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A Data Countries and Samples

The following bullets list the countries for each variable and their respective samples:

• Per capita real GDP growth, CPI inflation, and population growth: We use 17 countries:

AUS, BEL, CAN, CHE, DEU, DNK, ESP, FIN, FRA, GBR, ITA, JPN, NLD, NOR, PRT, SWE, and

USA. All samples are 1871-2020.

• Labor productivity growth: We use 18 countries. BEL, CAN, CHE, CHL, DEU, DNK, ESP, FIN,

FRA, GBR, GRC, IRL, ITA, JPN, NLD, SWE, and USA have samples of 1871-2022. NOR has a

sample of 1876-2022.

• Broad money growth: We use 12 countries. The countries and respective samples are AUS (1871-

2020), CAN (1872-2020), CHE (1881-2020), DNK (1871-2020), FIN (1871-2020), GBR (1871-2020),

ITA (1871-2020), JPN (1871-2020), NOR (1871-2020), PRT (1871-2020), SWE (1872-2020), USA

(1871-2020).

• Total equity returns: We use 11 countries. The countries and respective samples are AUS (1870-

2020), BEL (1870-2020), DEU (1870-2020), DNK (1873-2020), FRA (1870-2020), GBR (1871-2020),

ITA (1870-2020), NOR (1881-2020), PRT (1871-2020), SWE (1871-2020), USA (1872-2020).

• Short-term nominal interest rate: We use 9 countries. The countries and respective samples

are CHE (1870-2020), DNK (1875-2020), ESP (1870-2020), FIN (1870-2020), GBR (1870-2020), NLD

(1870-2020), PRT (1880-2020), SWE (1870-2020), USA (1870-2020).

• Long-term nominal interest rate: We use 12 countries. AUS, CAN, DNK, FRA, GBR, ITA, JPN,

NOR, PRT, SWE, and USA have samples 1870-2020. CHE has a sample of 1880-2020.

• Real exchange rate: We use 16 countries. AUS, BEL, CAN, CHE, DEU, DNK, ESP, FIN, FRA,

GBR, ITA, NLD, NOR, PRT, and SWE have samples of 1870-2020. JPN has a sample of 1873-2020.

We compute the real exchange rate as US CPI times nominal exchange rate (expressed in local currency

over US currency) divided by home country CPI.

• Investment to GDP ratio: We use 7 countries. ESP, FIN, BGR, ITA, SWE, and USA have samples

of 1870-2020. CAN has a sample of 1871-2020.
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B Formulas for the iid, AR(1), and Random Walk Models

For the iid, random walk, and AR(1) models, we treat the future average realization, x̄τ,h, as

normally distributed with a mean, fτ,h, and a variance, Vτ,h. The three different models have

different forms for fτ,h and Vτ,h, and we provide derivations in Appendix E. We estimate fτ,h

and Vτ,h with both a rolling estimation sample, {xτ−R+1, . . . xτ}T−h
τ=R, and a recursive estimation

sample, {x1, . . . , xτ}T−h
τ=R. For the formulas reported in this appendix and in Appendix C, we only

use recursive sample notation with the understanding that rolling sample notation takes a parallel

form.

The iid Model. The iid model assumes that the data generating process (DGP) for xt is xt =

µ + ut, in which ut is iid with a mean of zero and variance of σ2. We estimate µ and σ2 with

µ̂τ = τ−1
∑τ

t=1 xt and σ̂
2
τ = (τ − 1)−1

∑τ
t=1(xt − µ̂)2. We then use

f̂ iidτ,h = µ̂τ , (B.1)

V̂ iid
τ,h = [(1/h) + (1/τ)]σ̂2τ . (B.2)

The Random Walk Model. The random walk model assumes that the DGP for xt is a random

walk with no drift, xt = xt−1 + ut, in which ut is iid with a mean of zero and variance of σ2. We

estimate σ2 with σ̂2τ = (τ − 1)−1
∑τ

t=2(xt − xt−1)
2. We then use

f̂ rwτ,h = xτ , (B.3)

V̂ rw
τ,h = (h+ 1)(2h+ 1)σ̂2τ/(6h). (B.4)

The AR(1) Model. The AR(1) model assumes that the DGP for xt is xt = ρ0 + ρ1xt−1 + ut, in

which ut is iid with a mean of zero and variance of σ2. We first estimate ρ0 and ρ1 with ordinary

least squares and then bias-adjust following Yamamoto and Kunitomo (1984), denoting the bias-

adjusted estimates with ρ̃0 and ρ̃1 (we suppress dependence on τ for notational simplicity). If

ρ̃1 ≥ 1, then we forecast with the random walk model. If ρ̃1 < 1, then we proceed with the AR(1)

model. We compute ũt = xt − ρ̃0 − ρ̃1xt−1 and σ̃2τ = (τ − 3)−1
∑τ

t=2 ũ
2
t . We allow for uncertainty
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in ρ̃0 when deriving our forecast distribution but assume that ρ̃1 = ρ1. We use

f̂ar1τ,h =
ρ̃0

1− ρ̃1
+

1

h
(ρ̃1 + ρ̃21 + · · ·+ ρ̃h1)

(
xτ −

ρ̃0
1− ρ̃1

)
, (B.5)

V̂ ar1
τ,h = [1 + (1 + ρ̃1)

2 + · · ·+ (1 + ρ̃1 + · · ·+ ρ̃h−1
1 )2]σ̃2τ/h

2 (B.6)

+[1 + (1 + ρ̃1) + · · ·+ (1 + ρ̃1 + · · · ρ̃h−1
1 )]2σ̃2τ/(h

2(τ − 1)).

Notice that if ρ̃1 = 0, then Equation (B.6) reduces to V̂ ar1
τ,h = σ̃2τ/h + σ̃2τ/(τ − 1). This variance

estimate parallels V̂ iid
τ,h in Equation (B.2), except with τ − 1 in place of τ to account for one less

estimate of ut with the AR(1) model than with the iid model.

C Formulas for the Müller and Watson (2016) Models

The Müller and Watson (2016) (MW) forecasting models are based on extracting low-frequency

patterns from the sample {x1, . . . , xτ} by using a small number, q, of slowly cycling cosine waves.

The tth observation of the jth cosine wave is given by ψj,t =
√
2 cos(πj(t−1/2)/τ). The jth cosine

wave completes one cycle in 2τ/j periods. So, for example, if the estimation sample size is 48 years

and the number of cosine waves is q = 8, then the cosine waves have periods from 12 to 96 years.

We use averages to extract the low-frequency patterns in the data. First, we compute the simple

average β̂τ,0 = τ−1
∑τ

t=1 xt. Then, we compute the cosine-weighted averages or “cosine transforms,”

β̂τ,j = τ−1
∑τ

t=1 ψj,txt for j = 1, . . . , q. The MW forecast densities are then constructed from

β̂τ,0, . . . , β̂τ,q. By focusing on the low-frequency information in {x1, . . . , xτ}, MW effectively reduce

the dimension of the data from τ down to q + 1.

The MW models are based on the asymptotic properties of the sample averages. Let β̂τ,1:q =

[β̂1,τ , . . . , β̂q,τ ]
′ be the vector of cosine transforms and yτ,h = x̄τ,h − β̂τ,0 be the future average of xt

centered on the in-sample average. Then, we use

τ1−κ

β̂τ,1:q
yτ,h

 ∼ N(0,Σ), Σ =

Σββ Σβy

Σyβ Σyy

 , (C.1)

in which κ is a scaling factor that depends on the relevant model for xt: κ = 1/2 for the MW0

model, κ = 3/2 for the MW1 model, and κ = 1/2+ d for the MWd model. The covariance matrix,
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Σ, also depends on the model for xt, and we provide details for computing Σ in Appendix F.

The MW0 Model. The DGP for xt is xt = µ+ ut, in which ut is a mean zero and integrated of

order zero or I(0) process. For this model, MW compute the covariance matrix, Σ, in (C.1) analyt-

ically. Let σ2lrv be the long-run variance of ut. Then, Σββ = σ2lrvIq, in which Iq is the (q×q) identity

matrix, Σyβ = Σ′
βy is a (1×q) matrix of zeros, and Σyy = [(1/h)+(1/τ)](τσ2lrv). MW then show that

x̄τ,h has a generalized Student-t distribution with q degrees of freedom, a location parameter of β̂τ,0,

which will be the point forecast f̂MW0
τ,h , and a scale parameter of

√
[(1/h) + (1/τ)](τ β̂′τ,1:qβ̂τ,1:q/q).

We make two observations, comparing the MW0 model to the iid model. First, the point

forecasts of the MW0 and iid models are the same: the in-sample average. That is, f̂ iidτ,h = µ̂τ =

β̂τ,0 = f̂MW0
τ,h . Second, the densities and the forecast intervals of the MW0 and iid models only

differ in two ways. First, the MW0 forecast density is Student-t with q degrees of freedom, while the

iid forecast density is Normal. This difference reflects MW’s data reduction from a large number,

τ , of observations to a small number, q, of cosine transforms. Second, the scale parameters are√
[(1/h) + (1/τ)] times the square root of the estimated long-run variances for the respective model:√
σ̂2τ for the iid model and

√
τ β̂′τ,1:qβ̂τ,1:q/q for the MW0 model.1

The MW1 Model. The DGP for xt is xt = µ + ut, in which ut is a mean zero and integrated

of order one or I(1) process. Unlike for the MW0 model, MW do not provide an analytical form

for every element of Σ when ut is I(1). Because of this, we use an approximation of Σ, providing

formulas in Appendix F. Given the appropriate form of Σ, MW show that x̄τ,h has a generalized

Student-t density with q degrees of freedom, a location parameter of β̂τ,0+ΣyβΣ
−1
ββ β̂τ,1:q, which will

be the point forecast f̂MW1
τ,h , and a scale parameter of

√
(Σyy − ΣyβΣ

−1
ββΣβy)(β̂

′
τ,1:qΣ

−1
ββ β̂τ,1:q/q).

The MWd Model. The DGP for xt is xt = µ + ut, in which ut is a mean zero and fractionally

integrated or I(d) process with fractional parameter d ∈ (−0.5, 1). We treat d as unknown and use

a Bayesian approach to construct the forecast density. Following MW, we set a grid of potential

values of d, {−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1}, and use a prior of uniform mass on each grid point.

The resulting Bayes predictive density is a weighted average of generalized Student-t densities with

q degrees of freedom. We provide further details in Appendix F.

1See Section 3.1 of Müller and Watson (2015) for a discussion of using cosine transforms to estimate the long-run
variance of an I(0) process.
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D Additional Tables

In this appendix, we show tables with additional results from our pseudo out-of-sample analysis.

They are as follows.

• Table D.1 shows coverage rates for a different categorization of variables that are plausibly

stationary and plausibly non-stationary. To categorize the variables, we use the maximum

likelihood estimate of d from the MWd model estimated on the longest estimation sample

(the h = 10 recursive sample). For example, for per capita GDP growth for the USA, this

sample is 1871-2010. If the estimate of d is less than 0.5, then we say the variable is plausibly

stationary. Otherwise, we say the variable is plausibly non-stationary.

• Table D.2 shows the number of countries per variable that are plausibly stationary using the

method in the previous bullet.

• Table D.3 shows actual coverage rates for each of our 10 variables by forecasting model and

forecast horizon. As in our main results, we show medians and IQRs. Take per capita real

GDP growth as an example. We have 17 countries times 2 sampling schemes to give 34

coverage rates. We then show the median and IQR across these 34 coverage rates.

• Table D.4 shows probability integral transform (PIT) rates by forecasting model and forecast

horizon. For this table, we collect the PITs separately for the stationary and non-stationary

variables. By construction, the value of a PIT is between 0 and 1. We then report the fraction

of the PITs that fall in the intervals [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1.0].

Because the PITs for a well-calibrated model are uniformly distributed on [0, 1], the ideal

value is 0.2 for each interval.

• Table D.5 shows what we call PIT distances by forecasting model and forecast horizon. For

the 5 intervals in the previous table, let rk be the realized fraction of the PITs that fall into

the kth interval. Then, we compute the PIT distance as (1/5)
∑5

k=1 |rk − 0.2|, which is a

distance from the realized PIT rates to the ideal PIT rates.

We make six comments about the distances reported in Table D.5. First, for plausibly sta-

tionary variables for h = 10, the MW0, AR(1), and MWd models have the smallest distances,
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consistent with our coverage rate results. Second, for plausibly stationary variables for h = 25,

the AR(1) and MWd have the smallest PIT distances with little increase in distance com-

pared to h = 10. Third, for plausibly stationary variables, all models show big increases in

PIT distances from h = 25 to h = 50. Fourth, for plausibly non-stationary variables for

h = 10, the random walk and MW1 models have reasonably small PIT distances (comparable

to the AR(1) model for stationary variables), consistent with our coverage rate results. Fifth,

for plausibly non-stationary variables, the random walk model shows little increase in PIT

distance from h = 10 to h = 25 and has the same PIT distance at h = 25 as the AR(1) and

MWd models for the stationary variables. Sixth, for plausibly non-stationary variables, all

models except the iid model show big increases in PIT distances from h = 25 to h = 50.

• Table D.6 summarizes the continuous ranked probability score (CRPS) results. Let Fτ,h(·)

be the cumulative distribution function for a forecast distribution made with sample {xt}τt=1

for horizon h. Then, we compute

CRPSτ,h =

∫ ∞

−∞
[Fτ,h(y)− 1(y ≥ x̄τ,h)]

2dy

for τ = R, . . . , T − h and take the average. For the iid, AR(1), and random walk models,

which have normal distributions, we use the CRPS formula on page 367 of Gneiting and

Raftery (2007). For the MW0 and MW1 models, which have Student-t distributions, we use

the formulas on page 25 of Jordan, Krüger, and Lerch (2019). For the MWd model, we use

numerical integration. As with the Winkler score table in the body of the paper, we report

CRPS results in values relative to the iid model. We also report the fraction of samples for

a given forecast horizon in which each model has the lowest CRPS.

• Table D.7 summarizes the root mean squared prediction error (RMSPE) results. We compute

RMSPE with
√
P−1

∑T−h
τ=R(x̄τ,h − f̂τ,h)2, in which the point forecast, f̂τ,h, is the mean of the

forecast distribution. Point forecasts for the iid and MW0 models are the same, and we report

results for these models jointly. As with the Winkler score table in the body of the paper,

we report RMSPE results in values relative to the iid model. We also report the fraction of

samples for a given forecast horizon in which each model has the lowest RMSPE.
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• Table D.8 summarizes the mean absolute prediction error (MAPE) results. We compute

the MAPE with P−1
∑T−h

τ=R |x̄τ,h − f̂τ,h| in which the point forecast, f̂τ,h, is the median of

the forecast distribution. We use the median because the MAPE is a consistent scoring (or

loss) function for the median of the forecast distribution (while mean squared errors are a

consistent scoring function for the mean) (Gneiting, 2011). Use of the median rather than

the mean of the forecast distributions only affects forecasts of the MWd model; mean and

median are the same in all other models. Point forecasts for the iid and MW0 models are

the same, and we report results for these models jointly. As with the Winkler score table in

the body of the paper, we report MAPE results in values relative to the iid model. We also

report the fraction of samples for a given forecast horizon in which each model has the lowest

MAPE.

• Table D.9 summarizes the absolute forecast bias results. We compute absolute forecast bias

as |P−1
∑T−h

τ=R(x̄τ,h − f̂τ,h)| in which the point forecast, f̂τ,h, is the mean of the forecast

distribution. Point forecasts for the iid and MW0 models are the same, and we report results

for these models jointly. As with the Winkler score table in the body of the paper, all absolute

bias results are reported in values relative to the iid model. We also report the fraction of

samples for a given forecast horizon in which each model has the lowest absolute bias.
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Table D.1: Coverage rates of nominal 68 percent forecast intervals: medians and IQRs

(1) (2) (3a) (3b) (4a) (4b)
(1) Stationary Nonstationary

variables variables
(2) 180 samples 92 samples

median median
(3) horizon model coverage IQR coverage IQR

(4) 10 iid 0.50 (0.38, 0.66) 0.14 (0.11, 0.26)
(5) 10 MW0 0.63 (0.53, 0.73) 0.36 (0.27, 0.51)
(6) 10 AR(1) 0.69 (0.61, 0.78) 0.56 (0.46, 0.69)
(7) 10 MWd 0.72 (0.65, 0.80) 0.58 (0.45, 0.70)
(8) 10 RW 0.95 (0.88, 0.97) 0.72 (0.59, 0.84)
(9) 10 MW1 0.76 (0.71, 0.83) 0.63 (0.51, 0.75)

(10) 25 iid 0.42 (0.26, 0.63) 0.10 (0.06, 0.16)
(11) 25 MW0 0.57 (0.41, 0.69) 0.24 (0.16, 0.37)
(12) 25 AR(1) 0.65 (0.53, 0.77) 0.41 (0.28, 0.61)
(13) 25 MWd 0.65 (0.54, 0.76) 0.45 (0.27, 0.63)
(14) 25 RW 0.98 (0.95, 0.99) 0.75 (0.42, 0.89)
(15) 25 MW1 0.86 (0.79, 0.91) 0.65 (0.33, 0.82)

(16) 50 iid 0.28 (0.13, 0.59) 0.04 (0.00, 0.13)
(17) 50 MW0 0.49 (0.22, 0.69) 0.13 (0.00, 0.23)
(18) 50 AR(1) 0.54 (0.32, 0.79) 0.30 (0.21, 0.49)
(19) 50 MWd 0.57 (0.32, 0.79) 0.35 (0.26, 0.56)
(20) 50 RW 1.00 (0.98, 1.00) 0.79 (0.46, 0.94)
(21) 50 MW1 0.92 (0.87, 0.94) 0.69 (0.37, 0.88)

Notes:

1. Stationary variables are defined as those having a maximum likelihood value
of d in the MWd model less than 0.5 over the longest available sample.

2. Non-stationary variables are defined as those having a maximum likelihood
value of d in the MWd model larger than 0.5 over the longest available sample.

3. We show the number of countries per variable that have plausibly stationary
series in Table D.2.

4. The number of samples for each group in row (2) is the number of variables in
that group times the two sampling schemes (rolling and recursive).

5. In the list of models in column (2), we use the shorthand “RW” for the random
walk model.

6. Medians and IQRs (interquartile ranges) were constructed as described in the
notes to Table 5.1 in the body of the paper.
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Table D.2: Frequency of stationarity by variable

(1) (2) (3)
no. of countries

(1) variable no. of countries with d̂ < 0.5

(2) GDP growth 17 17
(3) productivity growth 18 18
(4) CPI inflation 17 15
(5) money growth 12 10
(6) population growth 17 9
(7) equity returns 11 11
(8) short-term interest 9 0
(9) long-term interest 12 0
(10) real exchange rate 16 10
(11) I/Y ratio 7 0

Notes:

1. This table reports the number of countries per variable that have
plausibly stationary series.

2. d̂ is the maximum likelihood estimate of d using the longest avail-
able sample of data. For example, for per capita GDP growth, we
estimate d̂ on 1871-2010 (the recursive sample for h = 10).
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Table D.5: Distance from actual PIT rates to ideal PIT rates

(1) (2) (3) (4)
(1) Plausibly stationary Plausibly non-stationary
(3) horizon model variables variables

(4) 10 iid 0.06 0.19
(5) 10 MW0 0.01 0.12
(6) 10 AR(1) 0.02 0.04
(7) 10 MWd 0.03 0.06
(8) 10 RW 0.15 0.02
(9) 10 MW1 0.05 0.02

(10) 25 iid 0.08 0.21
(11) 25 MW0 0.04 0.16
(12) 25 AR(1) 0.03 0.10
(13) 25 MWd 0.03 0.10
(14) 25 RW 0.18 0.03
(15) 25 MW1 0.08 0.04

(16) 50 iid 0.13 0.21
(17) 50 MW0 0.11 0.18
(18) 50 AR(1) 0.09 0.12
(19) 50 MWd 0.10 0.12
(20) 50 RW 0.21 0.06
(21) 50 MW1 0.11 0.07

Notes:

1. See Table 4.1 in the paper for categorization of variables as plausibly sta-
tionary or plausibly non-stationary.

2. In the list of models in column (2), we use the shorthand “RW” for the
random walk model.

3. For the 5 intervals in Table D.4, let rk be the value reported for the kth
interval in Table D.4 for a given forecast horizon and model. This table shows
the distance from those values to 0.2 for each model and forecast horizon,
measured with (1/5)

∑5
k=1 |rk − 0.2|.
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Table D.6: CRPSs: medians and IQRs of relative values and fraction with minimum value

(1) (2) (3a) (3b) (3c) (4a) (4b) (4c)
(1) Stationary variable Non-stationary variables
(2) 184 samples 88 samples

median fraction median fraction
relative with min relative with min

(3) horizon model CRPS IQR CRPS CRPS IQR CRPS

(4) 10 iid 1.00 (1.00, 1.00) 0.28 1.00 (1.00, 1.00) 0.00
(5) 10 MW0 0.99 (0.94, 1.01) 0.09 0.87 (0.86, 0.90) 0.06
(6) 10 AR1 0.99 (0.91, 1.04) 0.33 0.57 (0.49, 0.70) 0.32
(7) 10 MWd 0.99 (0.90, 1.07) 0.27 0.62 (0.54, 0.74) 0.03
(8) 10 RW 2.45 (1.37, 3.55) 0.02 0.54 (0.48, 0.70) 0.50
(9) 10 MW1 1.54 (1.17, 2.01) 0.01 0.58 (0.50, 0.74) 0.09

(10) 25 iid 1.00 (1.00, 1.00) 0.25 1.00 (1.00, 1.00) 0.00
(11) 25 MW0 0.97 (0.92, 1.01) 0.29 0.90 (0.88, 0.92) 0.22
(12) 25 AR1 1.00 (0.94, 1.08) 0.27 0.84 (0.72, 0.94) 0.23
(13) 25 MWd 1.03 (0.92, 1.09) 0.17 0.83 (0.71, 0.94) 0.27
(14) 25 RW 3.85 (2.16, 6.89) 0.01 0.89 (0.73, 1.04) 0.22
(15) 25 MW1 2.07 (1.53, 3.01) 0.02 0.92 (0.77, 1.08) 0.07

(16) 50 iid 1.00 (1.00, 1.00) 0.27 1.00 (1.00, 1.00) 0.01
(17) 50 MW0 0.98 (0.91, 1.02) 0.28 0.92 (0.88, 0.94) 0.19
(18) 50 AR1 1.02 (0.93, 1.11) 0.23 0.87 (0.76, 0.99) 0.17
(19) 50 MWd 1.04 (0.93, 1.12) 0.20 0.84 (0.75, 0.93) 0.27
(20) 50 RW 5.60 (2.95, 11.28) 0.01 0.97 (0.77, 1.42) 0.20
(21) 50 MW1 2.85 (1.77, 4.29) 0.01 0.95 (0.76, 1.40) 0.15

Notes:

1. See Table 4.1 in the paper for categorization of variables as plausibly stationary or plausibly non-
stationary.

2. In the list of models in column (2), we use the shorthand “RW” for the random walk model.

3. For each model in each sample, CRPS is expressed relative to the CRPS for the iid model in that
sample. Medians and IQRs (interquartile ranges) of relative CRPSs were constructed as described in the
notes to Table 5.1 in the body of the paper.

4. “fraction with min CRPS” reports the fraction of the samples for a given horizon in which the corre-
sponding model has the lowest CRPS among the six models.
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Table D.7: RMSPEs: medians and IQRs of relative values and fraction with minimum value

(1) (2) (3a) (3b) (3c) (4a) (4b) (4c)
(1) Stationary variables Non-stationary variables
(2) 184 samples 88 samples

median fraction median fraction
relative with min relative with min

(3) horizon model RMSPE IQR RMSPE RMSPE IQR RMSPE

(4) 10 iid/MW0 1.00 (1.00, 1.00) 0.40 1.00 (1.00, 1.00) 0.08
(5) 10 AR(1) 1.00 (0.97, 1.06) 0.27 0.71 (0.59, 0.84) 0.26
(6) 10 MWd 1.02 (0.96, 1.08) 0.31 0.74 (0.64, 0.86) 0.10
(7) 10 RW 2.01 (1.37, 2.89) 0.03 0.69 (0.56, 0.88) 0.48
(8) 10 MW1 1.70 (1.32, 2.18) 0.00 0.71 (0.59, 0.97) 0.08

(9) 25 iid/MW0 1.00 (1.00, 1.00) 0.56 1.00 (1.00, 1.00) 0.31
(10) 25 AR(1) 1.01 (0.99, 1.12) 0.24 0.98 (0.91, 1.10) 0.16
(11) 25 MWd 1.04 (1.00, 1.14) 0.18 0.98 (0.86, 1.10) 0.26
(12) 25 RW 2.68 (1.88, 3.93) 0.02 1.11 (0.94, 1.31) 0.23
(13) 25 MW1 2.25 (1.70, 2.94) 0.01 1.14 (0.96, 1.35) 0.05

(14) 50 iid/MW0 1.00 (1.00, 1.00) 0.61 1.00 (1.00, 1.00) 0.59
(15) 50 AR(1) 1.02 (1.00, 1.21) 0.22 1.05 (0.98, 1.26) 0.10
(16) 50 MWd 1.07 (1.01, 1.24) 0.16 1.05 (0.94, 1.16) 0.13
(17) 50 RW 3.36 (2.29, 5.35) 0.01 1.24 (1.02, 1.83) 0.14
(18) 50 MW1 2.94 (2.07, 3.79) 0.00 1.24 (1.02, 1.81) 0.05

Notes:

1. See Table 4.1 in the paper for categorization or variables as plausibly stationary or plausibly non-
stationary.

2. In the list of models in column (2), we use the shorthand “RW” for the random walk model.

3. For each model in each sample, RMSPE is expressed relative to the RMSPE for the iid/MW0 model in
that sample. Medians and IQRs (interquartile ranges) of the resulting relative RMSPEs were constructed
as described in the notes to Table 5.1 in the body of the paper.

4. “fraction with min RMSPE” reports the fraction of the samples for a given horizon in which the
corresponding model has the lowest RMSPE among the six models.
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Table D.8: MAPEs: medians and IQRs of relative values and fraction with minimum value

(1) (2) (3a) (3b) (3c) (4a) (4b) (4c)
(1) Stationary variables Non-stationary variables
(2) 184 samples 88 samples

median fraction median fraction
relative with min relative with min

(3) horizon model MAPE IQR MAPE MAPE IQR MAPE

(4) 10 iid/MW0 1.00 (1.00, 1.00) 0.26 1.00 (1.00, 1.00) 0.05
(5) 10 AR(1) 0.99 (0.95, 1.02) 0.38 0.64 (0.57, 0.80) 0.30
(6) 10 MWd 1.00 (0.93, 1.07) 0.29 0.73 (0.66, 0.85) 0.02
(7) 10 RW 1.43 (1.10, 2.14) 0.07 0.61 (0.54, 0.77) 0.60
(8) 10 MW1 1.44 (1.16, 1.89) 0.01 0.67 (0.60, 0.85) 0.03

(9) 25 iid/MW0 1.00 (1.00, 1.00) 0.45 1.00 (1.00, 1.00) 0.39
(10) 25 AR(1) 1.01 (0.99, 1.07) 0.27 0.97 (0.88, 1.11) 0.22
(11) 25 MWd 1.03 (0.99, 1.09) 0.24 1.02 (0.87, 1.13) 0.16
(12) 25 RW 2.07 (1.54, 2.94) 0.03 1.07 (0.84, 1.22) 0.22
(13) 25 MW1 1.90 (1.52, 2.45) 0.01 1.10 (0.93, 1.24) 0.02

(14) 50 iid/MW0 1.00 (1.00, 1.00) 0.49 1.00 (1.00, 1.00) 0.47
(15) 50 AR(1) 1.02 (0.99, 1.13) 0.28 1.03 (0.94, 1.24) 0.10
(16) 50 MWd 1.04 (1.00, 1.09) 0.20 1.02 (0.92, 1.09) 0.18
(17) 50 RW 2.47 (1.81, 3.70) 0.02 1.16 (0.96, 1.69) 0.14
(18) 50 MW1 2.42 (1.73, 3.21) 0.01 1.17 (0.98, 1.70) 0.11

Notes:

1. See Table 4.1 in the paper for categorization or variables as plausibly stationary of plausibly non-
stationary.

2. In the list of models in column (2), we use the shorthand “RW” for the random walk model.

3. For each model in each sample, MAPE is expressed relative to the MAPE for the iid/MW0 model in
that sample. Medians and IQRs (interquartile ranges) of the resulting relative MAPEs were constructed
as described in the notes to Table 5.1 in the body of the paper.

4. “fraction with min MAPE” reports the fraction of the samples for a given horizon in which the
corresponding model has the lowest MAPE among the six models.
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Table D.9: Absolute biases: medians and IQRs of relative values and fraction with minimum value

(1) (2) (3a) (3b) (3c) (4a) (4b) (4c)
(1) Stationary variables Non-stationary variables
(2) 184 samples 88 samples

median fraction median fraction
relative with min relative with min

(3) horizon model bias IQR bias bias IQR bias

(4) 10 iid/MW0 1.00 (1.00, 1.00) 0.09 1.00 (1.00, 1.00) 0.10
(5) 10 AR(1) 0.94 (0.64, 1.12) 0.10 0.33 (0.17, 0.61) 0.15
(6) 10 MWd 0.79 (0.46, 1.27) 0.16 0.37 (0.19, 0.62) 0.18
(7) 10 RW 0.31 (0.11, 0.98) 0.35 0.21 (0.11, 0.47) 0.48
(8) 10 MW1 0.43 (0.17, 1.00) 0.30 0.23 (0.12, 0.53) 0.09

(9) 25 iid/MW0 1.00 (1.00, 1.00) 0.05 1.00 (1.00, 1.00) 0.09
(10) 25 AR(1) 0.96 (0.81, 1.03) 0.07 0.44 (0.14, 0.76) 0.18
(11) 25 MWd 0.79 (0.56, 1.06) 0.14 0.45 (0.18, 0.69) 0.16
(12) 25 RW 0.36 (0.14, 0.81) 0.32 0.35 (0.08, 0.57) 0.35
(13) 25 MW1 0.29 (0.10, 0.81) 0.43 0.35 (0.08, 0.57) 0.22

(14) 50 iid/MW0 1.00 (1.00, 1.00) 0.08 1.00 (1.00, 1.00) 0.27
(15) 50 AR(1) 0.98 (0.92, 1.02) 0.04 0.88 (0.72, 1.15) 0.17
(16) 50 MWd 0.92 (0.78, 1.01) 0.14 0.90 (0.75, 1.03) 0.11
(17) 50 RW 0.58 (0.26, 0.94) 0.30 0.88 (0.65, 1.56) 0.31
(18) 50 MW1 0.51 (0.26, 0.88) 0.43 0.88 (0.65, 1.52) 0.14

Notes:

1. See Table 4.1 in the paper for categorization of variables as plausibly stationary or plausibly non-
stationary.

2. In the list of models in column (2), we use the shorthand “RW” for the random walk model.

3. For each model in each sample, absolute bias is expressed relative to the absolute bias for the iid/MW0
model in that sample. Medians and IQRs (interquartile ranges) of relative biases were constructed as
described in the notes to Table 5.1 in the body of the paper.

4. “fraction with min bias” reports the fraction of the samples for a given horizon in which the corre-
sponding model has the lowest absolute bias among the six models.
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E Derivations of Forecast Distributions for the iid, AR(1), and

Random Walk Models

In the paper, we use two sample schemes to estimate the parameters of the forecasting models:

a recursive scheme and a rolling scheme. In this appendix, we only show parameter estimates

with the recursive sample notation with the understanding that estimates with the rolling sample

notation take a parallel form.

The iid Model. The model is xt = µ + ut, in which ut is iid with mean zero and variance σ2.

We use the estimates µ̂ = τ−1
∑τ

t=1 xt and σ̂
2 = (τ − 1)−1

∑τ
t=1(xt − µ̂)2. Then, we treat h and

τ as sufficiently large so that h1/2[(xτ+1 + · · · + xτ+h)/h − µ] and τ1/2(µ̂ − µ) are each normally

distributed with h1/2[(xτ+1 + · · · + xτ+h)/h − µ] ∼ N(0, σ2) and τ1/2(µ̂ − µ) ∼ N(0, σ2). We

rearrange terms so that (xτ+1 + · · ·+ xτ+h)/h− µ ∼ N(0, σ2/h) and µ̂− µ ∼ N(0, σ2/τ).

With ut being iid, (xτ+1 + · · ·+ xτ+h)/h− µ and µ̂− µ are independent, yielding

[(xτ+1 + · · ·+ xτ+h)/h− µ]− [µ̂− µ] ∼ N(0, [(1/h) + (1/τ)]σ2).

Then,

(xτ+1 + · · ·+ xτ+h)/h ∼ N(µ̂, [(1/h) + (1/τ)]σ2),

and we plug σ̂2 in for σ2 to compute the forecast distribution.

The Random Walk Model. The model is xt = xt−1 + ut, in which ut is iid with mean zero and

variance σ2. We estimate σ2 with σ̂2 = (τ − 1)−1
∑τ

t=2(xt − xt−1)
2. It is the case that

(xτ+1 + · · ·+ xτ+h)/h− xτ = [(xτ+1 − xτ ) + · · ·+ (xτ+h − xτ )]/h

= [uτ+1 + (uτ+1 + uτ+2) + · · ·+ (uτ+1 + · · ·uτ+h)]/h

= huτ+1/h+ (h− 1)uτ+2/h+ · · ·uτ+h/h

= vτ+1 + vτ+2 + · · · vτ+h.

In the last line, we use vτ+j = (h − j + 1)uτ+j/h so that vτ+j and vτ+i are independent for j ̸= i

with E(vτ+j) = 0 and E(v2τ+j) = [(h − j + 1)/h]2σ2. Then, we assume that vτ+j for j = 1, 2, . . .
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satisfies Lindeberg’s condition and that h is sufficiently large to yield

vτ+1 + vτ+2 + · · · vτ+h√∑h
j=1[(h− j + 1)/h]2σ2

∼ N(0, 1).

Using
∑h

j=1 j
2 = h(h + 1)(2h + 1)/6 from Equation 16.1.10 in Hamilton (1994), we compute∑h

j=1[(h− j+1)/h]2σ2 = (h+1)(2h+1)σ2/(6h) so that vτ+1+vτ+2+ · · · vτ+h ∼ N(0, (h+1)(2h+

1)σ2/(6h)). Hence, (xτ+1 + · · ·+ xτ+h)/h− xτ ∼ N(0, (h+ 1)(2h+ 1)σ2/(6h)) and

(xτ+1 + · · ·+ xτ+h)/h ∼ N(xτ , (h+ 1)(2h+ 1)σ2/(6h)),

and we plug σ̂2 in for σ2 to compute the forecast distribution.

The AR(1) Model. The model is xt = ρ0 + ρ1xt−1 + ut, in which ut is iid with mean zero and

variance σ2. We compute ρ̂0 and ρ̂1 with ordinary least squares, suppressing notational dependence

on τ for convenience. Ordinary least squares estimates imply

ρ̂0 =
1

τ − 1

(
τ∑

t=2

xt − ρ̂1

τ∑
t=2

xt−1

)
. (E.1)

Then, using xt = ρ0 + ρ1xt−1 + ut, we have

ρ̂0 = ρ0 + (ρ1 − ρ̂1)
1

τ − 1

τ∑
t=2

xt−1 +
1

τ − 1

τ∑
t=2

ut. (E.2)

Next, we bias-adjust the ordinary least squares estimates. Yamamoto and Kunitomo (1984)

show that the asymptotic bias of ρ̂0 is (1 + 3ρ1)ρ0/((τ − 1)(1− ρ1)) and that the asymptotic bias

of ρ̂1 is −(1 + 3ρ1)/(τ − 1). Then, we compute

ρ̃0 = ρ̂0 − (1 + 3ρ̂1)ρ̂0/((τ − 1)(1− ρ̂1))

ρ̃1 = ρ̂1 + (1 + 3ρ̂1)/(τ − 1).

These bias adjustments imply

ρ̃0 =

(
1− ρ̃1
1− ρ̂1

)
ρ̂0. (E.3)
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Hence, the mean of xt implied by the ordinary least squares estimates, given by ρ̂0/(1 − ρ̂1), is

unchanged by the bias adjustment.

As noted in the paper, we only forecast with the AR(1) model if ρ̃1 < 1. If ρ̃1 ≥ 1, we forecast

with the random walk model. If ρ̃1 < 1, we compute ũt = xt − ρ̃0 − ρ̃1xt−1 and σ̃2 = (τ −

3)−1
∑τ

t=2 ũ
2
t . Then, we compute the period-by-period forecasts recursively, using x̃τ+1 = ρ̃0+ ρ̃1xτ

for the one-step-ahead forecast and x̃τ+s = ρ̃0+ ρ̃1x̃τ+s−1 for the multi-step-ahead forecasts. Hence,

we can write the s-step-ahead forecast error as

xτ+s − x̃τ+s = ρ0

s−1∑
j=0

ρj1 − ρ̃0

s−1∑
j=0

ρ̃j1 + (ρs1 − ρ̃s1)xτ +
s−1∑
j=0

ρj1uτ+s−j . (E.4)

To simplify the analysis, we then assume that ρ̃1 = ρ1, yielding

xτ+s − x̃τ+s = −

s−1∑
j=0

ρ̃j1

 (ρ̃0 − ρ0) +

s−1∑
j=0

ρ̃j1uτ+s−j . (E.5)

The first term on the right-hand side can then be manipulated as follows

−

s−1∑
j=0

ρ̃j1

 (ρ̃0 − ρ0) = −

s−1∑
j=0

ρ̃j1

 [(ρ̃0 − ρ̂0)− (ρ̂0 − ρ0)]

=

s−1∑
j=0

ρ̃j1

[(ρ̃1 − ρ̂1)ρ̂0
1− ρ̂1

− (ρ1 − ρ̂1)
1

τ − 1

τ∑
t=2

xt−1 −
1

τ − 1

τ∑
t=2

ut

]

=

s−1∑
j=0

ρ̃j1

 (ρ̃1 − ρ̂1)

[
ρ̂0

1− ρ̂1
− 1

τ − 1

τ∑
t=2

xt−1

]
−

s−1∑
j=0

ρ̃j1

 1

τ − 1

τ∑
t=2

ut

=

s−1∑
j=0

ρ̃j1

 ρ̃1 − ρ̂1
1− ρ̂1

1

τ − 1

τ∑
t=2

(xt − xt−1)−

s−1∑
j=0

ρ̃j1

 1

τ − 1

τ∑
t=2

ut

=

s−1∑
j=0

ρ̃j1

 1 + 3ρ̃1
(1− ρ̃1)τ + (3 + ρ̃1)

xτ − x1
τ − 1

−

s−1∑
j=0

ρ̃j1

 1

τ − 1

τ∑
t=2

ut

=

s−1∑
j=0

ρ̃j1

 (1 + 3ρ̃1)(xτ − x1)

(1− ρ̃1)τ2 + 2(1 + ρ̃1)τ − (3 + ρ̃1)
−

s−1∑
j=0

ρ̃j1

 1

τ − 1

τ∑
t=2

ut,

in which the second line uses (E.2) to substitute out ρ̂0 − ρ0 and (E.3) to substitute out ρ̃0, the
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third line again imposes ρ̃1 = ρ1, the fourth line uses (E.1) to substitute out ρ̂0, the fifth line uses

ρ̂1 = ((τ − 1)ρ̃1 − 1)/(τ + 2) to substitute out ρ̂1, and the sixth line rearranges terms. There is a

τ2 term in the denominator of the first term. Because ρ̃ < 1, we set the first term to zero, yielding

−

s−1∑
j=0

ρ̃j1

 (ρ̃0 − ρ0) = −

s−1∑
j=0

ρ̃j1

 1

τ − 1

τ∑
t=2

ut,

and (E.5) becomes

xτ+s − x̃τ+s = −

s−1∑
j=0

ρ̃j1

( 1

τ − 1

τ∑
t=2

ut

)
+

s−1∑
j=0

ρ̃j1uτ+s−j . (E.6)

Hence,

(xτ+1 + · · ·+ xτ+h)/h− (x̃τ+1 + · · ·+ x̃τ+h)/h

= h−1[1 + (1 + ρ̃1) + · · ·+ (1 + ρ̃1 + · · ·+ ρ̃h−1
1 )]

(
1

τ − 1

τ∑
t=2

ut

)

+ h−1[(1 + ρ̃1 + · · ·+ ρ̃h−1
1 )uτ+1 + (1 + ρ̃1 + · · ·+ ρ̃h−2

1 )uτ+2 + · · ·+ uτ+h].

(E.7)

For the first term on the right-hand side of (E.7), we use

h−1[1 + (1 + ρ̃1) + · · ·+ (1 + ρ̃1 + · · ·+ ρ̃h−1
1 )]

(
1

τ − 1

τ∑
t=2

ut

)
∼ N(0, V1) (E.8)

in which V1 = [1 + (1 + ρ̃1) + · · ·+ (1 + ρ̃1 + · · ·+ ρ̃h−1
1 )]2σ2/((τ − 1)h2).

For the second term on the right-hand side (E.7), we define the new variables vτ+1 = (1+ ρ̃1 +

· · ·+ ρ̃h−1
1 )uτ+1/h, vτ+2 = (1 + ρ̃1 + · · ·+ ρ̃h−2

1 )uτ+2/h, and so on. Hence, the second term on the

right-hand side of (E.7) becomes vτ+1 + vτ+2 + · · ·+ vτ+h, in which vτ+j and vτ+i are independent

for j ̸= i with E(vτ+j) = 0 and E(v2τ+j) = (1+ ρ̃1 + · · ·+ ρ̃h−j
1 )2σ2/h2. Then, we assume that vτ+j

for j = 1, 2, . . . satisfies Lindeberg’s condition and that h is sufficiently large to yield

vτ+1 + vτ+2 + · · · vτ+h√∑h
j=1E(v2τ+j)

∼ N(0, 1),
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implying that

h−1[(1 + ρ̃1 + · · ·+ ρ̃h−1
1 )uτ+1 + (1 + ρ̃1 + · · ·+ ρ̃h−2

1 )uτ+2 + · · ·+ uτ+h] ∼ N(0, V2), (E.9)

in which V2 = [(1 + ρ̃1 + · · ·+ ρ̃h−1
1 )2 + (1 + ρ̃1 + · · ·+ ρ̃h−2

1 )2 + · · ·+ 1]σ2/h2.

Note that the first and second terms on the right-hand side of (E.7) are based on the non-

overlapping samples {u2, . . . , uτ} and {uτ+1, . . . , uτ+h}. Because ut is iid, these two terms are

independent and we have

(xτ+1 + · · ·+ xτ+h)/h− (x̃τ+1 + · · ·+ x̃τ+h)/h ∼ N(0, V ), (E.10)

in which

V = [1 + (1 + ρ̃1) + · · ·+ (1 + ρ̃1 + · · ·+ ρ̃h−1
1 )]2σ2/(h2(τ − 1))

+ [(1 + ρ̃1 + · · ·+ ρ̃h−1
1 )2 + (1 + ρ̃1 + · · ·+ ρ̃h−2

1 )2 + · · ·+ 1]σ2/h2.
(E.11)

Then, we use x̃τ+s = ρ̃0
∑s

j=0 ρ̃
j
1 + ρ̃s1xτ = ρ̃0/(1 − ρ̃1) + ρ̃s1(xτ − ρ̃0/(1 − ρ̃1)) so that we forecast

(xτ+1 + · · ·+ xτ+h)/h with a Normal distribution with a mean of

ρ̃0
1− ρ̃1

+
1

h
(ρ̃1 + ρ̃21 + · · ·+ ρ̃h1)

(
xτ −

ρ̃0
1− ρ̃1

)

and a variance of V in Equation (E.11).

F Details for the Müller and Watson (2016) Models

F.1 Covariance Approximations

The MW forecasting approach uses β̂τ,0 = τ−1
∑τ

t=1 xt and β̂τ,j = τ−1
∑τ

t=1

√
2 cos(πj(t−1/2)/τ)xt

for j = 1, . . . , q, in which q is much smaller than τ . Write β̂τ,1:q = [β̂τ,1, . . . , β̂τ,q]
′ as a (q×1) vector

and yτ,h = (xτ+1 + · · · + xτ+h)/h − β̂τ,0 as a scalar. Then, β̂τ,1:q and yτ,h are jointly normally

distributed as in Equation (C.1). MW’s forecasting approach relies on knowing the form of Σ

in Equation (C.1). For the MW0 model, MW provide analytical values for every element of Σ.

However, for the MW1 and MWd models, we use numerical approximations from Section 3.2 of
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Müller and Watson (2020). To start, let r = h/τ be the ratio of the forecast horizon to the

sample size. We use N = 1000 and compute the integer H = round(rN). Using the notation

ψj,t =
√
2 cos(πj(t− 1/2)/N), we write the (N × q) matrix

Ψ =


ψ1,1 ψ2,1 · · · ψq,1

ψ1,2 ψ2,2 · · · ψq,2

...
...

...

ψ1,N ψ2,N · · · ψq,N

 .

Then, we write the ((N +H)× (q + 1)) matrix

Ξ =

 Ψ −1N×1

0H×q (N/H)1H×1,


in which 1m×n denotes an (m × n) matrix of ones and 0m×n denotes an (m × n) matrix of zeros.

Next, let L be a lower-triangular ((N +H) × (N +H)) matrix with ones on and below the main

diagonal. Then, we approximate Σ for the MW1 model with

Σ = σ2lrv(Ξ
′LL′Ξ)/N3,

in which σ2lrv denotes the long-run variance of ∆ut. The distribution of (xτ+1 + · · · + xτ+h)/h is

generalized Student-t with q degrees of freedom and has a location parameter of β̂τ,0+ΣyβΣ
−1
ββ β̂τ,1:q

and a scale parameter of
√
[Σyy − ΣyβΣ

−1
ββΣβy](β̂

′
τ,1:qΣ

−1
ββ β̂τ,1:q/q). Any value of σ2lrv > 0 cancels

out of both the location and scale parameters; hence, we set σ2lrv = 1 and compute

Σ = (Ξ′LL′Ξ)/N3, (F.1)

for the MW1 model.

For the MWd model, if the value of d is such that −0.5 < d < 0.5, define a ((N+H)× (N+H))

matrix Λ in which the (i, j) element is given by

λi,j =
Γ(k + d)Γ(1− 2d)

Γ(k + 1− d)Γ(1− d)Γ(d)
,
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in which k = |i − j| and Γ(·) denotes the gamma function. Then, we set σ2lrv = 1 as in the MW1

model2 and compute

Σ = (Ξ′ΛΞ)/N1+2d. (F.2)

If the value of d is such that 0.5 < d < 1.5, compute d̃ = d− 1 and define a ((N +H)× (N +H))

matrix Λ in which the (i, j) element is given by

λi,j =
Γ(k + d̃)Γ(1− 2d̃)

Γ(k + 1− d̃)Γ(1− d̃)Γ(d̃)
,

in which k = |i− j| and Γ(·) denotes the gamma function. Then, we set σ2lrv = 1 and compute

Σ = (Ξ′LΛL′Ξ)/N1+2d. (F.3)

F.2 The Distribution of the MWd Model

For the MWd model, we treat d ∈ (−0.5, 1.5) as unknown and use the Bayesian approach in

MW. We allow d to take values in a discrete grid, G = {d1, d2, . . . , dN}, and use prior weights,

{ω1, ω2, . . . , ωN} subject to ωn ∈ (0, 1) for n = 1, . . . , N and
∑N

n=1 ωN = 1. As in MW, we choose

G = {−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1.0} and our weights are ωn = 1/8 for n = 1, . . . , 8.

MW redistrict the model so that the forecast densities are invariant to location and scale. This

means using β̂sτ,1:q = β̂τ,1:q/
√
β̂′τ,1:qβ̂τ,1:q to construct the forecast densities instead of just using

β̂τ,1:q. It also means that the model is set up to initially predict ysτ,h = yτ,h/
√
β̂′τ,1:qβ̂τ,1:q before

then making predictions about yτ,h. That is, the Bayes predictive density is constructed to predict

ysτ,h conditional on β̂sτ,1:q:

f bayes(ysτ,h|β̂sτ,1:q) =
∑N

n=1 fdn(β̂
s
τ,1:q, y

s
τ,h)ωn∑N

n=1 fdn(β̂
s
τ,1:q)ωn

, (F.4)

in which fdn(β̂
s
τ,1:q, y

s
τ,h) is the joint density of β̂sτ,1:q and ysτ,h with a covariance matrix associated

with fractional integration parameter dn, Σ(dn), and fdn(β̂
s
τ,1:q) is the marginal density of β̂sτ,1:q

implied by fdn(β̂
s
τ,1:q, y

s
τ,h). To ease notation going forward, we write Σn = Σ(dn) for indexing the

2For the MWd model, σ2
lrv denotes the long-run variance of (1−B)dut with B being the backshift or lag operator.
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covariance matrices for the different values of d in G. Then, the joint density of β̂sτ,1:q and ysτ,h is

fdn(β̂
s
τ,1:q, y

s
τ,h) =

1

2
π−(q+1)/2|Σn|−1/2Γ((q + 1)/2)

[β̂s′τ,1:q ysτ,h

]
Σ−1
n

β̂sτ,1:q
ysτ,h

−(q+1)/2

, (F.5)

in which Γ denotes the gamma function. We write the submatrices of Σn as Σn,ββ , Σn,yβ = Σ′
n,βy,

and Σn,yy. Then, the implied marginal density of β̂sτ,1:q is

fdn(β̂
s
τ,1:q) =

1

2
π−q/2|Σn,ββ |−1/2Γ(q/2)

(
β̂s′τ,1:qΣ

−1
n,βββ̂

s
τ,1:q

)−q/2
. (F.6)

We can then compute the maximum likelihood value of d by checking which value of d in G

maximizes fdn(β̂
s
τ,1:q) in (F.6).

We re-write Equation (F.4) as

f bayes(ysτ,h|β̂sτ,1:q) =
N∑

n=1

fdn(β̂
s
τ,1:q, y

s
τ,h)

fdn(β̂
s
τ,1:q)

fdn(β̂
s
τ,1:q)ωn∑N

k=1 fdk(β̂
s
τ,1:q)ωk

.

We then use

|Σn| = |Σn,ββ ||Σn,yy − Σn,yβΣ
−1
n,ββΣn,βy|

= |Σn,ββ |(Σn,yy − Σn,yβΣ
−1
n,ββΣn,βy),

where the second line follows because Σn,yy − Σn,yβΣ
−1
n,ββΣn,βy is scalar, and

Σn,ββ Σn,βy

Σn,yβ Σn,yy

−1

=

Σ−1
n,ββ +Σ−1

n,ββΣn,βyΣn,yβΣ
−1
n,ββν

−1
n Σ−1

n,ββΣn,βyν
−1
n

ν−1
n Σn,yβΣ

−1
n,ββ ν−1

n

 ,
in which νn = Σn,yy − Σn,yβΣ

−1
n,ββΣn,βy. Defining

mn(β̂
s
τ,1:q) = Σn,yβΣ

−1
n,βββ̂

s
τ,1:q

and

s2n(β̂
s
τ,1:q) = (Σn,yy − Σn,yβΣ

−1
n,ββΣn,βy)(β̂

s′
τ,1:qΣ

−1
n,βββ̂

s
τ,1:q)/q,
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we have

fdn(β̂
s
τ,1:q, y

s
τ,h)

fdn(β̂
s
τ,1:q)

=
1√

s2n(β̂
s
τ,1:q)

1
√
πq

Γ((q + 1)/2)

Γ(q/2)

(
1 +

1

q

(ysτ,h −mn(β̂
s
τ,1:q))

2

s2n(β̂
s
τ,1:q)

)−(q+1)/2

.

Hence, fdn(β̂
s
τ,1:q, y

s
τ,h)/fdn(β̂

s
τ,1:q) is a generalized Student-t density with q degrees of freedom, a

location parameter of mn(β̂
s
τ,1:q) and a scale parameter of

√
s2n(β̂

s
τ,1:q). This result then implies that

f bayes(ysτ,h|β̂sτ,1:q) is a weighted average of generalized Student-tq densities with weights given by

fdn(β̂
s
τ,1:q)ωn/(

∑N
k=1 fdk(β̂

s
τ,1:q)ωk). Using β̂

s
τ,1:q = β̂τ,1:q/

√
β̂′τ,1:qβ̂τ,1:q and ysτ,h = yτ,h/

√
β̂′τ,1:qβ̂τ,1:q,

we can push the above result further and write

fdn(β̂
s
τ,1:q, y

s
τ,h)

fdn(β̂
s
τ,1:q)

=

√
β̂′τ,1:qβ̂τ,1:q√
s2n(β̂τ,1:q)

1
√
πq

Γ((q + 1)/2)

Γ(q/2)

(
1 +

1

q

(yτ,h −mn(β̂τ,1:q))
2

s2n(β̂τ,1:q)

)−(q+1)/2

,

so that fdn(β̂
s
τ,1:q, y

s
τ,h)/fdn(β̂

s
τ,1:q) can be written in terms of yτ,h and β̂τ,1:q. Let t(yτ,h,m, s

2, q) be

the generalized Student-t density with location m, scale s, and degrees of freedom q. Then,

fdn(β̂
s
τ,1:q, y

s
τ,h)

fdn(β̂
s
τ,1:q)

=
√
β̂′τ,1:qβ̂τ,1:q t(yτ,h,mn(β̂τ,1:q), s

2
n(β̂τ,1:q), q)

=
√
β̂′τ,1:qβ̂τ,1:q t((xτ+1 + · · ·+ xτ+h)/h, β̂τ,0 +mn(β̂τ,1:q), s

2
n(β̂τ,1:q), q),

and we define f bayes((xτ+1 + · · ·+ xτ+h)/h|β̂τ,0, β̂τ,1:q) as

f bayes((xτ+1 + · · ·+ xτ+h)/h|β̂τ,0, β̂τ,1:q)

=
1√

β̂′τ,1:qβ̂τ,1:q

f bayes(ysτ,h|β̂sτ,1:q)

=
N∑

n=1

t((xτ+1 + · · ·+ xτ+h)/h, β̂τ,0 +mn(β̂τ,1:q), s
2
n(β̂τ,1:q), q)

fdn(β̂τ,1:q)ωn∑N
k=1 fdk(β̂τ,1:q)ωk

.

(F.7)

Hence, the density of (xτ+1 + · · · + xτ+h)/h conditional on β̂τ,0 and β̂τ,1:q is a weighted average

of generalized Student-tq densities in which the weights are functions of the prior weights and the

likelihoods of the values of d, determined by the marginal density in Equation (F.6).

To compute the point forecast, which is the expectation of (xτ+1+ · · ·+xτ+h)/h over f((xτ+1+
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· · ·+ xτ+h)/h|β̂τ,0, β̂τ,1:q)bayes, we first note that the expectation of t((xτ+1 + · · ·+ xτ+h)/h, β̂τ,0 +

m(β̂τ,1:q, dn), s
2(β̂τ,1:q, dn), q) is β̂τ,0 +m(β̂τ,1:q, dn). Then, we have

f̂MWd
τ,h =

N∑
n=1

(β̂τ,0 +Σn,yβΣ
−1
n,βββ̂τ,1:q)

fdn(β̂τ,1:q)ωn∑N
k=1 fdk(β̂τ,1:q)ωk

. (F.8)

We compute medians and equal-tailed forecast intervals using the cumulative distribution func-

tion (CDF) that corresponds with Equation (F.7). The CDF is

F bayes((xτ+1 + · · ·+ xτ+h)/h|β̂τ,0, β̂τ,1:q)

=
N∑

n=1

T

(xτ+1 + · · ·+ xτ+h)/h− β̂τ,0 −mn(β̂τ,1:q)√
s2n(β̂τ,1:q)

, q

 fdn(β̂τ,1:q)ωn∑N
k=1 fdk(β̂τ,1:q)ωk

,
(F.9)

in which T (·, q) is the CDF for a standard Student-t distribution with q degrees of freedom. Taking

β̂τ,0 and β̂τ,1:q as given, we use the method of bisection to solve for the values of (xτ+1+· · ·+xτ+h)/h

that yield F bayes = 0.16, F bayes = 0.0.5, and F bayes = 0.84.
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