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Abstract

In this paper I study the optimality of differential asset taxation in an environment
with entrepreneurs and workers in which output is stochastic and entrepreneurs can
misreport profits and abscond with capital. I show that a stationary efficient allocation
may be implemented as an equilibrium with endogenous collateral constraints, transfers
to newborns, and linear taxes on profits, investment, and interest. Further, these
taxes differ from one another and serve distinct purposes. The profits tax shares risk
and depends solely on the severity of the misreporting friction, while the remaining
instruments determine the efficient mean and variance of entrepreneurs’ consumption
growth.
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1 Introduction

The optimal taxation of capital income has long been a contentious issue in both policy
debates and the academic literature. The majority of studies of optimal taxation divide
income into labor or capital and assume that a common tax is levied on all capital income.1

However, capital income can assume a variety of distinct forms, including interest and
business profits.2 Further, a recent literature has documented the rising importance of
private business income and has shown that it differs from interest income in several ways.
For instance, DeBacker et al. (2023) show that business income is risky, with a variance
more than 60 times the variance of labor income, while Smith et al. (2019) show that it
is concentrated among top income groups and often falls significantly upon the owner’s
death, suggesting that it is not solely the passive return on savings.3 Motivated by these
facts, this paper characterizes the optimal lump-sum transfers to newborns and taxes on
profits, investment, and interest in an environment in which business income is risky and
owners cannot diversify. I find that the optimal taxes are constant, linear, and serve distinct
purposes: the tax on profits shares risk, while the remaining instruments jointly determine
the interest rate and the efficient mean and variance of entrepreneurs’ consumption growth.

I consider a perpetual youth environment in which individuals may either run their
own business or work for someone else. Only some individuals are born with the ability to
run businesses and this is not observable by the government; so tax policy must provide
sufficient incentives for firm formation. Firm output exhibits constant-returns-to-scale in
capital and labor and is subject to two agency frictions. First, business profits are subject
to idiosyncratic risk and are not observable by the government, and owners may choose
to misreport profits and divert a fraction to their consumption. Second, at any time, en-
trepreneurs may abscond with a fraction of the capital invested in their firm, and thereafter
trade only a risk-free bond with exogenous return. These two frictions are motivated by the
undiversified nature of business ownership together with the observed presence of collateral
constraints.4

1For recent surveys on optimal taxation see Golosov and Tsyvinski (2015) and Stantcheva (2020).
2See Bastani and Waldenström (2020) for cross-country evidence on various forms of capital taxation.
3For instance, on page 1678 of Smith et al. (2019) the authors note that in their dataset business profits

fall by an average of 82 percent upon the unexpected death of an owner.
4For evidence of a lack of diversification, Table I on page 1694 of Smith et al. (2019) shows that the

median number of owners of pass-through firms with an owner between the top 1 percent and top 0.1
percent is 2.0. For the empirical relevance of collateral constraints, see, e.g., Cagetti and De Nardi (2006).
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I first characterize a particular constrained-efficient allocation in which aggregate cap-
ital and the distributions of consumption and firm size are constant over time and the
government discounts the welfare of future generations at a constant rate. In doing so I
do not restrict attention to a fixed set of instruments but instead allow the government to
choose any allocation that respects the constraints imposed by the above agency frictions
and private information. The ability of entrepreneurs to misreport profits limits risk-sharing
because their consumption must depend on the risky output of their firm in order to induce
truthful reporting. Similarly, the ability of entrepreneurs to abscond with capital leads to
a “no-absconding constraint” that limits the amount of capital that may be delegated to
them. In a partial equilibrium setting with a single principal and a single entrepreneur,
these two agency frictions imply constant wedges on both the risk-free and risky assets,
and the no-absconding constraint either holds with equality at every date or never holds
with equality. In the perpetual youth model with a continuum of agents, the constancy of
wedges then implies that the stationary efficient allocation is completely characterized by
the aggregate capital stock, the initial consumption of all agents, and the constant mean
and variance of entrepreneurs’ consumption growth.

I then implement this allocation as a competitive equilibrium in an economy with in-
complete markets in which the market structure and taxation policy are chosen to respect
the above agency frictions and private information. All agents trade a risk-free bond in
zero net supply and are subject to endogenous collateral constraints, which are the most
relaxed constraints consistent with the ability of entrepreneurs to abscond with capital.
The government chooses lump-sum transfers for newborns, issues government debt, and
levies linear taxes/subsidies on interest income, investment, and reported profits, where the
latter is firm revenue net of wages, interest on debt, investment taxes, depreciation, and
any amount that the owner misreports.5 The government may choose any policy respecting
incentive compatibility and so the transfers and taxes can differ by occupation as long as
the entrepreneurs have the incentive to reveal their type and start a firm.

The simple characterization of the efficient allocation is mirrored by an equally simple
set of implementations, with the optimal taxes all constant, linear, and admitting closed-
form expressions.6 Because equilibrium allocations are incentive compatible, an optimal

5Note that the linearity of the tax on profits implies that the entrepreneur’s overall tax liability falls
when their firm incurs losses (i.e. earn negative profits).

6This paper does not attempt to characterize all implementations of the stationary efficient allocation,
but instead focuses on a set of implementations within a relatively standard market structure.
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policy is any policy that ensures that the equilibrium consumption processes coincide with
their efficient counterparts. The optimal tax on profits depends solely on the severity of
the agency frictions and is simply the highest level consistent with incentive compatibility
because this maximizes risk-sharing. Further, because the leverage of the entrepreneur
depends endogenously on tax policy, the tax on profits does not necessarily reduce the
after-tax income of the entrepreneur or primarily serve a redistributive role. In contrast,
the taxes on interest and investment and the lump-sum transfers to newborns are chosen to
ensure that all agents obtain the efficient level of lifetime utility and that the equilibrium
mean and variance of consumption growth coincide with their efficient counterparts. For
workers, the latter pair of requirements amounts to ensuring that their consumption is
constant, while for entrepreneurs, two separate conditions must be met.

First, when the no-absconding constraint does not hold with equality, a variation of the
perturbation argument of Rogerson (1985) implies that the planner wishes to distort the
after-tax return on savings below the discount rate in order to reduce the future cost of
providing utility. In this case, the model does, in a qualified sense, imply progressive taxes
on savings, because entrepreneurs (who are typically richer) face a lower after-tax safe return
than workers. Second, to implement the efficient level of investment, the cost of borrowing
faced by an entrepreneur’s business must fall below the subjective discount rate when the
no-absconding constraint does not hold with equality. Because the government can affect
the equilibrium interest rate using a tax or subsidy on investment, there are multiple ways
in which the above two conditions can be met, and therefore multiple implementations
of the efficient allocation. To illustrate this indeterminacy, I then describe two specific
implementations in detail. In the first, workers face no taxes and the investment tax is
chosen to ensure that the interest rate equals the subjective discount rate. In the second,
workers’ savings are subsidized and the investment tax is chosen such that the firms’ cost
of borrowing coincides with the interest rate.

For the benchmark environment described above I suppose that there is no private risk-
sharing and that all entrepreneurs are equally productive on average. I subsequently discuss
how the results change when one relaxes these assumptions. First, when firm owners can
write short-term state-contingent contracts with competitive investors, the optimal tax on
profits is zero because these contracts serve the same risk-sharing role. In this case the
presence of private risk-sharing alters the equilibrium interest rate, and so relative to the
above implementations taxes must adjust so that the after-tax returns and risk borne by
entrepreneurs are unchanged. Second, when entrepreneurs differ in their expected returns
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and the no-absconding constraint holds with equality for no entrepreneur, similar logic
to the above continues to apply provided that we allow taxes to depend on productivity.
In this case, the efficient cost of borrowing faced by entrepreneurs’ firms is decreasing in
productivity, and so the model generates a qualified kind of regressivity with respect to
business income.

Finally, I conclude the paper with a series of numerical examples to illustrate how the
optimal wedges and tax revenue raised vary with the severity of the agency frictions and
the number of workers per entrepreneur. The main point of these examples is that although
for standard parameters the model can generate large optimal taxes on interest, these often
overstate the total tax revenue raised. The primary reason for this is that the tax on
interest is only levied on the risk-free component of capital income, and that the allocation
of wealth between bonds and capital is chosen by the entrepreneur. Indeed, as agency
frictions rise, the fall in the after-tax return on savings is partially offset by an increase in
the excess return on capital, and the wedge on the risk-free asset reaches its highest value
when agency frictions are at their most severe and profits are not taxed.

Related literature. A vast literature, often referred to as the “Ramsey” approach
in honor of Ramsey (1927), has studied optimal taxation in environments in which the
government has access to an exogenous set of taxes on capital and labor. As first shown by
Chamley (1986) and Judd (1985), in environments with a representative agent it is typically
the case that the optimal linear tax on capital income is zero in the long run.7 The Ramsey
framework has been extended to include uninsurable labor income risk by Aiyagari (1995),
Conesa et al. (2009) and Dyrda and Pedroni (2023) and to include uninsurable capital
income risk by Panousi and Reis (2012), Evans (2014) and Panousi and Reis (2021). In
contrast to the current paper, these papers assume that a common tax is levied on all
capital income.

A separate literature, beginning with Golosov et al. (2003) and sometimes referred
to as the New Dynamic Public Finance, considers dynamic extensions of Mirrlees (1971)
and considers all allocations that satisfy incentive constraints arising from informational
asymmetries.8 However, the majority of this literature has focused on environments in
which the primary source of risk is labor productivity and capital income represents the
risk-free return on saving. I follow the approach of considering all allocations that satisfy

7However, see Straub and Werning (2020) for some important qualifications of this result.
8For a review of this literature see Golosov and Tsyvinski (2015).
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incentive constraints, but I allow for multiple assets and heterogeneous returns to capital.9

A small but growing number of papers share this approach. Albanesi (2006) considers a two-
period model with risky returns on capital and unobservable effort, while Shourideh (2013)
considers a discrete-time model in which agents may divert capital to consumption prior to
investment. I extend Shourideh (2013) by allowing entrepreneurs to abscond with capital
and by analyzing several different implementations with incomplete markets. Gerritsen
et al. (2024) and Boadway and Spiritus (2025) consider two-period models with exogenous
and heterogeneous returns on capital, while Phelan (2023) studies an environment in which
output depends on the history of unobserved effort. This paper is also related to recent
papers that study the benefits of taxing capital income and wealth, such as Boar and
Knowles (2024) and Guvenen et al. (2023), who characterize the optimal linear taxes on
capital income and wealth in environments with entrepreneurs and collateral constraints. In
contrast to these two papers, I do not impose linearity of taxes as a restriction, but instead
show that linear taxes and lump-sum transfers implement a constrained-efficient allocation
in which the instruments available to the government are microfounded by agency frictions.

The agency problem I consider is similar to that in Di Tella and Sannikov (2021) except
that I omit the possibility of hidden savings and allow entrepreneurs to abscond with a
fraction of the capital stock, after which they may trade only a risk-free bond. This lat-
ter friction is reminiscent of the literature on limited commitment (see, e.g., Kocherlakota
(1996)), because it imposes the restriction that the agent never have an incentive to per-
manently leave the relationship with the principal.10 Using arguments adapted from Farhi
and Werning (2007), I show that the problem of a planner facing a continuum of agents
and a perpetual-youth demographic structure (as in Blanchard (1985)) is isomorphic to
the principal’s problem for a given pair of multipliers on resource constraints, which are
then varied until the resource constraints are satisfied in the stationary allocation. In the
decentralization, I assume that entrepreneurs face a continuous-time portfolio problem as
in Panousi (2010) and Angeletos and Panousi (2009) that is augmented to incorporate
taxes on profits, investment and savings and to include collateral constraints. Finally, the
equilibrium notion is reminiscent of Alvarez and Jermann (2000), in the sense that the col-
lateral constraints are the most relaxed constraints consistent with the underlying friction

9This notion of constrained efficiency contrasts with Davila et al. (2012), whose paper is similar in spirit
to Geanakoplos and Polemarchakis (1985) and assumes that markets are exogenously incomplete.

10However, it differs from typical models of limited commitment because the benefit from leaving depends
on the delegated capital chosen by the principal, and not on an exogenous stream of endowments.
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that the entrepreneurs may abscond with capital. These collateral constraints are therefore
endogenous to tax policy, because taxes affect the utility from not absconding.

The outline of this paper is as follows: Section 2 analyzes a principal-agent model with
an exogenous interest rate and productivity of capital; Section 3 characterizes stationary
efficient allocations in an environment with a continuum of agents; Section 4 implements
this allocation in a general equilibrium model with incomplete markets; Section 5 provides
intuition for the main results and discusses various extensions; Section 6 computes a series
of numerical examples; and Section 7 concludes.

2 Principal-agent model

This section characterizes the optimal risk-sharing arrangement between a risk-averse en-
trepreneur (she) and a risk-neutral principal (he) in an environment where the entrepreneur
may operate a risky production technology, she may divert output to private consumption,
and she may abscond with a fraction of the capital under her control. Labor is absent from
production, and both the marginal product of capital and the interest rate are exogenous.
This problem will later be embedded into a macroeconomic model with a continuum of
entrepreneurs subject to idiosyncratic risk and workers in which the marginal product of
capital depends on the aggregate resource constraints for both labor and capital.

Preferences and technology. Time is continuous and extends indefinitely. Both
the principal and the entrepreneur live forever and discount at the common rate ρ > 0.
The preferences of the entrepreneur over positive consumption processes c = (ct)t≥0 are
represented by the function

UA(c) := E
[
ρ

∫ ∞

0
e−ρt ln ctdt

]
.

The entrepreneur may operate a linear technology that takes capital as the sole input and
is subject to stochastic depreciation shocks. Only the entrepreneur may operate the pro-
duction function and so the principal must delegate capital to the entrepreneur in order for
production to take place. In addition, the entrepreneur may divert output to consumption
at a rate of st ∈ [0, s] per unit of capital for some s > 0, and so if the capital delegated
follows the process k = (kt)t≥0 then the net output received by the principal Y := (Yt)t≥0

evolves according to
dYt = (Π− ρ− τk − st)ktdt+ σktdBt (1)
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where (Bt)t≥0 is a standard Brownian motion defined on a filtered probability space (Ω,F , P )
satisfying the usual conditions.11 In the law of motion (1), the constant Π is the marginal
product of capital, ρ is the cost of borrowing, τk is a tax on capital, and σ > 0 is the
volatility of the shocks. Both Π and τk are fixed exogenously in this section in order to first
understand the optimal allocation in partial equilibrium. In the perpetual youth economy
with a continuum of agents in Section 3, the marginal product of capital Π will be deter-
mined by an aggregate production function and the number of workers in the economy and
the tax τk will capture the extent to which capital affects the welfare of future generations.12

Agency frictions. The delegated capital kt is observable to both the principal and the
agent, but only the agent observes consumption ct and the diverted output stkt. However,
the entrepreneur may only consume a fraction ϕ ∈ (0, 1) of the diverted flow stkt per unit
of time dt, so that 1−ϕ may be interpreted as the deadweight loss from diversion. Further,
the entrepreneur has no access to a savings technology, and so any diverted output must
be immediately consumed. I also assume that the entrepreneur may, at any time, take a
fraction ι ∈ (0, 1) of the capital delegated to her and abscond, and after doing so trade only
the same risk-free bond available to the principal.

Allocations and strategies. An allocation must specify the consumption c of the
entrepreneur, the capital k delegated by the principal, and the amount of output s̃k that
the principal recommends the entrepreneur divert to consumption, all as functions of the
observed history of output. However, because ϕ < 1, some output is destroyed whenever
it is diverted by the entrepreneur, and so to characterize efficient allocations it is without
loss of generality to assume that the principal always recommends s̃ = 0. For brevity of
notation in what follows I therefore omit reference to s̃.13

Definition 2.1. An allocation is a pair of F-adapted processes (k, c) satisfying kt ≥ 0 and
ct > 0 for all t ≥ 0. An allocation (k, c) is admissible if E[

∫∞
0 e−ρt ln ctdt],E[

∫∞
0 e−ρtctdt]

and E[
∫∞
0 e−ρtktdt] are well-defined and finite.

An allocation may be interpreted as a choice of the principal indicating delegated capital
11In this section all stochastic processes are assumed to be adapted to the filtration generated by the

Brownian motion B.
12I emphasize that τk is introduced here in order to later relate the problem of the planner in Section 3

to a principal-agent problem and is distinct from the taxes imposed on agents in Section 4. For the welfare
notion of this paper, τk will turn out to be negative (i.e., a subsidy).

13Technically, the principal is also free to recommend that the entrepreneur abscond with capital. How-
ever, such allocations cannot be efficient (because ι < 1) and so without loss of generality I restrict attention
to allocations for which the principal recommends no absconding in addition to s̃ = 0.
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and recommended consumption. Given an allocation chosen by the principal, a strategy s
of the entrepreneur is then the choice of how much output to divert to consumption. When
the entrepreneur varies her strategy s, she alters the law of motion of observed output and
changes the measure used to evaluate output paths. This leads to the following definition.

Definition 2.2. A strategy is an F-adapted process s assuming values in [0, s]. Denoting
the corresponding expectation operator by Es, the utility from adhering to a strategy s is

UA(k, c, s) := Es

[
ρ

∫ ∞

0
e−ρt ln(ct + ϕstkt)dt

]
. (2)

Given an admissible allocation (k, c), a strategy s is feasible if it vanishes beyond some fixed
time T and the utility given in (2) is finite, in which case we define an associated utility
process W s = (W s

t )t≥0 by

W s
t := Es

[
ρ

∫ ∞

t
e−ρ(t′−t) ln(ct′ + ϕst′kt′)dt

′
∣∣∣∣Ft

]
.

Incentive compatibility. Because the entrepreneur’s consumption is unobservable,
the allocation must be incentive compatible, in the sense that the entrepreneur must not
wish to either divert output to consumption or abscond with the delegated capital. An
entrepreneur equipped with k units of capital and access only to a bond market with interest
rate ρ experiences lifetime utility ln(ρk). When utility follows (Wt)t≥0, the entrepreneur will
therefore not abscond provided that capital (kt)t≥0 satisfies the “no-absconding constraint”

kt ≤ ωeWt

for all t ≥ 0, where ω := (ρι)−1. This leads to the following definition.

Definition 2.3. An admissible allocation (k, c) is incentive compatible if UA(k, c, 0) ≥
UA(k, c, s) and kt ≤ ωeW

s
t for all feasible strategies s and t ≥ 0 almost surely. The set of

incentive compatible allocations that give utility W to the entrepreneur is denoted AIC(W ).

The principal is risk-neutral and so his preferences over incentive compatible allocations
are represented by the objective function

UP (k, c) := E
[∫ ∞

0
e−ρt[(Π− ρ− τk)kt − ct]dt

]
(3)

which is well-defined and finite whenever the allocation is admissible. The problem of the
principal is then defined formally as follows.
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Definition 2.4. Given initial utility W , the problem of the principal is defined to be

V (W ) = sup
(k,c)∈AIC(W )

UP (k, c) (4)

and a pair (k, c) attaining the supremum in (4) is termed an optimal (or efficient) allocation.

It will be convenient to write utility in consumption-equivalent units, ut := eWt , and
to denote the principal’s associated value function and set of incentive compatible alloca-
tions that deliver consumption-equivalent utility u to the entrepreneur by v(u) and ÃIC(u),
respectively. Before stating the formal characterization of the optimal allocation, I first par-
tially characterize the optimal allocation using homogeneity and perturbation arguments.

Informal characterization. First, it follows directly from Definition 2.3 that for any
scalars λ, u > 0, (k, c) ∈ ÃIC(u) if and only if (λk, λc) ∈ ÃIC(λu). Because the principal’s
objective in (3) is homogeneous of degree one in (k, c), this implies that the value and policy
functions of the principal are linear in u, at least if the value function is finite. In this case
the problem of the principal reduces to choosing two scalars, k := kt/ut and c := ct/ut,
denoting capital and consumption per unit of consumption-equivalent utility, and so the
capital-to-consumption ratio kt/ct is constant over time and independent of history.

Second, a perturbation argument may be employed to derive the optimal intertemporal
distortions. An important observation in the dynamic contracting literature, established
by Rogerson (1985) in a principal-agent setting and by Golosov et al. (2003) in a dynamic
Mirrleesian setting, is that intertemporal distortions often satisfy an inverse Euler equation.
This result rests on the insight that if an allocation is efficient, it cannot be possible to
perturb it in such a way that it remains incentive compatible, delivers the same utility to
the entrepreneur, and increases the payoff to the principal. A similar argument is applicable
here: if (k, c) is the efficient allocation then for any scalars z, t0, t1 and dt with t0 + dt < t1

and dt > 0, we define the following process for an arbitrary history after time t0,

ηzt =

{
ez if t ∈ [t0, t0 + dt]

e−zeρ(t1−t0) if t ∈ [t1, t1 + dt].

Because preferences are logarithmic and (k, c) is incentive compatible, for any scalar z the
allocation (ηzk, ηzc) satisfies UA(ηzk, ηzc, 0) ≥ UA(ηzk, ηzc, s) for all feasible strategies s
and delivers the same utility to the entrepreneur as (k, c). The fact that (k, c) is efficient
then implies that expected profits must be maximized at z = 0, and so differentiating with
respect to z, evaluating at zero, and applying the above argument to any history after time
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t0 gives kt0 = Et0 [kt1 ]. Because the capital-to-consumption ratio is independent of history
by the above homogeneity argument, this implies ct0 = Et0 [ct1 ], which is the inverse Euler
equation under logarithmic utility.

However, there are two potential problems with the above arguments. First, the prin-
cipal’s problem may fail to be finite-valued. For example, if ϕ = 0 and (Π− ρ− τk)ω > 1,
then the payoff associated with (k, c) = (ω, 1) is increasing and linear in u, and therefore
convex and unbounded in W , and so the principal could obtain arbitrarily high profits by
offering the entrepreneur an initial lottery over allocations of the above form.14 Second,
even if the value function were finite, if the no-absconding constraint holds with equality,
then the above perturbed allocation is only incentive compatible if z ≤ 0. The main content
in Proposition 2.1 below is that when the excess return on capital is sufficiently small, both
of these technical problems do not arise and the above claims can be formally justified.

Formal characterization. I now state the key properties of the optimal allocation,
leaving formal proofs to Appendix A. In any admissible allocation, promised utility evolves
according to dWt = ρ(Wt − ln ct)dt+ σ̃W,tdBt for some process σ̃W,t, and the entrepreneur
will choose not to divert output if and only if

0 ∈ argmax
s≥0

ρ ln(ct + ϕkts)− sσ̃W,t/σ. (5)

The minimal value of the diffusion term necessary to dissuade diversion is σ̃W,t = ρϕσkt/ct,
and so σ̃W,tdBt may be viewed as the product of three terms: the shocks to output, σktdBt,
the marginal utility of consumption, ρ/ct, and the fraction ϕ of each unit of diverted output
that the entrepreneur may actually consume. The term σ̃W,t may be interpreted as the
“skin-in-the-game” necessary to align the incentives of the principal and entrepreneur.

As noted above, wherever they are well-defined, the optimal policies of the principal
are of the form ct = cut and kt = kut for some constants c, k > 0. An application of Ito’s
lemma then shows that consumption satisfies

dct = µcctdt+ σcctdBt (6)

for µc = µc(c, x) := ρ
(
− ln c+ x2/2

)
and σc :=

√
ρx, where I changed variables to

x :=
√
ρϕσk/c. (7)

14As noted by Di Tella and Sannikov (2021), the value function of the principal is not finite-valued for
any Π > ρ + τk when utility is logarithmic and there is no hidden savings and the entrepreneur cannot
abscond with capital, and so the no-absconding constraint is essential for the problem considered here.
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One natural guess for the value function of the principal is that it is found by maximizing
over the constants c and x that satisfy the no-absconding constraint and ensure a finite
cost of consumption. If I define the two parameters

S :=
Π− ρ− τk√

ρϕσ
ω :=

√
ρϕσ

ρι
(8)

then the expected flow output per unit of u is (Π− ρ− τk)k = Sxc, and so by the Gordon
growth formula, one candidate for the value function of the principal is v(u) ≡ vu, where

v := sup
c>0,x≥0

xc≤ω,µc(c,x)<ρ

(Sx− 1)c

ρ− µc(c, x)
. (9)

Note that the variable S is the ratio of the excess return on capital, Π − ρ − τk, to a
measure of the severity of the agency friction, √ρϕσ. In what follows I will write (9) and
the associated optimal choices as v(S, ω), c(S, ω) and x(S, ω), respectively, whenever there
is a need to emphasize the dependence on S and ω.15

The maximization in (9) is subtle both because the maximand is not concave in the
choice variables c and x and because the constraint set is unbounded. Indeed, the existence
of values attaining the supremum (or even the finiteness of the supremum) is not assured
without further assumptions. Proposition 2.1 shows that the principal’s value function is
finite-valued (and in fact, negative-valued) and coincides with the conjectured value vu
provided that the parameter S is sufficiently small.

Proposition 2.1. For any ω > 0, there exist S(ω), S̃(ω) > 0 satisfying S̃(ω) ≤ S(ω) such
that the following holds:

1. The principal’s value function is everywhere negative and given by v(u) = vu for all
u > 0 if and only if S ≤ S(ω); and

2. The no-absconding constraint is strict if S < S̃(ω).

Further, x(S, ω) is increasing in S wherever it is well-defined.

Proof. See Appendix A.2.
15In the event that there are multiple solutions to the maximization problem in (9), I assume that the

principal chooses the one for which the corresponding value of x is the lowest. Multiple solutions do not
appear to arise in any of the numerical examples computed in this paper.
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The principal’s problem reduces to making just two choices, c and x, whenever the
optimal policy is well-defined. This implies that the no-absconding constraint cx ≤ ω

either never holds with equality after any history or holds with equality after every history.
When it holds as a strict inequality, the above perturbation argument is applicable and
consumption is a martingale. In contrast, when the no-absconding constraint holds with
equality, the principal wishes to backload utility in order to relax the future no-absconding
constraints, and therefore introduces an upward drift in consumption.

Wedges. Section 4 shows how a class of stationary efficient allocations may be de-
centralized in a general equilibrium model using a particular set of taxes and transfers.
Such a characterization is necessarily specific to the choice of Pareto weights attached to
different generations and the assumed market structure. To isolate the role of agency fric-
tions independently of a particular implementation, I will first analyze optimal wedges in
partial equilibrium. If u(c) ≡ ln c and the return from continually investing in an as-
set over the interval [t, t + ∆] is R = Rt,t+∆, then intertemporal optimization implies
u′(ct) = e−ρ∆E[Ru′(ct+∆)|Ft]. The following notion measures the extent to which this
relationship fails for an arbitrary return.

Definition 2.5. Given a consumption process (ct)t≥0 and asset A with return (RA
t )t≥0 the

associated wedge νAt,t′ between two dates t and t′ > t is defined by

u′(ct) = e−ρ(t′−t)Et

[
e
−νA

t,t′ (t
′−t)

RA
t,t′u

′(ct′)
]
. (10)

Denote by νK and νB the wedges associated with capital and the bond, respectively, and
note that the associated log returns are lnRK

t =
(
Π− τk − σ2/2

)
t + σBt and lnRB

t = ρt.
These wedges represent the extent to which the presence of private information forces the
technological returns on each asset to differ from the returns accruing to the entrepreneur.
In principle, for an arbitrary consumption process the wedges defined in Definition 2.5 could
depend on both time and the length of the interval in equation (10). However, the fact that
both efficient log consumption and log returns possess constant drift and diffusion terms
implies that these wedges are independent of both time and history. Further, when the no-
absconding constraint is satisfied as a strict inequality, we have the following comparative
statics with respect to the marginal product of capital.

Proposition 2.2. For the set of Π such that the no-absconding constraint holds as a strict
inequality, the wedge on the bond νB and the difference in wedges νB − νK are both non-
negative and increasing in Π.
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Proof. See Appendix A.2.

Proposition 2.2 shows that when the no-absconding constraint is strict, it is efficient
to distort the return on the entrepreneur’s savings below the risk-free rate, and that the
magnitude of this distortion is an increasing function of the marginal product of capital.
In contrast, the sign of the wedge on the risky asset is in general ambiguous. However,
although the wedge of the risky asset cannot be signed, when the no-absconding constraint
is strict the risky wedge is always lower than the wedge on the bond and the difference is
increasing in the marginal product of capital.

The history-independence of the above wedges anticipates the results in Section 4, where
it is shown that in a general equilibrium environment with a continuum of agents, the
optimal taxes are linear and independent of both age and wealth. The key point is that when
faced with a portfolio problem with linear taxes on all forms of income, an entrepreneur
will devote a constant fraction of her (total) wealth to the risky asset (her business), which
implies that her consumption evolves according to geometric Brownian motion, just as in
the above agency problem. The optimal taxes are then chosen to ensure that the equilibrium
process for consumption coincides exactly with the efficient process given above.

Before turning to the environment with a continuum of agents, I now summarize the key
insights that emerge from this partial equilibrium setting. First, whenever the principal’s
problem is finite-valued, the optimal allocation takes a simple form and the entrepreneur’s
consumption evolves according to geometric Brownian motion. Second, the no-absconding
constraint may or may not hold with equality in the optimal allocation, and it either holds
with equality after every history or never holds with equality after any history. Third, the
risk borne by the entrepreneur is an increasing function of the ratio S of the excess return
on capital to the severity of the agency frictions. The task of the next section is to explain
how these agency frictions determine the marginal product of capital (and hence S) when
some agents (workers) work for others (entrepreneurs) and output is a constant-returns-to-
scale function of both capital and labor. Intuitively, when agency frictions are small, the
principal wishes to delegate more capital to the entrepreneur, which tends to increase the
capital stock and therefore reduce the marginal product of capital. The net effect of a fall
in ϕ on the key ratio S is therefore not obvious (because it reduces the numerator and the
denominator), and requires a general equilibrium analysis, to which I now turn.
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3 Stationary efficient allocations

Section 2 characterized the efficient allocation in an environment with a risk-averse en-
trepreneur and a risk-neutral principal given an exogenous interest rate and productivity
of capital. This section uses the above to characterize a particular stationary efficient allo-
cation in a production economy with a continuum of entrepreneurs and workers subject to
idiosyncratic risk.

Physical environment. Time is again continuous and extends indefinitely. At any
moment there is a unit mass of agents who discount at rate ρS > 0, die at rate ρD > 0 and
are endowed with L units of labor. To fix the population at unity, new agents are born at
rate ρD, and the agents born at a particular date t ≥ 0 will be referred to as a generation.
All agents have preferences over consumption represented by

U(c) := E
[
ρ

∫ ∞

0
e−ρt ln ctdt

]
where ρ := ρS +ρD. Agents may either run a firm or work for someone else. However, only
a fraction 1 − ψ ∈ [0, 1] of each generation, termed entrepreneurs, is capable of running a
firm, with the remaining fraction, termed workers, only able to work for someone else. I
follow Angeletos (2007) and assume that these activities are not mutually exclusive and that
entrepreneurs may perform both simultaneously. Whether an agent is an entrepreneur or a
worker will be private information and will be referred to as their type and indexed by i ∈
{E,W}. Entrepreneurs have access to a production technology that produces consumption
using physical capital and labor and is exposed to idiosyncratic risk, and production is
subject to the same agency frictions as in Section 2. Specifically, an entrepreneur may
abscond with a fraction ι ∈ (0, 1) of the capital in her business and after doing so trade
only a bond with return ρ.16 She may also divert a flow of capital, with each unit diverted
yielding ϕ ∈ (0, 1) units of consumption. If capital and labor are assigned to an entrepreneur
according to the processes (kt, lt)t≥0 and the entrepreneur adheres to the diversion strategy
(st)t≥0 then output satisfies

dYt =
(
Akαt l

1−α
t − δkt − stkt

)
dt+ σktdBt,

where B := (Bt)t≥0 is a standard Brownian motion and A, δ > 0 and α ∈ (0, 1) are exoge-
nous constants. The Brownian motion B represents depreciation shocks that are idiosyn-
cratic to the entrepreneur, and is assumed to be independent across entrepreneurs. Because

16Note that because this return is exogenous (and set to ρ for simplicity), I am interpreting “absconding”
as leaving the jurisdiction of the planner.
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the production function is constant-returns-to-scale in labor and capital and the shocks are
idiosyncratic, for the welfare notion given below and any given wage (or, technically, mul-
tiplier on the labor resource constraint) and interest rate the problem of the planner facing
an individual entrepreneur will be isomorphic to the principal-agent problem of Section 2.

However, in contrast to the model of Section 2, an allocation is now indexed by an
initial distribution Φ over promised utility and types, and must specify the consumption,
capital and labor delegated to an entrepreneur as a function of initial utility or date of
birth, type, and history of her output. Because agents supply labor inelastically, I will
omit labor supply from the definition of an allocation and I will also assume without loss
of generality that the planner never recommends that an entrepreneur divert a positive
amount of output or abscond with capital. In the following, (cvit, k

v
it, l

v
it) and (cTit, k

T
it , l

T
it)

refer to the consumption, capital and labor assigned to a given type i at date t, where,
for agents alive at the initial date, the superscript indicates promised utility, and for all
remaining agents, the superscript indicates their birth date.

Definition 3.1. Given a distribution Φ over utility and types, an allocation consists of
sequences (cvit, k

v
it, l

v
it)t≥0, (v, i) ∈ supp(Φ) for the initial generation and (cTit, k

T
it , l

T
it)t≥T≥0,

i = E,W , for subsequent generations. An allocation satisfies promise-keeping if U(cvi ) = v

for all (v, i) ∈ supp(Φ), and is incentive compatible if, in addition, U(cTE) ≥ U(cTW ) for all
T ≥ 0 and the allocations to entrepreneurs satisfy Definition 2.3 in Section 2.

The planner need not worry about double deviations, in which the entrepreneur mis-
reports type and then diverts output, because workers cannot pretend to be entrepreneurs
and entrepreneurs who pretend to be workers are not entrusted with any capital and so
thereafter have no private information. In what follows I denote by Ct(A),Kt(A), Yt(A)

and Lt(A) aggregate consumption, capital, output, and labor assigned at t in allocation A,
which are restricted to be differentiable functions of time.17

Definition 3.2. An allocation A is resource feasible given capital stock K if K0(A) = K,
Ct(A) + K̇t(A) ≤ Yt(A) and Lt(A) ≤ L for all t ≥ 0, and is incentive feasible if it is both
resource feasible and incentive compatible. The set of all incentive feasible allocations given
Φ and K will be denoted AIF (Φ,K).

Welfare notion. I will assume that the planner cares only about workers and values
the flow utility of a worker at any date the same regardless of their date of birth, which

17The formal expressions are not necessary for the discussion here and so are relegated to Appendix B.1.
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amounts to placing weight e−ρST on the T th generation. This is equivalent to the objective

UP (A) =

∫ ∞

0

(
e−ρtUWt(A) + ρD

∫ t

0
e−ρST e−ρ(t−T )UT

Wt(A)dT

)
dt (11)

where UWt(A) and UT
Wt(A) are the flow utility of workers in the initial and T th generations

at time t ≥ 0, respectively, conditional on being alive, in the allocation A. The fact that the
planner only values the utility of workers means that the planner just gives the entrepreneurs
the lowest utility necessary to reveal their type.18 Given (Φ,K), the planner’s problem is
then

V P (Φ,K) = sup
A∈AIF (Φ,K)

UP (A).

In this paper I restrict attention to efficient allocations in which aggregate capital and the
cross-sectional distributions of consumption, capital and utility are constant over time. The
method by which this is achieved is similar to that followed in Farhi and Werning (2007)
and so details are relegated to Appendix B.2. Essentially, one first relaxes the problem of
the planner by considering the allocation he or she would choose if he or she could trade
intertemporally at the subjective rate of discount. In this way, both the law of motion of
capital and the labor resource constraint are replaced with constraints on the present value
of resources, and the problem decomposes into many problems all identical in form to the
principal-agent problem given in Definition 2.4. If, for some initial utility distribution and
capital stock, the implied distributions of consumption and capital are constant and the
planner does not wish to trade, then this present value constraint implies that the resource
constraint is satisfied every period and we have a found a particular stationary efficient
allocation.

Characterization of efficient allocation. Relative to the principal-agent setting
in Section 2, the resource constraints affect the analysis in two ways. The production
technology and the stock of labor jointly determine the marginal product of capital, while
the presence of the Pareto weights on future generations leads the planner to behave as if
he or she faced a subsidy on capital. The problem of the relaxed planner facing a newborn
entrepreneur is identical to the problem of the principal in Section 2 in which τk = −ρD and
the marginal product of capital is Π = αA(K/L)α−1 − δ. The efficient marginal product
of capital is then the value such that the associated ratio S = (Π − ρS)/(

√
ρϕσ), the

18Relaxing the assumption of unobservable types and then placing positive weights on entrepreneurs
would change the initial utility of each type and the resource constraint but not the qualitative features of
the allocation (at least if the conditions in Proposition 2.1 ensuring a finite value function are satisfied).
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key variable in Section 2, implies that the goods resource constraint holds. One technical
subtlety in this process is that such a value for S might fail to exist, because aggregate
consumption and capital will diverge if the growth in consumption exceeds the rate of
death. In this paper I rule out this possibility by making the following assumption, where
I recall that µc(S, ω) and σc(S, ω) were defined in Section 2.19

Assumption 3.1. There exists a solution Ŝ to the equation

(1− ψ)C(S) + ψ = ((S
√
ρϕσ + ρS)/α+ (1/α− 1)δ)(1− ψ)K(S) (12)

such that the principal’s value function in Section 2 with τk = −ρD is finite-valued and
µc(Ŝ, ω) < ρD, where C(S) and K(S) are the stationary amount of consumption and capital
delegated to entrepreneurs per unit of initial utility for a given S.

The explicit expressions for the consumption and capital aggregates C(S) and K(S)

are not important for what follows and so are relegated to Appendix B.3. The following
characterizes the stationary efficient allocation for the above welfare notion and parameters
and essentially amounts to rearranging the goods resource constraint.

Proposition 3.1. A solution to equation (12) is unique whenever Assumption 3.1 is sat-
isfied. In this case, an efficient stationary allocation exists in which the capital stock is
K̂ = (αA/(Ŝ

√
ρϕσ + ρS + δ))

1
1−αL, the workers’ consumption is constant and the en-

trepreneurs’ consumption satisfies

dct = µc(Ŝ, ω)ctdt+ σc(Ŝ, ω)ctdBt. (13)

Proof. See Appendix B.3.

Note that when the no-absconding constraint holds as a strict inequality, the resource
constraint simplifies because the drift in the consumption of entrepreneurs vanishes. Propo-
sition 3.2 below shows that this will occur when agency frictions are sufficiently small in
the following sense. Throughout this paper, when the agency frictions are varied, the pa-
rameters governing the diversion and absconding constraints will be assumed to be in fixed
proportions to one another, so that ι ≡ ϕι for some ι ∈ (0, 1] and all ϕ ∈ (0, 1).20

19Note that in what follows, I distinguish efficient quantities with hat notation, so that, e.g., the efficient
value of S is denoted by Ŝ.

20Note that when ι is fixed in this manner, the allocation with no agency frictions arises as ϕ→ 0.
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Proposition 3.2. Assumption 3.1 is satisfied for all sufficiently small agency frictions.
The solution Ŝ is increasing in ϕ wherever it is well-defined and tends to zero as ϕ → 0,
and so the no-absconding constraint holds as a strict inequality for all sufficiently small ϕ.

Proof. See Appendix B.3.

Proposition 3.2 is noteworthy because the comparative statics in the environment with
a continuum of agents are the opposite of those that obtain in the partial equilibrium
environment of Section 2. When the marginal product of capital is fixed as in Section 2,
the parameter S governing the consumption risk borne by the entrepreneur mechanically
increases as ϕ falls. However, in the infinite-horizon setting with an aggregate production
technology, a reduction in agency frictions increases the incentive to delegate capital to the
entrepreneur, which tends to increase the capital stock and therefore reduces the marginal
product of capital. Proposition 3.2 shows that the latter force always overwhelms the partial
equilibrium effect, so that the risk borne by entrepreneurs in the above stationary efficient
allocations is increasing in agency frictions.

The above stationary efficient allocation is completely described by the requirements
that all newborns attain the same level of utility, workers’ consumption is constant, en-
trepreneurs’ consumption evolves according to (13) and the capital stock is given by Propo-
sition 3.1. The next section characterizes the taxes and transfers that ensure that these
properties arise in a stationary competitive equilibrium with collateral constraints.

4 Decentralization

Section 3 characterized a particular stationary efficient allocation, with the distribution
of resources implicitly conducted by a benevolent social planner. In this section I show
how this allocation may be implemented with taxes and transfers when agents trade in
decentralized markets. In order for this to be a coherent exercise, it is essential that the
market structure described below and policy instruments respect the incentive constraints
inherent in the environment of Section 3. For this reason, the equilibrium notion introduced
below in Definition 4.2 will require that entrepreneurs wish to reveal their type at birth
and have no incentive to misreport income or abscond with the capital invested in their
firm. Further, I deliberately endow the government with more instruments than necessary
to implement the efficient allocation in order to emphasize that the efficient allocation is
consistent with a variety of different pre-tax prices and taxes.
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Tax instruments and market structure. All agents receive a constant flow wL

of labor income while alive, where w is the competitively determined wage, and trade a
risk-free bond in zero net supply with (endogenous) return r. Agents also contract with life
insurance companies, receiving a return ρD on their wealth at when alive in exchange for
forfeiting their wealth at death.21 The government issues debt, transfers wealth to newborn
agents, and imposes taxes on various forms of income. Because I focus on implementing
the stationary efficient allocation from Section 3, all of these policy instruments (debt,
transfers, and taxes) will be time-invariant constants.

Government debt is denoted by D, and for each i ∈ {E,W}, an agent of type i inherits a
multiple ηi of the aggregate capital stock at birth and faces constant linear taxes τsi, τLi, τπ
and τI on interest income (or savings), labor income, profits, and investment, respectively.
For brevity, in what follows I will write

rsi = (1− τsi)(r + ρD) (14)

for the after-tax safe return available to an agent of type i. Entrepreneurs may fund the
capital kt invested in their firm either by reducing their personal bond holdings bet or by
taking out a business loan, so that at any time t ≥ 0 their wealth satisfies at = bet+ bbt+kt

for some bbt ∈ [−kt, 0].22 The tax τπ is levied on reported business profits, defined as output
net of wages, interest paid on business loans, depreciation, taxes on investment τIkt, and
underreported income stkt. The entrepreneur’s wealth therefore satisfies

dat = [(1− τsE)ρDat + (1− τsE)rbet − ct + (1− τLE)wL]dt

+ (1− τπ)
[
(Akαt l

1−α
t − wlt + rbbt − (δ + τI + st)kt)dt+ σktdBt

]
.

(15)

An entrepreneur will choose bbt = −kt if (1− τπ)r < (1− τsE)r and bbt = 0 otherwise, and
so when τπ < 1, the law of motion (15) can be written more succinctly by first defining the
following variable that represents the effective cost of borrowing faced by their firm,

rb := min

{
r,

(
1− τsE
1− τπ

)
r

}
+ τI , (16)

which coincides with r in the absence of taxes. The after-tax excess return on capital may
therefore be written (1− τπ)dRt, where

dRt := (A(lt/kt)
1−α − wlt/kt − δ − rb − st)dt+ σdBt.

21Note that the ownership of these life insurance companies is irrelevant because they make zero profits.
22The restriction bbt ≤ 0 ensures that bbt represents a loan, while the restriction bbt ≥ −kt implies that

the entrepreneur cannot take out a business loan and place the funds in their personal account.
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Note that because dRt may assume both positive and negative values, the above law of
motion of wealth embodies the assumption that the entrepreneur receives a tax offset if
her firm sustains losses. In this way, the tax on profits provides risk-sharing between the
government and the entrepreneur, because only a fraction 1− τπ of the idiosyncratic shock
σktdBt passes through to the entrepreneur’s income. Similarly, note that because bet may
assume either sign, the linearity of the above tax on interest implies that the borrowing of
an indebted entrepreneur is subsidized.23

Borrowing and collateral constraints. There are no ad-hoc borrowing constraints,
and so the only restriction on the possible values of an agent’s wealth is that total wealth,
the sum of financial wealth at and human wealth, must remain non-negative, where human
wealth is the present discounted value of after-tax labor income and equal to

hi :=

∫ ∞

0
e−rsit(1− τLi)wLdt = (1− τLi)wL/rsi, (17)

which is well-defined if rsi > 0. In terms of this human wealth and the excess return on
capital, the law of motion (15) may be written dat = [rsE(at + hE)− ct]dt+(1− τπ)ktdRt.

In addition, because entrepreneurs may abscond with a fraction of the capital stock,
the amount of capital invested in their firm will be subject to a collateral constraint, in
which the capital invested cannot exceed a multiple ωd of total wealth.24 The equilibrium
notion adopted below in Definition 4.2 will then impose the requirement that this collateral
constraint is the least restrictive value such that no entrepreneur ever wishes to abscond
with the capital invested in their business.

Individual problems. The wage, interest rate, and taxes are only relevant to the
entrepreneur insofar as they affect her human wealth, hE , after-tax safe return, rsE , excess
return on capital, dRt, the constant ωd in the collateral constraint, and the tax on profits τπ.
I therefore write the individual problems and implementation in terms of these quantities
because this will simplify the subsequent analysis of optimal policy.

Definition 4.1. Given taxes τ ≡ ({τsi, τLi}i∈{E,W}, τI , τπ), wage w, interest rate r, and

23Note that when income is taxed at a common rate τ = τLE = τsE = τπ, the equation (15) simplifies
to dat = (1 − τ)

[
(ρDat + r(bet + bbt) + wL+Akαt l

1−α
t − wlt − (δ + τI + st)kt)dt+ σdBt

]
− ctdt, and the

above amounts to allowing the entrepreneur to deduct interest paid on debt from their taxable income.
24Wherever relevant, I use the subscript d for quantities appearing in the decentralized environment in

order to avoid confusion with their efficient counterparts considered in Section 3.
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collateral parameter ωd, the problem of an entrepreneur with wealth a is given by

VE(a) = max
(ct,kt,lt,st)t≥0

E
[
ρ

∫ ∞

0
e−ρt ln(ct + ϕstkt)dt

]
dat = [rsE(at + hE)− ct]dt+ (1− τπ)ktdRt

kt ≤ ωd(at + hE), ∀t ≥ 0

0 ≤ at + hE , ∀t ≥ 0,

while the problem of a worker with wealth a is given by

VW (a) = max
(ct)t≥0

E
[
ρ

∫ ∞

0
e−ρt ln ctdt

]
dat = [rsW (at + hW )− ct]dt

0 ≤ at + hW , ∀t ≥ 0.

Before characterizing the solution to the individual problems, I make two preliminary
observations. First, for any constant wage the optimal choice of labor per unit of capital
is constant across entrepreneurs and solves Π := maxz≥0Az

1−α − wz − δ, so that the
optimal excess return on capital may be written dRt = (Π− rb − s)dt+ σdBt. Second, the
entrepreneur will choose st = 0 if and only if τπ ≤ 1−ϕ. As in Section 3 I restrict attention
to this case and write a stationary allocation as {(cit, kit, lit)t≥0}i∈{E,W}. The problem of
the entrepreneur then admits the following simple characterization.

Lemma 4.1. The entrepreneur will choose not to divert capital if and only if τπ ≤ 1− ϕ,
in which case her value function is VE(a) = ln ρ+ln (a+ hE)+ρ

−1
(
µc,d − σ2c,d/2

)
and her

consumption satisfies dct = µc,dctdt+ σc,dctdBt, where

µc,d = rsE − ρ+ (1− τπ)(Π− rb)kd σc,d = (1− τπ)σkd (18)

and the constant kd is given by

kd = min

{
Π− rb

σ2(1− τπ)
, ωd

}
.

The entrepreneur’s policy functions are cE(a) = ρ(a+hE) and kE(a) = kd(a+hE), and the
worker’s policy and value functions are cW (a) = ρ(a+hW ) and VW (a) = ln ρ+ln (a+ hW )+

(rsW /ρ− 1), respectively.

Proof. See Appendix C.1.
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Equilibrium notion. The equilibrium notion I adopt below will impose the famil-
iar conditions that consumers optimize and markets clear, together with two additional
requirements motivated by the environment in Section 3. First, the equilibrium utility of
entrepreneurs must weakly exceed that of workers at birth; otherwise, entrepreneurs will
not reveal their type. Second, the constant ωd must equal the largest value such that the
entrepreneur will never wish to abscond with her firm’s capital. This latter requirement
is similar in spirit to that imposed in the equilibrium concept introduced in Alvarez and
Jermann (2000), in which their solvency constraints are described as “not too tight.” I
emphasize that this equilibrium condition is consistent with the environment of Section 3,
in which an entrepreneur who absconds with capital has access only to a fraction of the
stolen capital and a bond with return ρ, but no labor income. The entrepreneur will never
wish to abscond with the capital invested in her firm if and only if ln(ριk) ≤ VE(a) for all
k ≤ ωd(a+ hE). By Lemma 4.1, the most relaxed collateral constraint consistent with no
absconding corresponds to the value

ωd = ι−1e(µc,d−σ2
c,d/2)/ρ (19)

which is endogenous to tax policy because taxes affect the drift and diffusion of consumption
and hence the utility from not absconding. Finally, I will write κiK := ηiK + hi for the
initial total wealth of an agent of type i ∈ {E,W}. The following is then the notion of
equilibrium adopted in this paper.25

Definition 4.2. Given taxes τ ≡ ({τsi, τLi}i∈{E,W}, τI , τπ) satisfying τπ ≤ 1−ϕ and trans-
fers {ηi}i∈{E,W}, a stationary competitive equilibrium with endogenous collateral constraints
consists of an allocation {(cit, kit, lit)t≥0}i∈{E,W}, government debt D, capital stock K, wage
w, interest rate r, and collateral parameter ωd, such that:

1. For i ∈ {E,W}, (cit, kit, lit)t≥0 solves the problem of a type i agent in Definition 4.1
given the wage w, interest rate r, taxes τ , transfers ηi, and collateral constraint ωd.

2. The after-tax return for workers and the drift in entrepreneurs’ consumption satisfy
25To understand the market-clearing conditions in Definition 4.2, note that when agents die at rate ρD

and the total wealth of type i agents grows at an average rate of µci < ρD, the average total wealth of type
i agents in the stationary distribution is ρDκiK/(ρD − µci).
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ρD−ρ+rsW > 0 and ρD−µc,d > 0 and the markets for labor, bonds, and goods clear:

L = [(1− α)A/w]1/αK

K =
(1− ψ)ρDκE
ρD − µc,d

Kkd

AKαL1−α − δK = ρ

(
(1− ψ)ρDκE
ρD − µc,d

+
ψρDκW

ρD − ρ+ rsW

)
K.

3. The government budget constraint is satisfied: the interest on government debt equals
the revenue raised from taxes minus the transfers to newborns every instant.

4. The initial utility of entrepreneurs weakly exceeds that of workers.

5. The constant ωd in the collateral constraint satisfies (19).

Equilibrium characterization. I now turn to the main result of this paper, which
shows that whenever the stationary efficient allocation characterized in Section 3 exists and
the associated efficient value of x̂ satisfies x̂ < 1, the efficient allocation can be implemented
as an equilibrium of the form given in Definition 4.2.26 Specifically, Proposition 4.2 shows
that implementing the efficient allocation amounts to finding an interest rate and taxes
that solve the system of equations (20) and then choosing the remaining instruments to
ensure that the resource and government budget constraints hold.27 I will use hat notation
to denote efficient quantities, so that Ŝ is the solution to equation (12), Π̂ and K̂ are the
associated marginal product of capital and capital stock, respectively, and x̂, µ̂c, ν̂

B, and
ν̂K are the efficient values of the functions defined in Section 2.28 Finally, because labor is
supplied inelastically and agents can borrow up to the natural limit, I state the following
characterization in terms of κi = ηi + hi/K rather than ηi and τLi separately, because the
latter two objects are not uniquely pinned down.

Proposition 4.2. When Assumption 3.1 holds and x̂ < 1, the stationary efficient allocation
can be implemented as a equilibrium of the form given in Definition 4.2 in which the interest

26Note that the requirement x̂ < 1 in Proposition 4.2 ensures that the value of human wealth is finite.
27Under the conditions stated in Proposition 4.2, there always exists at least one solution to the system of

equations (20), in which r = ρS , τsW = 0, τsE = ν̂B/ρ and τI = ν̂K − ν̂B −min
{
0,
(
(1− ν̂B/ρ)/ϕ− 1

)
ρS

}
.

28That is, the values obtained when evaluated at S = Ŝ.
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rate r and taxes τsE , τsW and τI are any values such that

rsW = ρ

rsE − ρ = −ν̂B

rb − ρS = −ν̂B + ν̂K ,

(20)

and the remaining instruments and equilibrium quantities are given as follows:

1. The tax on profits is τπ = 1− ϕ.

2. The transfers and labor taxes are chosen such that κE and κW satisfy

κE =
ϕσ(ρD − µ̂c)√
ρx̂(1− ψ)ρD

κW = κE max
{
e−x̂2/2, x̂/ω

}
.

3. Given the taxes on labor, the level of government debt is

D =
(
(Π̂/α+ (1/α− 1)δ)/ρ− 1

)
K̂ − ((1− ψ)hE + ψhW ) (21)

where for i ∈ {E,W}, hi denotes the human wealth of type i as defined in (17).

Finally, the wage is w = (1 − α)AL−αK̂α and the constant in the collateral constraint is
given by ωd = ι−1max

{
x̂/ω, e−x̂2/2

}
.

Proof. See Appendix C.1.

Although the expressions for total wealth and government debt in Proposition 4.2 may
appear complicated, the logic underlying the characterization is simple and can be summa-
rized in the following steps. First, the expressions for rsi and rb in Proposition 4.2 ensure
that the drift and diffusion of consumption in Lemma 4.1 coincide with their efficient coun-
terparts given in Proposition 3.1. Second, the tax on profits is the highest level consistent
with incentive compatibility because this maximizes risk-sharing between the risk-averse
entrepreneurs and the government. Third, the transfers and labor taxes ensure that the
bond market clears and that all agents obtain the same level of initial utility. Finally, the
expression for government debt follows by equating the sum of private and public wealth
(the negative of government debt) with the capital stock.29

Note that by Proposition 2.2, Proposition 4.2 implies that when the no-absconding
constraint is a strict inequality, in any implementation of the efficient allocation, the risk-
free return faced by entrepreneurs must fall below the discount rate ρ and the cost of firm

29As expected (and verified in Appendix C.1), the government budget constraint automatically holds.
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borrowing must fall below the subjective discount rate ρS . There are many ways in which
the government may ensure that these conditions hold. In the next section I consider two
specific implementations and then discuss the main result in greater detail.

5 Special cases and robustness

The proof of Proposition 4.2 amounts to ensuring that the capital stock, initial consumption
and the (constant) drift and diffusion of log consumption in the competitive equilibrium
coincide with their counterparts in the efficient allocation. In this section I first consider
two specific implementations, provide some intuition for the overall approach, and discuss
the robustness of the main result to various extensions.30

5.1 Specific implementations

As noted above, the optimal policy in Section 4 is indeterminate both because agents care
only about after-tax returns (and not pre-tax prices) and because lump-sum transfers to
newborns are equivalent to taxes on labor income because labor supply is inelastic. I
now consider two specific implementations of the efficient allocation that warrant special
attention, in which the expressions in Proposition 4.2 simplify. In the first, workers face no
taxes and the interest rate coincides with the subjective discount rate, and in the second,
the tax on investment is chosen such that the tax on profits may be interpreted as a tax on
the excess return on capital.

Untaxed workers and common human wealth. In this paper, the agency frictions
do not directly affect the labor income of any agent or the capital income of workers. For this
reason, one natural implementation corresponds to the situation in which human wealth is
independent of type and workers face no taxes, which occurs when entrepreneurs’ labor taxes
satisfy 1− τLE = rsE/ρ and the interest rate is r = ρS . In this case, the second and third
equations in (20) reduce to τsE = ν̂B/ρ and τI = ν̂K− ν̂B−min

{
0,
(
(1− ν̂B/ρ)/ϕ− 1

)
ρS
}
.

Further, in this case the level of government debt and the revenue raised from entrepreneurs
as a fraction of income admit the following simple expressions.

Proposition 5.1. In the implementation in which r = ρS , τLW = 0, and 1− τLE = rsE/ρ,
government debt is D = (Π̂/ρ− 1)K̂. Further, when the no-absconding constraint is strict,

30I remind the reader of the convention described prior to Proposition 3.2: in this paper as I vary ϕ, I
assume that ι ≡ ϕι for some fixed ι ∈ (0, 1], so that both agency frictions vanish as ϕ→ 0.
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the average revenue raised from entrepreneurs as a fraction of income is x̂2/(2x̂2 + 1).

Proof. See Appendix C.2.

When combined with Proposition 3.2, Proposition 5.1 shows that when the no-absconding
constraint is strict, both D/K̂ and total tax revenue raised per unit of income are increasing
in the parameter ϕ governing the strength of the agency frictions. This monotonicity of
revenue is noteworthy because, in contrast, the revenue raised solely by the tax on profits
exhibits no such monotonicity, and in fact vanishes when agency frictions are either very
high or very low. Indeed, when ϕ = 1, the tax on profits vanishes and therefore obviously
raises no revenue, and when ϕ = 0, the profits themselves vanish because the marginal
product of capital equals the interest rate.

Normal versus excess returns. Boadway and Spiritus (2025) study the optimal
taxation of “normal” and “excess” returns on capital income in a two-period environment,
where the normal return on capital income is defined as the risk-free rate of return multiplied
by the savings of the entrepreneur and excess returns are any deviations from this quantity.
This differs from the decentralization in Section 4, in which taxes were levied on different
sources of capital income (interest and profits) instead of being imputed from the total stock
of savings.31 However, the taxes on interest and profits in Section 4 may be interpreted
as taxes on the normal and excess returns on capital in the special case in which r = rb,
so that the cost of firm borrowing faced by the firm is equal to the interest rate.32 In this
implementation, both the pre-tax safe return r + ρD and the post-tax safe return rsE fall
below the discount rate ρ, and so the sign of the tax on entrepreneurs’ interest is not a priori
obvious. In fact, as the following shows, in this implementation the tax on entrepreneurs’
interest income may assume either sign.

Proposition 5.2. For all sufficiently small ϕ > 0, there exists an implementation of the
efficient allocation in which r = rb. In this implementation, the tax on workers’ interest
income is negative when the no-absconding constraint is strict and the tax on entrepreneurs’
interest income may assume either sign and is negative when ϕ is sufficiently small.

Proof. See Appendix C.2.
31Taxing normal returns at rate τsE is equivalent to imposing bet = at and bbt = −kt in (15), and setting

τI = 0 (this was the implementation and market structure considered in previous drafts).
32By equation (20), this implementation corresponds to choosing taxes on interest income and investment

satisfying (1 − τsE)(ρ − ν̂B + ν̂K) = ρ − ν̂B and τI = min {0, (1− τsE)/ϕ− 1}
(
ν̂B − ν̂K − ρS

)
. Such an

implementation will exist if ρ− ν̂B + ν̂K ̸= 0, which is true for sufficiently small ϕ > 0.
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5.2 Discussion and robustness

In this section I discuss the methodology adopted in this paper, the role of some of the key
assumptions, and the robustness of the main insights to several extensions.

Mechanism design and the primal approach. It is worth emphasizing that the
mechanism design approach simplifies the characterization of the optimal taxes. This may
appear counterintuitive, because modeling incentive constraints necessitates the analysis
of a dynamic agency problem seemingly unrelated to the incomplete markets model of
Section 4. However, proceeding in this way eliminates the need to understand exactly
how competitive equilibria vary with taxes. The government can never do better than the
efficient allocation, and so the task of Proposition 4.2 is simply to show that the efficient
allocation can be implemented with the above tax instruments, which amounts to solving
a finite system of equations.33 If taxes and transfers were the objects of choice in the
planner’s problem, then the analysis would be more complicated because the interest rate,
capital stock and the constant in the collateral constraint are only defined in terms of the
solutions to market-clearing equations. A change in any instrument will have non-obvious
effects on all of these objects, but this is irrelevant to the proof of Proposition 4.2.

This reasoning is reminiscent of the primal approach employed in the literature on op-
timal linear taxation in representative agent economies.34 Recall that here one rearranges
the first-order conditions of the consumer’s problem to eliminate prices from the budget
constraint to obtain what is termed an “implementability constraint.” One can then reverse
this procedure and show that any allocation that is resource feasible and satisfies the im-
plementability constraint can be supported as a competitive equilibrium. In this way, there
is no need to understand exactly how competitive equilibria vary with taxes, and the plan-
ner’s problem becomes a standard programming problem. The analogy with the approach
of this paper is far from exact, but in both cases one uses the optimality conditions that
obtain in competitive equilibria and then chooses among allocations directly.

The role of the welfare notion and preferences. The simplicity of the char-
acterization of the stationary efficient allocation in Proposition 3.1 is due partly to the
preferences being logarithmic and partly to the adoption of a welfare criterion that weights
the flow utility of an agent the same independently of her birth date. As emphasized in

33Appendix D.1 shows that this methodology also applies to preferences exhibiting constant relative risk
aversion with γ > 1, although the analysis is more complicated in this case and the ensuing expressions
and harder to interpret.

34See, e.g., Chari and Kehoe (1999).
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Section 2, the homotheticity of preferences and the fact that technology exhibits constant-
returns-to-scale in all variable factors imply that consumption and capital are linear in
consumption-equivalent utility u, which permits aggregation over entrepreneurs and im-
plies a simple form of the goods resource constraint. Further, the above welfare notion also
implies that transfers and government debt remain necessary to implement the efficient
stationary allocation even when ϕ→ 0 and agency frictions vanish. In this case, Ŝ = x̂ = 0

and the goods resource constraint simplifies to κE = κW = (ρS/α + (1/α − 1)δ)/ρ. The
stationary efficient allocation can therefore be implemented as an equilibrium in which the
taxes on all forms of income are set to zero and the transfers to newborns are given by
ηi = κi − (wL/ρ)/K̂ = ρS/ρ for i ∈ {E,W}. In this case the interest rate is r = ρS and
government debt is D = −ρDK̂/ρ.

The role of the tax on profits. The fact that a change in one instrument will,
in general, affect all equilibrium quantities makes it difficult to isolate a single, unique
effect of each tax. Indeed, in Proposition 4.2, the lump-sum transfers to newborns and
the taxes levied on the interest and investment of entrepreneurs jointly determine both the
equilibrium interest rate and the drift and diffusion of wealth, and so their effects cannot
be neatly separated from one another. However, the role of the profits tax in the above
implementations is simple and unambiguous: it serves to maximize risk-sharing subject
to incentive compatibility. In particular, its role is not to discourage diversion or to tax
away excess returns, because in the absence of such a tax, the entrepreneur would have no
incentive to misreport income, as this would only lose her money (because of the deadweight
loss). Further, Lemma 4.1 shows that when the collateral constraint does not bind, the
evolution of total wealth in partial equilibrium depends on the profits tax only via the cost
of borrowing faced by the firm rb. In particular, for the range of τπ such that rb = r + τI ,
the entrepreneur simply chooses her leverage to leave her return on total wealth unaffected
by the tax on profits.35

Private risk-sharing. Section 4 assumed that agents could only trade a risk-free
bond in zero net supply. One alternative to this is to allow for the existence of private
contracting arrangements, so that the government is not the only source of risk-sharing.
Indeed, although the work of Smith et al. (2019) cited in the introduction shows that
business ownership is highly concentrated, the assumption in the above model that every

35In a model with a common tax on all capital income, Panousi (2010) makes a similar observation and
shows that the capital tax may therefore increase capital accumulation, and relates this insight to Domar
and Musgrave (1944), in which the profits tax essentially makes the government a partner in the business.
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firm is owned by a single individual is unrealistic. As noted by Di Tella (2017), in the
absence of taxes, when entrepreneurs can write short-term contracts with a competitive
sector of risk-neutral intermediaries, their exposure to their firms’ shocks is multiplied by
the factor ϕ and all other parameters are unchanged.36 These private contracts therefore
play a risk-sharing role similar to that of the tax on profits in the above implementations,
which is therefore set to zero. The problem of the entrepreneur is identical to that in
Definition 4.1 except that τπ = 0 and σ is replaced by ϕσ. Reasoning identical to that
given after Proposition 4.2 implies that the optimal after-tax safe returns and total wealth
do not change (because the efficient allocation does not change), but that the effective cost
of firm borrowing necessary to ensure the efficient level of risk must now satisfy

rb − ρS = Π̂− ρS −√
ρϕσx̂ ≥ ν̂K − ν̂B. (22)

To see this, note that if τπ = 0 and σ is replaced by ϕσ, Lemma 4.1 shows that when the
collateral constraint does not bind, the risk in the entrepreneurs’ consumption is given by
the Sharpe ratio,

σc,d = ϕσkd =
Π̂− rb
ϕσ

which equals the efficient value σ̂c =
√
ρx̂ when rb satisfies (22). Further, in this implemen-

tation, we have the following comparative statics with respect to the agency friction when
the no-absconding constraint does not hold with equality.

Lemma 5.3. For the range of ϕ such that the no-absconding constraint is strict, the efficient
value of rb − ρS in the implementations with optimal short-term contracts is negative and
decreasing in ϕ.

Proof. See Appendix C.1.

Heterogeneous entrepreneurs. In the above analysis all entrepreneurs were assumed
to be equally productive on average, in the sense that they all operated with the technology
represented by the function F (k, l) = Akαl1−α for some common A and α. A general anal-
ysis of efficient allocations in an environment in which productivity parameters are private
information or heterogeneous across time is beyond the scope of the paper. However, it
is worth noting that the characterization of optimal tax policy in Proposition 4.2 general-
izes in a simple way if the parameter A differs across entrepreneurs but is observable and

36See the discussion of the experts’ problem on page 2046 of Di Tella (2017) for further details. Boar and
Knowles (2024) derive a similar result in their discrete-time model.
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constant over time and an analogue of Assumption 3.1 (ensuring existence of a stationary
efficient allocation) is satisfied. In this case, the marginal product of capital differs among
entrepreneurs, and so the analogue of the resource constraint in Proposition 3.1 becomes
more complicated.37 However, arguments analogous to those employed in Proposition 4.2
remain applicable if the government can allow taxes to depend on productivity and the
technical conditions in Section 2 are satisfied for each type.38 Specifically, efficiency re-
quires that the after-tax safe returns and cost of firm borrowing satisfy the equations in
(20) for each type of entrepreneur separately, where the efficient wedges ν̂B and ν̂K now
differ across entrepreneurs. By Proposition 2.2, when the no-absconding constraint binds
for no entrepreneur, heterogeneity in productivity provides a force for regressivity with
respect to business income, because the efficient cost of firm borrowing must be lower for
more productive entrepreneurs, and a force for progressivity with respect to the safe as-
set whenever the no-absconding constraint is strict. However, the optimal tax on profits
remains common to all entrepreneurs at τπ = 1− ϕ.

6 Numerical examples

The goal of this paper has been to characterize the optimal taxes on different forms of
capital income in a model in which the relevant economic forces are as simple as possible.
To conclude the paper, I now compute some examples. I first depict the after-tax returns
and the effective cost of firm borrowing appearing in Proposition 4.2 alongside the drift and
diffusion for consumption, and then plot the associated revenue raised and transfers for the
implementation characterized in Proposition 5.1. Beyond illustrating the basic mechanisms
in the model, the main point of this section is that savings taxes and wedges can be large
for standard parameters but often substantially overstate the revenue raised from taxation.
Throughout I fix (α, σ, ρS , ρD, δ) = (0.33, 0.2, 0.04, 0.02, 0.06) and vary ϕ, following the
convention described prior to Proposition 3.2 in which ι ≡ ϕι for some fixed ι ∈ (0, 1]. The
capital share α, subjective discount factor ρS , rate of death ρD and depreciation rate δ are
standard, while σ is toward the lower end of the range of values adopted in the literature.39

Wedges and after-tax returns. Figure 1 plots the wedge on savings and the efficient
cost of borrowing by the firm as a function of ϕ with ι = 1, for different values of the fraction

37Appendix D.2.1 provides details of the characterization.
38The details of the decentralization are given in Appendix D.2.2.
39For example, Angeletos (2007) considers σ = 0.2 and σ = 0.4 in his quantitative exercises. Choosing a

larger σ would only increase the effects of agency frictions.
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Figure 1: Wedges and efficient cost of borrowing with tight collateral constraints (ι = 1.0)

of agents ψ who are workers.40 As implied by Proposition 3.2, for small ϕ the no-absconding
constraint does not bind and in this region the savings wedge is increasing in ϕ. As shown in
Figure 2, the “kinks” in the savings wedge depicted in Figure 1 occur at parameters where
the no-absconding constraint begins to bind and the wedge on savings starts to decline.
Further, in contrast to the implementation with private risk-sharing considered in Lemma
5.3, this example shows that the efficient cost of borrowing is not in general monotonic
in ϕ, even in regions in which the no-absconding constraint does not bind. Figure 3 then
complements Figure 1 by depicting the wedges and cost of borrowing for parameters such
that the collateral constraints are as relaxed as possible.41 The wedges on savings coincide
with those in Figure 1 for low ϕ but are now increasing everywhere and exhibit no “kinks.”

Revenue and transfers. Figure 3 shows that for the above parameters the model
generates high optimal wedges on savings when collateral constraints are relaxed and agency
frictions are severe. Indeed, in view of Figure 3, the safe return rsE = ρ − νB falls from 6
percent to less than 1 percent as ϕ ranges over the unit interval, a fall of over 80 percent.

However, there are two important points to bear in mind when interpreting the magni-
tude of the savings wedge and its implications for the tax on interest. The first is that in
Section 4, the tax on interest is applied only to the safe return of the entrepreneur and not
their total capital income. When their personal bond holdings are negative, the tax on in-
terest can reduce the tax liability of entrepreneurs. Further, the savings wedge is high when

40Cagetti and De Nardi (2006) show that roughly 11.5 percent of households in the SCF are active business
owners, which corresponds to ψ = 0.885. However, this paper abstracts from a corporate sector and so I
use this as an upper bound in the numerical examples instead of focusing on a benchmark calibration.

41Lemma A.8 in Appendix A.2 shows that this occurs when ι ≈ 0.5.
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Figure 2: Drift and diffusion of consumption with tight collateral constraints (ι = 1.0)

Figure 3: Wedges and efficient cost of borrowing with relaxed collateral constraints (ι ≈ 0.5)
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Figure 4: Revenue and inherited wealth with relaxed collateral constraints (ι ≈ 0.5)

agency frictions are high, which is precisely when the tax on profits is low. The left-hand
plot in Figure 4 complements Figure 3 by depicting the average taxes paid by entrepreneurs
as a fraction of income for the implementation in Proposition 5.1, and shows that while
the tax on interest can exceed 80 percent, the average tax revenue raised never exceeds 32
percent of income. The second point is that in the above implementation, entrepreneurs
receive higher transfers than workers at birth in order to compensate them for the risk they
bear. The right-hand plot in Figure 4 depicts the relative magnitudes of these transfers by
plotting the ratio of initial (financial) wealth ηE/ηW of the two types. In particular, when
the savings wedge in Figure 3 reaches its highest value, entrepreneurs begin life with over
four times the amount of wealth as workers.

The sensitivity of taxes and transfers to both parameters and the choice of implementa-
tion in this environment is why I have computed a range of examples instead of emphasizing
one particular calibration. Smith et al. (2019) show that there exists substantial hetero-
geneity in returns on private businesses, and there is much we do not know regarding the
determinants of this income. In particular, although the evidence noted in the introduction
suggests that business income appears to reflect owner-specific characteristics, the extent to
which these are endogenous to tax policy is not yet clear. They could reflect innate ability
(which would be invariant to policy) or the return on past effort and reputation (which
would likely be discouraged by high taxes). In this paper I have instead therefore focused
primarily on the qualitatively distinct roles played by each instrument in an environment
in which their values may be analytically characterized.
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7 Conclusion

Capital income can assume many forms, including (but not limited to) interest on personal
savings and the profits of private businesses. This paper has provided a model in which the
desirability of differential treatment of this income emerges when business owners operate
firms exhibiting constant-returns-to-scale, are subject to idiosyncratic risk, may misreport
profits, and can abscond with a fraction of borrowed capital. I show that whenever a sta-
tionary efficient allocation exists, it may be implemented in a competitive equilibrium with
endogenous collateral constraints, lump-sum transfers, and constant, occupation-specific,
linear taxes on reported profits, investment, and interest. The main findings regarding these
taxes were as follows. First, the profits tax serves only to maximize the level of risk-sharing
and is not driven by redistributive concerns. Second, when the no-absconding constraint
does not bind, entrepreneurs face lower after-tax returns on the risk-free asset than work-
ers, and so the model generates progressive taxes on savings in a qualified sense. Third,
to provide entrepreneurs with efficient incentives for investment, the effective cost of firm
borrowing faced by their businesses must fall below the complete markets level when the
no-absconding constraint does not hold with equality. Further, there is a degree of freedom
in optimal policy, because the (after-tax) return on the bond can be affected either by
taxing interest or by altering the equilibrium interest rate with an investment tax. Finally,
for an implementation in which workers are not taxed, the optimal taxes on entrepreneurs’
interest overstate the overall revenue raised, in part because the distribution of wealth be-
tween bonds and capital is endogenously chosen by the entrepreneurs and interest taxes fall
on only a subset of capital income.
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A Agency problem

This appendix contains formal statements and proofs for all claims pertaining to the principal-
agent problem. Appendix A.1 characterizes incentive compatible allocations in terms of diffusion
processes for utility and Appendix A.2 characterizes the value function of the principal and the
implied wedges on risky and risk-free assets.

A.1 Incentive compatibility

The characterization of incentive compatibility essentially follows from the arguments employed
in the online appendix to Di Tella (2019), who considers an environment in which a financial
intermediary (analogous to what I have termed an entrepreneur) is subject to a diversion problem
as in the current paper but there is no ability to abscond with capital. However, because the
situation in the current paper is not a special case of Di Tella (2019) (who considers a class of
preferences that does not include CRRA utility), I will spell out some additional details and recall
some definitions from the main text in order to aid the reader.

Formally, in this environment an allocation is a triple of processes (k, c, s̃) defined on the filtered
probability space (C[0,∞], (Ft)t≥0, P ), where (Ft)t≥0 is the filtration generated by the evaluation
maps and P is the Wiener measure. Because there is no loss in assuming that the recommended
stealing is s̃t = 0 for all t ≥ 0, as in the main text I omit s̃ from the definition of an allocation.
Further, in this appendix all stochastic processes are adapted to the filtration generated by the
underlying Brownian motion. An allocation is a pair of F-adapted processes (k, c) satisfying kt ≥ 0

and ct > 0 for all t ≥ 0, while a strategy of the agent is an F-adapted process s assuming values
in [0, s] for all t ≥ 0. Denoting the corresponding expectation operator by Es, the utility from
adhering to a strategy s is

UA(k, c, s) := Es
[
ρ

∫ ∞

0

e−ρt ln(ct + ϕstkt)dt

]
. (23)

Following Di Tella (2019) and Di Tella and Sannikov (2021), I restrict attention to admissible
allocations and feasible strategies, as defined below.42

Definition A.1 (Admissible allocations). An allocation (k, c) is admissible if the associated utility
and present discounted value of capital and consumption are all well-defined and finite,

E
[∫ ∞

0

e−ρt ln ctdt

]
<∞,E

[∫ ∞

0

e−ρtctdt

]
<∞,E

[∫ ∞

0

e−ρtktdt

]
<∞.

Definition A.2 (Feasible strategies). Given an admissible allocation (k, c), a strategy s is feasible
if it vanishes beyond some fixed time T and the utility in (23) is well-defined and finite.

42Di Tella (2019) calls feasible strategies as defined in Definition A.2 “valid.” For this paper I adopt the
nomenclature of “feasible” from Di Tella and Sannikov (2021).
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Given an elasticity of intertemporal substitution ψ and risk aversion parameter γ, the utility
process (Wt)t≥0 in Di Tella (2019) associated with consumption (ct)t≥0 is a solution to

Wt := Et
[∫ ∞

t

f(cs,Ws)ds

]
(24)

where the Epstein-Zin aggregator is defined by

f(c,W ) :=
ρ

1− 1/ψ

(
c1−1/ψ

[(1− γ)W ]
γ−1/ψ
1−γ

− (1− γ)W

)
(25)

when ψ ̸= 1. CRRA utility corresponds to ψ = 1/γ and logarithmic utility arises as γ, ψ → 1.
Specifically, for the CRRA case the aggregator becomes f(c,W ) := ρ

(
c1−γ/(1− γ)−W

)
and for

the logarithmic case the aggregator becomes f(c,W ) := ρ(ln c−W ). Now recall the following
definitions from the main text.

Definition A.3. An admissible allocation (k, c) is incentive compatible if UA(k, c, 0) ≥ UA(k, c, s)

and kt ≤ ωeW
s
t for all feasible strategies s and t ≥ 0 almost surely. The set of incentive compatible

allocations that give utility W to the entrepreneur is denoted AIC(W ).

The principal is risk-neutral and so his preferences over incentive compatible allocations (k, c)

are represented by the objective function

UP (k, c) := E
[∫ ∞

0

e−ρt[(Π− ρ− τk)kt − ct]dt

]
(26)

and the principal’s problem is then the following.

Definition A.4. Given initial utility W , the problem of the principal is defined to be

V (W ) = sup
(k,c)∈AIC(W )

UP (k, c) (27)

and an allocation attaining the supremum in (27) is termed an optimal (or efficient) allocation.

The following is essentially a combination of Lemma 1 and Lemma 2 from the online appendix
of Di Tella (2019).

Lemma A.1. For any admissible allocation (k, c), the promised utility admits the representation
dWt = ρ(Wt − ln ct)dt + σ̃W,tdBt for some process σ̃W,t ∈ L2, the set of F-adapted processes x
satisfying E

[∫ t
0
x2udu

]
<∞ for all t ≥ 0. The entrepreneur will choose s = 0 if and only if

0 ∈ argmax
s≥0

ρ ln(ct + ϕkts)− sσ̃W,t/σ (28)

almost surely for all t ≥ 0. It follows that when characterizing efficient allocations there is no loss
in assuming that utility evolves according to

dWt = ρ(Wt − ln ct)dt+ ρϕσ(kt/ct)dBt, (29)
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which is equivalent to the law of motion of u given by

dut = ρ
(
− ln(ct/ut) + (

√
ρϕσkt/ct)

2/2
)
utdt+ (ρϕσkt/ct)utdBt

= ρ
(
− ln ct + x2t/2

)
utdt+

√
ρxtutdBt

(30)

where ct = ct/ut and xt =
√
ρϕσkt/ct as in the main text.

Proof. This follows from Lemma 1 and the proof of Lemma 2 in the appendix to Di Tella (2019).
Note that although the literal statement of Lemma 2 does not apply to logarithmic utility, the
proof does in fact extend to this case, and indeed to all CRRA utility functions, because the only
point in the proof at which properties of the aggregator in (25) are relevant is for the existence of
a constant κ such that f(c, y)− f(c, x) ≤ κ(y− x) for any c and all y ≥ x. For general Epstein-Zin
preferences, this requires some restrictions on parameters (such as those imposed in the statement
of Lemma 2 of the appendix to Di Tella (2019)), but for the case of CRRA utility considered in this
paper, we have f(c, y)− f(c, x) = ρ(−y + x) ≤ 0 for y ≥ x, and so this holds automatically.

A.2 Characterization of value function

To prepare for the following proofs I will first introduce some additional notation and results. I will
define x = x(ω) and x = x(ω) to be the solutions to xex

2/2 = ω and xex
2
/2−1 = ω, respectively.

Note that under the following change of variables adopted in the main text,

x :=
√
ρϕσk/c S :=

Π− ρ− τk√
ρϕσ

ω :=

√
ρϕσ

ρι
(31)

the no-absconding constraint k ≤ ω = (ρι)−1 is equivalent to the inequality cx ≤ ω. Consequently,
by (30), x is the maximum x for which the no-absconding constraint holds, under the assumption
of the inverse Euler equation holding (which for logarithmic utility means zero drift in (30)), and
x is the maximum x for which consumption growth is smaller than the rate of discount when the
no-absconding constraint holds with equality. For any ω > 0, I will define the set

D(ω) :=
{
(c, x) ∈ R2

∣∣ c > 0, x ≥ 0 xc ≤ ω, − ln c+ x2/2 < 1
}

(32)

and for ease of reference recall the definition

v ≡ v(S, ω) := sup
(c,x)∈D(ω)

(Sx− 1)c

ρ(1 + ln c− x2/2)
. (33)

The constraint set D(ω) is not compact, which complicates the following analysis. For this reason
I now note that for any (c, x) ∈ D(ω) we have c ≥ e−1, and for any ϵ > 0 define

Dϵ(ω) :=
{
(c, x) ∈ R2

∣∣ c ∈ [e−1, 1/ϵ], x ≥ 0 xc ≤ ω, − ln c+ x2/2 ≤ 1− ϵ
}

(34)

which is a compact subset of D(ω). For future reference I isolate the following observation.
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Lemma A.2. For any ω > 0, x < x(ω) for all (c, x) ∈ D(ω).

Proof. Simply combine the defining inequalities in (32) to note that for any (c, x) ∈ D(ω), we either
have x = 0 or x > 0 and x2/2 < 1 + ln c ≤ 1 + ln(ω/x), from which the conclusion follows from the
definition of x(ω).

The proof of Proposition 2.1 will show that when the no-absconding constraint does not hold
with equality, consumption is a martingale and satisfies c = ex

2/2. For this choice of consumption,
the maximand in (33) may be written F (x) := ρ−1(Sx− 1)ex

2/2, which satisfies

F ′(x) = ρ−1(Sx2 − x+ S)ex
2/2

F ′′(x) = ρ−1(Sx3 − x2 + 3Sx− 1)ex
2/2.

(35)

Consequently, it is easy to check that if S < 1/2, the function F has a unique local maximum on
the interval x ∈ [0, 1/S] given by

xloc(S) :=
1−

√
1− 4S2

2S
. (36)

Proposition 2.1 in the main text asserts that the problem of the principal is finite-valued for all
sufficiently small S. I now outline the technical conditions defining what “sufficiently small” means,
where I write v ≡ v(S, ω) for the quantity defined in (33) to illustrate the dependence on S and ω.

Assumption A.1. Sx ≤ 1.

The following shows that Assumption A.1 implies that v is negative. This will be a necessary
condition for the principal’s value function to be finite.

Lemma A.3. Assumption A.1 holds if and only if v(S, ω) < 0, and if Sx < 1 then the supremum
in (33) is attained at some (c, x). Further, the function v is continuous in S on the interval [0, 1/x].

Proof. First note that if Sx > 1 then inspection of the definition of D(ω) shows that v(S, ω) > 0.
Next, I show that if Sx < 1, then for all δ > 0 there exist ϵ(δ) > 0 such that for all S ∈ [0, (1−δ)/x],
the supremum in (33) is unchanged when we restrict the constraint set to Dϵ(ω),

v(S, ω) = sup
(c,x)∈Dϵ(ω)

(Sx− 1)c

ρ(1 + ln c− x2/2)
. (37)

To see this, note that because v(S, ω) ≥ −1/ρ, by Lemma A.2 it will suffice to find ϵ > 0 such that

δc > 1 + ln c− x2/2 ∀(c, x) ∈ D(ω) \Dϵ(ω) (38)

and (38) will hold for ϵ satisfying δ/ϵ′ > 1+ ln(1/ϵ′) and δe−1 > ϵ′ for all ϵ′ ∈ (0, ϵ]. Because Dϵ(ω)

is compact, (37) shows that the supremum in (33) is attained when Sx < 1 from which is easily
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follows that v is continuous in S on [0, 1/x). To establish v(1/x, ω) < 0, note that if to the contrary
there exists (cn, xn)

∞
n=1 ⊆ D(ω) such that

lim sup
n→∞

(xn/x− 1)cn
ρ(1 + ln cn − x2n/2)

= 0, (39)

then we derive a contradiction as follows. The limit (39) cannot hold if xn ∈ [ϵ, x − ϵ] for some
ϵ > 0 and all sufficiently large n ≥ 1 because in this case the numerator in (39) is bounded away
from zero and the denominator is bounded from above. It will therefore suffice to assume that (39)
holds for some sequence satisfying limxn = 0 or limxn = x. First, if (39) holds for limxn = 0

then we obtain a contradiction because c/(1 + ln c) ≥ 1 for c ∈ (e−1,∞). Second, if (39) holds for
limxn = x then because c > e−1 for all (c, x) ∈ D(ω), this implies

lim
n→∞

xn/x− 1

1 + ln(ω/xn)− x2n/2
= 0 (40)

which leads to a contradiction by l’Hopital’s rule,

lim
x→x

−

x/x− 1

1 + ln(ω/x)− x2/2
= lim
x→x

−

1/x

−1/x− x
= − 1

1 + x
2 < 0.

Finally, to note that v(S, ω) is continuous on [0, 1/x] (and not just [0, 1/x)), note that if v(1/x, ω) >
limS→(1/x)− v(S, ω), then there exists ϵ > 0 and (c, x) ∈ D(ω) such that

(x/x− 1)c

ρ(1 + ln(ω/x)− x2/2)
> ϵ+ v(S, ω) ≥ ϵ+

(Sx− 1)c

ρ(1 + ln(ω/x)− x2/2)

for all S < 1/x, which contradicts the definition of v(S, ω) for S sufficiently close to 1/x.

As noted in the main text, v may be interpreted as the constant such that vu is the value
function of a principal who is constrained to choose consumption growth below the subjective rate
of discount. The following additional assumption will ensure that vu actually solves the principal’s
problem (with no ad-hoc restrictions on growth).

Assumption A.2. For all x ≥ x we have

(Sx− 1)ω/x+ ρ(− ln(ω/x) + x2/2− 1)v(S, ω) ≤ 0. (41)

Note that it follows from Lemma A.3 that v(S, ω) is weakly increasing and continuous in S on
the interval [0, 1/x]. Further, by definition, − ln(ω/x) + x2/2 − 1 ≥ 0 for x ≥ x. Consequently,
if Assumption A.2 holds for some S2(ω) > 0 then it holds for all S ∈ [0, S2(ω)). Also note that
Assumption A.2 holds for all sufficiently small, positive S, because it is implied by Assumption A.1
and the following assumption.

Assumption A.3. Sω + ρ(1 + S−2)v(S, ω) ≤ 0.
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Lemma A.4. Assumption A.2 is implied by Assumption A.1 and Assumption A.3.

Proof. First note that by Lemma A.3, note that the inequality (41) holds automatically when
x ∈ [x, 1/S] under Assumption A.1 because v(S, ω) ≤ 0, and so it will therefore suffice for the
derivative of the left-hand side with respect to x to be negative for all x ≥ 1/S. This is equivalent
to ω/x+ ρ(1 + x2)v(S, ω) ≤ 0 for x ≥ 1/S. Using v(S, ω) ≤ 0 again, this will be true for x ≥ 1/S

if and only if it is true for x = 1/S, which is exactly Assumption A.3.

I now turn to the characterization of the principal’s value function v given in Proposition 2.1. For
clarity, I break this into two parts. First, Proposition A.5 shows that the function v(u) ≡ vu solves
the Hamilton-Jacobi-Bellman (HJB) equation (43) if and only if S is sufficiently small. Second,
Theorem A.6 proves a “verification theorem,” and shows that a solution to the HJB equation is a
solution to the original problem.43

By Lemma A.1, the HJB equation for the function v is

ρv(u) = sup
k,c≥0
k≤ωu

(Π− ρ− τk)k − c+ ρ

(
− ln(c/u) +

(
√
ρϕσk/c)2

2

)
uv′(u) +

(ρϕσk/c)2

2
u2v′′(u)

(42)
which in terms of the variables given in (31) becomes

ρv(u) = sup
c,x≥0
xc≤ω

(Sx− 1)cu+ ρ

(
− ln c+

x2

2

)
uv′(u) +

ρ

2
x2u2v′′(u). (43)

Proposition A.5. Given ω > 0, the function v(u) ≡ vu solves the HJB equation (43) if and only
if S satisfies both Assumption A.1 and Assumption A.2.

Proof. Substituting v(u) := vu into (43) gives

0 = sup
c,x≥0
xc≤ω

(Sx− 1)c+ ρ(− ln c+ x2/2− 1)v =: sup
c,x≥0
xc≤ω

H(c, x, v)

where the second equality defines H. If Assumption A.1 and Assumption A.2 hold, then by the
definition of v, we have sup(c,x)∈D(ω)H(c, x, v) = 0, and so it remains to eliminate the possibility
that H(c, x, v) > 0 for some (c, x) satisfying c, x ≥ 0, xc ≤ ω, and − ln c + x2/2 − 1 ≥ 0. Because
v < 0 under Assumption A.1 by Lemma A.3, the inequality H(c, x, v) > 0 requires Sx > 1, and
therefore would imply that (Sx − 1)ω/x + ρ(− ln(ω/x) + x2/2 − 1)v > 0 for some x satisfying
− ln(ω/x) + x2/2− 1 > 0 (i.e. x ≥ x). It will then suffice to show that

(Sx− 1)ω/x+ ρ(− ln(ω/x) + x2/2− 1)v ≤ 0 (44)
43Proposition A.5, which asserts the existence of a solution to (43) for sufficiently small S, is the novel

part of the analysis of this paper. The second part of this characterization, Theorem A.6, follows a standard
approach. For instance, Theorem A.6 is analogous to Theorem 1 in the online appendix to Di Tella (2019)
and Theorem 3 in Di Tella and Sannikov (2021) (although the agency problem here is different).
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for all S ≤ S(ω) and x ≥ x, which is exactly Assumption A.2. Conversely, if Assumption A.1 fails,
then v > 0 by Lemma A.3, in which case H(c, x, v) diverges to ∞ as c → 0, while if Assumption
A.2 fails, the inequality (44) fails and the H function again becomes positive.

Theorem A.6 (Verification theorem). Suppose that the function v(u) := vu solves the HJB equa-
tion (42) for some constant v < 0. Then we have the following:

1. For any incentive compatible allocation (k, c) that delivers at least utility u > 0 to the en-
trepreneur, we have E

[∫∞
0
e−ρt((Π− ρ− τk)kt − ct)dt

]
≤ vu.

2. Suppose that the optimal policy functions in the HJB are ku and cu for some k, c > 0 and all
u > 0, and define (k, c) by (kt, ct) = (kut, cut) for all t > 0, where (ut)t≥0 satisfies

dut = ρ
(
− ln c+ (

√
ρϕσk/c)2/2

)
utdt+ (ρϕσk/c)utdBt (45)

and u0 = u. Then (k, c) is an optimal allocation if it is admissible.

Proof. Let (k, c) be an arbitrary incentive compatible allocation (which is then admissible by def-
inition), and note that the associated law of motion of consumption-equivalent utility is given by
dut = µututdt+ σututdBt where

µut = ρ
(
− ln(ct/ut) + (

√
ρϕσkt/ct)

2/2
)

σut = ρϕσkt/ct.

If v̂ is any C2 function then applying Ito’s lemma to ṽt := e−ρtv̂(ut) gives

dṽt = e−ρt
((
µututv̂

′(ut) + ((σutut)
2/2)v̂′′(ut)

)
− ρv̂(ut)

)
dt+ e−ρtσututv̂

′(ut)dBt.

Applying this to the function v(u) ≡ vu, the law of motion of ṽt := e−ρtvut may be written

dṽt = e−ρtv((µut − ρ)utdt+ σututdBt)

= e−ρtv
(
ρ
(
− ln(ct/ut) + (

√
ρϕσkt/ct)

2/2− 1
)
utdt+ (ρϕσkt/ct)utdBt

) (46)

Because the function v(u) = vu solves the HJB equation (42), for any positive scalars k, c and u

satisfying k ≤ ωu, we have

−((Π− ρ− τk)k − c) ≥ ρ
(
− ln(c/u) + (

√
ρϕσk/c)2/2− 1

)
vu (47)

and so it follows from (47) and (46) and the fact that (k, c) is incentive compatible that

dṽt = d[e−ρtvut] ≤ e−ρt(−((Π− ρ− τk)kt − ct)dt+ (ρϕσkt/ct)vutdBt) (48)

for all t ≥ 0 almost surely. To prepare for an application of the dominated convergence theorem,
for any integer n ≥ 1, define

τn := inf

{
T > 0

∣∣∣∣∣
∫ T

0

∣∣e−ρtvutρϕσkt/ct∣∣2 dt > n

}
.
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Integrating (48) up to τn then rearranges to∫ τn

0

e−ρs((Π− ρ− τk)ks − cs)ds ≤ vu0 − e−ρτ
n

vuτn +

∫ τn

0

e−ρs(ρϕσks/cs)vusdBs. (49)

Taking expectations, it follows from (49) that for any n ≥ 1, the discounted expected payoff to the
principal up to time τn is bounded by

E

[∫ τn

0

e−ρs((Π− ρ− τk)ks − cs)ds

]
≤ vu0 + E

[
e−ρτ

n

[−vuτn ]
]
. (50)

We now note that∣∣∣∣∣
∫ τn

0

e−ρs((Π− ρ− τk)ks − cs)ds

∣∣∣∣∣ ≤
∫ τn

0

e−ρs |(Π− ρ− τk)ks − cs| ds

≤
∫ ∞

0

e−ρs((Π− ρ− τk)ks + cs)ds

which is integrable by the definition of an admissible allocation. It then follows from the dominated
convergence theorem that the limit of the left-hand side of (50) as n→ ∞ is

E
[∫ ∞

0

e−ρs((Π− ρ− τk)ks − cs)ds

]
which is literally the discounted expected payoff to the principal under the allocation (k, c). To see
that limn→∞ E

[
e−ρτ

n

uτn
]
= 0 and conclude the first part of the proof, note that u is the lowest

cost of delivering utility u to the entrepreneur without any capital, and so

E

[
e−ρτ

n

uτn +

∫ τn

0

e−ρtctdt

]
≤ E

[∫ ∞

0

e−ρtctdt

]
<∞ (51)

where the last inequality again follows from the definition of an admissible allocation. Applying the
monotone convergence theorem to the left-hand side of (51) then gives limn→∞ E

[
e−ρτ

n

uτn
]
= 0.

The second part of the theorem is then immediate from the fact that if the allocation (k, c)

constructed from the solution to the HJB equation is admissible then the payoff to the principal is
equal to vu by the Gordon growth formula.

Proof of Proposition 2.1. If S1(ω) is the supremum of values for which Assumption A.1 is satisfied
and S2(ω) is the supremum of values for which Assumption A.2 is satisfied, then Proposition A.5
shows that vu solves the HJB equation if and only if S ∈ [0, S(ω)], where S(ω) = min{S1(ω), S2(ω)}.
Theorem A.6 then shows that vu is actually the value function of the principal, because any other
admissible allocation delivering utility u gives lower net profits.

It remains to establish that x(S, ω) is increasing in S whenever it is well-defined (i.e. whenever
the supremum in the definition of v is attained) and that there exists S̃(ω) as in the statement of
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Proposition 2.1. To establish that x(S, ω) is increasing in S whenever it is well-defined, note that
because in this case the maximand in (33) is negative in the constraint set, given x, c solves

min
c≥0, xc≤ω

− ln c+x2/2<1

c

1 + ln c− x2/2
.

Changing variables to C = ln c and taking logarithms of this objective (which leaves optimal choices
unaffected), the minimization becomes C−ln(1+C−x2/2) over the set of real C satisfying xeC ≤ ω

and −C + x2/2 < 1. Since this latter minimand is convex and diverges as C → x2/2 − 1 from
above, the optimal choice either occurs at the solution C = x2/2 to the first-order condition or the
boundary point C = ln(ω/x). The optimal choice of c given ω and x is then

c = min{ex
2/2, ω/x} (52)

and the principal’s problem may be written

v = max
x∈[0,x)

(Sx− 1)min{ex2/2, ω/x}
ρ(1 + min{0, ln(ω/x)− x2/2})

(53)

where I remind the reader that x is the solution to xex
2
/2−1 = ω. The fact that x(S, ω) is increasing

in S will follow from (53) together with Topkis’ theorem, provided that ∂2m/∂S∂x ≥ 0, where m
is the maximand in equation (53). That is, we wish to show that

∂m

∂S
=

min{xex2/2, ω}
ρ(1 + min{0, ln(ω/x)− x2/2})

is weakly increasing in x ∈ [0, x). For x ∈ [0, x], this last quantity becomes xex
2/2/ρ, while if

x ∈ [x, x), it becomes (ω/ρ)(1 − ln(x/ω) − x2/2)−1. Both of these expressions are increasing in x

and so the assumptions of Topkis’ theorem are satisfied.
Finally, note that the no-absconding constraint will hold as a strict inequality if and only if

the optimal x in (53) lies in [0, x), where x solves xex
2/2 = ω. Because x(S, ω) is increasing in S

whenever it is well-defined, it remains to show that x(S, ω) < x for sufficiently small S > 0, and
then define S̃ to be the supremum of all such points. It will therefore suffice to show that

−1

ρ
> max
x∈[x,x)

(Sx− 1)ω/x

ρ(1 + ln(ω/x)− x2/2)
(54)

for sufficiently small S > 0, because the right-hand side of inequality (54) is the objective of the
principal on the region [x, x) where the no-absconding constraint holds with equality. Now define

Z := min
x∈[x,x)

ω/x

1 + ln(ω/x)− x2/2
(55)

and note that the minimum in (55) is attained at some point because the minimand is continuous
and diverges to +∞ as x → x. Further, Z > 1, because the inequality ω/x > 1 + ln(ω/x) − x2/2
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holds for all x ≥ x. To verify this last inequality, note that it is equivalent to

ω > x(1 + lnω)− x lnx− x3/2. (56)

The definition of x implies that −x lnx − x3/2 = −x lnω and so (56) reduces to ω > x, which is
true. Further, the derivative of the right-hand side of (56) is ln(ω/x) − 3x2/2 < ln(ω/x) − x2/2,
which is negative for x > x and so (56) holds for x ≥ x and Z > 1. It follows that (54) holds for
sufficiently small S > 0, because as S → 0, the right-hand side tends to −Z/ρ < −1/ρ.

For future reference, I state the following implication of the proof of Proposition 2.1.

Corollary A.7. Whenever the principal’s problem is finite-valued and the optimal policy is well-
defined, the policy function for consumption is c(u) = cu, where c = min{ex2/2, ω/x}, and the law
of motion of consumption is dct = µcctdt+σcctdBt, where σc =

√
ρx and µc = ρ(− ln c+x2/2), or

µc = ρmax
{
0, x2/2− ln(ω/x)

}
.

The local maximum in (36) is only well-defined if S ≤ 1/2, and so the constant S̃ = S̃(ω) in
Proposition 2.1 always satisfies S̃ ≤ 1/2. The following lemma shows that this upper bound is
acheived for ω = e1/2, which will be useful in ascertaining when collateral constraints are at their
most relaxed value in the decentralization.

Lemma A.8. The function S̃ satisfies S̃(e1/2) = 1/2.

Proof. Because S̃ ≤ 1/2 always, it will suffice to show that 1 = xloc(1/2) = x(1/2, e1/2). Substi-
tuting S = 1/2 and ω = e1/2 into the principal’s problem in (53), the maximum will be attained at
x = 1 if and only if

−e1/2/2 ≥ max
x∈[1,x]

(x/2− 1)e1/2/x

3/2− lnx− x2/2

which is equivalent to −(3/2− lnx− x2/2) ≥ (x− 2)/x, or 5/2 ≤ lnx+ x2/2 + 2/x for x ∈ [1, x].
This last inequality reduces to 5/2 ≤ 5/2 at x = 1, and (lnx + x2/2 + 2/x)′ = 1/x + x − 2/x2 =

(x + x3 − 2)/x2, which is non-negative on x ≥ 1. Finally, note that Assumption A.2 is satisfied
for the above parameters, because Assumption A.1 is obviously satisfied (it reduces to x < 2), and
we have v(S, ω) = −ρ−1e1/2/2, which implies that the stronger assumption in Assumption A.3 is
satisfied, because it reduces to e1/2/2− (1 + (1/2)−2)e1/2/2 ≤ 0.

The following lemma establishes properties of the local maximum given in equation (36), and
will be used in the proof of Proposition 2.2.

Lemma A.9. The function xloc satisfies limS→0 xloc(S)/S = 1 and for all S ∈ [0, 1/2] we have
S ≤ xloc(S) ≤ 2S and x′loc(S) ≥ 1.

45



Proof of Lemma A.9. Using the definition xloc(S) := 1/[2S]−
√
1/[4S2]− 1, we have

x′loc(S) = − 1

2S2
+

1

4S3

1√
1/[4S2]− 1

=
1

2S2

(
1√

1− 4S2
− 1

)
.

The inequality x′loc(S) ≥ 1 is then equivalent to 1 ≥ (1 + 2S2)
√
1− 4S2, and by squaring both

sides, this in turn is equivalent to

1 ≥ (1 + 4S2 + 4S4)(1− 4S2) = 1− 12S4 − 16S6

which is always true. The inequality S ≤ xloc(S) is equivalent to 2S2 ≤ 1 −
√
1− 4S2, or, by

rearranging and squaring both sides, 1− 4S2 ≤ 1− 4S2 + 4S4, while xloc(S) ≤ 2S is equivalent to
1− 4S2 ≤

√
1− 4S2, and both of these are true when S ∈ [1/2]. Finally, l’Hopital’s rule implies

lim
S→0

xloc(S)/S = lim
S→0

1−
√
1− 4S2

2S2
= lim
S→0

4S/
√
1− 4S2

4S
= 1

as claimed.

Recall that Proposition 2.2 in the main text claims that the wedge on the bond νB , and the
difference in wedges, νB − νK , are non-negative and increasing in the marginal product of capital
when the no-absconding constraint is strict. I first provide general expressions for these wedges
before turning to the proof of Proposition 2.2.

Lemma A.10 (Expressions for wedges). The wedges on the bond and risky capital are given by

νB = ρx(S, ω)2 − µc(S, ω)

νK = Π− ρ− τk + ρx(S, ω)2 −√
ρσx(S, ω)− µc(S, ω)

and so the difference in wedges satisfies

νK − νB = Π− ρ− τk −
√
ρσx(S, ω).

Proof. First note that the efficient consumption process satisfies

ln(ct/c0) = µc(S, ω)t− ρx(S, ω)2t/2 +
√
ρx(S, ω)dBt.

For logarithmic utility the defining equation for wedges is

c−1
t = e−ρ(t

′−t)Et
[
e−ν

A(t′−t)RAc−1
t′

]
.

Substituting the expression for the log return lnRKt =
(
Π− τk − σ2/2

)
t + σBt into Definition 2.5

and taking logarithms gives

νK = Π− ρ− τk − σ2/2 + ρx(S, ω)2/2 +
1

t
lnE

[
e(σ−

√
ρx(S,ω))Bt

]
− µc(S, ω).

Using E[ezBt ] = ez
2t/2 gives the claimed expression for the wedge on risky capital. Similarly,

substitution of RB gives the expression for the wedge on the bond.
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Proof of Proposition 2.2. When the no-absconding inequality is strict the drift in consumption is
zero and so the wedge on the bond is νB = ρxloc(S)

2, which is obviously non-negative and increasing
in S and hence Π. Because ϕ ≤ 1, the difference between the wedges satisfies

νB − νK = −√
ρϕσS +

√
ρσxloc(S) ≥

√
ρϕσ(xloc(S)− S)

which is non-negative by Lemma A.9. Finally, for fixed ϕ the derivative of νB − νK with respect
to S is

d

dS
[−√

ρϕσS +
√
ρσxloc(S)] = −√

ρϕσ +
√
ρσx′loc(S) ≥

√
ρϕσ(x′loc(S)− 1)

which is again non-negative by Lemma A.9 and gives the result.

B Stationary efficient allocations

This appendix contains formal statements and proofs relating to Section 3 in the main text. Ap-
pendix B.1 writes out the aggregate resource constraints and objective appearing in the planner’s
problem, Appendix B.2 shows how the “relaxed planner’s problem” (defined below) reduces to a
problem identical in form to the principal-agent problem in Section 2, and Appendix B.3 provides
proofs of the characterization of efficient allocations.

B.1 Planner’s problem

Recall that in Definition 3.1, superscripts indicate date-of-birth (if not alive at the initial date) or
promised utility (if alive at the initial date). Aggregate quantities at any date are comprised of
contributions from both the initial generation and subsequent generations, and so in what follows
I will break things up in this manner for clarity. The aggregate quantities conditional on being
alive associated with the initial generation are distinguished by an underline, and the analogous
quantities associated with the generation born at date T are distinguished by a T superscript. To
understand the following calculations and expressions, note that, e.g. kTEt is the capital assigned to
an entrepreneur at t born at date T (conditional on being alive), and so, by a law of large numbers,
the total capital assigned to all such entrepreneurs is e−ρD(t−T )(1− ψ)E[kTEt].

Conditional on being alive, the consumption, capital, labor assigned to entrepreneurs, and
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output at any date t ≥ 0 of each generation is

Ct : =

∫
R×{E,W}

E[cvit]Φ(dv, i), CTt := (1− ψ)E[cTEt] + ψE[cTWt]

Kt : =

∫
R
E[kvEt]Φ(dv,E), KT

t := (1− ψ)E[kTEt]

Lt : =

∫
R
E[lvEt]Φ(dv,E), LTt := (1− ψ)E[lTEt]

Y t : =

∫
R
E[F (kvEt, lvEt)− δkvEt]Φ(dv,E), Y Tt := (1− ψ)E[F (kTEt, lTEt)− δkTEt]

where F (K,L) := AKαL1−α. The corresponding aggregate quantities at any date t ≥ 0 are then
found by invoking a law of large numbers together with the fact that all agents die at rate ρD,

Ct : = e−ρDtCt + ρD

∫ t

0

e−ρD(t−T )CTt dT

Kt : = e−ρDtKt + ρD

∫ t

0

e−ρD(t−T )KT
t dT

Lt : = e−ρDtLt + ρD

∫ t

0

e−ρD(t−T )LTt dT

Yt : = e−ρDtY t + ρD

∫ t

0

e−ρD(t−T )Y Tt dT

which are restricted to be bounded and smooth functions of time. Note that for any such bounded
and smooth function H(T, t), using e−ρ(t−T )e−ρST = e−ρSte−ρD(t−T ) and interchanging the order
of integration gives∫ ∞

0

∫ t

0

e−ρSte−ρD(t−T )H(T, t)dtdT =

∫ ∞

0

∫ ∞

T

e−ρ(t−T )e−ρSTH(T, t)dtdT. (57)

It follows that the present discounted value of consumption when the interest rate is ρS is given by∫ ∞

0

e−ρStCtdt =

∫ ∞

0

e−ρSt
(
e−ρDtCt + ρD

∫ t

0

e−ρD(t−T )CTt dT

)
dt

=

∫ ∞

0

e−ρtCtdt+ ρD

∫ ∞

0

e−ρST
∫ ∞

T

e−ρ(t−T )CTt dtdT

(58)

and similarly for output and labor. Conditional on being alive, the flow utility experienced at time
t ≥ 0 by each type in the initial and T th generations are

UEt =

∫
R
E[ρ ln(cvEt)]Φ(dv,E), UTEt = (1− ψ)E[ρ ln(cTEt)].

UWt =

∫
R
E[ρ ln(cvWt)]Φ(dv,W ), UTWt = ψE[ρ ln(cTWt)].
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In the main text I assume that the planner cares only about workers and values their utility at
any date the same regardless of their date of birth. This is equivalent to the objective function
associated with an allocation A being given by

UP (A) =

∫ ∞

0

(
e−ρtUWt + ρD

∫ t

0

e−ρST e−ρ(t−T )UTWtdT

)
dt. (59)

It may benefit the reader to note that by (57), an equivalent representation of the objective (59) is

UP (A) =

∫ ∞

0

e−ρtUWtdt+

∫ ∞

0

e−ρST
(∫ ∞

T

e−ρ(t−T )UTWtdt

)
ρDdT (60)

where the term in parentheses represents the lifetime utility (at birth) of workers born at date
T ≥ 0. I will use (59) and (60) interchangeably in what follows. The following is then the planner’s
problem, where I remind the reader that AIF (Φ,K) was defined in Definition 3.2 to be the set of
incentive compatible and resource feasible allocations beginning with an initial capital stock K and
distribution Φ.

Definition B.1. Given (Φ,K), the planner’s problem is V P (Φ,K) = supA∈AIF (Φ,K) U
P (A).

In this paper I restrict attention to stationary solutions to the planner’s problem. I therefore
search for the distribution Φ and capital stock K such that the distributions of utility, consumption
and capital implied by the solution to Definition B.1 are constant over time.

B.2 Reduction to principal-agent problem

I will characterize stationary efficient allocations using the ideas outlined in Farhi and Werning
(2007) and consider, in succession, relaxed and generational planner’s problems. The relaxed prob-
lem differs from the planner’s problem by allowing intertemporal trade at rate ρS .

Definition B.2. Given (Φ,K), the relaxed planner’s problem is

V R(Φ,K) = sup
A∈AIC(Φ)

UP (A)∫ ∞

0

e−ρSt[Ct(A) + K̇t(A)]dt ≤
∫ ∞

0

e−ρStYt(A)dt∫ ∞

0

e−ρStLt(A)dt ≤
∫ ∞

0

e−ρStLdt

K0 = K

where AIC(Φ) denotes the set of incentive compatible allocations.

If an allocation solves the relaxed planner’s problem and the distributions of utility and capital
are constant over time, then it also solves the planner’s problem beginning at that distribution and
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capital. To characterize stationary solutions to the original planner’s problem, it therefore suffices
to consider problems of the form in Definition B.2 and find Φ and K such that stationarity arises.
The relaxed planner’s problem therefore has only two resource constraints instead of two for each
instant in time. Further, because Kt remains bounded, integrating by parts implies that∫ ∞

0

e−ρStK̇t(A)dt = −K0(A) + ρS

∫ ∞

0

e−ρStKt(A)dt.

Given a distribution Φ over utility and types, when the planner discounts at rate ρS the relaxed
problem in Definition B.2 is then

V R(Φ) = sup
A∈AIC(Φ)

∫ ∞

0

(
e−ρtUWt + ρD

∫ t

0

e−ρST e−ρ(t−T )UTWtdT

)
dt.∫ ∞

0

e−ρSt[Ct(A) + ρSKt(A)− Yt(A)]dt ≤ K0(A)∫ ∞

0

e−ρSt[Lt(A)− L]dt ≤ 0.

Denote by λR and λRλL the multipliers on the two resource constraints.44 The Lagrangian for the
relaxed problem is

L =

∫
R
vΦ(dv,W ) + ρD

∫ ∞

0

e−ρSTψ

∫ ∞

T

e−ρ(t−T )E[ρ ln(cTWt)]dtdT

− λR

∫ ∞

0

e−ρSt[Ct + ρSKt − Yt + λLLt]dt+ λRK0 + λRλLL.

Using (57) and (58), the terms that do not depend on the initial generation are∫ ∞

0

e−ρSTψ

∫ ∞

T

e−ρ(t−T )E[ρ ln(cTWt)]dtdT

− λR

∫ ∞

0

e−ρST
∫ ∞

T

e−ρ(t−T )[CTt + ρSK
T
t − Y Tt + λLL

T
t ]dtdT

=

∫ ∞

0

e−ρST
∫ ∞

T

e−ρ(t−T )
(
ψE[ρ ln(cTWt)]− λR[C

T
t + ρSK

T
t − Y Tt + λLL

T
t ]
)
dtdT.

The task of maximizing the terms in the above Lagrangian pertaining to a particular generation
born at date T will be referred to as the generational planner’s problem. The above term in
parentheses may be written as

ψE
[
ρ ln(cTWt)− λRc

T
Wt

]
+ (1− ψ)λRE

[(
A(lTEt/k

T
Et)

1−α − λL(l
T
Et/k

T
Et)− δ − ρS

)
kTEt − cTEt

]
.

Because the choice of labor does not affect the agency problem (entrepreneurs are diverting a
multiple of the capital stock, which is independent of labor) the optimal choice of labor per unit of

44I write the multiplier on the labor constraint as λRλL rather than λL because this simplifies the
subsequent analysis.
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capital solves
Π(λL) := max

z≥0
Az1−α − λLz − δ = αA1/α[(1− α)/λL]

1/α−1 − δ (61)

whenever kTEt > 0 (and is zero otherwise). Now, writing

S(λL) =
Π(λL)− ρS√

ρϕσ
, (62)

it follows that the problem of the planner facing the T th generation is

max
WE ,WW∈R
WE≥WW

ψWW − ψλRe
WW + λR(1− ψ)v(S(λL), ω)e

WE . (63)

Since v < 0 wherever it is well-defined, it is immediate that in the relaxed planner’s problem we
have WE =WW and so the problem of a planner facing a particular generation reduces to

ψmax
W∈R

W − λR(1 + (1/ψ − 1)[−v(S(λL), ω)])eW . (64)

For any λL and λR > 0 such that S(λL) satisfies the conditions in Proposition 2.1 ensuring that
the quantity v(S(λL), ω) is well-defined and solves the problem of a principal faced with the above
prices, the problem in (64) describes the problem of a generational planner. Because v(S(λL), ω) < 0

wherever the principal’s problem is well-defined, as λR varies from 0 to ∞, the associated W varies
monotonically from ∞ to −∞.

B.3 Proofs

Given (62), the average consumption and capital per entrepreneur in the stationary distribution
per unit of initial utility are

C(S) =
ρDc(S, ω)

ρD − µc(S, ω)

K(S) =
ρDc(S, ω)x(S, ω)

(ρD − µc(S, ω))
√
ρϕσ

(65)

where c and x are the policy functions in the principal-agent problem from Section 2. Prior to the
proof of Proposition 3.1 I record one final observation.45

Lemma B.1. For any fixed ω, the function C(S) defined in equation (65) is increasing in S

wherever it is well-defined.

Proof. In view of the expression for consumption in equation (52) and the expression for the drift
in consumption in Corollary A.7, I want to show that the function

x 7→ ρDmin{ex2/2, ω/x}
ρD − ρmax {0, x2/2− ln(ω/x)}

(66)

45Note that by Lemma A.3, C(S) is well-defined whenever Sx < 1 and µc(S, ω) < ρD.
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is increasing in x. This is obviously true on the region in which xex
2/2 ≤ ω, while for the x such

that xex
2/2 > ω, by rearranging (66) we see that it suffices to show that the function

g(x) :=
ρDx

ρ
− x3

2
+ x ln(ω/x)

is decreasing. Evaluating the derivative and rearranging gives

g′(x) =
ρD
ρ

− 3x2

2
+ lnω − lnx− 1 = −ρS

ρ
− x2 −

[
x2/2− ln(ω/x)

]
which is necessarily negative if ex

2/2 > ω/x.

For the change of variables adopted in Section 2, the capital policy function may be written as

k(S, ω) := c(S, ω)x(S, ω)/(
√
ρϕσ).

The optimal labor-capital ratio from (61) is l(λL) = [(1 − α)A/λL]
1/α, and output per unit of

capital may be written

Al1−α − δ = A[(1− α)A/λL]
1/α−1 − δ = Π(λL)/α+ (1/α− 1)δ. (67)

Proof of Proposition 3.1. To see that the solution to (12), denoted Ŝ, is unique whenever it exists,
note that dividing by C(S) gives

1− ψ + ψ/C(S) = (S
√
ρϕσ/α+ ρS/α+ (1/α− 1)δ)(1− ψ)

x(S, ω)
√
ρϕσ

(68)

and the right-hand side of (68) is increasing in S while the left-hand side is decreasing in S by
Lemma B.1. To establish the existence of a stationary efficient allocation when such a Ŝ exists, I
must show that there exist multipliers λR, λL > 0 such that the stationary allocation that prevails
when one solves the generational planner’s problem satisfies the stationary form of the resource
constraints. To this end, note that using (67), when viewed as a function of λL, the flow production
net of depreciation from the firm of an entrepreneur with utility u is

(Al(λL)
1−α − δ)k(S(λL), ω)u = (Π(λL)/α+ (1/α− 1)δ)k(S(λL), ω)u.

Aggregate consumption in the stationary distribution when the initial utility level is u0 is then given
by ((1 − ψ)C(S(λL)) + ψ)u0 and aggregate output is (Π(λL)/α + (1/α − 1)δ)(1 − ψ)K(S(λL))u0

and so canceling u0 and recalling S(λL) = (Π(λL)−ρS)/(
√
ρϕσ), the goods resource constraint will

be satisfied if λL satisfies S(λL) = Ŝ or

Π(λL) = αA1/α[(1− α)/λL]
1/α−1 − δ = ρS + Ŝ

√
ρϕσ

where I used the formula in (61). Rearranging then gives the multiplier

ααA[(1− α)/λL]
1−α =

(
Ŝ
√
ρϕσ + ρS + δ

)α
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and hence
λL = α

α
1−α (1− α)A

1
1−α

(
Ŝ
√
ρϕσ + ρS + δ

)− α
1−α

. (69)

The associated labor-capital ratio is then

l(λL) = [(1− α)A/λL]
1/α =

(
Ŝ
√
ρϕσ + ρS + δ

) 1
1−α

[αA]−
1

1−α .

Given this λL and (exogenous) stock of labor L, the labor resource constraint will be satisfied
if λR equals the unique value such that the solution u0 := eW to the problem (64) implies that
L/l(λL) = K = (1− ψ)K(S(λL))u0, or

u0 =
L(αA)

1
1−α

(1− ψ)K(Ŝ)

(
Ŝ
√
ρϕσ + ρS + δ

)− 1
1−α

which completes the characterization.

Proof of Proposition 3.2. Notice that the parameter ω :=
√
ρϕσ/(ρι) remains fixed as we vary the

agency frictions in the manner described prior to the statement of the proposition. Rearranging
the resource constraint (12) then gives

α
√
ρσ(ψ/C(S) + 1− ψ) = ((ρS + (1− α)δ)/ϕ+ S

√
ρσ)(1− ψ)x(S, ω).

Both claims in the proposition then follow from Proposition 2.1 together with the fact that the
right-hand side is decreasing in ϕ and diverges as ϕ→ 0.

C Decentralization

C.1 General implementation

Proof of Lemma 4.1. The Hamilton-Jacobi-Bellman equation for the entrepreneur is

ρV (a) = max
c,k≥0

k≤ωd(a+h)

ρ ln c+ (rsE(a+ hE)− c+ (1− τπ)(Π− rb)k)V
′(a) +

σ2

2
(1− τπ)

2k2V ′′(a).

Substituting V (a) = ln(a+ h) +D and writing c = c/(a+ hE) and k = k/(a+ hE) gives

ρD = max
c,k≥0

k≤ωd

ρ ln c+ rsE − c+ (1− τπ)(Π− rb)k −
σ2

2
(1− τπ)

2k
2

which gives both claims upon substitution.

Proof of Proposition 4.2. I will first show that for the given after-tax returns, transfers and col-
lateral constraint, all agents obtain the same utility at birth and the law of motion of all agents’
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consumption coincides with their efficient counterparts. I will then show that the allocation and
prices actually constitute a competitive equilibrium as defined in Definition 4.2. To this end, first
note that by Lemma A.10, the two requirements on rsE and rb may be written

rsE = ρ− ν̂B = ρ− ρx̂2 + µ̂c

rb = ρS + ν̂K − ν̂B = Π̂−√
ρσx̂.

(70)

For the interest rate, profits tax, and constant in the collateral constraint appearing in the statement
of the proposition, Lemma 4.1 implies that the constant defining the capital policy function is

kd =

√
ρx̂

ϕσ
(71)

because the collateral constraint kd =
√
ρx̂/(ϕσ) = ι−1x̂/ω ≤ ωd holds automatically from the

definition ω =
√
ρϕσ/(ρι). For the after-tax returns (70) and τπ = 1− ϕ, Lemma 4.1 implies that

the drift in entrepreneurs’ consumption satisfies

µc,d = rsE − ρ+ (1− τπ)(Π̂− rb)kd = ρ(1− x̂2) + µ̂c − ρ+ ϕσ
√
ρx̂

√
ρx̂

ϕσ
= µ̂c

and the coefficient of the diffusion term is

σc,d = (1− τπ)σkd = (1− τπ)σ
√
ρx̂/(ϕσ) =

√
ρx̂ = σ̂c

while workers’ consumption is constant. Given that (µc,d, σc,d) = (µ̂c,
√
ρx̂), Corollary A.7 implies

that µ̂c − (
√
ρx̂)2/2 = ρmax

{
−x̂2/2,− ln(ω/x̂)

}
and so the constant in (19) simplifies to

ωd = ι−1e(µ̂c−(
√
ρx̂)2/2)/ρ = ι−1 max

{
x̂/ω, e−x̂

2/2
}

as claimed. By Lemma 4.1, entrepreneurs will be indifferent between revealing and not revealing
their type at birth if

ln ρ+ ln(κEK̂) +
1

ρ

(
µ̂c − ρx̂2/2

)
= ln ρ+ ln(κW K̂) (72)

which, using Corollary A.7 again, rearranges to max
{
−x̂2/2,− ln(ω/x̂)

}
= ln(κW /κE), and hence

κW = max{e−x̂
2/2, x̂/ω}κE (73)

as claimed. It remains to verify that the market-clearing conditions are satisfied for the prices and
after-tax returns appearing in the statement of the proposition. Using (71), the capital market-
clearing equation (aggregate capital equals the quantity demanded by entrepreneurs) is

K̂ = (1− ψ)
ρDκEK̂kd

ρD − µ̂c
= (1− ψ)

ρDκEK̂

(ρD − µ̂c)

√
ρx̂

ϕσ
(74)
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which holds by the definition of κE in the statement of the proposition. To verify that the goods
market-clearing equation holds, note that using (52), equation (73) implies that

1 = (1− ψ)
ρDcκW

(ρD − µ̂c)
kd (75)

Using Π̂ = αAK̂α−1L1−α − δ and the fact that all agents consume their total wealth at rate ρ, the
goods market-clearing condition is

Π̂/α+ (1/α− 1)δ = ρ

(
(1− ψ)

ρDκE
ρD − µ̂c

+ ψκW

)
. (76)

Simplifying and using (73) and (75), equation (76) simplifies to(
Π̂/α+ (1/α− 1)δ

)
(1− ψ)

ρDcκW
(ρD − µ̂c)

kd = ρ

(
(1− ψ)

ρDc

ρD − µ̂c
+ ψ

)
κW . (77)

Using the fact that k/c = kd/ρ, equation (77) coincides with (12). Finally, using the policy function
of the agents once more, the goods market-clearing condition implies that the stationary total wealth
of agents as a fraction of the capital stock is (Π̂/α + (1/α − 1)δ)/ρ. The wealth of private agents
is then found by subtracting human wealth, which rearranges to give the debt position of the
government, using the fact that the sum of public and private wealth equals the capital stock.

Lemma C.1 (Walras’ law). When the government debt is given by

D =
(
(Π̂/α+ (1/α− 1)δ)/ρ− 1

)
K̂ − ((1− ψ)hE + ψhW ) (78)

the government’s budget constraint is satisfied at every instant.

Proof. I will decompose government revenue into four parts: the flow of transfers to newborns, the
interest paid on debt, and the revenue raised from taxes on entrepreneurs and workers.

Using ηiK̂ = κiK̂ − hi, the flow of revenue from the transfers to newborn agents is

RT = −ρD[(1− ψ)ηE + ψηW ]K̂ = −ρD((1− ψ)κE + ψκW )K̂ + ρD((1− ψ)hE + ψhW ).

The revenue from the interest on government debt is

RI = −rD = −r
(
(Π̂/α+ (1/α− 1)δ)/ρ− 1

)
K̂ + r((1− ψ)hE + ψhW ).

We then have the sum

RI +RT = −r
(
(Π̂/α+ (1/α− 1)δ)/ρ− 1

)
K̂ + r((1− ψ)hE + ψhW )

− ρD((1− ψ)κE + ψκW )K̂ + ρD((1− ψ)hE + ψhW )

= rK̂ − r(Π̂/α+ (1/α− 1)δ)K̂/ρ+ (r + ρD)((1− ψ)hE + ψhW )

− ρD((1− ψ)κE + ψκW )K̂

= rK̂ − (r + ρD)(Π̂/α+ (1/α− 1)δ)K̂/ρ+ (r + ρD)((1− ψ)hE + ψhW )

+ (1− ψ)
µ̂cρDκEK̂

ρD − µ̂c
.

(79)
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where I used the resource constraint (Π̂/α+(1/α−1)δ)/ρ = (1−ψ)κE+ψκW+(1−ψ)µ̂cκE/(ρD−µ̂c).
I now use the fact that the revenue raised from each type of agent is the difference between the

changes in pre- and post-tax total wealth. In the absence of taxes, the drift in the entrepreneurs’
wealth is (r + ρD)at − ct + wL+ (Π̂− r)kt, or

(r − ρS)(at + hE) +

(
1− τsE
1− τLE

− 1

)
(r + ρD)hE + (Π̂− r)

√
ρx̂

ϕσ
(at + hE).

The revenue raised from the entrepreneurs is the integral of the above over at minus the integral of
µ̂c(at + hE) over at. The revenue raised from entrepreneurs, RE , and workers, RW , is then

RE = (r − ρS − µ̂c)
(1− ψ)ρDκEK̂

ρD − µ̂c
+

(
1− τsE
1− τLE

− 1

)
(r + ρD)(1− ψ)hE + (Π̂− r)K̂

RW = (r − ρS)ψκW K̂ +

(
1− τsW
1− τLW

− 1

)
(r + ρD)ψhW .

Using the resource constraint once more gives

RE +RW = −µ̂c
(1− ψ)ρDκEK̂

ρD − µ̂c
+

(
1− τsE
1− τLE

− 1

)
(r + ρD)(1− ψ)hE + (Π̂− r)K̂

+ (r − ρS)(Π̂/α+ (1/α− 1)δ)K̂/ρ+

(
1− τsW
1− τLW

− 1

)
(r + ρD)ψhW .

It follows that government revenue may be written

RG = −(r + ρD)(Π̂/α+ (1/α− 1)δ)K̂/ρ+

(
1− τsE
1− τLE

)
(r + ρD)(1− ψ)hE + Π̂K̂

+ (r − ρS)(Π̂/α+ (1/α− 1)δ)K̂/ρ+

(
1− τsW
1− τLW

)
(r + ρD)ψhW .

Using (1− τsi)(r + ρD)hi/(1− τLi) = wL = (Π̂ + δ)(1/α− 1)K̂, it follows that

RG = −(r + ρD)(Π̂/α+ (1/α− 1)δ)K̂/ρ+ (Π̂ + δ)(1/α− 1)K̂

+ Π̂K̂ + (r − ρS)(Π̂/α+ (1/α− 1)δ)K̂/ρ

which vanishes, as claimed.

Proof of Lemma 5.3. Using the definition of S and the fact that x satisfies Sx2 − x+ S = 0 when
the no-absconding constraint is strict, we can write

Π̂− ρS −√
ρϕσx̂ = (Ŝ − x̂)

√
ρϕσ = −Ŝx̂2√ρϕσ

from which the conclusion follows from Proposition 3.2.
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C.2 Specific implementations

Proof of Proposition 5.1. First note that in the absence of taxes, when st = 0 the law of motion of
the entrepreneur’s wealth simplifies to

[(r + ρD)at − ct + wL]dt+ (Akα−1
t l1−αt − wlt/kt − r − δ)ktdt+ σktdBt. (80)

When r = ρS and hE = wL/ρ, the average change in wealth in the absence of taxes per unit of
time dt may be written more succinctly as ρ(at + hE)− ct + (Π̂− ρS)kd(at + hE). Using (71), the
policy function ct = ρ(at + hE), the definitions

S :=
Π− ρ− τk√

ρϕσ
ω :=

√
ρϕσ

ρι
(81)

and the fact that Ŝx̂2− x̂+ Ŝ = 0 when the no-absconding constraint holds (because the derivative
in (35) must vanish) this becomes

(Π̂− ρS)

√
ρx̂

ϕσ
(at + hE) = Ŝx̂ρ(at + hE) =

ρx̂2

x̂2 + 1
(at + hE). (82)

Because consumption is a martingale under the stated assumptions, the coefficient of at + hE on
the right-hand side of equation (82) is also the average revenue generated per unit of total wealth.
To determine revenue raised as a fraction of income, note that the pre-tax income of entrepreneurs
is equal to their after-tax income (which equals consumption when wealth is a martingale) plus the
taxes paid, and so tax revenue as a fraction of income is

ρx̂2/(x̂2 + 1)

ρx̂2/(x̂2 + 1) + ρ
=

x̂2

2x̂2 + 1

as claimed. Using Π̂ = αAK̂α−1L1−α− δ we have wL/K̂ = (1−α)AK̂α−1L1−α = (Π̂+ δ)(1/α− 1)

from which the desired expression for debt follows from the general expression (78).

Proof of Proposition 5.2. I will show that for any σ > 0 the tax on entrepreneurs’ interest is
negative for all sufficiently small ϕ and that for ϕ = 1 the tax is positive for σ <

√
ρ when the

no-absconding constraint does not hold with equality (which is true for sufficiently small σ > 0).
For sufficiently small ϕ, the no-absconding constraint holds as a strict inequality and the resource
constraint becomes

(1− ψ)x(S, ω) =
α
√
ρϕσ(ψ/c(S, ω) + 1− ψ)

ρS + S
√
ρϕσ + (1− α)δ

. (83)

By Proposition 4.2 and expressions for wedges in Lemma A.10, when r = rb and r+ ρD > 0 (which
holds for sufficiently small ϕ > 0), the tax on entrepreneurs’ interest is negative if and only if

ρ− ν̂B = ρ(1− x̂2) > r + ρD = Π̂−√
ρσx̂+ ρD,
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which simplifies to give
0 > ρx(Ŝ, ω)2 + Ŝ

√
ρϕσ −√

ρσx(Ŝ, ω). (84)

Using the inequalities in Lemma A.9, a sufficient condition for the tax to be negative is then
(1− ϕ)σ/

√
ρ > 2x̂. Using (83), it will suffice to ensure that

α
√
ρϕσ(ψ/c(S, ω) + 1− ψ)

ρS + S
√
ρϕσ + (1− α)δ

<
1

2
(1− ψ)(1− ϕ)σ/

√
ρ,

which holds for all sufficiently small ϕ. If ϕ = 1, then the tax will be positive if the right-hand side
of (84) is positive. Dividing by √

ρσx(Ŝ, ω), this is equivalent to

1 <
√
ρx(Ŝ, ω)/σ + Ŝ/x(Ŝ, ω) (85)

If σ < √
ρ and the no-absconding constraint does not hold as an equality, then it will suffice to show

xloc(S) < xloc(S)
2 + S for S ∈ [0, 1/2]. Using xloc(S) = (1−

√
1− 4S2)/[2S], this is equivalent to

(1−
√
1− 4S2)/[2S] < (1−

√
1− 4S2)2/[4S2] +S, which is true for all sufficiently small S > 0.

D Robustness and extensions

In this appendix I show that the methodological approach adopted in the main text extends (under
conditions specified below) to the situation in which utility exhibits constant relative risk aversion
with γ ≥ 1 and entrepreneurs are heterogeneous in ex-ante productivity.

I will not strive for complete generality and so I will not attempt to derive analogous statements
for all claims made for logarithmic utility and ex-ante identical entrepreneurs. The purpose of this
appendix is simply to show that the basic approach followed in the main text does not rely on
logarithmic utility or homogeneity of entrepreneurs. In particular, when the no-absconding does
not hold with equality, the inverse Euler equation holds and the constrained-efficient allocation can
be decentralized by choosing taxes and transfers to match the constant drift and diffusion of log
consumption in the efficient allocation.

D.1 Constant relative risk aversion

In this section I show that the qualitative claims in the main text extend to the case of constant
relative risk aversion with γ ≥ 1.

D.1.1 Characterization of value function

Proceeding analogously as in Appendix A.1, when characterizing efficient allocations with utility
function u(c) = c1−γ/(1−γ), it is without loss of generality to assume that promised utility satisfies

dWt = ρ
(
Wt − c1−γt /(1− γ)

)
dt+ ρϕσktc

−γ
t dBt.
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Now define utility in consumption units as ut := [(1− γ)Wt]
1

1−γ and change variables to ct and kt
defined by ct = ct[(1− γ)Wt]

1
1−γ and kt = kt[(1− γ)Wt]

1
1−γ . In this notation, the law of motion of

promised utility is

dWt = ρ
(
1− c1−γt

)
Wtdt+ ρϕσktc

−γ
t (1− γ)WtdBt =: µWWtdt+ σWWtdBt.

If f(Wt) := [(1− γ)Wt]
1

1−γ then f ′(Wt) := [(1− γ)Wt]
γ

1−γ and f ′′(Wt) := γ[(1− γ)Wt]
γ

1−γ−1, and
so using Ito’s lemma the law of motion for ut is

df(Wt) = (µWWtf
′(Wt) + (σ2

W /2)W
2
t f

′′(Wt))dt+ f ′(Wt)σWWtdBt

= ρ

(
(1− c1−γt )

1− γ
[(1− γ)Wt]f

′(Wt) + (
√
ρϕσktc

−γ
t )2[(1− γ)Wt]

2f ′′(Wt)/2

)
dt

+ ρϕσktc
−γ
t [(1− γ)Wt]f

′(Wt)dBt

which may be written as

dut = ρ

(
1− c1−γt

1− γ
+ γx2t/2

)
utdt+

√
ρxtutdBt (86)

where x :=
√
ρϕσkc−γ . As with the case of logarithmic utility, a homogeneity argument combining

the constant-returns-to-scale objective of the principal with the law of motion (86) shows that the
value function is linear in ut whenever it is finite-valued, and so it is of the form v(u) = vu, where

v = v(S, ω) = sup
(c,x)∈D(ω)

Sxcγ − c

ρ− µc(c, x)
(87)

is a candidate coefficient of the value function, where again S = (Π− ρ− τk)/(
√
ρϕσ) and for any

ω > 0, the set D(ω) is defined by

D(ω) :=
{
(c, x) ∈ R2 | c > 0, x ≥ 0 xcγ ≤ ω, µc(c, x) < ρ

}
(88)

and the coefficient of the drift in consumption is

µc(c, x) := ρ

(
1− c1−γ

1− γ
+ γx2/2

)
.

Using the fact that for all (c, x) ∈ D(ω), we have (1− c1−γ)/(1− γ) < 1, or c > γ
1

1−γ , I define for
any ϵ > 0 the following compact subset of D(ω),

Dϵ(ω) :=
{
(c, x) ∈ R2

∣∣∣ c ∈ [γ
1

1−γ , 1/ϵ], x ≥ 0 xcγ ≤ ω, µc(c, x) ≤ ρ(1− ϵ)
}
. (89)

Finally, define x to be the solution to

γx
2

2
+

1− (ω/x)1/γ−1

1− γ
= 1

which exists because γ > 1 (and so the left-hand side is increasing in x). We then have the following
analogue of Assumption A.1.
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Assumption D.1. Sx1/γω1−1/γ < 1.

The following establishes one of the claims in Lemma A.3 (the only part that is necessary in
what follows) for the case of CRRA preferences with γ ≥ 1.

Lemma D.1. Assumption D.1 implies that v(S, ω) < 0.

Proof. First note that because γ ≥ 1, if there existed (c, x) ∈ D(ω) with Sxcγ−1 ≥ 1, then (by
increasing c, which weakly decreases µc) there would also exist (c, x) ∈ D(ω) in which c = (ω/x)1/γ

and Sxcγ−1 ≥ 1. In other words, there would exist x > 0 such that Sx1/γω1−1/γ ≥ 1 and
γx2/2 + (1− (ω/x)1/γ−1)/(1− γ) < 1, which violates Assumption D.1 and the definition of x. To
see that the supremum in (87) is attained at some point, first note that x < x for all (c, x) ∈ D(ω),
because we either have x = 0 or

γx2

2
< 1 +

c1−γ − 1

1− γ
≤ 1 +

(ω/x)1/γ−1 − 1

1− γ
.

It will suffice to note that for some ϵ > 0, the supremand in (87) is weakly below −1/ρ (which
is the value associated with (c, x) = (1, 0)) for all (c, x) ∈ D(ω) \ Dϵ(ω) because this will mean
that there is no loss in restricting attention to the compact set Dϵ(ω) in (87). Because the no-
absconding constraint implies that for all (c, x) ∈ D(ω), we have cγ−1 ≤ (ω/x)1−1/γ , by defining
δ := 1− Sx1/γω1−1/γ we see that it will suffice to show

δc ≥ 1− µc(c, x)/ρ ∀(c, x) ∈ D(ω) \Dϵ(ω)

which holds for all sufficiently small ϵ > 0. Because Dϵ(ω) is compact this shows that the supremum
in (87) is attained under Assumption D.1.

The following is the analogue of Assumption A.3.

Assumption D.2. Sω + ρ
(
(Sω)1−γ + γ2ω2−2γS−2γ

)
v(S, ω) ≤ 0.

By Lemma D.1, we see that v(S, ω) < 0 for sufficiently small S > 0, and so Assumptions D.1
and D.2 are obviously satisfied for all sufficiently small S. The following establishes the main claims
of Proposition 2.1 for the case of CRRA preferences.

Proposition D.2. If Assumptions D.1 and D.2 are satisfied, then the value function is finite-valued
and given by v(u) = vu for all u > 0. Further, the no-absconding constraint holds for sufficiently
small positive S, in which case the inverse Euler equation holds.

Proof. As per the proof of Proposition 2.1, to establish that the optimal choices in (87) solve the
HJB equation

0 = sup
c,x≥0
xcγ≤ω

(Sxcγ−1 − 1)c+ ρ

(
1− c1−γ

1− γ
+ γx2/2− 1

)
v =: sup

c,x≥0
xcγ≤ω

H(c, x, v),
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it remains to eliminate the possibility that H(c, x, v) > 0 for some pair (c, x) satisfying c, x ≥ 0 and
xcγ ≤ ω. The existence of such a pair (c, x) satisfying (1 − c1−γ)/(1 − γ) + γx2/2 − 1 < 0 would
violate the definition of v, and so it will suffice to rule out the existence of a pair (c, x) such that
(1− c1−γ)/(1− γ) + γx2/2− 1 > 0 and

(Sxcγ−1 − 1)c+ ρ((1− c1−γ)/(1− γ) + γx2/2− 1)v > 0.

Since v < 0, this last inequality implies

(Sx1/γω1−1/γ − 1)(ω/x)1/γ + ρ

(
1− (ω/x)1/γ−1

1− γ
+ γx2/2− 1

)
v > 0 (90)

for some x > x. The inequality (90) cannot hold on x ∈ [x, ω1−γS−γ ] from Assumption D.1, and
so to establish finiteness it will suffice for the derivative of the left-hand side with respect to x to
be negative for all x ≥ ω1−γS−γ . This is equivalent to

ω1/γx−1/γ + ρ
(
ω1/γ−1x1−1/γ + γ2x2

)
v ≤ 0.

Because v < 0, this will be true for x ≥ ω1−γS−γ if and only if it is true for x = ω1−γS−γ ,
which or ω1/γ(ω1−γS−γ)−1/γ + ρ

(
ω1/γ−1(ω1−γS−γ)1−1/γ + γ2(ω1−γS−γ)2

)
v ≤ 0 which is exactly

Assumption D.2 upon simplification. The fact that the candidate value function vu is actually the
value function of the principal then follows from arguments analogous to those given in the proof
of Theorem A.6.

To establish the second claim, note that Ito’s Lemma implies that the inverse Euler equation is
equivalent to µc = (1− γ)σ2

c/2. For the case with γ > 1 it is convenient to define z := xcγ−1 and
to write the problem as

sup
c>0,cz≤ω

1−c1−γ
1−γ +γz2c2−2γ/2<1

(Sz − 1)c/ρ

1 + c1−γ−1
1−γ − γz2c2−2γ/2

. (91)

We now fix z and minimize the negative of the above supremand over c, which is equivalent to
minimizing the problem

ln c− ln

(
1 +

c1−γ − 1

1− γ
− γ

2
z2c2−2γ

)
(92)

over the set of scalars c > 0 satisfying cz ≤ ω and (1 − c1−γ)/(1 − γ) + γz2c2−2γ/2 < 1. Writing
y := c1−γ , the problem is equivalent to maximizing

ln y + (γ − 1) ln

(
y − γ

1− γ
− γz2y2/2

)
over the set of y > 0 such that y ≥ (ω/z)1−γ and (y− γ)/(1− γ)− γz2y2/2 > 0. This last function
is concave and diverges as (y − γ)/(1 − γ) approaches γz2y2/2 > 0, and so the optimal choice of
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consumption in (92) is the minimum of the solution to the first-order condition and the boundary
value c = ω/z. The first-order condition for consumption is

1

c
=
c−γ − γ(1− γ)z2c1−2γ

c1−γ−γ
1−γ − γz2c2−2γ/2

.

Rearranging gives (c1−γ − γ)/(1− γ) = c1−γ − (1/2− γ)γz2c2−2γ and

c1−γ − 1 = −(1− γ)(1/2− γ)z2c2−2γ (93)

which simplifies to a quadratic in c1−γ , 0 = 1−c1−γ+(1−γ)(γ−1/2)z2c2−2γ , which has one positive
solution for consumption which I denote by cfoc(z). Note that cfoc(z) is necessarily increasing in
z. Using (93) and the definition of x = zc1−γ gives (c1−γfoc − 1)/(1 − γ) = −(1/2 − γ)x2, which is
equivalent to the inverse Euler equation. In what follows I write

c(z) = min{cfoc(z), ω/z} (94)

for the optimal c given z. Returning to the original problem (91), I now define z as the solution to

0 = 1− (ω/z)1−γ + (1− γ)(γ − 1/2)ω2−2γz2γ , (95)

which is the largest z > 0 such that the no-absconding constraint cz = ω and inverse Euler equation
holds. Similarly, define z as the solution to

0 = 1 +
(ω/z)1−γ − 1

1− γ
− γ

2
z
2γ
ω2−2γ

which is the largest z such that the no-absconding constraint holds with equality and consumption
growth is less than the rate of discount. The no-absconding constraint will hold as a strict inequality
if the optimal z in (91) lies in [0, z), and so it remains to show that this holds for sufficiently small
S > 0. As with the proof of Proposition 2.1, for this it will suffice to show that Z > 1, where

Z := min
z∈[z,z]

ω/z

1 + (ω/z)1−γ−1
1−γ − γ

2 z
2γω2−2γ

(96)

is the analogue of (55). I first show that the minimand in (96) exceeds 1 when z = z by noting that

ω/z

1 + (ω/z)1−γ−1
1−γ − γ

2 z
2γω2−2γ

= min
c>0

1−c1−γ
1−γ + γ

2 z
2c2−2γ<1

c

1 + c1−γ−1
1−γ − γ

2 z
2c2−2γ

> min
c>0

1−c1−γ
1−γ + γ

2 z
2c2−2γ<1

c

1 + c1−γ−1
1−γ

≥ 1.

(97)

The desired inequality Z > 1 is equivalent to

ω > z +
zγω1−γ − z

1− γ
− γz2γ+1ω2−2γ/2 (98)
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for all z ∈ [z, z], and (97) shows that this holds at z = z. The derivative with respect to z of the
right-hand side of (98) is then

1 +
γ(ω/z)1−γ − 1

1− γ
− γ(γ + 1/2)z2γω2−2γ = γ

(
(ω/z)1−γ − 1

1− γ
− (γ + 1/2)z2γω2−2γ

)
,

which will be negative for z ≥ z if and only if it is negative for z = z. At z this expression is
negative if 0 > (ω/z)1−γ−1

1−γ − (γ + 1/2)z2γω2−2γ and hence, using (95), if

0 > (γ − 1/2)ω2−2γz2γ − (γ + 1/2)z2γω2−2γ = −ω2−2γz2γ

which is true.

D.1.2 Efficient stationary distribution and decentralization

In this section, I will derive analogues of the characterization of stationary efficient allocations in
Proposition 3.1 and the decentralization in Proposition 4.2. As mentioned above, in this appendix I
do not aim for the same level of generality as for the case with logarithmic utility. I therefore restrict
attention to parameters for which the no-absconding constraint does not hold with equality, so that
the collateral constraints in the consumer problem do not bind. I will first solve the individual
consumer problems. I will omit the problem of workers because in the efficient allocation workers
have zero drift in wealth and consumption. For CRRA utility with γ > 1, the HJB equation for an
entrepreneur facing borrowing costs rb and taxes τLE on labor, τsE on interest, and τπ on profits is

ρVE(a) = max
k,c≥0

k≤ωd(a+hE)

ρc1−γ

1− γ
+ [rsEa− c+ (1− τπ)(Π− rb)k + (1− τLE)wL]V

′
E(a)

+ (1− τπ)
2σ

2k2

2
V ′′
E (a)

where Π = Π(w) := maxz≥0Az
1−α − wz − δ is the marginal product of capital for a given wage w

and rsE = (1− τsE)(r + ρD) is the after-tax safe return available to the entrepreneur.

Lemma D.3. The entrepreneur will choose not to divert if and only if τπ ≤ 1− ϕ. In this case, if
ωd > (Π− rb)/[γ(1− τπ)σ

2], then the value function is well-defined and finite if rsE > 0, in which
case it is of the form VE(a) = V E(a+ hE)

1−γ/(1− γ) for some V E, and the policy function are

c(a) = cd(a+ hE) =

(
1

γ
[ρ− (1− γ)rsE ]−

(Π− rb)
2

2γ2σ2
(1− γ)

)
(a+ hE)

k(a) = kd(a+ hE) =
(Π− rb)(a+ hE)

γσ2(1− τπ)
.

The associated law of motion of wealth is da = µc(at + hE)dt+ σc(at + hE)dBt, where

µc =
1

γ
[rsE − ρ] +

(Π− rb)
2

2γ2σ2
(1 + γ) σc =

Π− rb
γσ

.
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Proof. Upon substituting the assumed form, the HJB equation becomes

ρV E
1− γ

= max
cd,kd≥0

kd≤ωd

ρc1−γd
1− γ

+
[
rsE − cd + (1− τπ)(Π− rb)kd

]
V E − γ(1− τπ)

2V E
σ2k

2

d

2
.

The first-order conditions for capital and consumption give

kd =
Π− rb

γ(1− τπ)σ2
cd = (V E/ρ)

−1/γ

where the maintained assumption on ωd ensures that the collateral constraint does not bind. Sub-
stituting into the HJB equation gives

ρV E
1− γ

=
ρ1/γV

1−1/γ

E

1− γ
+ V E(rsE − cd) + V E

[
(1− τπ)(Π− rb)kd − γ

2
[(1− τπ)σ]

2k
2
]

=
γρ1/γV

1−1/γ

E

1− γ
+ V ErsE + V E

[
(Π− rb)

2

γσ2
− γ

2
[(1− τπ)σ]

2

(
Π− rb

γ(1− τπ)σ2

)2
]

which rearranges to

ρ

1− γ
=
γ(V E/ρ)

−1/γ

1− γ
+ rsE +

(Π− rb)
2

2γσ2

and therefore implies

cd = (V E/ρ)
−1/γ =

1

γ
(ρ− (1− γ)rsE)−

(Π− rb)
2

2γ2σ2
(1− γ)

as claimed. Under the maintained assumptions that γ ≥ 1 and rsE > 0, the coefficient cd is positive
and the associated value function coefficient V E is finite. The law of motion of wealth is then

dat = [rsEat + (1− τLE)wL− ct + (1− τπ)(Π− rb)kt]dt+ (1− τπ)σktdBt

and so the law of total wealth is

d(at + hE)

(at + hE)
=
[
rsE − cd + (1− τπ)(Π− rb)kd

]
dt+ (1− τπ)σkddBt

=

[
rsE − 1

γ
(ρ− (1− γ)rsE) +

(Π− rb)
2

2γ2σ2
(1− γ) +

(Π− rb)
2

γσ2

]
dt+

(Π− rb)

γσ
dBt.

This implies σc = (Π− rb)/(γσ), while µc simplifies to

µc =
1

γ
(rsE − ρ) +

(Π− rb)
2

γσ2

(
1

2
(1/γ − 1) + 1

)
as claimed.
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As with the case of logarithmic utility treated in the main text, the homogeneity of preferences
implies that the efficient allocation is again characterized by three properties: the marginal product
of capital coincides with the solution to the stationary form of the goods resource constraint,
and the mean and standard deviation of the growth in consumption coincide with those in the
efficient allocation. For the latter, when the no-absconding constraint does not hold with equality,
efficiency requires that the consumption of entrepreneurs satisfies dct = µcctdt + σcctdBt where
µc = ρ(1 − γ)x2/2 and σc =

√
ρx for some constant x > 0. Obviously, for the welfare notion

adopted in the main text, the consumption of workers is constant.
The following is a simplified analogue of Proposition 3.1 (existence of stationary efficient allo-

cation if solution to (99) exists) and Proposition 4.2 (decentralization of efficient allocation), for
the case γ ≥ 1.

Proposition D.4. The marginal product of capital that obtains in an efficient stationary distribu-
tion is Π̂ = ρS + Ŝ

√
ρϕσ, where Ŝ is any solution to the equation

ρDc(S, ω)

ρD − µc(S, ω)
+

ψ

1− ψ
= [S

√
ρϕσ/α+ ρS/α+ (1/α− 1)δ]

ρDc(S, ω)
γx(S, ω)

(ρD − µc(S, ω))
√
ρϕσ

(99)

provided that such a solution exists and satisfies µc(Ŝ, ω) < ρD. In this case, if the no-absconding
constraint does not hold with equality at this Ŝ, then writing x̂ = x(Ŝ, ω) and µ̂c = ρ(1 − γ)x̂2/2,
the efficient allocation may be decentralized in a competitive equilibrium in which τπ = 1 − ϕ,
rb = Π̂− γ

√
ρσx̂, rsE = ρ(1− γ2x̂2) and rsW = ρ. The endowed total wealth of entrepreneurs as a

fraction of the capital stock is

κE =
ϕσ(ρD − µ̂c)√
ρx̂(1− ψ)ρD

and κW is chosen such that entrepreneurs and workers obtain the same level of lifetime utility.

Proof. The proof proceeds in an almost identical fashion to the proof of Proposition 4.2, and
so I only highlight the relevant differences. The risk borne by the agent when τπ = 1 − ϕ is
ϕσkd, which from Lemma D.3 implies that the entrepreneurs bear the efficient level of risk if
√
ρx̂ = (Π̂ − rb)/(γσ), which is true for the above choice of borrowing cost rb. In this case, the

mean growth in entrepreneurs’ consumption is

µc =
1

γ
(rsE − ρ) +

(Π̂− rb)
2

2γ2σ2
(1 + γ) =

1

γ
(rsE − ρ) + ρx̂2(1 + γ)/2.

In order for the inverse Euler equation to hold, we need µc = ρ(1 − γ)x̂2/2, which requires ρ(1 −
γ)x̂2/2 = (rsE − ρ)/γ + ρx̂2(1 + γ)/2 and hence rsE = ρ(1− γ2x̂2), as claimed. The expression for
κE then follows from reasoning identical to that given in the proof of Proposition 4.2.

65



D.2 Heterogeneous entrepreneurs

This appendix justifies the claim, made at the end of Section 5.2, that the decentralization in
Proposition 3.1 generalizes to the case in which entrepreneurs differ in productivity ex-ante, at
least if these productivity differences are permanent and observable. Appendix D.2.1 characterizes
the efficient allocations and Appendix D.2.2 derives the decentralization.

D.2.1 Efficient allocations

In this section I show how the characterization of efficient allocations changes in the presence of
two types of entrepreneurs under conditions that ensure that the problem of the principal is well-
defined. I will maintain the assumption adopted in the main text that all agents have logarithmic
utility, but I now suppose that a fraction ζ ∈ [0, 1] of the entrepreneurs operate with the technology
represented by the function F (K,L) = A1K

αL1−α and the remaining fraction operate with the
technology represented by the function G(K,L) = A2K

αL1−α, where A2 > A1. However, I assume
that the parameters governing the agency friction are common across entrepreneurs.

The expressions l(λL),Π(λL) and S(λL) in Appendix B.3 remain of the same form but are now
indexed by j ∈ {1, 2},

lj(λL) = [(1− α)Aj ]
1/αλ

−1/α
L

Πj(λL) = αA
1/α
j [(1− α)/λL]

1/α−1 − δ

Sj(λL) =
Πj(λL)− ρS√

ρϕσ
.

(100)

Rearrangement implies that for any multiplier λL, we have

S2(λL) = S1(λL)(A2/A1)
1/α + ((A2/A1)

1/α − 1)(ρS + δ)/(
√
ρϕσ). (101)

Note that ω is common to both types and so I will drop it from the following notation for brevity.
The characterization of the stationary efficient allocation now proceeds much as in the proof of
Proposition 3.1, except that we have to be careful about non-negativity restrictions, because it might
be the case that one type of entrepreneur is not producing in the stationary efficient allocation.
The average consumption and capital delegated to entrepreneurs of each type in the stationary
distribution per unit of initial utility are again given by the expressions in (65), provided that we
interpret c(S) = 1 and x(S) = 0 for S < 0.

The planner once again places zero weight on the utility of all types of entrepreneurs, and so
because types are private information, all agents receive the same level of initial utility u0. The
variable that adjusts until resources clear is the multiplier λL on the labor resource constraint, but
just as in Proposition 3.1, it is convenient to write the resource constraint solely in terms of the
variable S1. Motivated by the equality (101), I now define the function

S∗
2 (S1) = S1(A2/A1)

1/α + ((A2/A1)
1/α − 1)(ρS + δ)/(

√
ρϕσ). (102)
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Output (net of depreciation) per unit of initial utility u0 in the stationary allocation for a fixed λL
and type j ∈ {1, 2} is

Jj(Sj(λL)) := (Sj(λL)/α+ (ρS/α+ (1/α− 1)δ)/(
√
ρϕσ))

ρDc(Sj(λL))x(Sj(λL))

ρD − µc(Sj(λL))
.

and so the net output of each type of entrepreneur is

J1(S1) = (S1
√
ρϕσ/α+ ρS/α+ (1/α− 1)δ)K(S1)

J2(S1) = (S∗
2 (S1)

√
ρϕσ/α+ ρS/α+ (1/α− 1)δ)K(S∗

2 (S1))

where I again used the abbreviation

K(S1) =
ρDc(S1)x(S1)

(ρD − µc(S1))
√
ρϕσ

Instead of equation (12), the equation characterizing the stationary distribution is

(1− ψ)(ζC(S1) + (1− ζ)C(S∗
2 (S1))) + ψ = (1− ψ)(ζJ1(S1) + (1− ζ)J2(S1)). (103)

The analogue of Assumption 3.1 is then the following.

Assumption D.3. There exists a solution Ŝ1 to the equation (103) such that:

1. The principal’s value function in Section 2 with S = S∗
2 (Ŝ1) and τk = −ρD is finite-valued.

2. µc(S∗
2 (Ŝ1), ω) < ρD.

Relative to the case considered in Proposition 3.1 in which there was a single type of en-
trepreneur, the determination of the aggregate capital stock now requires more algebra, because
the fraction of aggregate capital assigned to each type of entrepreneur is endogenous. I first describe
how all of the aggregate quantities (capital, labor, etc) depend on the solution Ŝ1 to equation (103).
I therefore rewrite the system of equations in (100) so that all quantities are functions of S.

First, note that the multiplier λL and S are related according to (S
√
ρϕσ+ρS+δ)

α = ααA1[(1−
α)/λL]

1−α, and so the multiplier and labor-capital ratio may be written as a function of S,

λL = λL(S1) = α
α

1−α (1− α)A
1

1−α
1 (S1

√
ρϕσ + ρS + δ)

− α
1−α

= α
α

1−α (1− α)A
1

1−α
2 (S∗

2 (S1)
√
ρϕσ + ρS + δ)

− α
1−α

which are mutually consistent by (102). The labor-capital ratio for each type may then be written

l1(λL(S1)) = [(1− α)A1]
1/αλL(S1)

−1/αα− 1
1−α (1− α)−1/αA

− 1/α
1−α

1 (S1
√
ρϕσ + ρS + δ)

1
1−α

= (αA1)
− 1

1−α (S1
√
ρϕσ + ρS + δ)

1
1−α

l2(λL(S1)) = (αA2)
− 1

1−α (S∗
2 (S1)

√
ρϕσ + ρS + δ)

1
1−α .
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For each j ∈ {1, 2}, denote by Kj and Lj the aggregate amount of capital and labor used by
entrepreneurs of type j. Using the fact that the labor-capital ratio Lj/Kj is constant within each
type j ∈ {1, 2}, the equations in (100) imply

L1

L2
=
K1

K2

L1/K1

L2/K2
=
K1

K2

l1(λL)

l2(λL)
.

Combining this with L = (L1/L2 + 1)L2, the capital employed by the second type is

K2 =
L/l2(λL)

(K1/K2)l1(λL)/l2(λL) + 1
=

L

(K1/K2)l1(λL) + l2(λL)

which ultimately implies

K = (K1/K2 + 1)K2 =
(K1/K2 + 1)L

(K1/K2)l1(λL) + l2(λL)
. (104)

Finally, because all agents obtain the same level of lifetime utility, the ratio K1/K2 is

K1

K2
=

ζK(S1)

(1− ζ)K(S∗
2 (S1))

. (105)

Combining equation (104) with equation (105) then gives aggregate capital solely in terms of S

K(S1) =
(ζK(S1) + (1− ζ)K(S∗

2 (S1)))L

ζK(S1)l1(λL(S1)) + (1− ζ)K(S∗
2 (S1))l2(λL(S1))

. (106)

The above gives aggregate capital as a function of S. In terms of the function in (106), the amount
of capital held by each type is

K1(S1) =
K(S1)ζK(S1)

ζK(S1) + (1− ζ)K(S∗
2 (S1))

K2(S1) =
K(S1)(1− ζ)K(S∗

2 (S1))

ζK(S1) + (1− ζ)K(S∗
2 (S1))

.

(107)

If Ŝ1 denotes a solution to equation (103), then the efficient level of the capital stock is K̂ = K(Ŝ1)

for the functionK(·) given in (106), and for j ∈ {1, 2} the aggregate capital of type j is K̂j = Kj(Ŝ1)

for the functions Kj(·) given in (107).

Proposition D.5. When Assumption D.3 is satisfied for some Ŝ1, an efficient stationary allocation
exists in which the capital stock is K̂ = K(Ŝ1) and the capital stock held by each type j ∈ {1, 2} is
K̂j = Kj(Ŝ1). The consumption of workers is constant over time, and the consumption (cjt )t≥0 of
entrepreneurs of type j ∈ {1, 2} satisfies

dcjt = µc(Ŝj , ω)c
j
tdt+ σc(Ŝj , ω)c

j
tdBt. (108)

where Ŝ2 = S∗
2 (Ŝ1).
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D.2.2 Decentralization

In this section I state and prove the analogue of Proposition 4.2 for the case of heterogeneous
entrepreneurs. When productivity is observable and permanent the arguments are now essentially
unchanged relative to the main text except that we must be careful about the appropriate analogue
of the resource constraint (and the associated Assumption D.3).

I will distinguish type-specific quantities using an additional subscript j ∈ {1, 2}. For instance,
the efficient value of the wedge on the bond for the type j entrepreneur will be denoted by ν̂Bj =

νB(Ŝj , ω), where Ŝj is given in Proposition D.5. I also write x̂1 = x(Ŝ1, ω) and x̂2 = x(S2(Ŝ1), ω).
I emphasize that κE1, κE2 and κW represent the lifetime wealth of agents as a fraction of aggregate
capital K̂, not as a fraction of either K̂1 or K̂2. To state the decentralization more succinctly, I
define some new notation. Denote by H the aggregate (after-tax) level of human wealth

H = (1− ψ)(ζhE1 + (1− ζ)hE2) + ψhW (109)

and the associated efficient level of output net of depreciation is denoted

Ŷ = A1K̂1(Ŝ1)
αL̂1(Ŝ1)

1−α − δK̂1(Ŝ1) +A2K̂2(Ŝ1)
αL̂2(Ŝ1)

1−α − δK̂2(Ŝ1)

Proposition D.6. When Assumption D.3 holds and x(S2(Ŝ1), ω) < 1, the stationary efficient
allocation can be implemented as an equilibrium of the form given in Definition 4.2 if the following
conditions are satisfied:

1. The tax on profits is common across entrepreneurs at τπ = 1− ϕ.

2. The interest rate r and taxes τsW and {τiEj , τIj}j=1,2 are any values such that after-tax
returns satisfy rsW = ρ, rsEj = ρ− ν̂Bj , and rbj = ρS + ν̂Kj − ν̂Bj .

3. The transfers and labor taxes are chosen such that κE1, κE2 and κW satisfy

1 = (1− ψ)ζ
ρDκE1

ρD − µ̂c1

√
ρx̂1

ϕσ
+ (1− ψ)(1− ζ)

ρDκE2

ρD − µ̂c2

√
ρx̂2

ϕσ

κW = κE1 max
{
e−x̂

2
1/2, x̂1/ω

}
= κE2 max

{
e−x̂

2
2/2, x̂2/ω

}
and the constant in the collateral constraint for the jth type is ωdj = ι−1 max

{
x̂j/ω, e

−x̂2
j/2
}
.

4. The level of government debt is D = Ŷ /ρ− K̂ −H.

Proof. The proof is almost identical to that of Proposition 4.2 and so I only highlight the differences.
To see how the equations governing κE1, κE2 and κW change, note that Lemma 4.1 implies that
the constant defining the capital policy function is

kdj =

√
ρx̂j

ϕσ
(110)
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Using (110), the capital market-clearing equation becomes

K̂ = (1− ψ)ζ
ρDκE1K̂kd1

ρD − µ̂c1
+ (1− ψ)(1− ζ)

ρDκE2K̂kd2

ρD − µ̂c2
(111)

which simplifies to the first of the two equations governing κE1, κE2 and κW . The second equation
governing these constants is the indifference relation between all agents, just as in the proof of
Proposition D.6. The wealth of private agents is then found by subtracting human wealth, which
rearranges to give the debt position of the government.
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