in�ation rates. See Figure 4 for an illustration of the money demand correspondence. When the

buyer�s participation constraint binds, i > �{, the nonpecuniary rate of return of currency evaluated

at the �rst-best level of output is less than the cost of holding currency: so the �rst best is not

implementable. In this case, money demand is a singleton, and the output produced and consumed

in a match, social welfare, and the transfer of real balances are decreasing with the in�ation rate.

i

pD
)( *qu*)(q

i

Figure 4: Money demand correspondence

4 The observability of money holdings

Throughout the paper I assume that money holdings are not observable, i.e., agents can both hide

and overstate their money balances. In contrast, Hu, Kennan, and Wallace (2009) assume that
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while agents can hide their money balances, they cannot overstate them. Before turning to the

calibration of the model, it is useful to discuss the importance played by the nonobservability of

money balances. To do this, I derive the set of stationary, symmetric, incentive-feasible allocations

in the case where money holdings cannot be overstated.9

One crucial element to determine the set of implementable allocations is a necessary condition

under which the deviation that consists of not accumulating money in the CM is not pro�table.

In the case where money holdings cannot be overstated, such a necessary condition takes the form

W (0) � �W (0), i.e.,

�izp + � [u (qp)�  (qp)] � 0: (15)

In contrast to (5), an agent who deviates in the CM and accumulates no money can no longer

secure the surplus � (qp)+dp in the subsequent DM by overstating his money balances.10 Indeed,

the mechanism can potentially punish a seller who holds no money by assigning no surplus to this

seller. A deviation that is always feasible, however, consists of not accumulating money in the CM

and not trading in the subsequent DM. The expected surplus net of the cost of holding money from

this deviation is zero. It should be emphasized from (15) that the money holdings of an agent, zp,

need not coincide with the transfer in the DM, dp.

Lemma 2 Any allocation (qp; dp; zp) such that (qp; dp) 2 C(dp; dp) that satis�es dp � zp, (15) and

(6) can be implemented by the following coalition-proof trading mechanism:

(q; d) = arg max
q;d�zb

[d�  (q)] s.t. u(q)� d � u(qp)� dp if min(zb; zs) � zp (16)

= arg max
q;d�zb

[d�  (q)] s.t. u(q)� d = 0 if zb < zp (17)

= arg max
q;d�zb

[u(q)� d] s.t. �  (q) + d = 0 if zs < zp and zb � zp: (18)

According to (16), if both the seller and the buyer in a bilateral match hold (and announce) more

than zp units of real balances, then the trade is the allocation in the pairwise core that generates

the same surplus for the buyer as the one he would have obtained under (qp; dp). According to (17),

if the buyer holds less than zp, then the mechanism proposes the preferred trade of the seller in the

9For instance, agents could choose to bring only a fraction of their money holdings to a bilateral match in the

DM.
10For readers familiar with the literature, the analysis of the set of implementable allocations in Hu, Kennan, and

Wallace (2009) is erroneous, as they impose (5) as a necessary condition for an implementable allocation instead of

(15), which is the relevant condition when money holdings cannot be overstated.
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Figure 5: Implementable allocations under observable (dark and light grey) and nonobservable

(light grey) money holdings.

pairwise core. Symmetrically, according to (18), if the seller holds less than zp and the buyer holds

at least zp, then the mechanism proposes the preferred trade of the buyer in the pairwise core.

The proof of Lemma 2 goes as follows. By construction, the buyer and the seller have incentives

to report truthfully their money holdings since their surpluses are nondecreasing with their money

holdings. If an agent believes that all his potential partners adhere to the equilibrium play and

hold zp units of real balances, then he has no incentives to deviate and hold less than zp since

otherwise, from (17) and (18), he would receive no surplus in the DM irrespective of whether he

turns into a buyer or a seller. He has no incentive to hold more than zp either since from (16) his

expected surplus in the DM is u(qp) �  (qp), which is independent of his real balances (provided

they are larger than zp).

The set of stationary, symmetric, incentive-feasible allocations when agents cannot overstate

their money holdings is

Ao(i) �
�
(q; d; z) : (q; d) 2 C(z; z),  (q) � d � z � � [u (q)�  (q)]

i
, d � u(q)

�
:
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Under unobservable money holdings,

Au(i) �
�
(q; d; z) : (q; d) 2 C(z; z),  (q) � d = z � �

i+ �
u (q)

�
:

The sets Ao and Au are represented in Figure 5. Under unobservable money holdings, all the pairs

(q; d) in the light grey area are implementable. If money holdings holding cannot be overstated, the

pairs (q; d) in the light and dark grey areas can be implemented. Therefore, under the assumption

of unobservable money holdings, the set of implementable real balances is smaller, i.e., for all i � 0,

Au(i) � Ao(i). Intuitively, when money holdings are observable, there is more leverage to punish

an agent who does not carry enough real balances. For my purpose, this implies that if the model

can �t money demand when money holdings are unobservable, this would also be the case when

money holdings are observable.

5 The irreducible cost of in�ation

In the previous section I derived an individual money demand correspondence, Dp(i). Following the

methodology of Lucas (2000) and LW, the next step is to construct the aggregate money demand

and to check whether there are parameter values for which it �ts the data. The model can then be

used to measure the cost of in�ation.

The aggregate demand for money is de�ned as L � M=PY , where M is the money supply, Y

is real aggregate output, and P is the price level. In the data, Y is measured by GDP, P by the

GDP de�ator, M by M1, and i by the short-term commercial paper rate. Real aggregate output is

composed of the CM output, A such that U 0(A) = 1, and the DM output expressed in terms of the

numéraire good, �M=p. Hence, Y = A+�M=p. Aggregate real balances are M=p = dp. Therefore,

the aggregate demand for money is a continuous correspondence de�ned as

L(i) =

�
dp

A+ �dp
: dp 2 Dp(i)

�
.

From (12)-(13),

L(i) =

�
 (q�)

A+ � (q�)
;

�u(q�)

(i+ �)A+ �2u(q�)

�
if i � �{ � � [u(q�)�  (q�)]

 (q�)
(19)

=
 [q(i)]

A+ � [q(i)]
if i > �{ � � [u(q�)�  (q�)]

 (q�)
: (20)

I adopt the same functional forms as in LW: U(c) = A ln c,  (e) = e, u(q) = (q+b)1�a�b1�a
1�a . I

set ��1 = 1:03, as in Lucas (2000). This gives four parameters, (A; a; b; �), to adjust to attempt to
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�t the money demand in the model to the data. Following the literature, b is chosen to be close to

0 so that the utility function approximates a CRRA.

First, I represent the money demand correspondence under an optimal mechanism for the

parameter values obtained in LW with symmetric Nash bargaining as the trading protocol. As

noticed in Hu, Kennan, and Wallace (2009, p.136), for this parametrization the �rst-best allocation

is implementable for all the interest rates observed in the data. However, as revealed by Figure

6, the money demand from the model is a poor �t for the data: all the observations except three

lie outside of the money demand correspondence. Intuitively, the optimal mechanism gives agents

incentives to accumulate enough real balances to trade the �rst-best level of output, whereas under

Nash bargaining the �rst-best level of output is never achieved, even when the cost of holding

money is zero. As a consequence, if the model is calibrated to �t the data under Nash bargaining,

the money demand under the optimal mechanism will tend to overestimate the money demand in

the data.

Figure 6: The LW speci�cation: (A; a; �) = (1:91; 0:3; 0:5).

The next step is to recalibrate the model. Figures 7 and 8 show that the model is able to

generate a money demand that is consistent with the observations in the data. In fact, all the

observations over the period 1900-2006 are in the money demand correspondence generated by the

model.11 In Figure 7, I adopt a utility function in the DM similar to the one in the CM with a unit

CRRA (a = 1:001), and I set the frequency of trade to its maximum value (� = 0:5). I chose the
11A noteworthy implication of the fact that the model is consistent with all the observations in the data is that

the downward shift in aggregate real balances observed at the end of the 70�s does not need to be explained by a
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value of CM output, A, to adjust the level of money demand. In Figure 8 I set b = 0 but choose

(�;A; a) to generate a shape for the money demand correspondence that is visually close to the

data. Again, both parametrizations do equally well to account for the data.

Figure 7: � = 0:5, A = 8, a = 1:001, b = 0:001.

Figure 8: � = 0:1, A = 8, a = 0:78, b = 0

To understand how the model can match the empirical money demand, consider the following

two moments: L = min(Lt) is the minimum real balance and �L = min(Lt) is the maximum real

balance observed in the data. One can choose parameters to match these two moments. To do this,

it is useful to rewrite (19) as

L(i) =

"
1

A
 (q�) + �

;
1�

1 + i
�

�
A

u(q�) + �

#
:

change in the fundamental structure of the economy. It could re�ect the fact that under an optimal mechanism real

balances need not be uniquely determined.
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To match these two targets one needs 1
A

 (q�)+�
= L and 1

(1+ imax
� ) A

u(q�)+�
= �L, where imax is the

highest interest rate in the data. For a given �, one can choose A
 (q�) su¢ ciently high to obtain

the lower bound for real balances. This is a condition on the relative size of the CM and DM

production levels. For a given � and A
 (q�) , one can make

A
u(q�) =

A
 (q�)

 (q�)
u(q�) su¢ ciently low, or

 (q�)
u(q�)

su¢ ciently high, in order to achieve the upper bound for real balances. This can be interpreted as

a condition on the size of the gains from trade in the DM.

The welfare cost of a 
 � 1 percent in�ation is de�ned as the fraction of total consumption

that agents would be willing to give up to reduce 
 to 1. For the two parameterizations above,

the �rst-best level of output is achieved for all in�ation rates observed in the data. Therefore, the

welfare cost of 10 percent in�ation is 0. In LW, under Nash bargaining, the cost of in�ation is

3.2 percent of GDP every year. In the case where buyers play an ultimatum game, the cost of

in�ation is lowered to 1.2 percent of GDP, in the same ballpark as the estimate of Lucas (2000).

Using the same calibration methodology but applying a mechanism design approach, I just showed

that the part of the welfare cost of in�ation that can be attributed to monetary frictions alone, the

irreducible cost of in�ation, is zero.

The cost of in�ation that is measured in LW and the follow-up literature (see the survey in

Craig and Rocheteau, 2008) is essentially a welfare loss that can be attributed to suboptimal

trading mechanisms. Monetary frictions create a large welfare loss to the extent that they make

mechanisms that are optimal in pure credit economies� economies where bilateral credit can be

enforced� suboptimal when credit is no longer available. This is not to say that these trading

mechanisms are not empirically plausible� the data does not seem able to discriminate between

di¤erent mechanisms. But the trading mechanisms that have been imposed in the literature are

not part of the frictions that make money essential, and when measuring the cost of in�ation, one

should disentangle the cost associated with those pure monetary frictions from the costs that stem

from socially ine¢ cient trading protocols.

6 Match-speci�c heterogeneity

So far I have assumed that all buyers have the same preferences and all sellers have the same

technology. If there is heterogeneity across matches, and if agents have some private information

regarding their preferences or technologies, it is unclear whether the �rst-best allocation, which
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involves di¤erent production levels in di¤erent matches, is incentive feasible for some in�ation

rates. For instance, in an environment in which sellers o¤er price schedules to buyers in bilateral

matches, Ennis (2008) �nds that the equilibrium is ine¢ cient (even at the Friedman rule) and the

cost of in�ation is large.

In this section I extend the model by assuming that once a buyer and a seller are matched,

a preference shock is realized that determines how much the buyer values the output produced

by the seller. Preferences are represented by the utility function "u(q) � (e) + U(c) � h, where

" 2 E � [0;�"] is a match-speci�c component drawn from a distribution G(").12 The preference

shock, ", is private information to the buyer.

An allocation rule in the DM maps a triple, ("; zb; zs), the announced match-speci�c compo-

nent and the announced buyer�s and seller�s real balances, into a match allocation, (q"; d"), which

speci�es the output in a match and the transfer of real balances. The mechanism must be incentive

compatible: the buyer is willing to reveal truthfully his preference shock and real balances, while

the seller is willing to reveal truthfully his real balances. The mechanism must also be individually

rational, i.e., buyers and sellers are willing to go along with the proposed allocation. Because there

is no clear notion of coalition-proof equilibrium in the presence of ex-post heterogeneity and private

information, I adopt the weaker notion of individually rational (IR) implementability that requires

the trades in pairwise meetings to be immune to individual defection.

Suppose the planner seeks to implement symmetric, stationary allocations f(qp" ; dp") : " 2 E ; zpg.

Buyers will be required to hold zp = max"(d
p
") real balances (since with unobservable money

holdings an agent will have no incentive to hold more money than what he spends in any match).

A necessary condition for a buyer to have incentives to reveal truthfully his preference shock is

"u(qp")� dp" � "u(qp"0)� d
p
"0 for all "0 6= ". (21)

According to (21), the buyer will achieve a higher surplus by reporting his true preference shock,

", instead of some other value, "0. From (21)

"
�
u(qp"0)� u(q

p
")
�
� dp"0 � d

p
" � "0

�
u(qp"0)� u(q

p
")
�
:

If "0 > ", then qp"0 � qp" and d
p
"0 � dp". Buyers with a high marginal utility of consumption receive

(weakly) more output and spend (weakly) more real balances than buyers with a low marginal

12This formalization is borrowed from Lagos and Rocheteau (2005).
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utility of consumption. This implies that an agent�s real balances must be z = dp�". Individual

rationality in a match requires

 (qp") � dp" � "u(qp") for all " 2 [0;�"] . (22)

Both the buyer and the seller enjoy a positive surplus. Finally, necessary conditions for an agent

in the CM to accumulate z units of real balances are:

�izp + �
Z �"

0
["u(qp")� dp"] dG(") � �iz0 + �

Z �"

0
max
"0

�
"u(qp"0)� d

p
"0
�
Ifdp

"0�z
0gdG("); (23)

for all z0 2 fdp" : " 2 E [ f0gg. The deviation that consists of reducing one�s real balances from z

to z0 < z and choosing the best o¤er such that dp"0 < z0 must not be pro�table. Note that when

evaluating this deviation I took into account only the buyer�s expected surplus in the DM, net

of the cost of holding real balances. Indeed, from the previous section, any incentive-compatible

mechanism is such that the seller�s expected surplus in the DM is independent of his real balances.

Lemma 3 Any allocation f(qp" ; dp") : " 2 E ; zpg that satis�es zp = dp�", (21), (22), and (23) is

implemented by the following mechanism:h
q(zb; zs; "); d(zb; zs; ")

i
= (qp" ; d

p
") if zb � dp�"; (24)

= (0; 0) otherwise. (25)

The proof of Lemma 3 consists of showing that accumulating z = dp�" real balances is an optimal

strategy. From (24), by choosing z > dp�" an agent does not increase his surplus in the DM but he

incurs a higher cost of holding real balances, iz > idp�". If the agent chooses z < dp�", he can lie and

announce dp�", but he will be restricted to o¤ers such that d"0 � z < dp�", which from (23) lowers his

expected utility. Alternatively, the buyer can choose to reveal truthfully his real balances but then,

from (25), the mechanism proposes no trade in the DM.

6.1 Discrete preference shocks

Following Curtis and Wright (2004) and Ennis (2008), I consider a speci�cation in which the

preference shock can take two values, " 2 f"`; "hg with "h > "`. The probability of the high

preference shock is �h, while the probability of the low preference shock is �` = 1 � �h. In this
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case, the individual-rationality constraints in the CM, (23), can be expressed as

�izp + �
X

�2f`;hg
��

h
"�u(q

p
"�)� d

p
"�

i
� 0 (26)

�izp + �
X

�2f`;hg
��

h
"�u(q

p
"�)� d

p
"�

i
� �idp"` + �

X
�2f`;hg

��
�
"�u(q

p
"`
)� dp"`

�
: (27)

The condition (26) speci�es that an agent prefers to accumulate zp real balances instead of 0, i.e.,

the expected surplus of a buyer net of the cost of holding real balances is non-negative. According

to (27), an agent does not decrease his surplus by holding zp real balances instead of dp"` . If an

agent chooses to hold dp"` real balances, he incurs a lower cost of holding real balances, but in the

event that he has a high marginal utility of consumption, he has to report a low marginal utility

in order to be able to trade. The conditions (26) and (27) can be rearranged as

zp � ��` ["`u(q
p
"`)� d

p
"` ] + ��h"hu(q

p
"h)

i+ ��h
(28)

zp � ��h"h [u(q
p
"h)� u(q

p
"`)]

i+ ��h
+ dp"` : (29)

In the following I establish the conditions under which the �rst-best allocation is implementable.

The �rst best requires q"h = q�h and q"` = q�` , where "hu
0(q�h) =  0(q�h) and "`u

0(q�` ) =  0(q�` ).

Proposition 2 Consider an economy with preference shocks in f"`; "hg that are private informa-

tion to buyers. There exists �{ 2 (0;1) such that the �rst-best allocation is implementable for all

i 2 [0;�{].

There is a range of in�ation rates, including the Friedman rule, that implement the �rst-best

allocation. So, as in the case with homogenous matches, the �rst-best allocation can be obtained

even with in�ation rates above the Friedman rule.

To conclude this section, I provide a calibrated example with match-speci�c heterogeneity where

the money demand correspondence �ts the data. Real output in the DM expressed in terms of the

numéraire good is �(�hz+�`d"`) since in h-type matches the buyer spends all his real balances and

in `-type matches the buyer spends d"` < z. Hence, aggregate output is Y = A + �(�hz + �`d`).

The money demand correspondence is

L(i) =

�
z

A+ ��hz + ��`d"`
: (z; d"`) 2 A�(i)

�
,

21



where A�(i) is the set of pairs (z; d`) 2 R2+ such that (21), (22), and (23) hold with q"h = q�h and

q"` = q�` . I normalize "h = 1. To make the match-speci�c heterogeneity relevant I take "` = 0:5

and �h = 0:5. The frequency of meetings is assumed to be maximum, � = 0:5, and I set a = 0:9.

I choose the parameter A so that all points in the data are in the money demand correspondence.

See Figure 9. For this example, the welfare cost of (moderate) in�ation is 0.

Figure 9: "` = 0:5, "h = 1, �h = 0:5, � = 0:5, a = 0:9, A = 8

6.2 Continuous preference shocks

Suppose that the preference shock is distributed uniformly on the interval [0; 1]. From (21)

"

�
u(qp"0)� u(q

p
")

"0 � "

�
�
dp"0 � d

p
"

"0 � " � "0
�
u(qp"0)� u(q

p
")

"0 � "

�
:

Taking the limit as "0 approaches ",

@dp"
@"

= "u0(qp")
@qp"
@"
.

If the �rst-best level of output is implemented, "u0(qp") =  0(qp"), which implies @dp"
@" =  0(q�")

@q�"
@" .

From (22), dp0 = 0. Hence,

dp" =  (q�") :

In order to implement the �rst-best, the transfer of real balances must be equal to the disutility

cost of the seller. So the participation constraints (22) are satis�ed.

I now turn to the buyer�s incentives to accumulate real balances in the CM. Consider a buyer

with dp~" real balances in a match of type ". This buyer can buy at most q
�
~" units of output. He will
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announce a preference type, "̂, that maximizes ["u(q�"̂)�  (q�"̂)] Ifq�"̂�q�~"g. The solution is "̂ = " if

~" � " and otherwise "̂ = ~". Provided that the buyer has enough real balances to purchase the �rst-

best level of output given his preference type, he will announce his type truthfully. If he doesn�t

hold enough real balances, he will announce the highest type consistent with his real balances, ~".

Therefore, the buyer�s choice of real balances in the CM is equivalent to the choice of a threshold,

~", below which the buyer consumes the �rst-best level of output and above which the buyer is

constrained by his real balances. It solves

~" = argmax
~"

�
�i (q�~") + �

Z ~"

0
["u(q�")� q�" ] d"+ �

Z 1

~"
["u(q�~")�  (q�~")] d"

�
:

The �rst-order condition is

i = �

Z 1

~"

�
"u0(qp~")

 (q�~")
� 1
�
d":

Interestingly, this �rst-order condition is the same as the one obtained in Lagos and Rocheteau

(2005) under buyers-take-all bargaining. Unless i = 0, the �rst-best is not implementable.13 This

also tells us that the cost of in�ation will be bounded above by the cost obtained under buyers-

take-all bargaining, which is about 1.2 percent of GDP.

So far I assumed that money holdings were not observable and could be overstated. If money

holdings cannot be overstated, then agents will be willing to accumulate the socially e¢ cient quan-

tity of real balances, dp1 =  (q�1), if

�i (q�1) + �
Z 1

0
["u(q�")� q�" ] d" � 0:

There is an interval of in�ation rates above the Friedman rule that are consistent with the imple-

mentation of the �rst-best.

7 Endogenous participation

As shown in Section 5 under an optimal mechanism, aggregate money demand is a correspondence:

for low in�ation rates the division of the surplus in a bilateral match is not uniquely pinned down.

A natural way to endogenize the division of the match surplus �thereby re�ning money demand �

is to let agents choose which side of the DM market they participate in. Indeed, the division of the

gains from trade in the DM a¤ects the composition of the market in terms of buyers and sellers,

13This result is consistent with Faig and Jerez (2006), who assume that sellers compete to attract buyers.
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the measure of trades, and therefore society�s welfare. In order to endogenize participation, I follow

the approach of Shi (1997) in the context of a large household model and Rocheteau and Wright

(2009) in the LW model.

I assume that there is a unit measure of ex ante identical agents who choose to be either buyers

or sellers in the DM. The decision to become a buyer or seller in period t is taken at the beginning of

the previous CM, in period t�1. Suppose, for example, that at the beginning of the CM, individuals

invest in a (costless) technology that allows them to either produce DM goods or consume them,

and it is only possible to invest in one technology.14

Let n denote the measure of buyers in the DM, � = 1�n
n the ratio of sellers per buyer (market

tightness), and �(�) the matching probability of a buyer. The matching function has standard

properties: �(0) = 0, �0 > 0, �0(0) � 1, �0(1) = 0, �00 < 0. The matching probability of a seller is

�(�)=�. Society�s welfare is measured by

W = n�

�
1� n
n

�
[u(q)�  (q)] + U(c)� c: (30)

Let denote n� the composition of the market that maximizes the number of trades,

n� = argmaxn�

�
1� n
n

�
: (31)

The �rst-best allocation is such that q = q�, n = n�, and c = c�.

A symmetric, stationary allocation is represented by the 5-tuple (qp; dp; np; zpb ; z
p
s ), where z

p
b

denotes the buyer�s real balances and zps the seller�s real balances. Let W b (W s) denote the value

function of an agent in the CM who chooses to be a buyer (seller) in the next DM, and V b (V s)

denotes the value function of a buyer (seller) in the DM. The value function at the beginning of

the CM is similar to (2) and satis�es

W j(z) = T + z +max
c�0

fU(c)� cg+max
ẑ�0

�
�
ẑ + �V j(ẑ)

	
; (32)

where j 2 fb; sg. The value of being a buyer in the DM satis�es

V b(z) = �(�) fu [q(z; zps )]� d (z; zps )g+max
h
W b(z);W s(z)

i
: (33)

14One can think of the DM good as being an intermediate good, where sellers produce the intermediate good and

buyers produce a �nal good that requires the intermediate good as an input. The �nal good is produced after the

buyer and seller split apart. Therefore, the �nal good cannot be consumed by both the buyer and seller.
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Substituting (33) into (32), and using the linearity of W b (z) and W s (z), the value of a buyer with

z units of real balances at the beginning of the CM satis�es

W b(z) = T + z +max
c�0

fU(c)� cg+ �max
h
W b(0);W s(0)

i
(34)

+max
z�0

� f�iz + �(�) fu [q(z; zps )]� d (z; zps )gg :

By similar reasoning, the value of being a seller with z units of real balances satis�es

W s(z) = T + z +max
c
fU(c)� cg+ �max

h
W b(0);W s(0)

i
(35)

+max
z�0

�

�
�iz + �(�)

�

�
� 

�
q(zpb ; z)

�
+ d

�
zpb ; z

�	�
:

For the trading mechanism to be incentive-compatible, the seller�s surplus must be independent of

his real balances. Consequently, from (35), sellers do not carry real balances in the DM, zps = 0.

A buyer will never �nd it optimal to carry more money than he spends (otherwise he would

have an incentive to misreport his money balances), so an incentive-compatible mechanism must

be such that dp = zpb . Moreover, for all n
p 2 (0; 1), W b(z) = W s(z), which from (34) and (35)

implies

�izpb + �(�) [u (q
p)� dp] = �(�)

�
[dp �  (qp)] � 0; (36)

where � = 1�np
np . The left side of (36) is the expected surplus of a buyer, net of the cost of holding

real balances. The right side of (36) is the expected surplus of a seller.

Lemma 4 The allocation, (qp; dp; np; zpb ; z
p
s ), that satis�es z

p
s = 0, (6) and (36) and (qp; dp) 2

C(zpb ; 0) can be implemented by the trading mechanism (7)-(8).

The trading mechanism (7)-(8) guarantees that a buyer accumulates zpb real balances in the CM,

reveals truthfully his money holdings, and agrees to the trade (qp; dp). Given the proposed terms

of trade, agents are indi¤erent between being buyers or sellers, i.e., condition (36) holds, when the

measure of buyers is equal to np.

De�nition 2 An optimal mechanism with endogenous participation is a [q (�; �) ; d (�; �)] that satis-

�es (7)-(8) with

(qp; dp; np) 2 max
q;d;n

W = n�

�
1� n
n

�
[u(q)�  (q)] + U(c�)� c� (37)

s.t. �  (q) + d � 0 (38)

�id+ �
�
1� n
n

�
[u (q)� d] = n

1� n�
�
1� n
n

�
[d�  (q)] : (39)
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Proposition 3 There is �{ �
�
�
1�n�
n�

�
[u(q�)� (q�)]
 (q�) such that

1. For all i < �{, qp = q�, np = n�, and

dp =
(1� n�)�

�
1�n�
n�
�
u (q�) + n��

�
1�n�
n�
�
 (q�)

�
�
1�n�
n�
�
+ i (1� n�)

: (40)

Moreover, @W@i = 0 and
@(Mt=pt)

@i < 0;

2. For all i > �{, qp < q�, np < n�. Moreover, @W@i < 0 and
@(Mt=pt)

@i < 0.

In contrast to Shi (1997) and Rocheteau and Wright (2009), where terms of trade are determined

by bargaining, under an optimal mechanism the �rst-best allocation can be implemented for low

in�ation rates. If the cost of holding money is lower than the threshold �{, then the �rst-best

allocation is incentive feasible. According to (40), the transfer of real balances is a decreasing

function of the nominal interest rate. As the nominal interest rate increases, it is more costly to

hold money and in order to keep the buyers�and sellers� incentives to participate in the market

unchanged, buyers must be compensated by a larger share of the match surplus (which implies that

they hold fewer real balances). If the cost of holding money is larger than the threshold �{, then the

�rst-best allocation is no longer incentive feasible. The allocation is chosen so that agents are just

indi¤erent between participating and not participating in the market. In this case, output and the

measure of buyers in the DM decrease with in�ation.

I now turn to the calibration of the model. As above, Y = A+np�
�
1�np
np

�
dp and M=P = npdp.

The aggregate demand for money is

L(i) =
npdp

A+ np�
�
1�np
np

�
dp
. (41)

I adopt the same functional forms as before,  (e) = e, u(q) = (q+b)1�a�b1�a
1�a , but here I set b = 0

and restrict a in (0; 1). I adopt the matching function that is commonly used in the literature,

�(�) = ��
1+� . The matching probability of a buyer, �(1 � n), is proportional to the measure of

sellers. Symmetrically, the matching probability of a seller, �n, is proportional to the measure of

buyers. The measure of DM trades is maximum when n = 1=2.

In Figure 10 below I set a = 0:95 and I look for the pair (�;A) that provides the best �t with

the data by minimizing squared residuals. I consider the whole sample, 1900-2006, as well as the

subsample 1981-2006. For the whole sample a good �t requires a low frequency of trade, � = 0:06.
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This suggests that shocks where the liquidity constraints bind in the DM have to be infrequent for

the model to match the data. For the subsample 1981-2006 money demand is �atter and a good

�t is obtained for a much larger frequency of trades, � = 0:47. For both examples, a 10 percent

in�ation imposes no cost on society.

Figure 10: 1900-2006: � = 0:06, A = 12:55, a = 0:95; 1981-2006: � = 0:47, A = 29:43, a = 0:95.

8 Conclusion

I have studied the welfare cost of in�ation in an environment in which money plays an essential role.

When the trading mechanism in pairwise meetings is chosen optimally, aggregate money demand

takes the form of a correspondence that can �t the data over the period 1900-2006. The welfare

cost of moderate in�ation that can be attributed to monetary frictions alone is zero. Hence, in

contrast to some common wisdom, in�ation does not need to impose a large burden on society

when the only frictions in the environment are the ones that make money useful. This insight

is robust to di¤erent assumptions regarding the observability of money holdings, the introduction

of match-speci�c heterogeneity, and endogenous participation decisions. It is important to recall

that this prediction relies on the trading mechanism being socially e¢ cient. If agents were to

trade according to some other mechanism �some mechanisms despite being socially ine¢ cient have

strong strategic foundations �the cost of in�ation would be large, as argued in the literature. This

reinforces Williamson and Wright�s (2010) assessment that �getting into the details of monetary

27



theory can make a big di¤erence for quantitative and policy analysis.�
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APPENDIX

Proof of Proposition 1.

Part 1. From (12), the threshold �{ for i below which the �rst-best level of output is imple-

mentable, qp(i) = q�, is the largest value of i such that  (q�) � �
i+�u(q

�). Hence,  (q�) = �
�{+�u(q

�),

which gives (14). From (9) W = � [u(q�)�  (q�)] +U(c�)� c� is independent of i. Hence, @W@i = 0

for all i < �{. Finally, it is straightforward that
h
 (q�); �

i+�u(q
�)
i
�
h
 (q�); �

i0+�u(q
�)
i
for all i0 < i.

Part 2. From (13), for all i > �{, q(i) is the positive solution to  (q) = �
i+�u(q). Hence,

u0(qp) < i+�
�  0(qp) (since �

i+�u(q) intersects  (q) by above) and

@qp

@i
=

 (qp)

�u0(qp)� (i+ �) 0(qp) < 0:

Since dp =  (qp) with  0 > 0, @d
p

@i < 0. From (9)

@W
@i

= �
�
u0(qp)�  0(qp)

� @qp
@i

< 0;

where I used that qp < q� and hence u0(qp)�  0(qp) > 0.

Proof of Proposition 2. Denote A�(i) the set of pairs (z; d`) 2 R2+ such that (21), (22),

and (23) hold with q"h = q�h and q"` = q�` . If i = 0, the constraints (21) and (22), which imply (23),

can be reexpressed as:

"` [u(qh)� u(q`)] � dh � d` � "h [u(qh)� u(q`)]

 (q") � d" � "u(q") for all " 2 f"`; "hg .

The set A�(0) is illustrated in the �gure below.
zd

h
=ε

lεd

)]()([ **
ll ququ h −ε

)( *quε

)( *
hh quε

)]()([ **
lququ hh −ε

)( *qψ

)( *
hqψ
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The measure of the set A�(0) is

� [A�(0)] =
Z d̂

 (q�` )
x+ "h [u(q

�
h)� u(q�` )]�  (q�h)dx+

Z "`u(q
�
` )

d̂
("h � "`) [u(q�h)� u(q�` )] dx;

where d̂ = min f (q�h)� "` [u(q�h)� u(q�` )] ; "`u(q�` )g >  (q�` ). Moreover, x + "h [u(q
�
h)� u(q�` )] �

 (q�h) > 0 for all x >  (q�` ). So � [A�(0)] > 0.

De�ne �z(i; x) as the upper bound on real balances consistent with (21). (28) and (29), i.e.,

min

�
��` ["`u(q

�
` )� x] + ��h"hu(q�h)
i+ ��h

;
��h"h [u(q

�
h)� u(q�` )]

i+ ��h
+ x; x+ "h [u(q

�
h)� u(q�` )]

�
:

Then,

� [A�(i)] =
Z d̂

 (q�` )
�z(i; x)�  (q�h)dx+

Z "`u(q
�
` )

d̂
�z(i; x)� "` [u(q�h)� u(q�` )] dx:

It follows that � [A�(i)] is nonincreasing and continuous with i. Finally, from (21) and (29),

"` [u(q
�
h)� u(q�` )] � dp"h � d

p
"`
� ��h"h
i+ ��h

[u(q�h)� u(q�` )] :

A necessary condition for A�(i) 6= ? is

��h
i+ ��h

� "`
"h
:

Consequently, there is an i < 1 such that A�(i) is empty and � [A�(i)] = 0. By the continuity of

� [A�(i)], there is a threshold, �{ > 0, such that for all i < �{, � [A�(i)] > 0 and A�(i) 6= ?.

Proof of Proposition 3. The solution to (37)-(39) is

qp = q�

np = n�

dp =
(1� n�)�

�
1�n�
n�
�
u (q�) + n��

�
1�n�
n�
�
 (q�)

�
�
1�n�
n�
�
+ i (1� n�)

; (42)

if i � �{ �
�
�
1�n�
n�

�
[u(q�)� (q�)]
 (q�) , where �{ is obtained from (38) at equality with qp and dp as de�ned

above. Otherwise, (38) holds at equality and

(qp; np) 2 argmax
q;n

n�

�
1� n
n

�
[u(q)�  (q)] (43)

s.t. � i (q) + �
�
1� n
n

�
[u (q)�  (q)] = 0: (44)
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The case where i < �{ follows from (40). Consider next the case i > �{. From (44)

n =
1

1 + ��1
h

i (q)
u(q)� (q)

i : (45)

Substituting into (43), the mechanism design problem becomes

W(i) = max
q

i (q)

1 + ��1
h

i (q)
u(q)� (q)

i + U(c�)� c�:
The �rst-order condition for the optimal choice of q can be rearranged to read as

�
"
1�

�0
�
1�np
np

�
np�

�
1�np
np

�# i+ ��1� np
np

��
u0(qp)

 0(qp)
� 1
�
= 0; (46)

where I used  (qp)
u(qp)� (qp) =

�
�
1�np
np

�
i . From the Envelope Theorem,

@W
@i

=  (qp)np

"
1�

np�
�
1�np
np

�
�0
�
1�np
np

� # :
Using (46),

@W
@i

= �
 (qp)

�
np�

�
1�np
np

��2
i�0
�
1�np
np

� �
u0(qp)

 0(qp)
� 1
�
:

Suppose qp > q�. One can reduce qp to q� and increase u(qp) �  (qp), and dp can be chosen such

that the buyers�and sellers�incentives to participate are una¤ected. To see this denote d0 and d1

as the values for the transfers of real balances such that

�id1 + �
�
1� np
np

�
[u (q�)� d1] = 0 (47)

np

1� np�
�
1� np
np

�
[d0 �  (q�)] = 0: (48)

From q� < qp,  (q�) <  (qp), u (q�)�  (q�) > u (qp)�  (qp), and

�i (q�) + �
�
1� np
np

�
[u (q�)�  (q�)] > �i (qp) + �

�
1� np
np

�
[u (qp)�  (qp)] = 0:

Consequently, d1 > d0 =  (q�). Therefore,

�id1 + �
�
1� np
np

�
[u (q�)� d1] = 0 < �id0 + �

�
1� np
np

�
[u (q�)� d0] ;

and

d0 �  (q�) = 0 < d1 �  (q�) :
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By continuity, there is a d 2 [d0; d1] such that (39) holds with q = q� and n = np. From (37), such a

deviation raises W. Moreover, from (46), qp 6= q� since otherwise np = n� and i � �{. Consequently,

qp < q� and @W
@i < 0. To show that np < n�, notice �rst from (46) that np 6= n�. From (45) n is a

decreasing function of q. So if np > n�, one can reduce n and increase q, which would raise welfare.

From (38) at equality and (44), W(i) = inpdp + U(c�) � c�, with npdp = Mt
pt
. The result @W

@i < 0

implies @(Mt=pt)
@i < 0.
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