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A Data Countries and Samples

The following bullets list the countries for each variable and their respective samples:

e Per capita real GDP growth, CPI inflation, and population growth: We use 17 countries:
AUS, BEL, CAN, CHE, DEU, DNK, ESP, FIN, FRA, GBR, ITA, JPN, NLD, NOR, PRT, SWE, and
USA. All samples are 1871-2020.

e Labor productivity growth: We use 18 countries. BEL, CAN, CHE, CHL, DEU, DNK, ESP, FIN,
FRA, GBR, GRC, IRL, ITA, JPN, NLD, SWE, and USA have samples of 1871-2022. NOR has a
sample of 1876-2022.

e Broad money growth: We use 12 countries. The countries and respective samples are AUS (1871-
2020), CAN (1872-2020), CHE (1881-2020), DNK (1871-2020), FIN (1871-2020), GBR (1871-2020),
ITA (1871-2020), JPN (1871-2020), NOR (1871-2020), PRT (1871-2020), SWE (1872-2020), USA
(1871-2020).

e Total equity returns: We use 11 countries. The countries and respective samples are AUS (1870-
2020), BEL (1870-2020), DEU (1870-2020), DNK (1873-2020), FRA (1870-2020), GBR (1871-2020),
ITA (1870-2020), NOR (1881-2020), PRT (1871-2020), SWE (1871-2020), USA (1872-2020).

e Short-term nominal interest rate: We use 9 countries. The countries and respective samples
are CHE (1870-2020), DNK (1875-2020), ESP (1870-2020), FIN (1870-2020), GBR (1870-2020), NLD
(1870-2020), PRT (1880-2020), SWE (1870-2020), USA (1870-2020).

o Long-term nominal interest rate: We use 12 countries. AUS, CAN, DNK, FRA, GBR, ITA, JPN,
NOR, PRT, SWE, and USA have samples 1870-2020. CHE has a sample of 1880-2020.

e Real exchange rate: We use 16 countries. AUS, BEL, CAN, CHE, DEU, DNK, ESP, FIN, FRA,
GBR, ITA, NLD, NOR, PRT, and SWE have samples of 1870-2020. JPN has a sample of 1873-2020.
We compute the real exchange rate as US CPI times nominal exchange rate (expressed in local currency

over US currency) divided by home country CPI.

e Investment to GDP ratio: We use 7 countries. ESP, FIN, BGR, ITA, SWE, and USA have samples

of 1870-2020. CAN has a sample of 1871-2020.



B Formulas for the iid, AR(1), and Random Walk Models

For the iid, random walk, and AR(1) models, we treat the future average realization, Z,j, as
normally distributed with a mean, f;;, and a variance, V;j;. The three different models have
different forms for f;; and V;;, and we provide derivations in Appendix E. We estimate f;
and V. with both a rolling estimation sample, {z;_gy1,... JET}Z;}]%, and a recursive estimation
sample, {z1,... ,xT}f:_g. For the formulas reported in this appendix and in Appendix C, we only
use recursive sample notation with the understanding that rolling sample notation takes a parallel

form.

The iid Model. The iid model assumes that the data generating process (DGP) for x; is z; =
=+ ug, in which wu; is iid with a mean of zero and variance of o2. We estimate w and o? with

for =713 mpand 62 = (1 —1)71 Y] (v — )% We then use

risd

o=, (B.1)
i~ [(1/R) + (/7)) (B.2)

The Random Walk Model. The random walk model assumes that the DGP for x; is a random
walk with no drift, 2; = z4y_1 + w, in which v, is iid with a mean of zero and variance of o2. We

estimate o2 with 62 = (7 — 1) 71 Y.7_, (2 — 2,-1)%. We then use

iy = a, (B.3)

VI = (h+1)(2h 4 1)62/(6h). (B.4)

The AR(1) Model. The AR(1) model assumes that the DGP for x; is xy = pg + p12¢1—1 + ut, in
which wu; is iid with a mean of zero and variance of o2. We first estimate po and p; with ordinary
least squares and then bias-adjust following Yamamoto and Kunitomo (1984), denoting the bias-
adjusted estimates with pg and p; (we suppress dependence on 7 for notational simplicity). If
p1 > 1, then we forecast with the random walk model. If 5; < 1, then we proceed with the AR(1)

model. We compute @t = x4 — po — pra¢—1 and 62 = (7 — 3)"1>°7_, 47, We allow for uncertainty



in pp when deriving our forecast distribution but assume that p; = p;. We use

Farl Po L ~2 ~h Po

_ 1 _ B.5
h 1_ﬁ1+h(p1+p1+ +p1)<xT 1_ﬁ1>, (B.5)
Vel = L+ @Q+p)2+ 4 L+ pr+ -+ 62/ (B.6)

HI 4 (L 4p1) + -+ (L+ oo+ Py P62/ (R (r —1)).

Notice that if p; = 0, then Equation (B.6) reduces to V%! = 2/h + &2/(r — 1). This variance
estimate parallels VT“,CLI in Equation (B.2), except with 7 — 1 in place of 7 to account for one less

estimate of u; with the AR(1) model than with the iid model.

C Formulas for the Miiller and Watson (2016) Models

The Miiller and Watson (2016) (MW) forecasting models are based on extracting low-frequency
patterns from the sample {x1,...,2;} by using a small number, ¢, of slowly cycling cosine waves.
The tth observation of the jth cosine wave is given by 1, = /2 cos(mj(t —1/2)/7). The jth cosine
wave completes one cycle in 27/j periods. So, for example, if the estimation sample size is 48 years
and the number of cosine waves is ¢ = 8, then the cosine waves have periods from 12 to 96 years.

We use averages to extract the low-frequency patterns in the data. First, we compute the simple
average Bﬂo =71 > +—1 . Then, we compute the cosine-weighted averages or “cosine transforms,”
Bm’ =771 Yoiq Yjexy for 5 = 1,...,q. The MW forecast densities are then constructed from
37707 ey BT,q. By focusing on the low-frequency information in {z1,...,z,;}, MW effectively reduce
the dimension of the data from 7 down to ¢ + 1.

The MW models are based on the asymptotic properties of the sample averages. Let ,63771;(1 =
[51,7, A B(N]’ be the vector of cosine transforms and y, , = Z,p, — ﬁ%g be the future average of x;
centered on the in-sample average. Then, we use

3, 1. Ygg T
el ] BT R T (C.1)

Yr,h Yys Dy

in which k is a scaling factor that depends on the relevant model for xy: k = 1/2 for the MWO
model, kK = 3/2 for the MW1 model, and x = 1/2 4 d for the MWd model. The covariance matrix,



3., also depends on the model for z;, and we provide details for computing ¥ in Appendix F.

The MWO0 Model. The DGP for z; is xy = p + u¢, in which u; is a mean zero and integrated of
order zero or I(0) process. For this model, MW compute the covariance matrix, ¥, in (C.1) analyt-
ically. Let JIQM be the long-run variance of u;. Then, X35 = afmlq, in which I, is the (¢ x g) identity
matrix, ¥,5 = ¥} is a (1x¢) matrix of zeros, and Xy, = [(1/R)+(1/7)|(To2.,). MW then show that

Z7p has a generalized Student-¢ distribution with ¢ degrees of freedom, a location parameter of Bﬂo,

which will be the point forecast A%LWO, and a scale parameter of \/[(1/h) + (1/7‘)](7‘54’1:q3771;q/q).
We make two observations, comparing the MWO0 model to the iid model. First, the point

forecasts of the MWO0 and iid models are the same: the in-sample average. That is, Zig = fir =

Br,o = A%LWO. Second, the densities and the forecast intervals of the MWO0 and iid models only
differ in two ways. First, the MWO forecast density is Student-t with ¢ degrees of freedom, while the
iid forecast density is Normal. This difference reflects MW’s data reduction from a large number,

7, of observations to a small number, ¢, of cosine transforms. Second, the scale parameters are

VI(1/h) + (1/7)] times the square root of the estimated long-run variances for the respective model:

\/62 for the iid model and \/7—/87/_71:q37—,1:q/q for the MWO model.!

The MW1 Model. The DGP for z; is y = pu + ug, in which w; is a mean zero and integrated
of order one or I(1) process. Unlike for the MWO0 model, MW do not provide an analytical form
for every element of ¥ when wu; is I(1). Because of this, we use an approximation of 3, providing
formulas in Appendix F. Given the appropriate form of ¥, MW show that Z,; has a generalized

Student-t density with g degrees of freedom, a location parameter of Bﬂo +Xys Egﬁl Bﬂl;q, which will

be the point forecast A%WI, and a scale parameter of \/(Zyy — Ey[gEEéEgy)(B’T71:q2553771:q/q).

The MWd Model. The DGP for x; is x4 = p + uy, in which wu; is a mean zero and fractionally
integrated or I(d) process with fractional parameter d € (—0.5,1). We treat d as unknown and use
a Bayesian approach to construct the forecast density. Following MW, we set a grid of potential
values of d, {—0.4,—-0.2,0,0.2,0.4,0.6,0.8, 1}, and use a prior of uniform mass on each grid point.
The resulting Bayes predictive density is a weighted average of generalized Student-t densities with

q degrees of freedom. We provide further details in Appendix F.

!See Section 3.1 of Miiller and Watson (2015) for a discussion of using cosine transforms to estimate the long-run
variance of an I(0) process.



D Additional Tables

In this appendix, we show tables with additional results from our pseudo out-of-sample analysis.

They are as follows.

e Table D.1 shows coverage rates for a different categorization of variables that are plausibly
stationary and plausibly non-stationary. To categorize the variables, we use the maximum
likelihood estimate of d from the MWd model estimated on the longest estimation sample
(the h = 10 recursive sample). For example, for per capita GDP growth for the USA, this
sample is 1871-2010. If the estimate of d is less than 0.5, then we say the variable is plausibly

stationary. Otherwise, we say the variable is plausibly non-stationary.

e Table D.2 shows the number of countries per variable that are plausibly stationary using the

method in the previous bullet.

e Table D.3 shows actual coverage rates for each of our 10 variables by forecasting model and
forecast horizon. As in our main results, we show medians and IQRs. Take per capita real
GDP growth as an example. We have 17 countries times 2 sampling schemes to give 34

coverage rates. We then show the median and IQR across these 34 coverage rates.

e Table D.4 shows probability integral transform (PIT) rates by forecasting model and forecast
horizon. For this table, we collect the PITs separately for the stationary and non-stationary
variables. By construction, the value of a PIT is between 0 and 1. We then report the fraction
of the PITs that fall in the intervals [0,0.2), [0.2,0.4), [0.4,0.6), [0.6,0.8), and [0.8,1.0].
Because the PITs for a well-calibrated model are uniformly distributed on [0, 1], the ideal

value is 0.2 for each interval.

e Table D.5 shows what we call PIT distances by forecasting model and forecast horizon. For
the 5 intervals in the previous table, let r; be the realized fraction of the PITs that fall into
the kth interval. Then, we compute the PIT distance as (1/5) So_, |7y — 0.2|, which is a
distance from the realized PIT rates to the ideal PIT rates.

We make six comments about the distances reported in Table D.5. First, for plausibly sta-

tionary variables for h = 10, the MWO0, AR(1), and MWd models have the smallest distances,



consistent with our coverage rate results. Second, for plausibly stationary variables for h = 25,
the AR(1) and MWd have the smallest PIT distances with little increase in distance com-
pared to h = 10. Third, for plausibly stationary variables, all models show big increases in
PIT distances from h = 25 to h = 50. Fourth, for plausibly non-stationary variables for
h = 10, the random walk and MW1 models have reasonably small PIT distances (comparable
to the AR(1) model for stationary variables), consistent with our coverage rate results. Fifth,
for plausibly non-stationary variables, the random walk model shows little increase in PIT
distance from h = 10 to h = 25 and has the same PIT distance at h = 25 as the AR(1) and
MWd models for the stationary variables. Sixth, for plausibly non-stationary variables, all

models except the iid model show big increases in PIT distances from h = 25 to h = 50.

Table D.6 summarizes the continuous ranked probability score (CRPS) results. Let F, (-)
be the cumulative distribution function for a forecast distribution made with sample {z;}]_;

for horizon h. Then, we compute

[e.e]

CRPS, ) = / Frn(y) — 1(y > Trp)dy

—00

for 7 = R,...,T — h and take the average. For the iid, AR(1), and random walk models,
which have normal distributions, we use the CRPS formula on page 367 of Gneiting and
Raftery (2007). For the MWO0 and MW1 models, which have Student-¢ distributions, we use
the formulas on page 25 of Jordan, Kriiger, and Lerch (2019). For the MWd model, we use
numerical integration. As with the Winkler score table in the body of the paper, we report
CRPS results in values relative to the iid model. We also report the fraction of samples for

a given forecast horizon in which each model has the lowest CRPS.

Table D.7 summarizes the root mean squared prediction error (RMSPE) results. We compute

RMSPE with \/P*1 ZZ;}]%(:ETJL — fth)Q, in which the point forecast, fT’h, is the mean of the

forecast distribution. Point forecasts for the iid and MWO0 models are the same, and we report
results for these models jointly. As with the Winkler score table in the body of the paper,
we report RMSPE results in values relative to the iid model. We also report the fraction of

samples for a given forecast horizon in which each model has the lowest RMSPE.



e Table D.8 summarizes the mean absolute prediction error (MAPE) results. We compute
the MAPE with P! ZZ;E |Zrp — fth\ in which the point forecast, fT’h, is the median of
the forecast distribution. We use the median because the MAPE is a consistent scoring (or
loss) function for the median of the forecast distribution (while mean squared errors are a
consistent scoring function for the mean) (Gneiting, 2011). Use of the median rather than
the mean of the forecast distributions only affects forecasts of the MWd model; mean and
median are the same in all other models. Point forecasts for the iid and MWO0 models are
the same, and we report results for these models jointly. As with the Winkler score table in
the body of the paper, we report MAPE results in values relative to the iid model. We also
report the fraction of samples for a given forecast horizon in which each model has the lowest

MAPE.

e Table D.9 summarizes the absolute forecast bias results. We compute absolute forecast bias
as |P~1 ZZ;}}%(fT,h — fT,h)\ in which the point forecast, fT’h, is the mean of the forecast
distribution. Point forecasts for the iid and MWO0 models are the same, and we report results
for these models jointly. As with the Winkler score table in the body of the paper, all absolute
bias results are reported in values relative to the iid model. We also report the fraction of

samples for a given forecast horizon in which each model has the lowest absolute bias.



Table D.1: Coverage rates of nominal 68 percent forecast intervals: medians and IQRs

n @ (G (3b) (4a) (4b)

(1) Stationary Nonstationary
variables variables
(2) 180 samples 92 samples
median median

(3) horizon model coverage IQR coverage IQR
(4) 10 iid 0.50 (0.38, 0.66) 0.14 (0.11, 0.26)
(5) 10 MWO 0.63 (0.53, 0.73) 0.36 (0.27, 0.51)
(6) 10 AR(1) 0.69 (0.61, 0.78) 0.56 (0.46, 0.69)
(7) 10 MWd 0.72 (0.65, 0.80) 0.58 (0.45, 0.70)
(8) 10 RW 0.95 (0.88, 0.97) 0.72 (0.59, 0.84)
(9) 10 MW1 0.76 (0.71, 0.83) 0.63 (0.51, 0.75)
(10) 25 iid 0.42 (0.26, 0.63) 0.10 (0.06, 0.16)
(11) 25 MWO 0.57 (0.41, 0.69) 0.24 (0.16, 0.37)
(12) 25 AR(1) 0.65 (0.53, 0.77) 0.41 (0.28, 0.61)
(13) 25 MWd 0.65 (0.54, 0.76) 0.45 (0.27, 0.63)
(14) 25 RW 0.98 (0.95, 0.99) 0.75 (0.42, 0.89)
(15) 25 MW1 0.86 (0.79, 0.91) 0.65 (0.33, 0.82)
(16) 50 iid 0.28 (0.13, 0.59) 0.04 (0.00, 0.13)
(17) 50 MWO 0.49 (0.22, 0.69) 0.13 (0.00, 0.23)
(18) 50 AR(1) 0.54 (0.32, 0.79) 0.30 (0.21, 0.49)
(19) 50 MWd 0.57 (0.32, 0.79) 0.35 (0.26, 0.56)
(20) 50 RW 1.00 (0.98, 1.00) 0.79 (0.46, 0.94)
(21) 50 MW1 0.92 (0.87, 0.94) 0.69 (0.37, 0.88)

Notes:

1. Stationary variables are defined as those having a maximum likelihood value
of d in the MWd model less than 0.5 over the longest available sample.

2. Non-stationary variables are defined as those having a maximum likelihood
value of d in the MWd model larger than 0.5 over the longest available sample.
3. We show the number of countries per variable that have plausibly stationary
series in Table D.2.

4. The number of samples for each group in row (2) is the number of variables in
that group times the two sampling schemes (rolling and recursive).

5. In the list of models in column (2), we use the shorthand “RW” for the random
walk model.

6. Medians and IQRs (interquartile ranges) were constructed as described in the
notes to Table 5.1 in the body of the paper.



Table D.2: Frequency of stationarity by variable

(1) (2) 3)
no. of countries

(1) variable no. of countries with d < 0.5
(2) GDP growth 17 17
(3)  productivity growth 18 18
(4) CPI inflation 17 15
(5) money growth 12 10
(6) population growth 17 9
(7) equity returns 11 11
(8)  short-term interest 9 0
(9) long-term interest 12 0
(10)  real exchange rate 16 10
(11) I/Y ratio 7 0
Notes:

1. This table reports the number of countries per variable that have
plausibly stationary series.

2. d is the maximum likelihood estimate of d using the longest avail-
able sample of data. For example, for per capita GDP growth, we
estimate d on 1871-2010 (the recursive sample for h = 10).

10
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Table D.5: Distance from actual PIT rates to ideal PIT rates

1 @ 3) (4)
(1) Plausibly stationary Plausibly non-stationary
(3)  horizon model variables variables
(4) 10 iid 0.06 0.19
(5) 10 MWO 0.01 0.12
(6) 10 AR(1) 0.02 0.04
(7) 10 MWd 0.03 0.06
(8) 10 RwW 0.15 0.02
(9) 10 MW1 0.05 0.02
(10) 25 iid 0.08 0.21
(11) 25 MWO 0.04 0.16
(12) 25 AR(1) 0.03 0.10
(13) 25 MWd 0.03 0.10
(14) 25 RW 0.18 0.03
(15) 25 MW1 0.08 0.04
(16) 50 iid 0.13 0.21
(17) 50 MWO 0.11 0.18
(18) 50 AR(1) 0.09 0.12
(19) 50 MWd 0.10 0.12
(20) 50 RwW 0.21 0.06
(21) 50 MW1 0.11 0.07
Notes:

1. See Table 4.1 in the paper for categorization of variables as plausibly sta-
tionary or plausibly non-stationary.

2. In the list of models in column (2), we use the shorthand “RW” for the
random walk model.

3. For the 5 intervals in Table D.4, let r; be the value reported for the kth
interval in Table D.4 for a given forecast horizon and model. This table shows
the distance from those values to 0.2 for each model and forecast horizon,
measured with (1/5) 35 _, |rr — 0.2].
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Table D.6: CRPSs: medians and IQRs of relative values and fraction with minimum value

o @ G (3b) (Bo)  (4a)  (4b) (10)

(1) Stationary variable Non-stationary variables
(2) 184 samples 88 samples

median fraction  median fraction

relative with min  relative with min
(3) horizon model CRPS IQR CRPS CRPS IQR CRPS
(4) 10 iid 1.00  (1.00,1.00)  0.28 1.00 (100, 1.00)  0.00
(5) 10 MWO 0.99 (0.94, 1.01) 0.09 0.87 (0.86, 0.90) 0.06
(6) 10 ARL 099  (0.91, 1.04) 0.33 0.57  (0.49,0.70)  0.32
(7) 10 MWd 0.99 (0.90, 1.07) 0.27 0.62 (0.54, 0.74) 0.03
(8) 10 RW 2.45 (1.37, 3.55) 0.02 0.54 (0.48, 0.70) 0.50
9) 10 MW1 1.54 (1.17, 2.01) 0.01 0.58 (0.50, 0.74) 0.09
(10) 25 iid .00 (1.00, 1.00)  0.25 1.00 (100, 1.00)  0.00
(11) 25 MWO0 0.97 (0.92, 1.01) 0.29 0.90 (0.88, 0.92) 0.22
(12) 25 AR1  1.00  (0.94,1.08) 027 0.84  (0.72,0.94)  0.23
(13) 25 MWd 1.03 (0.92, 1.09) 0.17 0.83 (0.71, 0.94) 0.27
(14) 25 RW 385  (2.16,6.89)  0.01 0.89  (0.73,1.04)  0.22
(15) 25 MW1 2.07 (1.53, 3.01) 0.02 0.92 (0.77, 1.08) 0.07
(16) 50 iid 100 (1.00, 1.00) 0.27 1.00 (100, 1.00)  0.01
(17) 50 MWO0 0.98 (0.91, 1.02) 0.28 0.92 (0.88, 0.94) 0.19
(18) 50 AR1  1.02  (0.93,1.11)  0.23 0.87  (0.76,0.99)  0.17
(19) 50 MWd 1.04 (0.93, 1.12) 0.20 0.84 (0.75, 0.93) 0.27
(200 50 RW 560 (295 11.28)  0.01 0.97  (0.77,1.42)  0.20
(21) 50  MWI 285  (1.77,429)  0.01 095  (0.76,1.40)  0.15
Notes:

1. See Table 4.1 in the paper for categorization of variables as plausibly stationary or plausibly non-
stationary.

2. In the list of models in column (2), we use the shorthand “RW” for the random walk model.

3. For each model in each sample, CRPS is expressed relative to the CRPS for the iid model in that
sample. Medians and IQRs (interquartile ranges) of relative CRPSs were constructed as described in the
notes to Table 5.1 in the body of the paper.

4. “fraction with min CRPS” reports the fraction of the samples for a given horizon in which the corre-
sponding model has the lowest CRPS among the six models.
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Table D.7: RMSPEs: medians and IQRs of relative values and fraction with minimum value

B @  Ga (3b) (B (4a) (4b) (10)

(1) Stationary variables Non-stationary variables
(2) 184 samples 88 samples

median fraction = median fraction

relative with min  relative with min
(3)  horizon model RMSPE IQR RMSPE RMSPE IQR RMSPE
(4) 10 iid/MWO 1.00 (1.00, 1.00) 0.40 1.00 (1.00, 1.00) 0.08
(5) 10 AR(1) 1.00 (0.97, 1.06) 0.27 0.71 (0.59, 0.84) 0.26
(6) 10 MWd 1.02 (0.96, 1.08) 0.31 0.74 (0.64, 0.86) 0.10
(7) 10 RW 2.01 (1.37, 2.89) 0.03 0.69 (0.56, 0.88) 0.48
(8) 10 MW1 170 (1.32,2.18)  0.00 0.71  (0.59,0.97)  0.08
(9) 25 iid/MWO 1.00 (1.00, 1.00) 0.56 1.00 (1.00, 1.00) 0.31
(10) 25 AR(1) 1.01  (0.99,1.12)  0.24 098  (0.91,1.10)  0.16
11) 25 MWd 1.04  (1.00,1.14)  0.18 098  (0.86,1.10)  0.26
(12) 25 RW 2.68 (1.88, 3.93) 0.02 1.11 (0.94, 1.31) 0.23
(13) 25 MW1 225  (1.70,2.94)  0.01 1.14  (0.96,1.35)  0.05
(14) 50 iid/MWO 1.00 (1.00, 1.00) 0.61 1.00 (1.00, 1.00) 0.59
(15) 50 AR(1) .02 (1.00,1.21)  0.22 1.05  (0.98,1.26)  0.10
(16) 50 MWd 1.07 (1.01, 1.24) 0.16 1.05 (0.94, 1.16) 0.13
17) 50 RW 336 (2.29,5.35)  0.01 1.24  (1.02,1.83)  0.14
(18) 50 MW1 2.94 (2.07, 3.79) 0.00 1.24 (1.02, 1.81) 0.05
Notes:

1. See Table 4.1 in the paper for categorization or variables as plausibly stationary or plausibly non-
stationary.

2. In the list of models in column (2), we use the shorthand “RW” for the random walk model.

3. For each model in each sample, RMSPE is expressed relative to the RMSPE for the iid/MWO0 model in
that sample. Medians and IQRs (interquartile ranges) of the resulting relative RMSPEs were constructed
as described in the notes to Table 5.1 in the body of the paper.

4. “fraction with min RMSPE” reports the fraction of the samples for a given horizon in which the
corresponding model has the lowest RMSPE among the six models.
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Table D.8: MAPEs: medians and IQRs of relative values and fraction with minimum value

(1) 2 () (3b) (8c)  (4a) (4b) (4c)
(1) Stationary variables Non-stationary variables
(2) 184 samples 88 samples

median fraction  median fraction

relative with min relative with min
(3)  horizon model MAPE IQR MAPE  MAPE IQR MAPE
(4) 10 iid/MWO0 1.00 (1.00, 1.00) 0.26 1.00 (1.00, 1.00) 0.05
(5) 10 AR(1) 0.99 (0.95, 1.02) 0.38 0.64 (0.57, 0.80) 0.30
(6) 10 MWd 1.00 (0.93, 1.07) 0.29 0.73 (0.66, 0.85) 0.02
(M) 10 RW 1.43 (1.10, 2.14) 0.07 0.61 (0.54, 0.77) 0.60
(8) 10 MW1 1.44 (1.16, 1.89) 0.01 0.67 (0.60, 0.85) 0.03
(9) 25 iid/MWO0 1.00 (1.00, 1.00) 0.45 1.00 (1.00, 1.00) 0.39
(10) 25 AR(1) 1.01 (0.99, 1.07) 0.27 0.97 (0.88, 1.11) 0.22
(11) 25 MWd 1.03 (0.99, 1.09) 0.24 1.02 (0.87, 1.13) 0.16
(12) 25 RW 2.07 (1.54, 2.94) 0.03 1.07 (0.84, 1.22) 0.22
(13) 25 MW1 190  (1.52,245)  0.01 110 (0.93,1.24)  0.02
(14) 50 iid/ MWO 1.00 (1.00, 1.00) 0.49 1.00 (1.00, 1.00) 0.47
(15) 50 AR(1) 1.02 (0.99, 1.13) 0.28 1.03 (0.94, 1.24) 0.10
(16) 50 MWd 1.04 (1.00, 1.09) 0.20 1.02 (0.92, 1.09) 0.18
(17) 50 RW 2.47 (1.81, 3.70) 0.02 1.16 (0.96, 1.69) 0.14
(18) 50 MW1 2.42 (1.73, 3.21) 0.01 1.17 (0.98, 1.70) 0.11
Notes:

1. See Table 4.1 in the paper for categorization or variables as plausibly stationary of plausibly non-
stationary.

2. In the list of models in column (2), we use the shorthand “RW?” for the random walk model.

3. For each model in each sample, MAPE is expressed relative to the MAPE for the iid/MWO0 model in
that sample. Medians and IQRs (interquartile ranges) of the resulting relative MAPEs were constructed
as described in the notes to Table 5.1 in the body of the paper.

4. “fraction with min MAPE” reports the fraction of the samples for a given horizon in which the
corresponding model has the lowest MAPE among the six models.
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Table D.9: Absolute biases: medians and IQRs of relative values and fraction with minimum value

(1) 2 () (3b) (8c)  (4a) (4b) (4c)

(1) Stationary variables Non-stationary variables
(2) 184 samples 88 samples

median fraction  median fraction

relative with min relative with min
(3) horizon  model bias IQR bias bias IQR bias
(4) 10 iid/MWO0 1.00 (1.00, 1.00) 0.09 1.00 (1.00, 1.00) 0.10
(5) 10 AR(1) 0.94 (0.64, 1.12) 0.10 0.33 (0.17, 0.61) 0.15
(6) 10 MWd 0.79 (0.46, 1.27) 0.16 0.37 (0.19, 0.62) 0.18
(M) 10 RW 0.31 (0.11, 0.98) 0.35 0.21 (0.11, 0.47) 0.48
(8) 10 MW1 0.43 (0.17, 1.00) 0.30 0.23 (0.12, 0.53) 0.09
(9) 25 iid/MWO0 1.00 (1.00, 1.00) 0.05 1.00 (1.00, 1.00) 0.09
(10) 25 AR(1) 0.96 (0.81, 1.03) 0.07 0.44 (0.14, 0.76) 0.18
(11) 25 MWd 0.79 (0.56, 1.06) 0.14 0.45 (0.18, 0.69) 0.16
(12) 25 RW 0.36 (0.14, 0.81) 0.32 0.35 (0.08, 0.57) 0.35
(13) 25 MW1 0.29 (0.10, 0.81) 0.43 0.35 (0.08, 0.57) 0.22
(14) 50 iid/ MWO 1.00 (1.00, 1.00) 0.08 1.00 (1.00, 1.00) 0.27
(15) 50 AR(1) 0.98 (0.92, 1.02) 0.04 0.88 (0.72, 1.15) 0.17
(16) 50 MWd 0.92 (0.78, 1.01) 0.14 0.90 (0.75, 1.03) 0.11
(17) 50 RW 0.58 (0.26, 0.94) 0.30 0.88 (0.65, 1.56) 0.31
(18) 50 MW1 0.51 (0.26, 0.88) 0.43 0.88 (0.65, 1.52) 0.14
Notes:
1. See Table 4.1 in the paper for categorization of variables as plausibly stationary or plausibly non-
stationary.

2. In the list of models in column (2), we use the shorthand “RW?” for the random walk model.

3. For each model in each sample, absolute bias is expressed relative to the absolute bias for the iid/MWO0
model in that sample. Medians and IQRs (interquartile ranges) of relative biases were constructed as
described in the notes to Table 5.1 in the body of the paper.

4. “fraction with min bias” reports the fraction of the samples for a given horizon in which the corre-
sponding model has the lowest absolute bias among the six models.
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E Derivations of Forecast Distributions for the iid, AR(1), and
Random Walk Models

In the paper, we use two sample schemes to estimate the parameters of the forecasting models:
a recursive scheme and a rolling scheme. In this appendix, we only show parameter estimates
with the recursive sample notation with the understanding that estimates with the rolling sample

notation take a parallel form.

The iid Model. The model is z; = p + uy, in which u; is iid with mean zero and variance o2.
We use the estimates i = 77'>"]_ 2 and 6% = (7 — 1)"' >°7_ (@ — )% Then, we treat h and
7 as sufficiently large so that h'/2[(@; 41 + --- + x744)/h — p] and 7V/2(ji — p) are each normally
distributed with hY?[(z,41 + -+ 4+ @r40)/h — p] ~ N(0,0%) and 7V/%(i — p) ~ N(0,0%). We
rearrange terms so that (z,11 + -+ + xr1p)/h — p ~ N(0,0%/h) and i — u ~ N (0,02 /7).

With w; being iid, (741 + -+ + 74p)/h — p and i — p are independent, yielding

[(@r1 4+ @pen) /b= p] = [ — p] ~ N(0,[(1/R) + (1/7)]0?).
Then,
(@rs1+ -+ 2pen) /b~ N [(1/h) + (1/7)]0?),

and we plug 62 in for o2 to compute the forecast distribution.

The Random Walk Model. The model is z: = xs_1 + 4z, in which u; is iid with mean zero and

variance 0. We estimate 02 with 62 = (7 — 1)"1>°7_,(z; — 24_1)?. It is the case that

(@rp1+ -+ 2rgn) /b — 2r = [(Trg1 — T0) + - + (Trgn — 27)] /1
= [ur+1 + (Urg1 + Urg2) + o+ (Urg1 + - urgn)] /B
= hur1/h+ (h — Durgo/h+ - urin/h
=Ur41 +Vrgo2+ - Vrgp.

In the last line, we use v;4j; = (h — j + 1)ur4;/h so that v;1; and v,4; are independent for j # i

with E(vr4;) = 0 and E(vzﬂ-) = [(h — j + 1)/h]?c%. Then, we assume that v,; for j = 1,2,...

18



satisfies Lindeberg’s condition and that h is sufficiently large to yield

Urgl + Urq2 + - Urgp

V(b= G+ 1) /h)20?

~ N(0,1).

Using Z;’:l j%2 = h(h + 1)(2h + 1)/6 from Equation 16.1.10 in Hamilton (1994), we compute
2?21[(h—j+ 1)/h]*0? = (h+1)(2h+1)0?/(6h) so that vr 1 +vr42+ - Vryn ~ N(0, (h+1)(2h+
1)o2/(6h)). Hence, (711 + -+ xr4n)/h — 27 ~ N(0,(h +1)(2h + 1)0?/(6h)) and

(@r41 4+ Tryn)/h ~ N(z7, (h+1)(2h + 1)0”/(6h)),

and we plug 62 in for 02 to compute the forecast distribution.

The AR(1) Model. The model is x; = pg + p12¢—1 + us, in which u; is iid with mean zero and
variance o2. We compute py and p; with ordinary least squares, suppressing notational dependence

on 7 for convenience. Ordinary least squares estimates imply

R 1 T A T

Then, using x; = pg + p12i—1 + U, we have

1< 1O
Do = —p _ . E.2
po = po+ (p1 01)7_12% 1+T_1§Ut (E.2)

Next, we bias-adjust the ordinary least squares estimates. Yamamoto and Kunitomo (1984)
show that the asymptotic bias of pg is (1 + 3p1)po/((T — 1)(1 — p1)) and that the asymptotic bias
of p1 is —=(1+3p1)/(7 — 1). Then, we compute

po = po — (1+3p1)po/((7 = 1)(1 — p1))

pr=p1+ (1 +3p1)/(r—1).

These bias adjustments imply

1—p

po = (1 — ﬁl) Po- (E.3)
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Hence, the mean of x; implied by the ordinary least squares estimates, given by po/(1 — p1), is
unchanged by the bias adjustment.
As noted in the paper, we only forecast with the AR(1) model if p; < 1. If p; > 1, we forecast
with the random walk model. If p; < 1, we compute 4; = z; — pp — p1x¢—1 and 52 = (r —
3)” Zt o Uy. Then, we compute the period-by-period forecasts recursively, using T,411 = po+p12+
for the one-step-ahead forecast and Z,s = po+ p1Z-+s—1 for the multi-step-ahead forecasts. Hence,

we can write the s-step-ahead forecast error as

s—1 s—1 s—1
LTris — iT—&-s = po Z ﬂi — po Z ﬁ{ + (pklg - ﬁi)xT + Z pjluT-I—s—j- (E4)
j=0 j=0 j=0
To simplify the analysis, we then assume that p; = p;, yielding
Trys — Trps = — Z :5{ (Po — po) + Z ﬁjluTJrsfj’ (E.5)
— s

The first term on the right-hand side can then be manipulated as follows

s—1
> A | (o= po) 201 (Po = po) — (Po — po)]
i=0

(P1 — p1)po NS R
= Z [1_/31—(01—/71) 12%—1—721%
=X A ) (3 -p) [1 ] — ZUt
15
s—1 ﬁ ﬁ 1 T T
_ 5| PL=P1
— Zpl 1—ﬁ17—1z($t_xt 1) Z 1 Ut
=0 =2 =2
o 1+ 3p1 Tr — 21 Sl T
-2 (L=p)r+B+p) 71 z_: ) 1t Ut
B (1+3p1)(xr —21) —
&4 G -G § Z“t’

in which the second line uses (E.2) to substitute out po — pp and (E.3) to substitute out po, the
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third line again imposes p; = p1, the fourth line uses (E.1) to substitute out pg, the fifth line uses

p1 = ((t—=1)p1 — 1)/(7 4+ 2) to substitute out p;, and the sixth line rearranges terms. There is a

72 term in the denominator of the first term. Because p < 1, we set the first term to zero, yielding

s—1 ) s—1 ] 1 T
~‘] ~ o ~
- Zﬁh (Po — po) = — Zﬂ{ ﬁzum
=0 =0 =2

and (E.5) becomes

T

s—1 s—1
B i 1 i
Lrts — Lrts = — E /?]1 (T 1 E ut) + § p]1u7'+8—j‘
=0 =0

t=2

Hence,

(o144 Trgn) /B = (Fpy1 + -+ Trgn) /0
1 T
=h ' 14+ A +p)+ 4+ A+ p 4+ 5] (Zm)
T
AR+ pr 4 B e + (L pr -+ 5 a4 ).

For the first term on the right-hand side of (E.7), we use
1 T
WL+ +p)+ -+ A+ g+ 450 (Zm) ~ N(0,11)
T—1 P

in which Vi = [1+ (14 1)+ + (L4 p1 + -+ 71 O[22/ ((r — V2.

(E.6)

(E.7)

(E.8)

For the second term on the right-hand side (E.7), we define the new variables v;41 = (1+ p1 +

cee ﬁi’fl)uTH/h, Vrpo=14+p1+--+ ﬁ}l‘*Q)uTH/h, and so on. Hence, the second term on the

right-hand side of (E.7) becomes v;41 +vr42+ -+ vr4p, in which v-4; and v,4; are independent

for j # ¢ with E(v;4;) = 0 and E(UZH) =1+p1+--- +/3’f_j)202/h2. Then, we assume that v

for j =1,2,... satisfies Lindeberg’s condition and that A is sufficiently large to yield

Vrg1 + Vrq2 + - Urgp N
h
Zj:l E(”Zﬂ‘)

N(0,1),
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implying that
W4 pr 4+ A i+ (L P+ 4+ 5 s+ +upgn] ~ N(0,V2),  (E9)

in which Vo = [(1+p1 4+ D)2+ (L4 o1+ + 0722+ - + 1] /h2.
Note that the first and second terms on the right-hand side of (E.7) are based on the non-
overlapping samples {ug,...,u,;} and {ur41,...,u;+p}. Because u; is iid, these two terms are

independent and we have
(Trt1+ -+ Teqn) /= (Erp1 + -+ Trgn) /R~ N(0,V), (E.10)

in which

V=[1+0+p)+ -+ Q+p+ - +p 2%/ (R (1 - 1))
(E.11)

~h—1

FA+p 4+ A+ p+ e+ 5 4+ 10?0

Then, we use 45 = po > ,5{ + pizr = po/(1 — p1) + pi(zr — po/(1 — p1)) so that we forecast

(741 + -+ xr4p)/h with a Normal distribution with a mean of

o . o __Po
1_ﬁl+h(P1+P1+ +P1)<$T 1-51)

and a variance of V' in Equation (E.11).

F Details for the Miiller and Watson (2016) Models

F.1 Covariance Approximations

The MW forecasting approach uses 8,0 = 71 S7_, xy and f,; = 71 S27_ | V2 cos(mj(t—1/2) /7))
for j =1,...,q, in which ¢ is much smaller than 7. Write 5771:(1 = [BATJ, A Bﬂq]’ as a (¢ x 1) vector
and yrn = (X741 + -+ 2rypn)/h — Bﬁo as a scalar. Then, BT,l;q and y,; are jointly normally
distributed as in Equation (C.1). MW’s forecasting approach relies on knowing the form of 3
in Equation (C.1). For the MWO0 model, MW provide analytical values for every element of 3.

However, for the MW1 and MWd models, we use numerical approximations from Section 3.2 of
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Miiller and Watson (2020). To start, let » = h/7 be the ratio of the forecast horizon to the
sample size. We use N = 1000 and compute the integer H = round(rN). Using the notation
Vit = V2cos(mj(t — 1/2)/N), we write the (N x ¢) matrix

Y a1 -0 g
P12 P22 o Ygo

(V1N YN o YgN |

Then, we write the (N + H) x (¢ + 1)) matrix

v _1N><1
0H><q (N/H)1H><17

[1]
I

in which 1,4, denotes an (m x n) matrix of ones and 0,,, denotes an (m X n) matrix of zeros.
Next, let L be a lower-triangular ((NV 4+ H) x (N + H)) matrix with ones on and below the main

diagonal. Then, we approximate Y for the MW1 model with
5 = 02 (F'LLZ) /N,

in which o7, denotes the long-run variance of Au;. The distribution of (z;41 + -+ + @r4p)/h is

generalized Student-t with ¢ degrees of freedom and has a location parameter of Br,o + Eyﬁzgﬁl B.r,l:q

and a scale parameter of \/[Zyy - Eyﬂzgézﬂy] (BA;J:qEEéBT,Lq/q). Any value of 02, > 0 cancels

out of both the location and scale parameters; hence, we set J?Tv = 1 and compute
¥ = (E'LL'E)/N3, (F.1)

for the MW1 model.
For the MWd model, if the value of d is such that —0.5 < d < 0.5, define a (N+H) x (N+H))
matrix A in which the (7, j) element is given by

v I'(k+d)I(1 - 2d)
Y T(k+1—d)T(1—d)T(d)’
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in which k = |i — j| and T'(-) denotes the gamma function. Then, we set 02, = 1 as in the MW1
model® and compute

¥ = (E'AE) /N2, (F.2)

If the value of d is such that 0.5 < d < 1.5, compute d = d — 1 and define a (N + H) x (N + H))
matrix A in which the (7, j) element is given by

~ D(k+d)r(1-2d)
Tk +1—d)(1 - d)T(d)

in which k = |i — j| and I'(-) denotes the gamma function. Then, we set o7, = 1 and compute
> = (E'LAL'E) /N2, (F.3)

F.2 The Distribution of the MWd Model

For the MWd model, we treat d € (—0.5,1.5) as unknown and use the Bayesian approach in
MW. We allow d to take values in a discrete grid, G = {di,ds,...,dn}, and use prior weights,
{w1,wa, ...,wn} subject to w, € (0,1) for n =1,..., N and 25:1 wy = 1. As in MW, we choose
G =1{-0.4,-0.2,0,0.2,0.4,0.6,0.8,1.0} and our weights are w,, =1/8 forn =1,...,8.

MW redistrict the model so that the forecast densities are invariant to location and scale. This
means using B;Lq = Briq/ \/@71:(]37,1;(1 to construct the forecast densities instead of just using
BAﬂl;q. It also means that the model is set up to initially predict Yin = Yrh /7/ B;,lqunl:q before
then making predictions about y, 5. That is, the Bayes predictive density is constructed to predict

s s as .
y; , conditional on 7 ..

N ~
Zn:l fdn (6ﬁ,1:q7 yf‘,h)wn
N =
Zn:l fdn (B'f',l:q)wn

Shaes (2 182 1.4) = : (F-4)

in which fg, (Bf_yl:q, Y2 ,,) is the joint density of Bf—,l:q and y?, with a covariance matrix associated

with fractional integration parameter d,, 3(dy,), and fg,( A;Lq) is the marginal density of Bf—,l:q

~

implied by f4, (87 1.4, Y5 ,)- To ease notation going forward, we write X, = ¥.(d,,) for indexing the

2For the MWd model, o7, denotes the long-run variance of (1— B)%u; with B being the backshift or lag operator.
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covariance matrices for the different values of d in G. Then, the joint density of 375_71: g and y7, is
s —(g+1)/2
5 — — A — ,1:
Jan B rgryin) = 57 TS (0 +1)/2) | B, ] T2 y ‘ . (F5)
T,h

in which I" denotes the gamma function. We write the submatrices of ¥, as 3, gg, Xn g = 2/, By

and ¥, 4. Then, the implied marginal density of B;L g 18

—q/2

e 1 _
fdn( T,l:q) = 57[- Q/2|Zn75/3| I/QF(q/Q) ( T,1: qzn 518 7'1 q) (FG)

We can then compute the maximum likelihood value of d by checking which value of d in G

maximizes fq, (Bf—,l:q) in (F.6).
We re-write Equation (F.4) as

N

Z fdn qu?y—r h) fdn(Bf—,l;Aq)wn ‘
n=1 f ( 7,1 q) vav=1 fdk (5;3—71;(1)@]{

b R
TP (Y2 nl B2 1)
We then use

1Xn| = ’En,ﬂﬁ"zn,yy - En,yﬁzgéﬂznﬁy‘

= 20,88 (Znyy — YnysX, %an By)v

where the second line follows because %, — £y, 555, p>n,By 1s scalar, and

-1
—1 1 — _
2np8  n,By _ En 83t X, BBER ByXin, yﬂzn BBYn X, ﬁﬁzn,ﬂy’/n

-1
Ynys gy v, 'S ,yﬁznm Vn

in which vy, = S, yy — Snys%;, 55508y Defining
mn(ﬁﬂs-,l:q) = Zn,yﬁz};lﬁﬁﬁﬂs—,l:q

and

N 1 A
Si( 78',1:q) = (En,yy - En,yﬁzn,ﬁﬁznﬁy)(ﬂf—fl :q7n 5557 1: q)/%
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we have

S G ¥i) _ 1L 1 T(g+D/2) (1 L0 mmﬁ,lzq)f) o
fdn (Bf-,l;q) S%( Aqs_’lzq) \/ﬁ F(q/?) q s%( A;Lq) .

Hence, fg, (/éi’l;q7yf-h)/ fd, (Bf_’l:q) is a generalized Student-t density with ¢ degrees of freedom, a
location parameter of m,, (Bﬁl o) and a scale parameter of 4/s2( Afj’l: o)- This result then implies that

fhaves (Y3 4l nyl:q) is a weighted average of generalized Student-t? densities with weights given by

fdn (Bf',lzq)wn/(zg:1 fdk (Bi,lzq)wk)‘ USing Bf’,l:q = BT:L‘Z/ \/ B;',l:qBT:Lq and yf’,h = yT,h/ \/ Bﬂl',lquTJ?(I’

we can push the above result further and write

Fan (BargrU2n) _ m 1 T((g+1)/2) (l L1 (Y — mn(/éﬂ:q))z)‘(“l)/?

q 872’1,(87',1:(])

fa. B \fs2(Brag) VTT T(@/2)

so that fg, ( A7S—,1;q, Yip)/ fan (Bf-,l;q) can be written in terms of ¥, and BAT,l;q. Let t(yrn, m, s%,q) be

the generalized Student-t density with location m, scale s, and degrees of freedom ¢g. Then,

Ja.Birg¥sin) 1m0 ; -
# = 7/—71;qﬁ'r,1:q t(y'r,ha mn(ﬁ¢,1:q)> 3721 (/BT,l:q)a Q)
fdn( T,l:q)

=V B-,r,l:qBT,lzq t((xT+1 +---+ xT-‘rh)/h" BT,O + mn(BT,l:q)a S%(BT,I:(])a Q)a

and we define fo%es((z, 41 4 - + l”r+h)/h‘Br,0, BT,lzq) as

fbay@s((xTJrl + -+ $T+h)/h’,ér,07 Br,lsq)

1 A
= 7fbayes(yf-,h|5§,1:q)

\/ A‘,r,lquTyliq (F7)

N ~
A A A f n BT, : n
= ; t((x7+1 4+ .4 ZBT—i-h)/h: /87—,0 + mn(ﬁﬂ',l:q)> 8727,(57',11(])7 Q) Z]]chl ;dk (IB(j-),iuq)wlg .

Hence, the density of (z;41 + -+ + x;45)/h conditional on ,63770 and BT,l:q is a weighted average
of generalized Student-¢? densities in which the weights are functions of the prior weights and the
likelihoods of the values of d, determined by the marginal density in Equation (F.6).

To compute the point forecast, which is the expectation of (xr41+---+xr41)/h over f((z 41+
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R x7+h)/h|BT70, Bﬂl;q)bayes, we first note that the expectation of t((x;41 + -« + xr4p)/h, ﬁT,o +
m(B‘r,l:qa dn)a 52(,@7,1:117 dn)y Q) is BT,O + m(/BT,ltq7 dn) Then, we have

N

PV 5™ (B + Sys Ty Brng) fa,(Bra:q)wn
7h T70 nvy/B s T71'q N A :
’ =l " 2 k=1 Ja (Br 1)

(F.8)

We compute medians and equal-tailed forecast intervals using the cumulative distribution func-

tion (CDF) that corresponds with Equation (F.7). The CDF is

Fbayes((%ﬂ +-+ $T+h)/h‘5ﬂ0’ Bﬂ:q)
(F.9)

)

_ iv: T (xT-i-l 4+t l‘r—i-h)/h - 57',0 - mn(ﬁ‘r,l:q) fdn (BT,l:Aq)Wn
n=1 S%(BTJZQ) Z]kvzl fdk (57’,11(])("}]6’

in which T'(+, ¢) is the CDF for a standard Student-¢ distribution with ¢ degrees of freedom. Taking
BAT@ and Bf,lzq as given, we use the method of bisection to solve for the values of (z,y1+---+z,44)/h

that yield Fbeves = 0.16, FP®es = (.0.5, and FP%es = 0.84.
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