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Abstract

Can the expansion of higher education lead to firm productivity growth? In this
paper, we examine how China’s college expansion program contributes to the rapid
growth of firms’ R&D expenditure and productivity. In our model, heterogeneous firms
make endogenous R&D decisions, requiring them to allocate skilled workers between
production and R&D. We structurally estimate the model using firm-level data on
the level and distribution of R&D, as well as macro-level data on skill prices and
sectoral allocation. Quantitative analysis reveals that between 2004 and 2018, the
combination of the R&D-sector-biased technology shock, the skill-biased technology
shock, and the skilled-labor supply shock leads to a 12 percent increase in total factor
productivity (TFP), of which one-fifth is explained by the rising supply of skilled labor.
Counterfactual analysis shows that a further increase in the share of skilled labor has
the potential to increase TFP by an additional 2 percent, but the marginal effect
diminishes due to the rising wages of unskilled labor.
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1 Introduction

During the past two decades, China has been striving to transition from a capital-investment-
driven economy to an innovation-driven economy to sustain economic growth. In the indus-
trial sector, the aggregate R&D-expenditures-to-sales ratio increased from 0.6 percent in
2004 to 1.2 percent in 2018. As emphasized by Romer (2000) and Bloom, Van Reenen, and
Williams (2019), innovation activity needs workers who have the skills to carry out research;
thus, increasing the quantity of innovative activity requires increasing the supply of skilled
workers, which may be achieved by policy reforms in the education system. In this paper,
using China’s higher-education expansion policy as an example, we explore to what extent
increasing the supply of skilled labor can foster firm innovation and promote total factor
productivity (TFP) growth.

In our model, heterogeneous firms make endogenous R&D choices to improve their pro-
ductivity. One key novelty of the model is that firms decide how to allocate skilled workers
between the production sector and the R&D sector. Wages of skilled and unskilled labor are
determined by the equilibrium conditions of the labor market. An increase in the share of
skilled workers reduces the wage premium, all else equal, and lowers the cost of R&D. We
calibrate three aggregate shocks: a labor market shock that captures the increase in the share
of skilled workers caused by the college expansion program, a skill-biased technology shock
that increases the labor productivity of all skilled workers, and a sector-biased technology
shock that increases productivity in the R&D sector. Together, these three factors lead to
an 11.8 percent increase in TFP between 2004 and 2018, of which 2.2 percent is explained by
the college expansion program. We predict that the share of skilled workers will continue to
rise, but the effect on TFP is diminishing. TFP can potentially further increase by roughly
2 percent before it reaches a plateau.

We start by empirically documenting some salient trends in Chinese firms’ R&D expen-
diture and China’s labor market. We first show a dramatic increase in both aggregate R&D
expenditures and the R&D-to-sales ratio in China’s industrial sector since 2004. We argue
that the concurrent massive expansion of higher education, which significantly increased the
supply of skilled labor, has been a key contributing factor. We also find that an increasing
share of skilled workers was allocated to the R&D sector, and at the same time the research
productivity in the R&D sector (measured by patents granted per R&D worker) increased
significantly. This suggests that a technology shock that is biased toward the R&D sector
may also contribute to the expansion of the R&D sector. Additionally, we observe that the
college wage premium has remained largely stable despite a substantial rise in the share
of college-educated workers, indicating the existence of a skill-biased technological change.
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These macro-level trends suggest that the surge in firms’ R&D expenditure in China may
be driven by three shocks: a labor supply shock, an R&D sector-biased technology shock,
and a skill-biased technology shock.

In the empirical section, we also provide suggestive evidence of the determinants of firms’
R&D decisions and the effects of R&D on productivity growth using firm-level data, which
contain information on firms’ production variables, balance sheets, and R&D expenditures.
We find that the fraction of firms engaging in R&D activities (referred to as “R&D-active
firms” henceforth) increases with productivity levels and asset levels. These empirical find-
ings imply that financial frictions play a significant role in firms’ R&D decisions, highlighting
the need to incorporate financial constraints into our model.

We then develop a model of heterogeneous firms with endogenous R&D decisions under
financial frictions. In the economy, workers are heterogeneous in their labor productivity
and education levels. We classify workers with a bachelor’s degree as skilled labor. There is
a continuum of firms that are heterogeneous in their productivity and net worth. All firms
produce homogeneous manufactured goods using a decreasing-returns-to-scale production
technology that combines capital, skilled labor, and unskilled labor, where capital demand
is subject to a collateral constraint.

In each period, firms decides whether to perform R&D and how many ideas (the output
of R&D activity) to produce. The cost of R&D consists of a fixed cost incurred every period
and a variable cost, which includes wage expenses for skilled workers and expenditures on
intermediate inputs. If a firm chooses not to perform R&D, its productivity evolves according
to an AR(1) process. If a firm invests in R&D, its productivity in the next period improves
on top of the AR(1) process, with the magnitude of the improvement depending on the
number of R&D ideas it produces. The endogenous R&D decisions create a trade-off between
current-period profits and future productivity gains.

We calibrate model parameters by matching the stationary equilibrium of our model with
the Chinese economy in the early 2000s. We employ a standard two-step calibration strategy.
First, a subset of parameters is selected outside the model. Second, the remaining param-
eters, reflecting unique characteristics of the Chinese economy, are internally calibrated to
match the aggregate and distributional patterns in China’s Annual Survey of Industries (ASI)
and the China Economic Census.1 Under our calibration, the R&D production function ex-
hibits a higher degree of decreasing returns to scale compared to the manufactured goods
production function, and the two input factors are gross substitutes. Doubling the amount
of R&D ideas leads to a 6 percent increase in productivity in the following period. To test
our model’s performance, we also compare the model predictions and the data counterparts

1China Economic Census Yearbooks are available at https://www.stats.gov.cn/sj/pcsj/.
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for the moments that we do not explicitly target in the calibration.
We feed three aggregate shocks into the estimated model to capture all relevant fac-

tors driving the rapid growth in firms’ R&D investment between 2004 and 2018. The first
shock is an increase in the share of skilled labor from 4 percent to 14 percent due to the
college expansion program. The second shock is the skill-biased technological shock that
is constructed to match the change in the college wage premium, The third shock is the
R&D-sector-biased technological shock that is calibrated to match the change in the R&D
expenditures-to-output ratio in the industrial sector.

The combined effect of the three shocks leads to a 154 percent increase in R&D ideas
per R&D worker. In the data, patents per R&D worker increased by 144 percent, aligning
with our model’s prediction. Our model predicts that the combined effect of all three shocks
leads to a 12 percent increase in TFP. The influx of skilled workers reduces the labor cost
of R&D for a given number of ideas produced. Both the sector-biased and the skill-biased
technological changes generate more ideas for a given amount of R&D inputs.

The model implies that the R&D sector expands the employment of skilled labor to a
larger extent than the production sector in response to aggregate shocks, which is consistent
with the data. There are two main reasons for this result. First, an R&D-sector-biased tech-
nological shock disproportionately favors the production of R&D ideas, thereby increasing
the demand for skilled labor in the R&D sector relative to the production sector. Second,
because the substitutability between skilled labor and other inputs is higher in the R&D
sector than in the production sector, the positive skill-biased technology shock leads to a
higher increase in the demand for skilled labor in the R&D sector than in the production
sector.

To isolate the effect of the rising skilled labor supply, we simulate a counterfactual econ-
omy in which the share of skilled labor is fixed at its 2004 level. In this case, the model
implies that the skilled wage rate would be 158 percent higher than in the benchmark model,
implying a significantly higher cost of R&D. As a consequence, the total number of ideas pro-
duced by the R&D sector would decrease by 24 percent, but the aggregate R&D expenditure
is reduced by only 7.2 percent. The smaller reduction in R&D expenditure relative to R&D
output implies a decline in R&D productivity. This is because, when firms face a higher
wage rate for skilled labor, they substitute away from skilled workers to intermediate goods
inputs when producing R&D ideas. As firms use fewer skilled workers in R&D, they also get
less benefit from the skill-biased technology shock that largely improves the productivity of
R&D workers in the benchmark economy. Our simulation suggests that 2.2 percent of the
model-implied TFP improvement would be lost without the college expansion program.

China’s college expansion program has primarily increased the college enrollment rate
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among the population under 40 years old. As younger cohorts gradually replace older ones
in the labor market, the share of skilled workers will continue to rise in the coming decades.
However, our model predicts a diminishing marginal effect on aggregate TFP in the long
run. We find that if the share of skilled labor reaches 50 percent, TFP may only increase
by additional 2 percent. This is because the equilibrium effect of a rising wage for unskilled
workers, which reduces firms’ after-tax profit, making firms less willing to invest in R&D.

Related Literature

Our paper connects three strands of the literature. First, we contribute to the growing
literature that studies the drivers and consequences of the recent surge of R&D expenditure
in China. Most of the previous research focuses on fiscal policies that promote firms’ R&D,
including institutional factors (Hu and Jefferson (2009)) and tax incentives, (Li (2012), Dang
and Motohashi (2015), Jia and Ma (2017), and Dai and Wang (2019)). Chen et al. (2021)
also point out that the increase in reported R&D could be partly driven by relabeling other
expenses as R&D. Ma (2024) is the first to evaluate the effects of the increase in the share of
skilled labor on firms’ innovation choices in a quantitative model. Ma (2024) emphasizes how
the effects of a labor supply shock on decisions to innovate interact with trade and industry
structure, whereas we emphasize how the effects of a labor supply shock also depend on
input substitutability and technological change.

Second, our paper is related to the literature on the connection between human capital
and innovation. The previous literature has provided empirical evidence (e.g., Aghion et al.
(2009), Toivanen and Väänänen (2016), and Aghion et al. (2017)) and theoretical explana-
tions (e.g., Akcigit, Pearce, and Prato (2025) and Bloom, Van Reenen, and Williams (2019))
for the relationship between human capital, firm R&D, and productivity growth. In the
context of China, Che and Zhang (2018) show empirical evidence that the policy-induced
increase in college graduates in China leads to more productivity growth in human-capital
intensive industries.

Third, our paper contributes to the large literature on the barriers to productivity growth
in developing economies. A large body of research on economic growth has pointed out
that differences in aggregate TFP between rich and poor countries could be largely due to
resource misallocation, and resource reallocation has been a key driver of growth in many
developing economies, including the Chinese economy (e.g. Hsieh and Klenow (2009), Song,
Storesletten, and Zilibotti (2011), Brandt, Tombe, and Zhu (2013), and Midrigan and Xu
(2014)). Our paper is more related to the recent efforts in this field that incorporate firms’
endogenous R&D decisions in the presence of idiosyncratic distortions in China, for example
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König et al. (2022) and Buera and Fattal Jaef (2018). Relative to König et al. (2022) and
Buera and Fattal Jaef (2018), we consider the limited supply of skilled labor capable of
conducting R&D as a barrier to innovation, and thus to TFP growth, and quantify the
effects of alleviating such barriers, particularly in the presence of technological changes.

2 Motivating Facts and Descriptive Evidence

In this section, we first examine the changes in the share of skilled labor and the wage pre-
mium since China started the college expansion program in 1999 (Section 2.1). In Section 2.2,
we demonstrate that the increasing share of skilled labor coincides with a substantial surge
in R&D investment in the industrial sector. Furthermore, we document both an expanding
allocation of skilled labor to the R&D sector and rising research productivity among R&D
workers. Finally, in Section 2.3, we present firm-level evidence concerning the determinants
of firms’ R&D decisions and their effects on productivity growth.

2.1 The Change in the Skill Composition and Skill Prices

In China, university education is highly controlled by the state. The Ministry of Education
manages the admission process and assigns quotas of admitted students in each year. In 1999,
the central government initiated the “college expansion program.” As a result, the number
of college graduates increased from slightly above 1 million to near 4 million between 2004
and 2018.2 (Figure 1, Panel A) In the same panel, the college graduate share (the share of
college graduates in the population aged 22) increased from approximately 5 percent to 19
percent between 2004 and 2018.

In addition to enrolling more college students, China has implemented other higher educa-
tion reforms, such as promoting world-class research universities, increasing research funding,
encouraging international collaboration, and adopting a more flexible college entrance exam
system to improve educational quality and accessibility.

Does the rapid influx of skilled labor push down the college wage premium? We study
this question by performing a Mincer regression using micro-level data from the Chinese
Household Income Project(CHIP). CHIP data provide rich self-reported information on re-
spondents’ labor market activities, including annual salary, working hours, industry, etc.;
educational attainment; and other characteristics, including gender, age, and household
composition. We use the 2002, 2007, 2013, and 2018 waves of CHIP surveys to study the

2We only account for 4-year college programs and do not account for 2- or 3-year vocational college
programs. Data source: China Statistical Yearbooks, available at https://www.stats.gov.cn/sj/ndsj/.
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Figure 1: College Expansion and Rising R&D Investment in China
Note: College graduates refers to the number of four-year college degree recipients in the respective years,
measured in millions. College graduate share refers to the ratio of college graduates to the total population
aged 22. In our model calibration, we use the urban population instead of the total population, as we focus
on productivity and R&D investments in the industrial sector. R&D expenditures refers to the total R&D
spending of all industrial enterprises above a designated size, measured in billions of RMB. R&D to sales
refers to the ratio of R&D expenditures to sales revenue for all industrial enterprises above a designated size.
Data sources include the China Statistical Yearbooks and the China Economic Census Yearbooks.

change in the wage premium for college graduates. One unique feature of CHIP data is that
the 2007, 2013 and 2018 waves of the CHIP survey also contain self-reported information on
respondents’ college entrance exam (Gaokao) scores, which can be regarded as a measure of
cognitive skills and a proxy for labor productivity.3

To estimate the college wage premium in each of the four waves, we need to control for
other factors that may affect individuals’ wage rate. Following the literature, we run the
following regression:

ln(wagei) = β0 +γ1Coli +γ2Cogi +β1Y Ei +β2Y E
2
i +β3Xi + ϵi (1)

where Coli is a dummy variable, indicating if the person has graduated from a four-year
college. Cogi denotes cognitive capability (normalized Gaokao score). Y Ei is the number of
years of work experience. Xi controls for other labor characteristics, including gender and
province of residence.

After controlling for individual characteristics, including the college entrance exam score,
the wage premium slightly decreased from 1.587 (e0.462) in 2007 to 1.474 (e0.388) in 2018
(Table 1). Considering the large increase in the share of the labor force that has a college
degree, the decrease in the wage premium is rather moderate.

3A summary of statistics and our sample selection procedure are provided in Appendix A.
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Table 1: Estimating the College Wage Premium in China

2002 2007 2013 2018
(1) (2) (3) (4) (5) (6) (7)

4-year college 0.446 0.531 0.462 0.343 0.296 0.433 0.388
(0.020) (0.028) (0.030) (0.023) (0.025) (0.019) (0.022)

Gaokao z-score 0.092 0.059 0.050
(0.015) (0.013) (0.011)

experience 0.021 0.038 0.039 0.039 0.040 0.040 0.042
(0.003) (0.005) (0.005) (0.004) (0.004) (0.003) (0.003)

experience2 -0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

No. of observations 7193 2158 2158 3143 3143 4839 4839
R-squared 0.132 0.188 0.201 0.133 0.139 0.136 0.140

Notes: 4-year college is a dummy variable indicating the completion of four years of college. Gaokao z-score is
a proxy for individual ability. (See Appendix A for the normalization method for Gaokao score.) Experience
is the number of years of work experience. We also controlled for individual characteristics, including gender
and province of residence.

2.2 R&D Expenditure, Employment, and Productivity

As shown in Panel B in Figure 1, along with the rising share of workers with college degrees
there is a surge in aggregate R&D expenditure. Total R&D expenditure increased approx-
imately eight times between 2004 and 2018, while the R&D-to-sales ratio rose from around
0.6 percent to 1.2 percent.

In this paper, we conjecture that the increasing supply of college-educated labor can
promote firm innovation in China, as skilled workers are essential inputs for R&D tasks.
Data on the use of R&D workers and research output in Chinese industrial enterprises from
2004 to 2018 provide further evidence for our hypothesis.

The first two rows of Table 2 show that the number of workers engaged in R&D tasks in
Chinese industrial enterprises increased 5.5-fold from 2004 to 2018, and the share of R&D
personnel in aggregate employment rose from 0.8 percent to 3.6 percent.4 Meanwhile, as
shown in the third and fourth rows, the share of wage expenditures for R&D workers in
total R&D spending increased by nearly 12 percentage points,5 and an increasingly larger

4The number of R&D workers is measured by full-time equivalents (R&D quan shi dang liang), which
accounts for both full-time and part-time employees involved in R&D. The number of part-time R&D workers
is converted to full-time equivalents using their average working hours on R&D activity.

5A widely known issue in Chinese plant-level data is that the National Bureau of Statistics (NBS) un-
derstates actual labor cost. For example, the aggregate share of wage cost is roughly 30 percent, which
is significantly lower than the aggregate labor share in the manufacturing sector in the Chinese national
account. This inconsistency is also documented in Bai, Hsieh, and Qian (2006) and Hsieh and Klenow
(2009) A possible explanation for this inconsistency is that the NBS only reports wage income but does not
provide information on non-wage benefits, including bonuses, pensions, insurance, and housing allowance.
As a result, when calculating the cost share of labor in R&D activities, we assume that non-wage benefits
are a fixed portion of total labor compensation, and we adjust the raw data (22.5 percent in the 2004 China
Economic Census Yearbook) by the same factor (1.6), following Bai, Hsieh, and Qian (2006) and Hsieh and
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proportion of college-educated workers were assigned to R&D tasks. These data not only
reflect a significant rise in the demand for skilled labor capable of conducting R&D tasks
but also highlight the growing importance of skilled labor in the process of firm innovation.

Table 2: R&D Workers: Employment, Cost, and Productivity

2004 2008 2013 2018
Skill share and allocation

R&D workers (×1,000) 542 1,230 2,494 2,981
Share of R&D worker in labor force % 0.82 1.39 2.55 3.57
R&D workers cost share % 36.0 32.5 43.7 47.9
Share of R&D worker in skilled labor force % 21.2 20.3 28.7 31.2

Patent production
Patent applications (×1,000) 20 59 205 371
Patent applications per R&D worker 0.04 0.05 0.08 0.13
Patents granted per R&D worker 0.014 0.016 0.021 0.034
Patent application approval rate % 37.9 32.3 25.2 28.0

Note: R&D workers refers to the number of employees engaged in R&D tasks in industrial enterprises in the
respective years, multiplied by their average hours spent on R&D tasks. Share of R&D workers in labor force
refers to the number of R&D workers divided by the total number of employees in industrial enterprises.
R&D workers cost share refers to the ratio of compensation for R&D workers to total R&D expenditures.
Share of R&D workers in skilled labor force refers to the ratio of the number of R&D workers to the number
of college-educated workers. Patent applications refers to the total number of invention patent applications
filed by industrial enterprises in the respective years. Patent applications per R&D worker refers to the ratio
of the total number of invention patent applications to the number of R&D workers. Patents granted per
R&D worker refers to the ratio of the total number of invention patents granted to the number of R&D
workers. Patent application approval rate refers to the ratio of the total number of invention patents granted
to the total number of invention patent applications. Data sources include the China Statistical Yearbook
and the China Economic Census.

The lower panel of Table 2 shows China’s R&D output, which is measured by patent
production, and R&D productivity, which is measured by patents per R&D worker. To
control for the quality of patents, patent data in Table 2 only include invention patents
and exclude utility model patents and design patents. From 2004 to 2018, the number of
patent applications filed by Chinese industrial enterprises increased more than 18.5-fold,
and the number of patent applications per R&D worker increased by 255 percent. If we
only consider patents that are eventually granted, R&D workers’ productivity, measured by
patents granted per R&D worker, increased by 144 percent. These changes reflect that R&D
workers have become more productive.6

Klenow (2009).
6One might argue that the significant rise in patents per R&D worker in China could have stemmed from

the government’s stricter enforcement of patent laws rather than an improvement in research productivity.
This argument is more plausible in the early 2000s, when the Chinese government took significant actions
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2.3 Firm-Level Evidence on R&D

In this section, we use firm-level data to investigate the determinants and the effects of
R&D expenditure. We obtain firm-level data from the Annual Survey of Industries (ASI)
conducted by China’s National Bureau of Statistics, which is a census of all state-owned
firms and private firms in the manufacturing industry with annual revenue above 5 million
RMB.7

To investigate how firms’ R&D decisions are affected by other factors, we do the following
regression analysis using a linear probability model. The dependent variable is a dummy
variable whose value is 1 for R&D firms, and 0 for non-R&D firms. The main independent
variable is the firm’s TFP in the current year,8 Columns (1) - (3) in Table 3 show that
the fraction of R&D-active firms robustly increases with firm TFP, after controlling for the
amount of equity in the firm and the firm’s ownership type.9 In addition, firms with higher
net worth are more likely to invest in R&D. State-owned enterprises (SOEs) make more
R&D investments compared to private firms.

To further quantify the effects of R&D expenditure on productivity growth, we estimate
the following TFP process:

log(TFP )i,t+1 = ρ log(TFP )i,t +γ Xi,t + ϵi,t+1 (2)

where Xi,t measures R&D activities. We first estimate whether making positive R&D ex-
penditures increases productivity in the next period. To do so, we let Xi,t be the dummy
variable taking the value 1 for R&D firms, and 0 for non-R&D firms. Then, for all R&D
firms, we test whether making greater R&D investments leads a higher growth rate in the

against patent infringement, in order to meet the the requirements for joining the WTO. However, we find
that most of the increase in patents per R&D worker occurred between 2013 and 2018, a period when China’s
patent protection system had already been well established. This suggests that stricter enforcement of patent
laws is not the primary driver of the increase in patents per R&D worker.

7We do not use ASI after 2008 because value-added firm output is no longer reported after 2008. Infor-
mation on R&D is only available in the years 2001 and 2005 - 2007.

8We estimate firm TFP using the Solow residual method, which requires a specification of the production
function. We assume a decreasing-return-to-scale production function, taking the form of Yt = ZtK

α
t L

θ
t ,

where Yt, Kt, and Lt are value-added output, capital, and labor of a firm, correspondingly. To account for
the heterogeneity in labor inputs, we use total wage bills to approximate Lt. We chose α= 0.40 and θ= 0.45
consistent with Bai, Hsieh, and Qian (2006). We also include control variables of the firm’s equity value and
ownership type. We also regress TFP (in logs) on start year, province, and 2-digit industry to control for
variation caused by these factors.

9The dummy variable SOE takes the value 1 if a firm is a state-owned enterprise according to its registra-
tion type, or the state has an absolute or relative controlling share in the firm. The two definitions of state
ownership (registration type and controlling share) do not always overlap since China started the reform on
SOEs in 1998, and since then, a growing fraction of registered SOEs have corporatized. See Hsieh and Song
(2015) and Gu and Jia (2022) for more information.
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Table 3: Characteristics of Firm R&D Decisions

(1) (2) (3) (4) (5)
R&Dd R&Dd R&Dd log(TFPt+1) log(TFPt+1)

log(TFPt) 0.033 0.021 0.028 0.681 0.698
(0.004) (0.003) (0.003) (0.018) (0.011)

log(equity) 0.071 0.066
(0.005) (0.005)

SOE 0.121
(0.014)

R&Dd 0.050
(0.014)

log(R&D) 0.032
(0.004)

R-squared 0.149 0.250 0.259 0.452 0.530

Notes: The dependent variable, R&Dd is a dummy variable whose value is 1 for R&D-active firms, and
0 for R&D-inactive firms. log(TFP ) is the logarithm of firm TFP . Equity is calculated as the difference
between total asset and total debt. SOE is a dummy variable with a value 1 for state-owned enterprises.
All regressions include industry, start year, and province fixed effects. Regressions are weighted by the size
of total wage bills. Standard errors are clustered at the industry level and are reported in parenthesis. We
use a balanced panel between 2001 and 2002.

next period. To this end, we restrict the sample to be all R&D firms, and Xi,t = log(R&D)i,t

is the logarithm of the amount of R&D expenditure.
The last two columns in Table 3 show that the auto-correlation coefficient of the pro-

ductivity process is roughly 0.7 at an annual rate. Conditional on the current TFP level,
making positive R&D investments increases TFP by 5 percent on average in the next period.
In addition, conditional on making positive R&D investments, doubling R&D increases TFP
in the next period by 3 percent. This number is at the lower end in the range of estimates of
the private returns to R&D. Most empirical studies on this topic are based on micro data in
developed countries. Hall, Mairesse, and Mohnen (2010) review this literature and find this
R&D elasticity parameter to have a broad range between 2 percent and 25 percent. Chen
et al. (2021) use a different source of data from the Chinese State Administration of Tax and
find the R&D elasticity parameter to be 9 percent from 2006 to 2011.

Summary. In this section, we first present the institutional background of China’s college
expansion program and provide suggestive evidence linking the increased supply of skilled
labor to rising R&D expenditures. Our analysis reveals that the dramatic growth in the
share of college-educated workers resulted in only a modest decline in the college wage pre-
mium, indicating the presence of skill-biased technological change. Moreover, we document
significant increases in both the quantity and the productivity of R&D workers between
2004 and 2018, suggesting the existence of a technological shock that exclusively enhances
productivity in the R&D sector. Using firm-level data, we further demonstrate that a firm’s
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likelihood of investing in R&D rises with its productivity and net worth, and that such
investments significantly enhance subsequent productivity.

These empirical patterns motivate our theoretical framework, where skilled labor is a
crucial input in R&D activities, and firms optimally make R&D investment decisions and
allocate skilled labor between the production and R&D sectors. The evidence suggests
three potential drivers of R&D expenditure growth: (1) a labor supply shock that increases
the availability of skilled labor, (2) an R&D-sector-biased technology shock that enhances
research productivity, and (3) a skill-biased technological change that increases the produc-
tivity of all skilled labor. The rest of the paper aims to quantify the effects of these shocks
on R&D expenditures and TFP in the Chinese economy, with a particular focus on isolating
the contribution of the labor supply shock.

3 Model

We develop a heterogeneous-firms model with endogenous R&D decisions. All firms produce
a homogeneous manufactured good for sale, and may choose to invest in R&D to improve
their firm-specific productivity in the next period. Firms’ capital demand may be constrained
due to financial frictions, which also affect their decisions on R&D expenditure. We outline
the model assumptions in Section 3.1, formulate the recursive problem in Section 3.2, and
define the stationary equilibrium in Section 3.3.

3.1 Environment

Time is discrete and the horizon is infinite with t ∈ {1,2, ...,∞}.10 There is no aggregate
uncertainty.

Demographics. There is a continuum of firms of measure one. The total labor supply is
also normalized to one. Ns

t denotes the share of skilled labor, corresponding to the share of
workers with a bachelor-or-above degree in the data.11 The remaining workers, Nu

t , make
up the unskilled labor force.

10The time subscript indicates that the time variation in the corresponding variable can be treated as an
aggregate shock later in Section 5. Otherwise, we omit the time index.

11Those who have completed vocational or part-time college degrees are not treated as skilled workers
in our model. We set a relatively high bar for skilled workers because in our model, all skilled workers are
capable of doing R&D, and R&D requires more advanced skills than part-time or vocational college programs
typically provide.
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Manufactured good production. All firms produce a homogeneous manufactured good
and operate under a decreasing-returns-to-scale technology. Firms are heterogeneous in
productivity, and demand skilled labor, unskilled, labor, and capital in production.

The production function of the manufactured good is given by

y = F (k,ns,y,nu) = Azkα [γ(Stns,y)σ +(1−γ)nσ
u]

θ
σ , (3)

where A is the aggregate productivity level, and z is the idiosyncratic productivity level.
ns,y and nu denote the efficient units of skilled and unskilled labor used in production,
respectively. St is a skill biased technology shock that will be calibrated in Section 5. α is
capital share, θ is labor share, γ is skilled labor share in producing the manufactured good,
and σ controls for the elasticity of substitution between skilled and unskilled labor.

Financial market. In our model, we assume that firms borrow intra-period loans to fi-
nance their capital demands. The cost of capital is the sum of the capital rental rate (r) and
the depreciation rate of capital (δ). We assume the financial market is imperfect, and firms
are subject to a collateral constraint. A firm’s choice of capital may be constrained, and the
borrowing limit depends on the firm’s net worth, a. Specifically, the maximum loan that a
firm can take out is given by

k ≤ λa, (4)

where λ is a parameter reflecting the tightness of the financial constraint.

R&D. In each period, firms may pay a fixed cost to perform R&D activities (become
R&D-active firms). We assume that the amount of the fixed cost increases with the firm’s
current productivity, given by fzη, where f and η govern the scale and shape of the fixed
cost.

Conditional on becoming an R&D-active firm, the firm then chooses the amount of R&D
activities it performs. We call the output of R&D activities “ideas,” denoted by x. Ideas are
firm-specific, meaning they can only improve firm-specific productivity in the next period
and cannot be traded. Firms combine two factors in producing R&D ideas: skilled labor,
ns,x, and the manufactured good as intermediate inputs, i.

The production function of R&D is given by

x= J(ns,x, i) =Bt

[
ψ (Stns,x)κ +(1−ψ)iκ

] µ
κ (5)

where Bt is the R&D-sector-biased technology shock and is time varying. There is no
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idiosyncratic technology variation in R&D activity. ψ is the share of skilled labor in the R&D
sector, κ controls for the elasticity of substitution between skilled labor and intermediate
input, and µ < 1 implies that the production of the R&D ideas exhibits decreasing returns
to scale. The skill-biased technology shock, St, also affects the productivity of the skilled
labor in the R&D sector.

Productivity process. If a firm chooses not to perform R&D (an R&D-inactive firm),
its idiosyncratic productivity z follows a standard AR(1) process in logs

log(z′) = ρlog(z)+ ϵ′, ϵ′ ∼ N(0,σϵ), (6)

where ρ governs the persistence of the productivity process and σϵ is the standard deviation
of the i.i.d. shock, ϵ.

If a firm chooses to perform R&D (an R&D-active firm), its next-period productivity
has an endogenous increase on top of the stochastic AR(1) process. The size of the increase
depends on the amount of R&D ideas the firm makes in the current period. Specifically, the
productivity process on an R&D-active firm follows:

log(z′) = ρlog(z)+ϕlog(1+x)+ ϵ′, ϵ′ ∼ N(0,σϵ), (7)

where ϕ controls the elasticity of productivity gains with respect to the amount of R&D
ideas.

Households. We assume that workers are heterogeneous in their labor productivity, h,
which follows a Gamma distribution Γ(ζ1, ζ2). The two shape parameters, ζ1 and ζ2, are
time invariant and will be calibrated externally (see Section 4.1).

In addition, a worker is either a skilled worker or an unskilled worker, e ∈ {s,u}, de-
termined by his education attainment. We do not allow households to choose educational
attainment in our model; rather, their educational attainments depend solely on their labor
productivity. There is a productivity cutoff, χt, above which all individuals receive a college
degree and become skilled workers. The change in the productivity cutoff reflects the policy
shock of the college expansion program, which we discuss in Section 5.1.

We keep the household problem as simple as possible, as the focus of our analysis is
on the firm side. Households maximize their utility function log(c) subject to the budget
constraint:

c≤ weh+D+TR, (8)
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where D represents aggregate firm dividends and TR denotes government transfers.

Government policies. The government taxes all profit-making firms at a uniform rate
τc, and provides proportional subsidies to all R&D-active firms for their R&D expenses at
the rate of τx.12

3.2 A Dynamic Problem of R&D Choices

Firms are heterogeneous in productivity and net worth. At the beginning of each period,
after observing their net worth and productivity shocks, firms decide whether to become
an R&D-active or an R&D-inactive firm. If a firm decides to be an R&D-inactive firm,
it faces a standard intra-period profit-maximization problem and a inter-period dividend-
saving decision. If a firm decides to be an R&D-active firm, it pays a fixed cost, and in
addition to the profit-maximization and dividend-saving decisions, it chooses the number
of R&D ideas to produce. For a given number of R&D ideas, the firm optimally chooses
intermediate goods input and skilled labor to minimize the cost of R&D.

Profit maximization. Conditional on the current period’s productivity and net worth,
all firms maximize their operating profit13

π(a,z) = max
k,ns,y,nu

{F (k,ns,y,nu)− (r+ δ)k−wsns,y −wunu} (9)

subject to
0 ≤ k ≤ λa,ns,y ≥ 0,nu ≥ 0 (10)

where ws is the wage rate for skilled labor and wu is the wage rate for unskilled labor.

R&D cost minimization. To produce a given x units of R&D ideas, the R&D-active
firm chooses the optimal amount of intermediate goods input, i, and skilled labor, ns,x, to
minimize the cost of R&D. The R&D cost-minimization problem can be expressed as:

Ω(x) = min
i,ns,x

{i+wsns,x} (11)

subject to
x≤ J(ns,x, i), i≥ 0,ns,x ≥ 0 (12)

12In reality, China has more complex tax incentives for R&D investments, as extensively explored by Chen
et al. (2021)). We abstract from this complexity to focus on the other drivers of firms’ R&D decisions.

13The operating profit defined here does not include the fixed and variable cost of R&D.
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where Ω(x) is the minimum cost of producing x units of R&D ideas.

Dynamic problem. A firm chooses whether or not to be an R&D-active firm by comparing
vE(a,z) and vR(a,z), where vE(a,z) and vR(a,z) denote the value of an R&D-inactive and
an R&D-active firm, respectively. The value of a firm conditional on its net worth and
productivity is given by

v(a,z) = max
{
vE(a,z),vR(a,z)

}
. (13)

An R&D-inactive firm maximizes the current period’s operating profit and then decides
the amount of net worth to carry over to the next period. Its dynamic problem can be
expressed as:

vE(a,z) = max
c,a′

{
u(c)+βEz′

[
v(a′, z′)

]}
(14)

subject to
c+a′ + τcπ(a,z) = (1+ r)a+π(a,z) (15)

c≥ 0,a′ ≥ 0 (16)

The evolution of productivity z follows Equation (6).
R&D-active firms face a trade-off where increasing R&D expenditure reduces profit in

the current period, but increases productivity in the next period. The dynamic problem of
an R&D-active firm can be expressed as:

vR(a,z) = max
c,a′,x

{
u(c)+βEz′

[
v(a′, z′)

]}
(17)

subject to
T (a,z,x) = π(a,z)−fzη − (1− τx)Ω(x) (18)

c+a′ + τcmax{T (a,z,x),0} = (1+ r)a+T (a,z,x) (19)

c≥ 0,a′ ≥ 0,x≥ 0 (20)

where T (a,z,x) is the taxable corporate income, which equals the operating profit less the
fixed and variable R&D costs. Productivity z evolves according to Equation (7).

3.3 Definition of Equilibrium

We study a competitive equilibrium for a small open economy, in which the world’s interest
rate is r. Firms are indexed by individual states s = {a,z}. The recursive competitive
equilibrium is defined by a set of value functions {v(s),vE(s),vR(s)}, the allocation of R&D-
active firmsXR = {c(s),a′(s),k(s),nu(s),ns,y(s), i(s),ns,x(s)}, the allocation of R&D-inactive
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firms XE = {c(s),a′(s),k(s),nu(s),ns,y(s)}, government policies {τc, τx}, prices {r,ws,wu},
and the joint cumulative distribution of firms Ψ = {ΨE(s),ΨR(s))} such that

1. The value and policy functions solve the maximization problem described in Section
3.2, given factor prices and government policies.

2. The skilled labor market clears
∫ ∞

χ
Γ(h;ζ1, ζ2)dh=

∫
ns,y(s)dΨR(s)+

∫
ns,y(s)dΨE(s)+

∫
ns,x(s)dΨR(s) (21)

3. The unskilled labor market clears
∫ χ

0
Γ(h;ζ1, ζ2)dh=

∫
nu(s)dΨR(s)+

∫
nu(s)dΨE(s) (22)

4. The amount of government transfers to all households is given by

TR = τc

(∫
π(s)ΨR(s+

∫
π(s)ΨE(s)

)
− τx (Ω(x(s)) (23)

5. The distribution Ψ is a fixed point where its transition is consistent with the policy
functions and the law of motion for Ψ:

Ψ = Φ(Ψ) (24)

where Φ is a one-period-ahead transition operator such that Ψ′ = Φ(Ψ).

4 Calibration

The initial steady state of the model is calibrated to the Chinese economy in 2001-2004.14

We first explain the parameters that are calibrated externally (Section 4.1). The rest of
the parameters, which represent the unique features of the Chinese economy, are estimated
internally within the model (Section 4.2). Section 4.3 evaluates the performance of our
calibration by comparing a set of non-targeted moments generated by our model with their
empirical counterparts.

14Since the college expansion program was initiated in 1999 and its implementation was a gradual process,
the share of skilled labor was stable in the early 2000s. We do not specify a single year as our calibration
target, because some data are not released every year.
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4.1 Externally Calibrated Parameters

The model is calibrated at an annual frequency. Table 4 lists all the parameters that we
calibrated externally. The values we assign to these parameters are either standard in the
literature or can be directly measured from the data.

The factor-neutral aggregate TFP level, A, is normalized to one. The degree of decreasing
returns to scale is set to be α+ θ = 0.85, which is standard in the literature. We set the
depreciation rate of capital δ = 0.10, and the capital share parameter α = 0.40, consistent
with estimates of the Chinese economy in the early 2000s (Bai, Hsieh, and Qian (2006)).
The elasticity of substitution between skilled and unskilled labor, σ, is set to 0.30, following
Li (2010). The capital rental rate is set to 6 percent.

Table 4: Externally Calibrated Parameters

Parameter Value Source
Production

Total factor productivity A 1.00 Normalization
Span-of-control (production) α+θ 0.85 Standard
Share of capital α 0.40 Bai, Hsieh, and Qian (2006)
Capital depreciation rate δ 0.10 Bai, Hsieh, and Qian (2006)
Elas. of substitution btw. skills σ 0.30 Li (2010)
Capital rental rate r 0.06 Standard

Skill endowment
Measure of workers N 1.00 Normalization
Share of skills N s

t 0.04 China Population Census
Distribution (scale parameter) ζ1 9.15 CFPS 2010-18
Distribution (rate parameter) ζ2 0.11 CFPS 2010-18

Government policy
Corporate income tax rate τc 0.33 State Taxation Administration
R&D subsidy rate τx 0.06 2000 R&D Census

The total supply of workers is normalized to one. The share of skilled labor is set to 0.04,
matching the share of the working-age urban population that have college-or-above degrees
in 2004.15 In addition, we use math test scores in the labor force from the China Family
Panel Studies (CFPS) to proxy the Γ distribution of labor productivity.16 In the initial

15The Chinese National Bureau of Statistics carries out a population census every ten years, and the most
recent ones were carried in 2000, 2010, and 2020. We calculate the share of college graduates in the working-
age population (ages 25 - 54) in 2004, utilizing the information on educational attainments across age groups
in the 2000 Population Census. (See Appendix B for a detailed breakdown of educational attainments across
age groups.) Ideally, we should use data on the educational attainment of workers in the industrial sector,
since our firm-level data are taken from the Annual Survey of Industries (ASI). However, the ASI did not
release this information except in 2004, and thus we cannot calculate the change in the share of college
graduates from the ASI. We thereby use data on urban workers from the Population Census as a proxy. We
have compared the two sets of data and confirmed that the educational attainment of all urban workers in
the Population Census is similar to that in the industrial sector in the ASI.

16Description and data of the CFPS are available at https://www.isss.pku.edu.cn/cfps/index.htm
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steady state, labor productivity at the cutoff for skilled labor is 63 percent higher than the
average labor productivity. (Figure 5 in Appendix C shows the calibrated labor productivity
distribution and the cutoff for college admission.)

The corporate income tax rate is 33 percent, mirroring the tax rate for domestic firms
in the early 2000s. The R&D subsidy rate is 6 percent, which is calculated as the aggregate
tax deduction for R&D investments, divided by aggregate R&D expenditure.17

4.2 Internally Calibrated Parameters

The remaining 12 parameters are internally estimated within the model and are summarized
in Table 5. The targeted moments, together with their empirical and model-predicted values,
are displayed in Table 6. These parameters are calibrated to replicate the unique aggregate
and distributional features of Chinese manufacturing firms, especially with regard to patterns
of R&D investments.

Table 5: Internally Calibrated Parameters

Parameter Value
Preference

Discount factor β 0.855
Manufactured good production

Borrowing constraint λ 2.839
Skills share in production γ 0.195

R&D good production
R&D sector-biased technology B 0.906
Span-of-control (R&D) µ 0.720
Skills share in R&D ψ 0.554
Elas. of substitution κ 0.693

R&D fixed cost
Fixed cost, level (×100) f 0.044
Fixed cost, curvature η 4.523

Productivity process
Persistence of productivity ρz 0.699
SD of productivity shocks σϵ 0.451
Scale effect of R&D ϕ 0.063

We choose the 12 parameters to match 12 data moments using simulated method of
moments (SMM).18 Even though every targeted moment is determined simultaneously by

17Source: China Economic Census in 2004.
18Specifically, we minimize the weighted sum of squared percentage differences between the data and model

moments. The vector of parameters, Θ, is chosen to minimize the minimum-distance-estimator criterion
function

f(Θ) = [mdata −mmodel(Θ)]′W[mdata −mmodel(Θ)],
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all parameters, in what follows, we discuss each of the moments in relation to the parameter
for which the moment yields the most identification power.

Preferences. We choose the discount factor β = 0.855 to match the aggregate assets-to-
output ratio. A higher β means firms are more patient and thus maintain a higher level of
assets.

Manufactured good production. We choose the borrowing constraint λ= 2.839 to tar-
get the aggregate firms’ debt-to-capital ratio (leverage ratio) of 0.563, following the standard
practice in the literature (Karabarbounis and Macnamara (2021) and Ottonello and Win-
berry (2024)). γ is calibrated to match the wage premium of skilled workers in 2007.19

R&D fixed cost. The two parameters that govern the fixed cost of R&D are calibrated
to target two moments in the firm-level data: the share of R&D-active firms (6.2 percent in
both the model and the data20), and how the share of R&D-active firms depends on their
current productivity levels. The latter is obtained by regressing the dummy variable of being
an R&D-active firm on the firm’s productivity level in logs.

R&D ideas production. The effect of R&D investments on next-period productivity is
jointly governed by four parameters in the R&D function (the R&D productivity level, B, the
span-of-control parameter, µ, the share of skilled labor, ψ, and the elasticity of substitution
parameter, κ) and the effect of R&D on next-period productivity, ϕ.

We estimate ψ= 0.554 to target the 0.82 percent share of R&D workers in the labor force.
The parameter κ has no steady-state implications. Instead, it determines how R&D-active
firms substitute between input factors (skilled labor vs. intermediate goods) after the price
or productivity of one factor changes relative to the other. We set κ = 0.69 to match the
increase in the share of R&D workers in the labor force in the data (from 0.82 percent in
2004 to 3.57 percent in 2018) after all aggregate shocks are fed into the model.21

where mdata and mmodel(Θ) are the vectors of moments in the data and the model, and Wii = diag(ωi) is
a diagonal weighting matrix, where i indexes the ith moment. We place additional weight, ωi, on the data
we view as more important to match and normalize

∑12
t=1ωi = 1.

19See Section 2.1 for the estimation of the wage premium of skilled workers. Ideally, we should match the
wage premium in 2002, but the 2002 CHIP does not include the Gaokao score, which we use to approximate
individual ability. Also notice that without controlling for individual ability, columns (1) and (3) in Table 1
suggest that the wage premium does not differ much from 2002 to 2007.

20Source: the 2004 China Economic Census Yearbook. Among 276,474 above-the-scale industrial firms,
17,075 of them report positive R&D investments.

21See Section 5.1 for the explanation of how aggregate shocks are calibrated.
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The R&D productivity level (B), the span-of-control parameter (µ), and the effect of
R&D expenditure on next-period productivity (ϕ) are calibrated jointly. A larger B yields
a greater number of R&D ideas for a given amount of inputs. A larger ϕ generates a larger
productivity increase for a given number of R&D ideas. A firm is willing to invest more
on R&D if either B or ϕ is larger. Therefore, various combinations of the two parameters
could yield the same aggregate R&D-expenditure-to-output ratio. We calibrate these two
parameters together by targeting the 1.9 percent aggregate R&D intensity in the data and
the effect of R&D investments on next-period productivity, which is estimated to be 0.032 in
Section 2.3. ϕ is estimated to be 0.063, indicating that doubling the number of R&D ideas
would result in an average 6.3 percent increase in firm productivity in the next period.

Both a greater B and a greater µ yield a higher aggregate R&D intensity. However, for a
given aggregate R&D intensity, a larger µ shifts the distribution of R&D expenditure to more
productive firms, which is equivalent to a lower median R&D expenditure-to-output ratio.
This is because a larger µ means that the R&D production function displays less decreasing
returns to scale. Therefore, we use the combination of the aggregate and the median R&D
expenditure-to-output ratio to identify both B and µ.22

Productivity process. ρz and σϵ govern the the exogenous component of the productivity
process. We estimate ρz by running a regression of a firm’s next-period productivity on its
current productivity using the 2001-02 ASI data. We estimate σϵ by measuring the standard
deviation of productivity growth in the 2001-02 ASI data.

4.3 Model’s Performance

To evaluate our model’s performance, we compare the non-targeted moments between our
model predictions and the data counterparts, and report them in the lower panel of Table 6.

When calibrating the parameters that govern the fixed cost R&D production, we target
how the decision to become an R&D-active firm relates to a firm’s productivity. To evaluate
our model’s performance, we check if our calibrated model can reproduce the relationship
between the decision to become an R&D-active and a firm’s net worth. To this end, we
simulate our calibrated model and regress the dummy variable of being an R&D-active firm
on the firm’s productivity level (in log) and asset level (in log). The estimated regression
coefficient in our model (0.074) is closely aligned with that in the data (0.071). This implies
that our calibrated model can capture how financial frictions shape firms’ R&D decisions in

22Cao et al. (2024) estimate that the skill intensity is 0.22 for incremental innovation and 0.39 for radical
innovation in China. In our estimation, the parameters µ and ψ together imply that the elasticity of R&D
ideas to the skilled-labor input is 0.29, which is in line with the estimation in Cao et al. (2024).
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Table 6: Targeted and Non-targeted Moments: Model vs. Data

Moment Model Data
Targeted

Aggregate assets to output ratio 1.913 1.923
Aggregate leverage ratio 0.560 0.563
College wage premium 1.587 1.587
Aggregate R&D to output ratio % 1.914 1.914
Median R&D to output ratio % 2.084 2.062
Share of R&D workers in labor force % 0.818 0.818
∆ Share of R&D workers (18 vs. 04) % 2.758 2.740

Share of R&D firms 0.062 0.062
Regress R&D dummy on log(z) 0.034 0.034
Regress log(z′) on log(z) 0.700 0.698
SD of productivity growth 0.500 0.499
Regress log(z′) on log(i+wsns,x) 0.032 0.032

Non-targeted
Reg. R&D decision on log asset 0.074 0.071
R&D to output 95th percentile 0.248 0.265
R&D to output 90th percentile 0.155 0.163
R&D concentration Top 1% 0.575 0.566
R&D concentration Top 5% 0.820 0.776
R&D concentration Top 10% 0.909 0.863
R&D workers cost share 0.379 0.360

China, as we have shown empirically in Section 2.3.
The share of R&D workers in the labor force is one of our calibration targets. We now

check to see whether the labor cost of R&D workers as a share of total R&D expenditure is
similar between the model and the data. The last row of Table 6 shows that, in the data, 36.0
percent of R&D expenditure is allocated to R&D workers’ compensation, while the model
counterpart is 37.9 percent. The reason that our model is able to simultaneously match the
labor cost share of R&D expenditure and the population share of R&D workers is due to the
assumption on the Γ distribution of labor productivity. Skilled workers have higher average
productivity and, consequently, receive higher labor income.

When calibrating the parameters of the R&D production function, we use the aggregate
and the median R&D expenditure-to-output ratio. We now check if our calibrated model
can reproduce the entire distribution of R&D expenditure in the data. To this end, we
first compare the most R&D intensive firms in our model and in the data. Specifically, we
calculate the R&D-to-output ratio for firms at the top 5 percent and 10 percent of the R&D
expenditure-to-output distribution. Table 6 shows that our model predictions are consistent
with the data.

Next, we examine whether the concentration of R&D expenditure aligns with the data,
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which is not a target in the calibration. Our calibrated model reproduces these empirical
features well. For example, among all R&D-active firms, the top 1 percent firms that have
the largest R&D investments account for 56.6 percent of aggregate R&D investments in the
data and 57.5 percent in the model.

Figure 2: Model Performance

When calibrating the fixed cost of R&D, we target the share of R&D-active firms in all
firms and the estimated linear relationship between being R&D active and the productivity
level. To examine our model’s performance, we check the share of R&D-active firms across
all productivity and output levels. Figure 2 shows that while the data show that more
productive firms are more likely to invest in R&D, this positive relationship is very moderate
(Panel A). In contrast, the positive correlation between the share of R&D-active firms and
output levels are more pronounced, especially at the top end of the output distribution
(Panel B). Our model can reproduce both of these features. The reason is that in our
model, both productivity levels and asset levels affect firms’ R&D decisions. A firm at
the top of the productivity distribution may choose not to invest in R&D if it does not
have enough net worth. The reason is that a firm’s future capital demand is more likely
to be constrained if it has a low asset level, and therefore the expected profitability of an
improvement in productivity is limited. On the other hand, the output size is determined
by both productivity and net worth. Therefore, our model reproduces the empirical pattern
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of a more significant relationship between the share of R&D-active firms and output sizes,
and a less significant relationship between the share of R&D-active firms and productivity
levels.

Lastly, we check if our calibration of the productivity process can reproduce the produc-
tivity growth patterns in the data. First, we plot the empirical and the model-predicted
productivity growth for R&D-inactive firms across the productivity distribution (Figure 2
Panel C). Our model predictions closely match the data pattern that more productive firms
have lower productivity growth, implying a large discount factor (ρ) in the productivity
process. Second, we plot the difference in growth rate between R&D-active firms and R&D-
inactive firms across the productivity distribution. Our model predicts that at the middle
and lower end of the productivity distribution, holding current productivity levels fixed,
R&D-active and R&D-inactive firms have a similar productivity growth rate. In contrast, at
the upper end of the productivity distribution, R&D-active firms have a much faster produc-
tivity growth than R&D-inactive firms. This is because under the calibrated productivity
process, more productive firms have a faster depreciation of productivity, and therefore they
invest more in R&D to improve their future productivity.

5 Quantitative Analysis

We now turn to quantifying the drivers and consequences of the surge in firm R&D expen-
diture, with a focus on the role of the college expansion program. We make a steady-state
comparison between the Chinese economy in 2004 and 2018. We first construct the aggre-
gate shocks that drive the increase in R&D intensity during this period (Section 5.1). Next,
we analyze the aggregate and the distribution effects of the combination of these aggregate
shocks (Section 5.2). In particular, we isolate the impact of the skilled labor supply shock
by simulating a counterfactual economy without the college expansion policy. Lastly, we
predict the long-run effect of the college expansion program by simulating counterfactual
economies with a continued increase in the share of skilled labor (Section 5.3).

5.1 Constructing Aggregate Shocks

We model three aggregate shocks that drive the increase in R&D intensity from 2004 to
2018. The first aggregate shock is the exogenous increase in the share of skilled labor, which
is calibrated externally using Chinese Population Census data. As reported by the 2020
Chinese Population Census, the share of skilled labor—measured as the fraction of urban
workers aged 23 to 55 holding a bachelor’s degree or higher—increased from 4 percent in 2004
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to 14 percent in 2018. Under our assumption of heterogeneous labor productivity, the college
expansion program brings in more individuals with lower labor productivity into colleges.
As a result, the productivity cutoff for skilled labor reduces from 63 percent higher than the
average productivity to 35 percent higher than the average. (See Figure 5 in Appendix C.)

As the share of skilled labor increases dramatically, ceteris paribus, the wage premium for
skilled labor should decline sharply. However, the data only show a slight decline from 1.56
to 1.47. To explain this difference, we introduce a skill-biased technological shock, St that
increases productivity for skilled labor in both the production and the R&D sectors. In our
calibration, St increases from 1.00 (normalization) to 2.09 (5.4 percent increase annually)
from 2004 to 2018.

Table 7: Calibrating the Aggregate Shocks

Parameter 2004 2018 Target Model Data
Share of skilled workers Ns

t 0.04 0.14 Share of college-educated labor 0.14 0.14
Skill-biased tech. change St 1.00 2.09 College wage premium 1.47 1.47
Sector-biased tech. change Bt 0.91 2.96 Aggregate R&D to output ratio % 4.22 4.22

Non-Target Model Data
∆ patents per R&D worker % 154 144

We construct the third shock to capture all residual factors driving the relative expansion
of the R&D sector compared to the production sector, and refer to it as the R&D-sector-
specific technology shock, Bt. We calibrate this shock to match the observed change in the
aggregate R&D-to-output ratio, which rises from 1.91 to 4.22 percent, implying an annual
growth rate of 8.8 percent in Bt. This shock can be interpreted as an increase in R&D
productivity, reflecting Chinese firms’ growing ability to advance technological frontiers, as
well as an improvement in the administrative and legal environment for intellectual property
protection that enhances firms’ capacity to secure returns on their R&D investments.

We validate our construction of the aggregate shocks by comparing our model prediction
on the number of ideas per researcher with the data counterpart of the number of patents
granted per R&D worker. Our calibrated shocks generate a 154 percent increase in number
of ideas produced per R&D worker, and the data show a 144 percent increase.23

23In the China Economic Census, the patents granted per R&D worker is 0.014 in 2004 and 0.034 in
2018. We document this statistic in Table 2. Cao et al. (2024) report that the number of eventually granted
patents per researcher in China increased from 0.14 in 2004 to 0.27 in 2014, using a different data source.
This finding is consistent with our calculations, although data beyond 2014 are unavailable.
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5.2 Quantifying the Combined Effects of Aggregate Shocks

In this section, we examine the aggregate and distributional effects of the aggregate shocks.
In our analysis, we adjust the equilibrium wages of skilled and unskilled workers to ensure
that both labor markets clear. Our main goal is to quantify how much the combination
of these aggregate shocks contributes to the surge in R&D expenditure and how much the
surge in R&D expenditure contributes to the increase in aggregate TFP.

Table 8: Quantifying the Impact of Aggregate Shocks

w/o Tech. Shocks w/ Tech. Shocks
w/o ∆Ns

t w/ ∆Ns
t w/o ∆Ns

t w/ ∆Ns
t

(1) (2) (3) (4)
A. R&D input (%)

Aggregate R&D to output ratio 1.9 2.4 4.0 4.2
Median R&D to output ratio 2.1 2.4 3.7 4.0
Fraction of R&D firms 6.2 8.1 16.4 17.6
R&D concentration Top 1% 57.4 59.5 68.7 70.4
R&D concentration Top 5% 81.9 82.8 87.1 87.8
R&D concentration Top 10% 90.8 91.2 93.2 93.6
Share of R&D workers in skilled labor force 19.0 29.4 16.3 24.9

B. Productivity (%∆ from bench.)
Total factor productivity - 1.5 9.6 11.8
Average productivity - 0.1 1.1 1.4
TFP Losses - -0.4 -2.3 -2.9

C. Financial metrics (%∆ from bench.)
Manufacturing output - -1.3 23.0 27.4
After-tax profit - -2.3 10.5 9.5
Net worth - -1.6 14.2 13.7

D. Skill price (%∆ from bench.)
College wage - -47.5 141.7 27.1
Non-college wage - 13.0 18.5 36.8

Note: In Panel A, we report the absolute values in each case. All statistics shown in panels B-D display the
changes from the benchmark steady state. Case (1) displays the moments in the initial steady state. In case
(2), we feed in the skilled labor supply shock but fix Bt at the level in the initial steady state. In case (3),
we feed in both the skill-biased technology shock and the sector-biased technology shock, but fix the skilled
labor supply at the initial steady state level. In case (4), we feed in all shocks described in Section 5.1. In
all experiments, we adjust wages to clear the labor markets.

Table 8 presents the effects of the aggregate shocks on R&D input, productivity, financial
metrics, and wages for skilled and unskilled labor. The difference between columns (1) and
(4) shows the combined effect of all three aggregate shocks.

R&D input. The sector-specific technology shock, Bt is calibrated to hit the increase in
the aggregate R&D-expenditure-to-output ratio in the data. The model-predicted median
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R&D expenditure-to-output ratio increased by a similar size. The fraction of R&D-active
firms increases from 6.2 percent in the initial steady state to 17.6 percent in the final steady
state, whereas in the data, the fraction of R&D firms increases to 28 percent.

The key reason why our model underpredicts the increase in the share of R&D firms is
that we do not model any fiscal or industrial policies that were implemented by the Chinese
government to stimulate firms’ R&D investment, such as tax deductions and exemptions.
Studies show that firms may have over-reported their R&D expenditure to get benefits from
these policies (Chen et al. (2021)). For this reason, both the officially released R&D intensity
and the share of R&D firms might have suffered from over-reporting, but over-reporting
might inflate the share of R&D firms more than the R&D intensity. This is because R&D
investment is heavily concentrated in large firms and large private enterprises, which are
subject to more stringent tax regulations. In contrast, it is easier for small and medium-
sized enterprises (SMEs) to inflate their R&D expenditures in order to qualify as “high-tech
enterprises” and gain tax benefits.

Figure 3: Decomposing the Impacts of Aggregate Shocks

The combined effect of the aggregate shocks makes R&D expenditure more concentrated
at the top, especially at the top 1 percent. The share of R&D investment from the top 1
percent of the largest innovators increases by 13 percentage points (from 57 percent to 70
percent) (Table 8). In addition, we plot the change in R&D output from the initial steady
state across the productivity distribution. As shown in Figures 3.A and 3.B, the number of
ideas generated by firms at the top of the productivity distribution, especially at the top 1
percent, increases much more than for the rest of the firms.

Consistent with the empirical evidence in Table 2, the model predicts a 5.9-percentage-
point increase in the share of R&D workers within the skilled labor force (compared to 10.0
percentage points in the data). This suggests that the R&D sector expands employment
of skilled labor to a larger extent than the production sector does in response to aggregate
shocks. There are two main reasons for this pattern. First, R&D-sector-biased technological
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shocks disproportionately favor the production of R&D ideas, thereby increasing the rela-
tive demand for skilled labor to perform R&D tasks. Second, skilled labor exhibits higher
substitutability with other inputs in the R&D sector than in the production sector. Conse-
quently, when skill-biased technological change occurs, the R&D sector experiences a more
pronounced increase in skilled labor demand than the production sector does.

Productivity growth. As firms invest more in R&D following the aggregate shocks, pro-
ductivity improves. The combination of the three aggregate shocks results in an 11.8 percent
increase in TFP, much greater than the increase in average productivity, which only increases
by 1.4 percent. The reason is that after the aggregate shocks, firms that are already at the
top of the productivity distribution invest more in R&D than the rest, and thereby become
more productive. As illustrated in Figure 3.C, the expected productivity growth of the most
productive firms (top 1 percent) increases by approximately 5 percentage points, while firms
up to the third quartile increase by less than 1 percentage point. As firms at the top of the
productivity distribution use a larger amount of production factors (labor and capital) than
the rest of the firms do, the productivity growth of highly productive firms has a dispropor-
tionately large impact on aggregate TFP. Therefore, the increase in TFP greatly exceeds the
increase in average productivity.24

Allocative efficiency. The aggregate shocks improve allocative efficiency. The TFP losses
due to the presence of financial frictions decrease by 2.9 percent.25 This seems counter-
intuitive at first glance, because as firms’ productivity increases, their optimal capital demand
should increase, implying a tighter constraint and thereby greater capital misallocation.

However, in response to the aggregate shocks, firms accumulate a higher level of net
worth for two reasons. First, firms’ after-tax profits increased by 9.5 percent, allowing them
to allocate more resources toward accumulating net worth. Second, firms also expect to invest
more in R&D in the future, and are therefore willing to save more today. Firms’ willingness
to accumulate assets and the ability to self finance alleviate the financial constraints, leading
to an improvement in allocative efficiency.

24Average productivity is calculated as
∫
zdµ, where µ denotes the distribution of all firms. The (measured)

TFP is calculated as Y/
(
AKα [γ(Ns,y)σ +(1−γ)Nσ

u ]
θ
σ

)
, where the upper-case letters denote the aggregate

variables.
25To quantify TFP losses, we apply the TFP accounting framework developed in Karabarbounis and

Macnamara (2021). We first calculate an efficiency level of TFP, which can be computed as TFPe =
(
∫
z

1
1−α−θ dµ)1−α−θ. The TFP loss is defined as the percentage difference between the efficient and measured

level of TFP: TFP losses = (TFPe/TFP−1)×100.
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Wages. The labor supply shock alone increases the equilibrium wage for skilled workers
and decreases the equilibrium wage for non-skilled workers. However, both the skilled-biased
technology shock and the sector-biased technology shock increase the demand for skilled
labor. The combined effect of all three shocks leads to a smaller wage increase for skilled
workers than for unskilled workers, narrowing the wage gap between the two groups.

5.3 The Effect of the Rising Share of Skilled Labor

In this section, we first study the actual effect of the college expansion program. To isolate the
labor supply shock, we compare the final steady state studied in Section 5.2 with an economy
that is hit by the same skilled-biased technology shock and the sector-biased technology shock
as described in Section 5.1, but the share of skilled labor is kept at the initial steady-state
level. Next, we analyze a hypothetical scenario in which the share of skilled labor continues
to increase in the future.

5.3.1 Isolating the effect of the labor supply shock

We first study the effect of the labor supply shock conditional on the two technology shocks,
which is shown as the difference between columns (3) and (4) in Table 8. The most direct
effect of the labor supply shock shows up in the wage premium of skilled workers. Without
an increase in skill supply, skilled labor wages would rise significantly (by over 140 per-
cent) as both of the technological shocks drive up the demand for skilled workers, thereby
substantially increasing the cost of innovation.

In the absence of a rising supply of skilled labor, R&D input, measured by aggregate R&D
intensity, decreases by only 0.2 percentage points (4.0 percent vs. 4.2 percent), but R&D
output decreases by 24.0 percent, indicating that the productivity of R&D drops significantly.
This is because in response to the increasing cost of skilled workers that is driven by the
technology shocks, R&D-active firms substitute skilled workers with intermediate goods
input. By doing so, R&D-active firms benefit less from the technology shocks that increase
the productivity of skilled workers in the R&D sector.

The blue (lower) areas depicted in Figures 3.A and 3.B illustrate the effects of a rising
skilled labor supply on the production of R&D ideas across firms with varying productivity
levels. We observe that a lower innovation cost due to the lower wage of skilled labor dispro-
portionately enhances the R&D ideas produced by the most productive firms. Consequently,
without the labor supply shock, the degree of concentration of R&D ideas would decline. As
shown in Figure 3.C, the expected productivity growth for highly productive firms would
decrease by approximately 1 percentage point, which is significantly greater than the decline
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for less productive firms.
In addition, the effect of the labor supply shock is amplified by the presence of technology

shocks. The difference between columns (1) and (2) in Table 8 shows the impact of labor
supply shocks in the absence of technological shocks. The effect of the college expansion pro-
gram on R&D choices and TFP growth is less pronounced than in the case with technological
changes. The reason is that increasing the supply of skilled workers is more important when
there are technology changes that drive up productivity and hence the demand for skilled
workers.

5.3.2 Predicting the long-run impact

The college enrollment rate has been steady at roughly 35 percent in recent years. As young
cohorts enter and old cohorts exit the labor market, the share of skilled labor in the working-
age population will continue to rise in the next one or two decades. To assess the long-run
impact of the college expansion program, we conduct the following exercise: we hold the
skill-biased technology shock and the sector-biased technology shock at their 2018 level, and
vary the share of skilled workers from 2 percent to 50 percent. While we vary the share
of skilled workers, we adjust the equilibrium wages of of both types of workers to clear the
labor markets. Figure 4 shows the results.

Figure 4: Predicting the Long Run Impact of Rising Share of Skilled Labor

Given our assumption that workers with above-the-threshold productivity obtain college
degrees, Panel A of Figure 4 demonstrates that as the share of skilled labor grows, the rate
of increase in total efficiency units provided by skilled labor diminishes. This expansion of
skilled labor directly reduces the skill premium, as illustrated in Panel D. The consequent
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decline in the cost of skilled labor induces firms to hire more skilled workers for R&D activities
(Panel B). The increase in the total number of skilled workers in the R&D sector leads to
more ideas created in the R&D sector (Panel G) and ultimately enhances aggregate TFP
(Panel E).

Our analysis suggests that a continued increase in the share of skilled labor could generate
an additional 2 percent gain in TFP. As shown in Panel E, the marginal effects of a rising
skilled labor share on TFP diminish. For instance, while increasing the skilled labor share
from 10 to 20 percent raises TFP by 1.4 percent, expanding it from 40 to 50 percent yields
only a 0.2 percent TFP gain. This diminishing return primarily stems from the equilibrium
effect that pushes up the wage of unskilled workers. As Panel H shows, after-tax profits of
firms decline sharply at an accelerating rate, reducing both their willingness and capacity to
fund R&D investments.

We find a hump-shaped relationship between total R&D expenditure and the share of
skilled labor, which emerges from the interplay of two countervailing forces. When the
share of skilled labor is below 20 percent, the dominant effect is the reduction in R&D
input costs due to the decline in the skill wage premium (Panel D), which gives firms strong
incentives to invest more in R&D. However, as the skilled labor share continues to rise beyond
this threshold, the dynamics shift markedly. The equilibrium effects of the rising wage of
unskilled workers reduce firms’ incentives to invest in R&D, despite the cost advantage.
This explains why the initial positive relationship between skill share and R&D spending
eventually reverses, creating an inverted-U pattern.

6 Conclusion

This paper examines the extent to which China’s college expansion program, which leads to
a significant increase in the supply of skilled labor, contributes to the rapid growth of firms’
R&D investments and productivity between 2004 to 2018. The empirical evidence we provide
suggests a crucial role for skilled labor in firms’ R&D activity, and that both the labor supply
shock and the technological change contribute to the surge in firms’ R&D expenditure. We
then construct a heterogeneous-firms model in which firms make endogenous R&D decisions
under financial frictions and allocate skilled labor between the production and R&D sectors.
We structurally estimate the model using firm-level data on the level and distribution of
R&D, as well as macro-level data on skill prices and allocation between the production and
R&D sectors.

To generate the observed growth in R&D investments, we construct three aggregate
shocks: an R&D-sector-biased technological shock, a skill-biased technological shock, and
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a skilled labor supply shock. Our model suggests that the combination of these shocks
generates a 12 percent increase in TFP, with the skilled labor supply shock accounting for
approximately one-fifth of the model-predicted TFP improvement. Our model also predicts
a marginal diminishing effect of an increasing supply of skilled labor in the long run because
of the rising equilibrium wage of unskilled labor.
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Appendices

A CHIP Data

This section describes our data-cleaning procedure and the definition of the normalized
Gaokao score, and provides a summary of statistics of our sample.

Data-cleaning Procedure We keep only full-time employees. We calculate hourly wage
by dividing the annual wage income (inclusive of monetary bonus and subsidies) by total
working hours in the year. We calculate real wage income by adjusting nominal values
to the 2007 price level using the national CPI index. We deal with outliers by excluding
observations whose hourly wage income is less than 1 Chinese yuan or greater than 100
Chinese yuan in real terms.

Normalized Gaokao Score The raw scores of college entrance exams are not directly
comparable between correspondents because the tests differ by year-province-subject. A
province may also choose to write its own exam, which may have different maximum scores
from the national test and from tests of other provinces. In addition, students can choose
either a science-track curriculum or a humanities-track curriculum, and take different college
entrance exams depending on their curriculum choices. After 2017, some provinces, such
as Zhejiang Province, began to implement reform of the college entrance exam, allowing
students to choose different exam subjects across different tracks.

To make Gaokao scores comparable between correspondents, we normalize the raw score
in the following way. We first calculate the percentage score by dividing the raw score
by the maximum score for each province-year-subject.26 We then calculate the mean and
standard deviation for each year-province-subject, and convert the percentage score of each
correspondent to a z-score with a mean of zero and a standard deviation of one.

Summary of Statistics Table A1 provides a summary of statistics of the sample we use
in the regression.

26There are larger cross-province variations in recent years as a growing number of provinces
started to write their own tests. The maximum score is obtained from provincial education bureaus
(http://www.moe.gov.cn), and some Gaokao-related websites such as https://www.lxbbt.com/16073.html
and https://gaokao.chsi.com.cn. A small number of province-year data are missing, and we dropped obser-
vations for the missing province-year.
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Table A1: Summary of Statistics

CHIP Survey year

Year 2002 2007 2013 2018

Age 39.29 34.44 34.53 34.65
Male (%) 54.76 59.04 56.06 56.93
Gaokao Z-score
HS -0.49 -0.53 -0.55
College 0.18 0.15 0.13
Hourly wage 5.73 13.02 16.32 23.22
HS 4.92 7.76 12.48 15.96
College 6.70 14.91 17.42 24.89
College and above(%) 14.24 35.45 43.27 47.45
Observations 7193 2158 3143 4839

B Educational Attainments across Age Groups

Table A2 summarizes the share of population with college and post-graduate degrees for
different age groups in 2000, 2010, and 2020. The most significant change is shown in the
age group of 25 to 29 years old, as regular higher education degrees are mostly obtained in
one’s 20s. From 2000 to 2020, the share of the population with college or higher degrees
increases from around 4 percent to around 25 percent. The changes for the elder groups
of the population from 2000 to 2020 are mostly due to the completion of part-time degree
programs, which are arguably of less quality.

Table A2: Education Attainments across Age Groups

College and above % Post-graduate %

Age 2000 2010 2020 2000 2010 2020

25-29 4.3 15.6 25.6 0.4 2.1 3.6

30-34 4.3 10.7 20.8 0.4 1.4 2.6

35-39 4.1 7.3 18.9 0.4 0.8 2.5

40-44 2.3 5.9 12.4 0.2 0.5 1.6

45-49 2.0 5.0 7.9 0.1 0.5 0.8

50-54 2.1 2.8 5.6 0.1 0.2 0.5

All 3.4 8.1 15.2 0.3 0.9 1.9
Source: China Population Census.
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C Labor Productivity

This figure plots the calibrated Γ distribution of labor productivity, and the productivity
cutoff for college admission in 2004 and in 2018.

Figure 5: Labor Productivity Distribution and Cutoff for Skilled Labor

D Computational Algorithm

In this computational appendix, we first explain the method for solving the heterogeneous-
firms model. Then, we describe how to compute the stationary equilibrium.

D.1 Solution Method for the Firm’s Problem

In this section, we discuss how to solve the model of heterogeneous firms with endogenous
R&D decisions in Sections 3.1 and 3.2.

1. Generate a discrete grid for a firm’s wealth positions Ga = {a1,a2, ...,aNa} and produc-
tivity positions Gz = {z1, z2, ..., zNz}. We use 150 nodes in the grid for wealth and 48
nodes in the grid for productivity. We interpolate the function (evaluate the function
outside the grid points) using piecewise linear approximation.

2. Generate a discrete grid for the household’s productivity shock Gϵ = {ϵ1, ϵ2, ..., ϵNϵ}
using Tauchen (1986) method. We use 9 nodes in the grid for productivity shocks and
assume they are independently drawn from an identical discretized normal distribution
in each period.
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3. For each combination of wealth and productivity grid points, we solve the profit max-
imization problem given by Equations (9) and (10), which yields the optimal demand
for capital (k), skilled labor (ns,y) and unskilled labor (nu).

4. Make an initial guess for the value of firms at each grid point v0(a,z).

5. Calculate the value of R&D-inactive firms vE
1 (a,z) by solving Equations (6), (10), (15),

and (16). We use the golden-section search method to obtain the optimal decision rules
for next-period wealth (a′).

6. Calculate the value of R&D-active firms vR
1 (a,z) by solving the Equations (7), (17),

(18), (19), and (20). We use the nested golden-section search method to jointly obtain
the optimal decision rules for next-period wealth (a′) and R&D ideas (x). In particular,
the minimized costs of producing x units of R&D ideas can be obtained by solving
Equations (11) and (12), which also yields the optimal demand for skilled labor (ns,x)
and intermediate inputs (i).

7. Compare vE
1 (a,z) and vR

1 (a,z) and obtain the decision rule for the R&D choices at the
extensive margin. Update values for each grid point v1(a,z) = max

{
vE

1 (a,z),vR
1 (a,z)

}
.

8. Check convergence. If ∥ v1(a,z)−v0(a,z) ∥< 10−8, a solution is found. Otherwise, set
v0(a,z) = v1(a,z) and interate the procedure from step 5.

D.2 Computing the Stationary Equilibrium

In this section, we discuss how we simulate the stationary distribution using Young (2010)
method and solve the labor market equilibrium, as described in Section 3.3.

1. Make an initial guess for the equilibrium wage rates wj
s and wj

u and the distribution of
firms over their wealth and productivity positions µ0. Set j = 0.

2. Numerically solve the heterogeneous-firms problem with endogenous R&D decisions
using the algorithm described in Appendix D.1.

3. Interpolate firms’ optimal policies over a finer grid. Create a big transition matrix
for R&D-inactive and R&D-active firms, respectively, which requires us to know how
firms’ wealth and productivity evolve according to the optimal decisions and exogenous
shocks.
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4. Start from the initial distribution µ0 and separate it into the groups of R&D-inactive
and R&D-active firms according to their R&D decisions at the extensive margin. Ob-
tain the new distribution µ1 by applying the big transition matrices. If ∥ µ1 −µ0 ∥<
10−10, the stationary distribution is found and the iteration stops.

5. Aggregate all firms’ demand for skilled and unskilled labor. Check if Equations (21)
and (22) hold. If so, the stationary equilibrium is found. Otherwise, update wj+1

s and
wj+1

u and iterate the procedure from step 2.
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