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A1. Related Literature

In recent years, advances in computational power and numerical methods have enabled re-

searchers to estimate stars using UC models with more indicators and/or an expanded structure.

For example, Johannsen and Mertens (2021)[JM], Pescatori and Turunen (2016), Del Negro

et al. (2017), Brand and Mazelis (2019), Bauer and Rudebusch (2020), González-Astudillo and

Laforte (2020), among others, have examined the roles of additional determinants in explaining

r-star. With the exception of Pescatori and Turunen (2016), all others have highlighted the

usefulness of exploiting information from both short-term and long-term interest rates in the

identification of r-star. JM, González-Astudillo and Laforte (2020), and Brand and Mazelis

(2019) document the usefulness of adding the TR equation to identify r-star. The latter two

do not entertain SV, which JM has found to be empirically important. Pescatori and Turunen

(2016) enrich the underlying structure to estimate r-star. In particular, to extract a reliable

estimate of the output gap, they bring additional information from the Congressional Budget

Office’s (CBO) estimate of the output gap by treating it as a noisy measure of the “true” output

gap. None of these studies feature time-varying parameters, and only JM allow for SV, but

their model size is significantly smaller than mine.

Chan et al. (2016) [henceforth CKP] illustrate the value of modeling u-star and pi-star

as bounded random walk processes in a bivariate Phillips curve. The use of an unrestricted

RW process has empirically been shown to work well, but CKP show that modeling u-star

as a bounded RW process is even better. They use bounds because, by construction, the

unemployment rate is a bounded variable, which implies that the long-run equilibrium in the

labor market would restrict the movements in u-star within a bounded interval. CKP argue

that economic forces that govern the movements in u-star are slow-moving and those forces

would not cause the unemployment rate to fall to levels close to zero or to levels that are higher

than the previous peaks caused by recessions. More recently, using fixed-parameter UC models,

Crump et al. (2019) estimate u-star by combining a range of labor market indicators across

demographic groups and survey expectations of inflation, and Hasenzagl et al. (2022) jointly

estimate pi-star, u-star, gdp-star (and output gap). Feunou and Fontaine (2023) develop a UC

model with SV (but not time-varying parameters) to examine the secular decline in bond yields

by jointly modeling r-star, g-star, and pi-star.

Coibion et al. (2018) examine estimates of potential output from a variety of model-based

(including small-scale UC models) and external sources, including the CBO and survey forecasts,

and based on a range of shock measures, find that (in real-time) the estimates of potential output

are unable to distinguish between transitory and permanent shocks effectively. Put differently,

they find that their estimates of potential output respond “gradually and similarly” to both

supply shocks and demand shocks that drive cyclical fluctuations in real GDP. This, they say, is

unfortunate since, by definition, potential output (and g-star) should only adjust in response to

permanent shocks. In the conclusion of their paper, they postulate whether a framework that

jointly estimates the dynamics of potential output with other relevant stars (as theory implies)
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would better distinguish between permanent and transitory components and hence lead to more

credible estimates of potential output. Unfortunately, my UC model estimates of g-star suggest

otherwise.

Morley and Wong (2020) and Chan (2019) propose an alternative modeling framework

based on VARs to estimate the long-run equilibrium values. The advantage of the VAR-based

framework is the ability to handle larger amounts of information conveniently and flexibly

compared to UC models. On the other hand, the advantage of UC modeling, as emphasized

by CKP, is the availability of the direct estimates of stars, which, in the case presented here,

proves quite convenient to allow for direct modeling of the relationships between various stars.

Several papers have documented the essential role of long-run survey (and institutional)

forecasts in helping refine the econometric estimation of model parameters, including the latent

components (e.g., pi-star: Kozicki and Tinsley (2012); Mertens (2016); Mertens and Nason

(2020); CCK; gdp-star: Pescatori and Turunen (2016)). Specifically, Mertens and Nason (2020),

CCK, Mertens (2016), and Kozicki and Tinsley (2012), in using different methodologies (in

combining survey data with model forecasts) to estimate the trend in US inflation, show that

long-run survey forecasts of inflation deliver crucial additional information (beyond the recent

inflation history) in refining trend estimates and improving model fit. In a similar vein, Pescatori

and Turunen (2016) document the usefulness of the CBO’s projection of the potential output gap

in improving their model’s output gap precision. It is this particular literature that motivates

me to consider long-run survey forecasts in the proposed large-scale econometric model.

The advantage of survey (and institutional) forecasts stems from the fact that they could be

viewed as hybrid forecasts, i.e., a combination of judgment and forecasts derived from various

modeling approaches. The fact that human judgment enters into survey expectations is an

important reason for their success. As discussed by Kozicki and Tinsley (2012) and others, the

good forecasting properties are partly because survey participants have at their disposal a wide

range of indicators, including central bank communications, and information about changes in

the tax laws, etc. The patterns gleaned from this large information set can help shape opinions,

including any perceived structural change, which can immediately influence expectations about

the long run.

In recent years, a large body of research has shown the importance of allowing for stochastic

volatility in macroeconomic models (e.g., Fernald and Wang (2016), Koop and Korobilis (2010),

and Carriero et al. (2019)). Since the work of Stock and Watson (2007), when modeling price

inflation dynamics using small-scale UC models, SV is commonly featured (e.g., Chan (2013),

Chan et al. (2013), CKP, Mertens (2016), Chan (2017), Tallman and Zaman (2017), CCK).

Few papers on estimating the output gap using small-scale UC models have highlighted the

usefulness of SV (e.g., Mertens (2014), Berger et al. (2016), Antolin-Diaz et al. (2017)), and

similarly for the unemployment gap (e.g., Mertens (2014), Stella and Stock (2015), Tallman and

Zaman (2017)). Motivated by these studies and that of JM (SV in the nominal interest rate

gap), in this paper, in addition to allowing for SV in the output gap, the unemployment gap,
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price inflation gap, and interest-rate gap, I include SV in the equations defining the nominal

wage inflation gap and productivity gap. The results strongly indicate the importance of SV in

all of the gap measures.

A growing body of research has found the importance of jointly modeling output and unem-

ployment to obtain credible and economically meaningful estimates of output gap (e.g., Sinclair

(2009), Fleischman and Roberts (2011), Berger et al. (2016), Grant and Chan (2017a), Bar-

barino et al. (2020), Morley and Wong (2020)). Most researchers working with UC models

assume a common cyclical component between the output and the unemployment gaps. How-

ever, Berger et al. (2016) provide empirical evidence that cyclical unemployment displays more

persistence than the output gap, suggesting that modeling two separate cycles linked to each

other via the Okun’s law relationship may provide more credible estimates of the output gap.

And they find that evidence of time-variation in the parameter linking the two separate cycles

is weak. Indeed, I confirm this using supplementary exercises: in my Base model specifica-

tion, which entertains two separate cycles (cyclical unemployment and the output gap), the

data support a time-invariant parameter describing the Okun’s law relationship. In contrast, a

specification with a common cyclical component favored a time-varying Okun’s law relationship

(adding support to Knotek II (2007)). Because the Bayesian model comparison metric preferred

the specification of separate cycles linked via a time-invariant parameter over the common cycle

with a time-varying parameter, in my baseline setup I go with the former.

In recent years, a growing number of papers have documented evidence of the importance of

allowing time-variation in macroeconomic relationships, especially when models are estimated

with data spanning a long sample. For instance, Gaĺı and van Rens (2021), using split sample

estimation, illustrate empirically the significant weakening in the correlation between labor

productivity and employment, especially post-1984. They find that the relationship has become

countercyclical in the past three decades when using employment as the cyclical indicator. But

it is slightly procyclical when using output as the cyclical indicator. There is ample empirical

evidence on the instability of the Phillips curve in the US and euro area data lending support of

a time-varying price Phillips curve (e.g., Stella and Stock (2015); CKP; Del Negro et al. (2020),

Bańbura and Bobeica (2020), among many others). Similarly, for the wage Phillips curve, see

Knotek II and Zaman (2014), Peneva and Rudd (2017), and Gaĺı and Gambetti (2019), among

others). Knotek II and Zaman (2014) and Peneva and Rudd (2017) also document a significant

weakening in the empirical link between price inflation and nominal wage inflation since the

1980s. Evidence in support of time-variation in price inflation persistence has been shown in

Cogley and Sbordone (2008), Cogley et al. (2010), Chan et al. (2013), CKP, CCK, among others.

These studies motivate the inclusion of time-variation in parameters defining the price Phillips

curve, wage Phillips curve, pass-through between prices and wages, inflation persistence, and

cyclicality of labor productivity in my baseline model.
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A2. Detailed Model Description

Unemployment block

To estimate u-star, I combine information from prices (including nominal wages and survey
expectations) with the estimated Phillips curve relationship between price inflation and the
aggregate unemployment rate.

Specifically, following CKP, I posit that the observed unemployment rate is decomposed
into a (bounded) RW trend component (u-star) and a stationary cyclical component.

Ut = U∗
t + U c

t (1)

The cyclical component is modeled as an AR(2) process.1 Because I am also modeling the
output gap, I depart from CKP by augmenting the AR2 unemployment gap with the output
gap (denoted ogap) as an additional explanatory variable.

Ut − U∗
t = ρu1(Ut−1 − U∗

t−1) + ρu2(Ut−2 − U∗
t−2) + ϕuogapt + εut , ε

u
t ∼ N(0, eh

u
t ) (2)

where, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1.
The variance of the error term εut is allowed to change over time.2 Similarly, as shown

later, I add information from the unemployment gap when modeling the output gap. The joint
modeling of both the output gap and the unemployment gap gives an indication about the
strength of the relationship between the two cyclical components, popularly known as Okun’s
law. The estimate,

1−ρu1−ρu2
ϕu , could be interpreted as the Okun’s law coefficient.3

U-star is modeled as a bounded RW, where the bounds’ values are fixed at 3.5% (lower
bound) and 7.5% (upper bound).4

U∗
t = U∗

t−1 + εu∗t , ε
u∗
t ∼ TN(au − U∗

t−1, bu − U∗
t−1; 0, σ

2
u∗) (3)

where the notation TN(a, b;µ, σ2) refers to normal distribution with mean µ and variance σ2

but truncated in the interval (a, b).

Output block

To feasibly estimate both the potential output (i.e., gdp∗) and the growth rate in potential
output (i.e., g∗), I follow the commonly adopted approach, which decomposes the level of

1The use of a parsimonious (time-invariant) AR2 process to identify the cyclical component of the unemploy-
ment rate is a commonly used assumption, e.g., Lee and Nelson (2007), CKP, and Gaĺı and Gambetti (2019).
CKP explore the empirical importance of allowing for time variation in the parameters of an AR2 process, and
find that the data prefer the time-invariant AR2 process, hence validating the widely used assumption of a simple
AR2 process.

2Mertens (2014), Stella and Stock (2015), and Berger et al. (2016) provide evidence in support of SV in the
cyclical component of the unemployment rate.

3As shown in Berger et al. (2016), in a specification that entertains two separate cycles (cyclical unemployment
and the output gap), the data support a time-invariant parameter describing the Okun’s law relationship. In
contrast, a specification with a common cyclical component favored a time-varying Okun’s law relationship
(adding support to Knotek II, 2007). I found similar evidence, i.e., the Bayesian model comparison assessment
slightly preferred the approach of two separate cycles with a time-invariant Okun’s law compared to a common
cycle with a time-varying Okun’s law parameter.

4These values are informed by estimating the CKP model over the estimation sample, and are close to values
reported in CKP based on their estimation sample. As a further check, most estimates of the u-star reported in
the commonly cited literature fall within the bounds used in this paper.
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aggregate output into the level of potential output and a cyclical component (output gap).
This simple decomposition has a long tradition going back to Clark (1987).

gdpt = gdp∗t + ogapt (4)

where gdp ≡ log(GDP ) and gdp∗ refers to potential output, which is unobserved.
Following Grant and Chan (2017b), gdp∗ is assumed to follow a second-order Markov pro-

cess.5

gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2gdp∗) (5)

Which can be re-written as
△gdp∗t = △gdp∗t−1 + εgdp∗t

Assuming, g∗t ≡ △gdp∗t , where △ is the first difference operator, then,

g∗t = g∗t−1 + εgdp∗t (6)

The cyclical component, ogap, is assumed to be a stationary AR(2) process augmented with
additional explanatory variables: the real interest rate gap and the unemployment gap,

ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rLt − r∗t − tp∗t ) + λg(Ut − U∗
t ) + εogapt (7)

where, εogapt ∼ N(0, eh
o
t ), ρg1 + ρg2 < 1, ρg2 − ρg1 < 1, and |ρg2| < 1

Equation (14) could be interpreted as defining an IS-curve (as in LW and subsequent papers
modeling r-star) that allows feedback (via parameter ar) from the real interest rate gap to
the output gap (i.e., the real interest rate gap responds to economic slack). The long-term
real interest rate, rL, is constructed as the difference between the nominal yield on a 10-year
Treasury bond and the 10-year inflation expectations (i.e., the PTR series for PCE inflation).6

The long-run value of term premium, tp∗ is treated as an exogenous variable and is constructed
as the average of the differential between the long-term interest rate (i.e., 10-year Treasury
bond) and the federal funds rate, similar to Johannsen and Mertens (2021).

To improve the econometric estimation of the output gap, I enrich the IS equation by
bringing in information from the unemployment gap (from the unemployment block) as an
explanatory variable.7 This latter addition is motivated by the approach taken in a long list
of papers (e.g., Morley and Wong, 2020; Grant and Chan, 2017a; Fleischman and Roberts,
2011; Sinclair, 2009) that demonstrate the usefulness of the unemployment rate in improving

5This modeling assumption implies that all permanent shocks to output are attributed as shocks to g∗.
Results are similar had I instead modeled gdp∗ as a random walk with a time-varying drift term, where the
time-varying drift term (interpreted as g∗) is assumed to follow a random walk process (to allow for a stochastic
g∗). However, the metric of Bayesian model comparison slightly favors the assumption of second-order Markov
process for gdp∗, which is consistent with the findings of Grant and Chan (2017b). An advantage of modeling
g∗ as a second-order Markov process compared to an RW with time-varying drift is that it requires estimating a
single shock parameter (σ2

gdp∗), as opposed to two for the latter (one for the shock to gdp∗ and the other for the
shock to the time-varying drift, aka g∗). It is worth noting that the assumption of gdp∗ following a second-order
Markov process is consistent with the Beveridge-Nelson trend described in section 2.1 (see Proietti, 1995).

6I also experimented with an alternative specification, in which the interest rate gap is constructed as the
difference between the short-term federal funds rate and the first lag of four-quarter trailing PCE inflation,
similar in spirit to LW. Based on model fit, this specification was slightly inferior. It is worth noting that had
the longer history of long-term inflation expectations data been available at the time of the writing, LW would
have constructed the interest rate gap using the long-term interest rate (see page 1064 in LW).

7Model fit, the precision metric for u-star and the output gap, and the plausibility of the estimates of output
gap strongly support the joint modeling of the output gap and the unemployment gap.
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the econometric estimation of the output gap.8

Productivity block

Productivity growth is a notoriously volatile series and is subject to extreme revisions from
one vintage to another. So, distinguishing highly persistent fluctuations from truly permanent
changes is a difficult job for professionals and models alike (see, e.g., Jacobs and van Norden
(2016)). Accordingly, I adopt a parsimonious structure for the productivity block relative to
other blocks of the model.

The productivity gap, which is defined as (nonfarm) labor productivity growth9 (quarterly
annualized) less p-star, is modeled as a function of a one-quarter lag in the productivity gap
and the contemporaneous cyclical unemployment gap.

Pt − P ∗
t = ρp(Pt−1 − P ∗

t−1) + λpt (Ut − U∗
t ) + εpt , ε

p
t ∼ N(0, eh

p
t ) (8)

where, |ρp| < 1
The variance of the error term εpt is allowed to change over time. The inclusion of the

cyclical unemployment gap helps tease out movements in productivity associated with the
business cycle.10

Gaĺı and van Rens (2021) find weakening in the correlation between labor productivity and
the cyclical indicator, which motivates time variation in the coefficient λp.

λpt = λpt−1 + ελpt , ε
λp
t ∼ N(0, σ2λp) (9)

Allowing for the time variation in the cyclical relationship and the error term allows the
model to better discriminate the cyclical movements and idiosyncratic movements in produc-
tivity from those associated with shifts in p-star.

P-star is modeled as a driftless random walk component, and the variance of the shocks to
this component is assumed to be constant.

P ∗
t = P ∗

t−1 + εp∗t , ε
p∗
t ∼ N(0, σ2p∗) (10)

8I note that innovations ε2gdp∗ and ε2ogap are uncorrelated. In an important contribution, Morley et al. (2003),
who assume a deterministic g-star, show that this assumption matters for estimating potential output. However,
Grant and Chan (2017a) show that in their specification, once a stochastic g-star is allowed for, the correlation
between ε2gdp∗ and ε2ogap goes to zero. They also show that the model without correlation performs comparably
to the model with correlated innovations based on Bayesian model comparison. Accordingly, to keep estimation
tractable, I assume uncorrelated innovations.

9As discussed in Kahn and Rich (2007), the focus outside of the farm sector is primarily on avoiding short-term
transitory volatility in the farm sector that is heavily driven by weather and other nontechnological factors.

10The growth in labor productivity (and more generally aggregate productivity) has been shown to be pro-
cyclical to some degree (e.g., Roberts, 2001); it typically increases sharply at the onset of recoveries and falls
during recessions. However, empirical evidence on the strength and the direction of the cyclical relationship
is mixed. This mixed evidence stems from the use of different estimation samples and or cyclical indicators
(employment-based or output-based). For instance, Gaĺı and van Rens (2021), using split sample estimation,
illustrate empirically the significant weakening in the correlation between labor productivity and employment,
especially post-1984. They find that the relationship has become countercyclical in the past three decades when
using employment as the cyclical indicator. But it is slightly procyclical when using output as the cyclical in-
dicator. In an alternative specification I replace cyclical unemployment with the output gap and obtain similar
results. Gaĺı and van Rens (2021) using a structural macro model attribute the weakening procyclicality of labor
productivity in part to the increased flexibility of the US labor market post-1984, which has enabled firms to
make adjustments at the extensive margin quickly and easily in response to shocks.

10



Economic theory posits that the long-run nominal wage inflation equals the sum of long-run
productivity growth and long-run price inflation. As discussed later in the wage inflation block,
this theoretical restriction defines the law of motion for w-star and constitutes an additional
channel influencing the dynamics of p-star.

Price inflation block

I use price inflation as measured by the personal consumption expenditures (PCE) price index,
the inflation measure that the Federal Reserve targets. The formulation for the price inflation
block closely follows CKP and CCK, combining elements from both of these papers. Specifically,
as in CKP, the stationary component, the inflation gap (defined as the deviation of inflation
from pi-star), is modeled as a function of the one-quarter lagged inflation gap, unemployment
gap, and an error term, whose variance is allowed to vary over time.

The coefficient, ρπ on the lagged inflation gap, which captures persistence in inflation dy-
namics, is allowed to vary over time.11

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗
t ) + επt , ε

π
t ∼ N(0, eh

π
t ) (11)

ρπt = ρπt−1 + ερπt , ερπt ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ
2
ρπ) (12)

The innovations to the AR(1) coefficient, ρπ are truncated so that 0 < ρπt < 1, ensuring that
the inflation gap (in equation 20) is stationary at each point in time t.

λπt = λπt−1 + ελπt , ελπt ∼ TN(−1− λπt−1, 0− λπt−1; 0, σ
2
λπ) (13)

λπ is the slope of the price Phillips curve and is constrained in the interval (-1,0).
There is ample evidence in support of a time-varying price Phillips curve (e.g., Stella and

Stock, 2015; CKP), hence the choice of allowing for time-variation in the parameter λπ.
Pi-star is modeled as a driftless random walk component, and the variance of the shocks to

this component is assumed to be constant (as in CKP).12

π∗t = π∗t−1 + επ∗t , επ∗t ∼ N(0, σ2π∗) (14)

Lastly, as I show next (see equation 26), pi-star is restricted to satisfy the long-run restriction
informed by theory.

Wage inflation block

The long-run equilibrium level of nominal wage inflation (w-star) is the nominal wage growth
rate consistent with its fundamentals – p-star and pi-star. As noted earlier, in the long run,
economic theory posits that the nominal wage inflation equals the sum of the long-run growth
rate of labor productivity and the long-run level of price inflation. I impose this relationship to

11Chan et al. (2013), CKP, and CCK have found strong empirical support for the time-variation in the
coefficient of inflation gap. My results reinforce the empirical importance of allowing for time-variation in this
coefficient.

12Allowing SV in the inflation gap component and not in the trend component is not without precedent. Be-
sides CKP, Chan (2013) is a recent paper modeling SV only in the measurement equation (i.e., cyclical/transitory
component). Berger et al. (2016) find support for SV in the inflation gap component but weak evidence for SV
in the trend component. My preliminary results indicate similar findings: that adding SV to the pi-star equation
neither helps nor hurts the model fit.
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define w-star.
W ∗

t = π∗t + P ∗
t +Wedget + εw∗

t , εw∗
t ∼ N(0, σ2w∗) (15)

Wedget =Wedget−1 + εwlr
t , εwlr

t ∼ N(0, σ2wlr) (16)

Because all three, nominal wage inflation, price inflation, and labor productivity growth data
come from different sources and so differ in scope and coverage, a time-varying wedge, which
is assumed to evolve as an RW process, is added to the above equation. The above equation
implies that W ∗ adjusted for the wedge is approximately equal to sum of π∗t + P ∗

t .

Equation (28) relates the nominal wage inflation gap – defined as the difference between the
nominal wage inflation and w-star – to its one-quarter lagged gap, the cyclical unemployment
gap, and the price inflation gap. The variance of the error term, εwt , is allowed to vary over
time.

Wt −W ∗
t = ρwt (Wt−1 −W ∗

t−1) + λwt (Ut − U∗
t ) + κwt (πt − π∗t ) + εwt , ε

w
t ∼ N(0, eh

w
t ) (17)

The findings in Knotek II and Zaman (2014) motivate the inclusion of a one-quarter lagged
nominal wage inflation gap, with time variation in the parameter ρw, which quantifies the
persistence in wage inflation dynamics.

ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ
2
ρw) (18)

The innovations to the AR(1) coefficient, ρw, are truncated so that 0 < ρwt < 1, to ensure that
the wage gap (in equation 28) is stationary at each point in time t.

The parameter λw in equation (28) measures the strength of the cyclical relationship between
the nominal wage gap and labor market slack (aka the slope of the wage Phillips curve). Many
studies, both theoretical (e.g., Gaĺı, 2011) and empirical (e.g., Peneva and Rudd, 2017; Gaĺı
and Gambetti, 2019), have demonstrated the instability of the wage Phillips curve, motivating
the need for time-variation in the parameter λw.

λwt = λwt−1 + ελwt , ελwt ∼ TN(−1− λwt−1, 0− λwt−1; 0, σ
2
λw) (19)

λw is constrained in the interval (-1,0).
Previous research has documented a significant weakening in the empirical link between price

inflation and nominal wage inflation since the 1980s (e.g., Peneva and Rudd, 2017; Knotek II and

Zaman, 2014), motivating time variation in the parameter κw. The expression
κw
t

1−ρwt
could be

interpreted as an estimate of the short-run pass-through from price inflation to wage inflation.

κwt = κwt−1 + εκwt , εκwt ∼ N(0, σ2κw) (20)

Interest rate block

I close the model with the interest rate block characterizing the interest rate dynamics and the
law of motion for r-star (the long-run equilibrium real short-term interest rate).

The first equation of the block brings information from the nominal short-term interest rate
via a Taylor-type rule (TR) to aid in identifying r-star. Specifically, this equation characterizes
the dynamics of the short-term nominal interest rate gap, where the gap is the difference between
the nominal short-term interest rate i, and the long-run level of the nominal neutral rate of
interest, i-star. (i-star = pi-star + r-star). To capture both conventional and unconventional

12



monetary policy effects when the (observed) nominal federal funds rate is constrained at the
effective lower bound (ELB), I use the shadow interest rate measure of Wu and Xia (2016).13

Equation (32) relates the nominal interest rate gap (based on the shadow federal funds rate)
to its one-period lag interest rate gap, the current quarter inflation gap (i.e., the deviation of
inflation from pi-star), and the unemployment rate gap (i.e., the deviation of the unemployment
rate from u-star). This equation roughly characterizes the monetary policy reaction function
as defined by Taylor (2001).14 There is a broad consensus that policy adjustments outside of
cyclical turning points are made very gradually. Hence, this motivates the inclusion of the
lagged interest rate gap term.

it − π∗t − r∗t = ρi(it−1 − π∗t−1 − r∗t−1) + λi(Ut − U∗
t ) + κi(πt − π∗t ) + εit, ε

i
t ∼ N(0, eh

i
t) (21)

where ρi is truncated so that 0 < ρi < 1.
Chan and Eisenstat (2018b,a) and JM document strong empirical support for constant

parameters in the Taylor rule equation while allowing for stochastic volatility in the errors.
Hence, I allow for SV in the interest rate equation.

The second equation motivated by LW heeds the economic theory suggesting the role of
various real factors in influencing movements in r-star. These factors include long-run output
growth (and long-run productivity growth), trend labor force growth (reflecting shifts in demo-
graphics and net migration), taxation structure, government expenditure shifts, and shifts in
liquidity preferences. Accordingly, equation (33) expresses r-star as a linear function of g-star
and a “catch-all” component D, which follows a random walk process similar to LW (and many
other papers).15

r∗t = ζg∗t +Dt. (22)

Dt = Dt−1 + εdt , ε
d
t ∼ N(0, σ2d) (23)

13The nominal shadow federal funds rate is identical to the nominal federal funds rate when the effective
lower bound is not binding. The estimates from Wu and Xia (2016) are publicly available and regularly updated.
Treating the shadow rate as the measure of the short-term nominal rate in place of the federal funds rate is
a common practise in the literature. I examine the robustness of my results to the shadow federal funds rate
obtained from Jones et al. (2021), which is based on an estimated structural macroeconomic model. I also test
the robustness of replacing the shadow federal funds rate with the actual federal funds rate, i.e., the federal funds
rate of zero over the ZLB period. I find that the estimates of stars (including r-star) are fairly identical across
different measures of the shadow interest rate (and the federal funds rate). The inclusion of the SV in the TR
equation is the key reason for this robust finding, as differences in the shadow rates’ estimates are reflected in
the SV estimates, leaving r-star and other stars unaffected.

14It is worth emphasizing that I denote this equation as a “Taylor-type rule” and not an exact Taylor-rule
because in the equation, pi-star refers to the estimate of trend inflation, which may or may not be equal to central
bank’s long-run inflation goal.

15The RW assumption for D is an appropriate one, given that the focus is the long-run r-star that should, in
principle, be influenced over time by permanent shifts in aggregate supply and demand (Laubach and Williams,
2016). Researchers have also explored an AR process for component D, which would be consistent if the interest
is in medium-term r-star (see Lewis and Vazquez-Grande, 2019), as this would allow r-star to be influenced by the
transitory shocks to aggregate demand (via the AR process) and permanent shocks to aggregate supply (via the
RW process for g-star). In studies focused on the long-run notion of r-star, such as LW, Laubach and Williams
(2016), Clark and Kozicki (2005), and Kiley (2020), specification based on the RW assumption has been shown
to be empirically favored by the data compared to AR assumption.

13



A3. Additional Base Model Variants

To assess the usefulness of various empirical features incorporated in the Base model, additional
model specifications are estimated.

Base-W*RW. To assess the empirical support of the theoretical restriction defined by
equation 26 (which defines w-star as the sum of pi-star and p-star), I estimate a variant of the
baseline model that replaces equation 26 with a random walk assumption for w-star as defined
by equation 20b.

W ∗
t =W ∗

t−1 + εw∗
t , εw∗

t ∼ N(0, σ2w∗) (20b)

Base-R*RW. To assess the empirical support for the theoretical restriction defined by
equation 33 (the link between g-star and r-star), I estimate a model specification that replaces
equation 33 with a random walk assumption for r-star as defined by equation 27b.

r∗t = r∗t−1 + εr∗t , ε
r∗
t ∼ N(0, σ2r∗) (27b)

Base-NoLinkStars. To assess the empirical support of both theoretical restrictions defined
by equations 26 and 33, I estimate a variant of the baseline model that combines Base-W*RW
and Base-R*RW.

Base-G*LinkP*. To assess the empirical support for the theoretical link between g-star
and p-star, I estimate a model specification that replaces equations 12 and 13 with equations
10b, 11b, and 11c.

gdp∗t = gdp∗t−1 + g∗t + εgdp∗t , εgdp∗t ∼ N(0, σ2gdp∗) (10b)

g∗t = ψp∗t + gother∗t (11b)

gother∗t = gother∗t−1 + εgother∗t , εgother∗t ∼ N(0, σ2gother∗) (11c)

Equation 11b expresses g-star as a linear function of p-star and a “catch-all” component gother∗,
which captures the influence on g-star of all factors other than p-star. The parameter ψ cap-
tures the strength of the relationship between trend growth and trend productivity.

Base-NoBoundU*. To assess the empirical support for imposing bounds on the U*, I
estimate a model specification without the bounds on the U* process defined in eq. 8.

Base-PT-Wages-to-Prices. To assess the empirical support of allowing for pass-through
from wages to prices, I estimate a model specification that replaces eq. 20 with eq. 16b, which
adds the nominal wage inflation gap as an explanatory variable in the equation describing the
price inflation gap. The parameter γπ captures the strength of the relationship between the two
cyclical inflation measures. The expression γπ

1−ρπ can be interpreted as the pass-through from

cyclical wage inflation to cyclical price inflation.16

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗
t ) + γπ(Wt −W ∗

t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (16b)

Base-NoPT. The Base model allows for pass-through from prices to wages. I assess the
empirical support of this restriction by estimating a model specification that replaces eq. 28

16I explored the possibility of allowing for time-variation in γπ but the estimation ran into difficulties hence I
resort to a time-invariant γπ.
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with eq. 22b, which removes the price inflation gap in the equation describing nominal wage
inflation gap.

Wt −W ∗
t = ρwt (Wt−1 −W ∗

t−1) + λwt (Ut − U∗
t ) + εwt , ε

w
t ∼ N(0, eh

w
t ) (22b)

Base-NoR*Survey. To assess the marginal value of survey expectations of r* in fitting
the interest rate data, I estimate a Base model specification that excludes survey expectations
of r*, but keeps survey data for other variables. I find that doing so worsens the model fit to
the interest rate data and lowers the precision of the r-star estimate.

Base-NoR*Surv-NoTRule. To assess the marginal value of the Taylor-type rule equa-
tion to the model, I estimate a model specification from the previous step (Base-NoR*Survey)
but without the TR equation. I compare this model’s fit to the interest rate with that of Base-
NoR*Survey. I find that removing the TR equation worsens the model fit to the interest rate
data and significantly lowers the precision of the r-star estimate.
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A4. R*: Backcast Survey R* from 1959-1982

The survey estimates of g-star, u-star, and pi-star are direct reads from the survey. In contrast,
the r-star survey estimate is not a direct estimate. Instead, it is inferred from the Blue Chip
survey long-run estimates of the GDP deflator and short-term interest rates (3-month Treasury
bill) using the long-run Fisher equation, specifically, the long-run forecast of 3-month Treasury
bills less the long-run forecast of the GDP deflator. To this differential, I add +0.3 to reflect the
average differential between the federal funds rate and the 3-month Treasury bill (r-star refers
to the long-run equilibrium federal funds rate).

Survey projections are not available before 1983Q1. To fill in estimates for the survey
variables between 1959Q4 and 1982Q4, I use the CBO long-run projections in the case of
real GDP growth and the unemployment rate. In the case of inflation, I use the PTR series
available from the Federal Reserve Board’s website; this series is used in many studies employing
long-run expectations of inflation (e.g., CCK, Tallman and Zaman, 2020). We do not have a
readily available historical source for long-run forecasts for interest rates (and r-star). So I
backcast a particular time series of implied r-star using the CBO’s long-run projections of g-
star. Specifically, I first fit a simple linear regression model over the post-1983 period that
regresses survey r-star on a constant, its lags (2 lags), and a one-period lag “gap,” defined as
the difference between survey r-star and survey g-star. We use the estimated model and the
CBO’s long-run projections of g-star over the sample 1959Q4 through 1982Q4 to backcast the
implied survey r-star estimates. (When backcasting, the initial values of r-star for 1959Q2 and
1959Q3 are assumed to be identical to the CBO’s g-star)

r∗,Survt = c+ β1gap
r∗,g∗,Surv
t−1 + β2r

∗,Surv
t−1 + β3r

∗,Surv
t−2 + ε∗,Survt , ε∗,Survt ∼ N(0, σ2∗,Surv) (24)

where, gapr∗,g∗,Survt = g∗,Survt − r∗,Survt

The OLS estimation yields c = −0.0745; β1 = 0.06; β2 = 1.167; β3 = −0.148

Figure 1 plots the survey g-star and r-star estimates in solid lines, and the CBO’s g-star
and the backcast r-star in dashed lines.

Figure 1: Survey r* and g*
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A5. Bayesian Estimation Details

A5.a. Base model equations

For convenience, I list all model equations keeping the numbering as in the main text.

Ut = U∗
t + U c

t (6)

Ut − U∗
t = ρu1(Ut−1 − U∗

t−1) + ρu2(Ut−2 − U∗
t−2) + ϕuogapt + εut , ε

u
t ∼ N(0, eh

u
t ) (7)

where, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1; ϕu < 0

U∗
t = U∗

t−1 + εu∗t , ε
u∗
t ∼ TN(au − U∗

t−1, bu − U∗
t−1; 0, σ

2
u∗) (8)

Zu
t = Cu

t + βuU∗
t + εzut , ε

zu
t ∼ N(0, σ2zu) (9)

Cu
t = Cu

t−1 + εcut , ε
cu
t ∼ N(0, σ2cu) (10)

gdpt = gdp∗t + ogapt (11)

gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2gdp∗) (12)

g∗t ≡ △gdp∗t
g∗t = g∗t−1 + εgdp∗t (13)

ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rLt − r∗t − tp∗t ) + λg(Ut − U∗
t ) + εogapt (14)

where, εogapt ∼ N(0, eh
o
t ), ρg1 + ρg2 < 1, ρg2 − ρg1 < 1, and |ρg2| < 1; λg < 0

Zg
t = Cg

t + βg ∗ 4 ∗ g∗t + εzgt , ε
zg
t ∼ N(0, σ2zg) (15)

Cg
t = Cg

t−1 + εcgt , ε
cg
t ∼ N(0, σ2cg) (16)

Pt − P ∗
t = ρp(Pt−1 − P ∗

t−1) + λpt (Ut − U∗
t ) + εpt , ε

p
t ∼ N(0, eh

p
t ) (17)

where, |ρp| < 1

λpt = λpt−1 + ελpt , ε
λp
t ∼ N(0, σ2λp) (18)

P ∗
t = P ∗

t−1 + εp∗t , ε
p∗
t ∼ N(0, σ2p∗) (19)

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗
t ) + επt , ε

π
t ∼ N(0, eh

π
t ) (20)

ρπt = ρπt−1 + ερπt , ερπt ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ
2
ρπ) (21)

where, ρπ is truncated so that 0 < ρπt < 1.

λπt = λπt−1 + ελπt , ελπt ∼ TN(−1− λπt−1, 0− λπt−1; 0, σ
2
λπ) (22)

λπ is the slope of the price Phillips curve and is constrained in the interval (-1,0).

π∗t = π∗t−1 + επ∗t , επ∗t ∼ N(0, σ2π∗) (23)

Zπ
t = Cπ

t + βππ∗t + εzπt , εzπt ∼ N(0, σ2zπ) (24)

Cπ
t = Cπ

t−1 + εcπt , ε
cπ
t ∼ N(0, σ2cπ) (25)
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W ∗
t = π∗t + P ∗

t +Wedget + εw∗
t , εw∗

t ∼ N(0, σ2w∗) (26)

Wedget =Wedget−1 + εwlr
t , εwlr

t ∼ N(0, σ2wlr) (27)

Wt −W ∗
t = ρwt (Wt−1 −W ∗

t−1) + λwt (Ut − U∗
t ) + κwt (πt − π∗t ) + εwt , ε

w
t ∼ N(0, eh

w
t ) (28)

ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ
2
ρw) (29)

λwt = λwt−1 + ελwt , ελwt ∼ TN(−1− λwt−1, 0− λwt−1; 0, σ
2
λw) (30)

λw is the slope of the wage Phillips curve and is constrained in the interval (-1,0).

κwt = κwt−1 + εκwt , εκwt ∼ N(0, σ2κw) (31)

it − π∗t − r∗t = ρi(it−1 − π∗t−1 − r∗t−1) + λi(Ut − U∗
t ) + κi(πt − π∗t ) + εit, ε

i
t ∼ N(0, eh

i
t) (32)

where, ρi is truncated so that 0 < ρi < 1.

r∗t = ζg∗t +Dt. (33)

Dt = Dt−1 + εdt , ε
d
t ∼ N(0, σ2d) (34)

Zr
t = Cr

t + βrr∗t + εzrt , ε
zr
t ∼ N(0, σ2zr) (35)

Cr
t = Cr

t−1 + εcrt , ε
cr
t ∼ N(0, σ2cr) (36)

hidt = hidt−1 + εjt , ε
j
t ∼ N(0, σ2j ) (37)

where id = {u, ogap, p, π, w, i}, and j = {hu, ho, hp, hπ, hw, hi}
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A5.b. Prior elicitation

The prior settings are similar to those used in Chan, Koop, and Potter (2016) [CKP], Chan,
Clark, and Koop (2018) [CCK], and Gonzalez-Astudillo and Laforte (2020). As discussed in
CCK, UC models with several unobserved variables, such as the one developed in this paper,
require informative priors. That said, our priors settings for most variables are only slightly
informative. The use of inequality restrictions on some parameters such as the Phillips curve,
persistence, bounds on u-star could be viewed as additional sources of information that elimi-
nates the need for tight priors, something also noted by CKP. The parameters for which there
is a strong agreement in the empirical literature on their values, such as the Taylor-rule equa-
tion parameters, I use relatively tight priors, such that prior distributions are centered on prior
means with small variance.

In the table below, the notation N(a, b) denotes Normal distribution with mean a, and
variance b; and IG(ν, S) denotes Inverse Gamma distribution with degrees of freedom parameter
ν, and scale parameter S.

Table 1: Prior settings

Parameter Parameter Description Prior

ar Coefficient on interest-rate gap in output gap equation N(0, 1)
ρg1 Persistence in output gap: lag 1 N(1.3, 0.12)
ρg2 Persistence in output gap: lag 2 N(−0.5, 0.12)
ρu1 Persistence in UR gap: lag 1 N(1.3, 0.12)
ρu2 Persistence in UR gap: lag 2 N(−0.5, 0.12)
ρp Persistence in productivity gap N(0.1, 1)
ζ Relationship between r* and g* N(1, 0.1)
ρi Persistence in interest-rate gap N(0.85, 0.12)
λi Interest rate sensitivity to UR gap: (−2 ∗ (1− ρi)) N(−0.3, 0.12)
κi Interest rate sensitivity to inflation: (0.5 ∗ (1− ρi)) N(0.075, 0.12)
λg Output gap response to UR gap N(−0.02, 1)
ϕu UR gap response to Output gap N(−0.02, 1)
βg Link between g* and survey N(1, 0.12)
βu Link between u* and survey N(1, 0.052)
βr Link between r* and survey N(1, 0.12)
βπ Link between π∗ and survey N(1, 0.052)
σ2π∗ Var. of the shocks to π∗ IG(10, 0.12 × 9)
σ2p∗ Var. of the shocks to p∗ IG(10, 0.1422 × 9)

σ2u∗ Var. of the shocks to u∗ IG(10, 0.12 × 9)
σ2gdp∗ Var. of the shocks to gdp∗ IG(10, 0.012 × 9)

σ2d Var. of the shocks to d IG(10, 0.12 × 9)
σ2w∗ Var. of the shocks to w∗ IG(10, 0.032 × 9)
σ2ho Var. of the volatility – Ogap eq. IG(10, 0.7072 × 9)
σ2hu Var. of the volatility – UR gap eq. IG(10, 0.7072 × 9)
σ2hp Var. of the volatility – Productivity eq. IG(10, 0.3162 × 9)

σ2h Var. of the volatility – Price Inf. eq. IG(10, 0.3162 × 9)
σ2hw Var. of the volatility – Wage Inf. eq. IG(10, 0.3162 × 9)

Continued on next page
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Table 1 – continued from previous page

Parameter Parameter Description Prior

σ2hi Var. of the volatility – Interest rate eq. IG(10, 0.3162 × 9)
σ2λπ Var. of the shocks to TVP λπ, Price Phillips curve IG(10, 0.042 × 9)
σ2λw Var. of the shocks to TVP λw, Wage Phillips curve IG(10, 0.042 × 9)
σ2λp Var. of the shocks to TVP λp, Cyc. Productivity IG(10, 0.042 × 9)

σ2κw Var. of the shocks to TVP κw, PT: π to Wages IG(10, 0.042 × 9)
σ2ρw Var. of the shocks to TVP ρw, Persist. Wage-gap IG(10, 0.042 × 9)

σ2ρπ Var. of the shocks to TVP ρπ, Persist. Inflation-gap IG(10, 0.042 × 9)

Cπ
0 Time-varying Intercept in eq. linking survey to pi-star N(0, 0.1)

Cu
0 Time-varying Intercept in eq. linking survey to u-star N(0, 0.1)

Cg
0 Time-varying Intercept in eq. linking survey to g-star N(0, 0.1)

Cr
0 Time-varying Intercept in eq. linking survey to r-star N(0, 0.1)

σ2cπ Var. of the shocks to TVP Cπ IG(10, 0.12 × 9)
σ2cu Var. of the shocks to TVP Cu IG(10, 0.12 × 9)
σ2cg Var. of the shocks to TVP Cg IG(10, 0.12 × 9)

σ2cr Var. of the shocks to TVP Cr IG(10, 0.12 × 9)
σ2wlr Var. of the shocks to TVP Wedge IG(10, 0.12 × 9)
σ2zπ Var. of the shocks in measurement eq. Zπ, IG(10, 0.2× 9)
σ2zu Var. of the shocks in measurement eq. Zu, IG(10, 0.3× 9)
σ2zg Var. of the shocks in measurement eq. Zg, IG(10, 0.1× 9)

σ2zr Var. of the shocks in measurement eq. Zr, IG(10, 0.2× 9)
π∗0 Initial value of pi-star N(3, 52)
u∗0 Initial value of u-star, t = 0 N(5, 52)
u∗−1 Initial value of u-star, t = −1 N(5, 52)
p∗0 Initial value of p-star N(3, 52)
w∗
0 Initial value of w-star, E(p∗0) + E(π∗0) = 6 N(6, 52)

D0 Initial value of D, ”catch-all” component of r-star N(0, 0.31622)
gdp∗0 Initial value of gdp-star, t = 0 N(750, 102)
gdp∗−1 Initial value of gdp-star, t = −1 N(750, 102)
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A5.c. MCMC algorithm

The estimation of my complex UC model and sampling from its joint posterior distribution
reduces to sequentially drawing from a set of conditional posterior densities, some of which are
standard and some that are non-standard.

Collect all the time-invariant model parameters into θ:
θ = (ρu1 , ρ

u
2 , σ

2
hu, ϕu, σ

2
u∗, β

u, σ2zu, σ
2
cu, σ

2
gdp∗, ρ

g
1, ρ

g
2, a

r, λg, σ2ho, σ
2
zg, σ

2
cg, β

g, ρp, σ2hp, σ
2
p∗, σ

2
λπ, ...

σ2ρπ, σ
2
hπ, σ

2
π∗, σ

2
zπ, σ

2
cπ, β

π, σ2w∗, σ
2
hw, σ

2
ρw, σ

2
λw, σ

2
κw, ρ

i, λi, κi, σ2hi, σ
2
zr, σ

2
cr, σ

2
wlr, β

r, σ2d)

We denote • as representing all other model parameters.
1. p(U∗|Y, •) 2. p(gdp∗|Y, •) 3. p(P ∗|Y, •) 4. p(π∗|Y, •) 5. p(w∗|Y, •) 6. p(r∗|Y, •)
7. p(λp|Y, •) 8. p(ρπ|Y, •) 9. p(λπ|Y, •) 10. p(ρw|Y, •) 11. p(λw|Y, •) 12. p(κw|Y, •)
13. p(hp, hπ, hw, hi|Y, •) 14. p(Cu, Cg, Cπ, Cr,Wedge|Y, •) 15. p(D|Y, •) 16. p(θ|Y, •)

Step 1. Derive the conditional distribution p(U∗|Y, •)

The derivation of this distribution is most complex because the information about U∗ comes
from eight sources (i.e., model equations). Below, I derive an expression for each of the eight
sources.

The first source is the state equation of U∗. We rewrite it in a matrix notation as follows,

HU∗ = αu + εu∗ εu∗ ∼ N(0,Ωu∗), where Ωu∗ = diag(ω2
u∗, σ

2
u∗, ..., σ

2
u∗) (38)

where,

αu =


U∗
0

0
0
...
0

 , H =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1


That is, the prior density for U∗ is given by

p(U∗|σ2U∗) ∝ −1
2(U

∗ −H−1αu)
′
H

′
Ω−1
u∗H(U∗ −H−1αu) + gu∗(U

∗, σ2u∗)

where,
au < U∗ < bu for t = 1, ..., T , and

gu∗(U
∗, σ2u∗) = −log

(
Φ

(
bu
ωu∗

)
− Φ

(
au
ωu∗

))
−

T∑
t=2

log

(
Φ

(
bu − U∗

t−1

σu∗

)
− Φ

(
au − U∗

t−1

σu∗

))

The second source of information comes from the unemployment measurement equation. Rewrite
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the equation in a matrix notation,

KuU = µu +KuU
∗ + εu εu ∼ N(0,Ωu), where Ωu = diag(eh

u
1 , eh

u
2 , ..., eh

u
T ) (39)

and,

µu =


ρu1(U0 − U∗

0 ) + ρu2(U−1 − U∗
−1)

ρu2(U0 − U∗
0 )

0
...
0

 , Ku =


1 0 0 · · · 0

−ρu1 1 0 · · · 0
−ρu2 −ρu1 1 · · · 0
...

. . .
...

0 · · · −ρu2 −ρu1 1


Ignoring any terms not involving U∗, I have

log p(U |U∗, •) ∝ −1
2(U −K−1

u µu − U∗)′K
′
uΩ

−1
u Ku(U −K−1

u µu − U∗)

The third source of information comes from the inflation measurement equation. Rewrite the
equation in a matrix notation,

Z = ΛπU∗ + επ επ ∼ N(0,Ωπ), where Ωπ = diag(eh
π
1 , eh

π
2 , ..., eh

π
T ) (40)

where,

zt = (πt − π∗t )− ρπt (πt−1 − π∗t−1)− λπt Ut,

Z = (z1, ..., zT )
′ and Λπ = diag(−λπ1 , ...,−λπT )

Ignoring any terms not involving U∗, we have

log p(π|U∗, U, π∗, hπ, ρp, •) ∝ −1
2(Z − ΛπU∗)′Ω−1

π (Z − ΛπU∗)

The fourth source of information comes from the productivity measurement equation. Rewrite
the equation in a matrix notation,

MP = ΛPU∗ + εP εP ∼ N(0,ΩP ), where ΩP = diag(eh
p
1 , eh

p
2 , ..., eh

p
T ) (41)

where,

mt = (Pt − P ∗
t )− ρP (Pt−1 − P ∗

t−1)− λPt Ut,

MP = (m1, ...,mT )
′ and ΛP = diag(−λP1 , ...,−λPT )

Ignoring any terms not involving U∗, we have

log p(P |U∗, U, P ∗, hp, ρp, •) ∝ −1
2(M

P − ΛPU∗)′Ω−1
P (MP − ΛPU∗)
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The fifth source of information comes from the wage measurement equation. Rewrite the
equation in a matrix notation,

Mw = ΛwU∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh
w
1 , eh

w
2 , ..., eh

w
T ) (42)

where,

mw
t = (Wt −W ∗

t )− ρWt (Wt−1 −W ∗
t−1)− λWt Ut − κWt (πt − π∗t ),

Mw = (mw
1 , ...,m

w
T )

′ and Λw = diag(−λW1 , ...,−λWT )

Ignoring any terms not involving U∗, we have

log p(W |U∗,W,W ∗, hw, ρW , •) ∝ −1
2(M

w − ΛwU∗)′Ω−1
w (Mw − ΛwU∗)

The sixth source of information comes from the output gap measurement equation. Rewrite
the equation in a matrix notation,

Mg = ΛgU∗ + εg εg ∼ N(0,Ωogap), where Ωogap = diag(eh
o
1 , eh

o
2 , ..., eh

o
T ) (43)

where,

mg
t = ogapt − ρg1(ogapt−1)− ρg2(ogapt−2)− λgUt − ar(rt − r∗t ),

Mg = (mg
1, ...,m

g
T )

′ and Λg = diag(−λg, ...,−λg)

Ignoring any terms not involving U∗, we have

log p(ogap|U∗, U, •) ∝ −1
2(M

g − ΛgU∗)′Ω−1
ogap(M

g − ΛgU∗)

The seventh source of information comes from the Taylor-type rule measurement equation.
Rewrite the equation in a matrix notation,

Mui = ΓuiU∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh
i
1 , eh

i
2 , ..., eh

i
T ) (44)

where,

mui
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− κi(πt − π∗t )− λiUt,

Mui = (mui
1 , ...,m

ui
T )′ and Γui = diag(−λi, ...,−λi)

Ignoring any terms not involving U∗, we have

log p(i|U∗, U, π, •) ∝ −1
2(M

ui − ΓuiU∗)′Ω−1
i (Mui − ΓuiU∗)

The eighth source of information comes from the measurement equation that links surveys
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to U∗. Rewrite the equation in a matrix notation,

F u = βuU∗ + εzu εzu ∼ N(0,Ωzu), where Ωzu = diag(σ2zu, ..., σ
2
zu) (45)

where,

fut = Zu
t − Cu

t ,

F u = (fu1 , ..., f
u
T )

′

Ignoring any terms not involving U∗, we have

log p(Zu|U∗, U, π, •) ∝ −1
2(F

u − βuU∗)′Ω−1
zu (F

u − βuU∗)

Combining the above eight conditional densities we obtain,

log p(U∗|Y, •) ∝ −1
2(U

∗ − Û∗)
′
D−1

U∗(U
∗ − Û∗) + gu∗(U

∗, σ2u∗)

where,
DU∗ = (H ′Ω−1

U∗H + K
′
uΩ

−1
u Ku + Λπ′

Ω−1
π Λπ + Λw′

Ω−1
w Λw + Λg′Ω−1

ogapΛ
g + Γui′Ω−1

i Γui +

ΛP ′
Ω−1
P ΛP + (βu)2Ω−1

zu )
−1

Û∗ = DU∗(H
′Ω−1

U∗αu +K
′
uΩ

−1
u Ku(U −K−1

u µu) + Λπ′
Ω−1
π Z +Λw′

Mw +Λw +Λg′Ω−1
ogapM

g +

Γui′Ω−1
i Mui + ΛP ′

Ω−1
P MP + βuΩ−1

zu F
u)

The addition of the term gu∗(U
∗, σ2u∗) leads to a non-standard density. Accordingly, I sam-

ple U∗ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(Û∗, DU∗) using the precision-based algorithm (of Chan
and Jeliazkov, 2009) that are then accepted or rejected based on the accept-reject Metropolis-
Hastings (ARMH) algorithm (discussed in Chan and Strachan, 2012).

Step 2. Derive the conditional distribution p(gdp∗|Y, •)

The information about gdp∗ comes from five sources. Below, I derive an expression for each of
these sources.

The first source is the state equation of gdp∗. We rewrite it in a matrix notation as follows,

H2gdp
∗ = αgdp∗ + εgdp∗ εgdp∗ ∼ N(0,Ωgdp∗), where Ωgdp∗ = diag(ω2

gdp∗, σ
2
gdp∗, ..., σ

2
gdp∗)
(46)

where,
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αgdp∗ =


gdp∗0 +△gdp∗0

−gdp∗0
0
...
0

 , H2 =



1 0 0 0 · · · 0
−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
...

0 · · · 0 1 −2 1


H2 is a band matrix with unit determinant and hence is invertible.

The prior density for gdp∗ is given by

p(gdp∗|σ2gdp∗) ∝ −1
2(gdp

∗ −H−1
2 αgdp∗)

′
H

′
2Ω

−1
gdp∗H2(gdp

∗ −H−1
2 αgdp∗)

The second source of information about gdp∗ is from the output gap measurement equation.
Rewrite in matrix form,

Hrhoggdp = Hrhoggdp
∗+arr̃+λgũ+αgmore+ε

ogap εogap ∼ N(0,Ωogap), where Ωogap = diag(eh
o
1 , eh

o
2 , ..., eh

o
T )

(47)

where,

αgmore =


ρg1(gdp0 − gdp∗0) + ρg2(gdp−1 − gdp∗−1)

ρg2(gdp0 − gdp∗0)
0
...
0

 , Hrhog =



1 0 0 0 · · · 0
−ρg1 1 0 0 · · · 0
−ρg2 −ρg1 1 0 · · · 0
0 −ρg2 −ρg1 1 · · · 0
...

. . .
. . .

. . .
. . . 0

0 · · · 0 −ρg2 −ρg1 1


,

r̃ =


r1 − r∗1
r2 − r∗2
r3 − r∗3

...
rT − r∗T

 ũ =


U1 − U∗

1

U2 − U∗
2

U3 − U∗
3

...
UT − U∗

T



log p(gdp|gdp∗, •) ∝ −1
2(gdp−H

−1
rhog(Hrhoggdp

∗+arr̃+λgũ+αgmore))
′H

′
rhogΩ

−1
ogapHrhog(gdp−

H−1
rhog(Hrhoggdp

∗ + arr̃ + λgũ+ αgmore))

The third source of information comes from the unemployment gap measurement equation.
Rewrite that equation in matrix notation,

Y ugdp = Γugdp∗ + εu εu ∼ N(0,Ωu), where Ωu = diag(eh
u
1 , eh

u
2 , ..., eh

u
T ) (48)

where,

yugdpt = ũt − ρu1 ˜ut−1 − ρu2 ˜ut−2 − ϕugdp, where ũt = (Ut − U∗
t )
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Y ugdp = (yugdp1 , ..., yugdpT )′

Ignoring any terms not involving gdp∗, we have

log p(U |gdp∗, •) ∝ −1
2(Y

ugdp − Γugdp∗)′Ω−1
u (Y ugdp − Γugdp∗)

The fourth source of information comes from the equation linking r-star to g-star, i.e.,

r∗t = ζ(gdp∗t − gdp∗t−1) +Dt (49)

Rewrite this equation in matrix notation,

r∗ = ζHgdp∗ + αgr +D (50)

where,

αgr = (−ζgdp∗0, 0, 0, ...., 0)′

Ignoring any terms not involving gdp∗, we have

log p(r∗|gdp∗, D, •) ∝ −1
2(r

∗ − (ζHgdp∗ + αgr +D))′(r∗ − (ζHgdp∗ + αgr +D))

The fifth source of information comes from the measurement equation that links surveys to
g∗. Rewrite the equation in a matrix notation,

F g = βg(Hgdp∗ − αg) + εzg εzg ∼ N(0,Ωzg), where Ωzg = diag(σ2zg, ..., σ
2
zg) (51)

where,

fgt = Zg
t − Cg

t , F
g = (fg1 , ..., f

g
T )

′

αg = (gdp∗0, 0, 0, ...., 0)
′ is a T × 1 vector.

Ignoring any terms not involving gdp∗, we have

log p(Zg|gdp∗, •) ∝ −1
2(F

g − βg(Hgdp∗ − αg))
′Ω−1

zg (F
g − βg(Hgdp∗ − αg))

Combining the above five conditional densities we obtain,

log p(gdp∗|Y, •) ∝ −1
2(gdp

∗ − ˆgdp
∗
)
′
D−1

gdp∗(gdp
∗ − ˆgdp

∗
)

where,
Dgdp∗ = (H

′
2Ω

−1
gdp∗H2 +H

′
rhogΩ

−1
ogapHrhog + Γu′

Ω−1
u Γu + (ζH)

′
(ζH) + βgH ′Ω−1

zg β
gH)−1

ˆgdp
∗
= Dgdp∗(H

′
2Ω

−1
gdp∗H2αgdp∗+H

′
rhogΩ

−1
ogap(Hrhoggdp−arr̃−λgũ−αgmore)+Γu′

Ω−1
u Y ugdp+

(ζH)
′
(r∗ − αgr +D) + βgH ′Ω−1

zg F
g)
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Step 3. Derive the conditional distribution p(P ∗|Y, •)

First, rewrite the productivity measurement eq. as

KpP = µp +KpP
∗ + εP εP ∼ N(0,ΩP ), where ΩP = diag(eh

p
1 , eh

p
2 , ..., eh

p
T ) (52)

µp =


ρP1 (P0 − P ∗

0 ) + λP1 (U1 − U∗
1 )

λP2 (U2 − U∗
2 )

λP3 (U3 − U∗
3 )

...
λPT (UT − U∗

T )

 , KP =


1 0 0 · · · 0

−ρP2 1 0 · · · 0
0 −ρP3 1 · · · 0
...

. . .
...

0 0 · · · −ρPT 1

 , P ∗ =


P ∗
1

P ∗
2

P ∗
3
...
P ∗
T


Since | KP |= 1 for any ρP , KP is invertible. Therefore, the likelihood is

p(P |P ∗, U, •) ∼ N(K−1
P µP + P ∗, (K

′
PΩ

−1
P KP )

−1)

i.e.,

log p(P |U, •) ∝ −1
2 ιTh

P − 1
2(P −K−1

P µP − P ∗)
′
K

′
PΩ

−1
P KP (P −K−1

P µP − P ∗),

where ιT is a T × 1 column of ones.

Similarly, rewrite the state equation for P ∗ as

HP ∗ = αp + εP∗ εP∗ ∼ N(0,ΩP∗), where ΩP∗ = diag(ω2
P∗, σ

2
P∗, ..., σ

2
P∗) (53)

where,

αp =


P ∗
0

0
0
...
0

 , KP =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1


That is, the prior density for P ∗ is given by

p(P ∗|σ2P∗) ∝ −1
2(P

∗ −H−1αp)
′
H

′
Ω−1
P∗H(P ∗ −H−1αp)

Now account for the third source of information about P* in the equation W ∗ = P ∗ + π∗ +
Wedge+ εw∗,

p(P ∗|W ∗, π∗, σ2W∗) ∝ −1
2(P

∗ − (W ∗ − π∗ −Wedge))
′
Ω−1
W∗(P

∗ − (W ∗ − π∗ −Wedge))
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where,

ΩW∗ = diag(σ2W∗, σ
2
W∗, ..., σ

2
W∗), W

∗ = (W ∗
1 , ...,W

∗
T )

′, π∗ = (π∗1, ..., π
∗
T )

′, Wedge = (Wedge1, ...,WedgeT )
′

Combining the above three conditional densities we obtain,

log p(P ∗|Y, •) ∝ −1
2(P

∗ − P̂ ∗)
′
D−1

P∗(P
∗ − P̂ ∗)

where,
DP∗ = (H

′
Ω−1
P∗H +K

′
PΩ

−1
P KP +Ω−1

W∗)
−1

P̂ ∗ = DP∗(H
−1Ω−1

P∗αp +K
′
PΩ

−1
P KP (P −K−1

P µP ) + Ω−1
W∗(W

∗ − π∗))

The candidate draws are sampled from N(P̂ ∗, DP∗) using the precision-based algorithm.

Step 4. Derive the conditional distribution p(π∗|Y, •)

The information about π∗ comes from six sources. Below, I derive an expression for each of
these sources.

The first source is the inflation measurement equation. Rewrite it in a matrix notation as,

Kππ = µπ +Kππ
∗ + επ επ ∼ N(0,Ωπ), where Ωπ = diag(eh

π
1 , eh

π
2 , ..., eh

π
T ) (54)

where,

µπ =


ρπ1 (π0 − π∗0) + λπ1 (U1 − U∗

1 )
λπ2 (U2 − U∗

2 )
λπ3 (U3 − U∗

3 )
...

λπT (UT − U∗
T )

 , Kπ =


1 0 0 · · · 0

−ρπ2 1 0 · · · 0
0 −ρπ3 1 · · · 0
...

. . .
...

0 0 · · · −ρπT 1


Since | Kπ |= 1 for any ρπ, Kπ is invertible. Therefore, the likelihood is

log p(π|U,U∗, •) ∝ −1
2 ιTh

π − 1
2(π − (K−1

π µπ + π∗))′K
′
πΩ

−1
π Kπ(π − (K−1

π µπ + π∗))

The second source of information is from the state equation of π∗. Rewrite it in a matrix
notation,

Hπ∗ = απ + επ∗ επ∗ ∼ N(0,Ωπ∗), where Ωπ∗ = diag(ω2
π∗, σ

2
π∗, ..., σ

2
π∗) (55)
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where,

απ =


π∗0
0
0
...
0


That is, the prior density for π∗ is given by

p(π∗|σ2π∗) ∝ −1
2(π

∗ −H−1απ)
′
H

′
Ω−1
π∗H(π∗ −H−1απ)

Now account for the third source of information about π∗ in the equation W ∗ = P ∗ + π∗ +
Wedge+ εw∗,

p(π∗|W ∗, P ∗, σ2W∗) ∝ −1
2(π

∗ − (W ∗ − P ∗ −Wedge))
′
Ω−1
W∗(π

∗ − (W ∗ − P ∗ −Wedge))

where,

ΩW∗ = diag(σ2W∗, σ
2
W∗, ..., σ

2
W∗), W

∗ = (W ∗
1 , ...,W

∗
T )

′, P ∗ = (P ∗
1 , ..., P

∗
T )

′, Wedge = (Wedge1, ...,WedgeT )
′

The fourth source of information is from the wage measurement equation. Rewrite in ma-
trix notation,

Mwπ = Xwππ
∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh

w
1 , eh

w
2 , ..., eh

w
T ) (56)

where,

mwπ
t = wt − w∗

t − ρwt (wt−1 − w∗
t−1)− λwt (Ut − U∗

t )− κwt πt
Mwπ = (mwπ

1 ,mwπ
2 , ...,mwπ

T )

Xwπ =


−κw1 0 0 · · · 0
0 −κw2 0 · · · 0
0 0 −κw3 · · · 0
...

. . .
...

0 0 · · · 0 −κwT



log p(W |π∗, •) ∝ −1
2(M

wπ −Xwππ
∗)′Ω−1

w ((Mwπ −Xwππ
∗)

The fifth source is the Taylor-rule equation. Rewrite the equation in the matrix notation,

Mπi = απi + (Kπi + Γπ)π
∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh

i
1 , eh

i
2 , ..., eh

i
T ) (57)
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where,

mπi
t = it − ρiit−1 − r∗t + ρir∗t−1 − λi(Ut − U∗

t )− κiπt
Mπi = (mπi

1 ,m
πi
2 , ...,m

πi
T )′

Kπi =


1 0 0 · · · 0

−ρi 1 0 · · · 0
0 −ρi 1 · · · 0
...

. . .
...

0 0 · · · −ρi 1

 , Γπ =


−κi 0 0 · · · 0
0 −κi 0 · · · 0
0 0 −κi · · · 0
...

. . .
...

0 0 · · · 0 −κi

 , απi =


−ρiπ∗0

0
0
...
0


log p(i|π∗, π, •) ∝ −1

2(M
πi − (απi + (Kπi + Γπ)π

∗))′Ω−1
i (Mπi − (απi + (Kπi + Γπ)π

∗))

The sixth source of information comes from the measurement equation that links surveys to π∗.
Rewrite the equation in a matrix notation,

F π = βππ∗ + εzπ εzπ ∼ N(0,Ωzπ), where Ωzπ = diag(σ2zπ, ..., σ
2
zπ) (58)

where,

fπt = Zπ
t − Cπ

t ,

F π = (fπ1 , ..., f
π
T )

′

Ignoring any terms not involving π∗, we have

log p(Zπ|π∗, π, •) ∝ −1
2(F

π − βππ∗)′Ω−1
zπ (F

π − βππ∗)

Combining the above six conditional densities we obtain,

log p(π∗|Y, •) ∝ −1
2(π

∗ − π̂∗)
′
D−1

π∗ (π
∗ − π̂∗)

where,
Dπ∗ = (H ′Ω−1

π∗H + K
′
πΩ

−1
π Kπ + Ω−1

w∗ + X
′
wπΩ

−1
w Xwπ + (K

′
πi + Γπ)

′
)Ω−1

i (K
′
πi + Γπ)

′
+

(βπ)2Ω−1
zr )

−1

π̂∗ = Dπ∗(H ′Ω−1
π∗ απ + K

′
πΩ

−1
π Kπ(π − K−1

π µπ) + Ω−1
w∗(W ∗ − P ∗) + X

′
wπΩ

−1
w Mwπ + (K

′
πi +

Γπ)
′
Ω−1
i (Mπi − απi) + βπΩ−1

zr F
π)

The candidate draws are sampled from N(π̂∗, Dπ∗) using the precision-based algorithm.

Step 5. Derive the conditional distribution p(w∗|Y, •)
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The information about w∗ comes from two sources. Below, I derive an expression for each
of these sources.

The first source is the nominal wage measurement equation. Rewrite it in a matrix notation as,

KwW = µw +KwW
∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh

w
1 , eh

w
2 , ..., eh

w
T ) (59)

where,

µw =


ρw1 (W0 −W ∗

0 ) + λw1 (U1 − U∗
1 ) + κw1 (π1 − π∗1)

λw2 (U2 − U∗
2 ) + κw2 (π2 − π∗2)

λw3 (U3 − U∗
3 ) + κw3 (π3 − π∗3)

...
λwT (UT − U∗

T ) + κwT (πT − π∗T )

 , Kw =


1 0 0 · · · 0

−ρw2 1 0 · · · 0
0 −ρw3 1 · · · 0
...

. . .
...

0 0 · · · −ρwT 1


Since | Kw |= 1 for any ρw, Kw is invertible. Therefore, the likelihood is

Ignoring any terms not involving w∗,

log p(W |W ∗, •) ∝ −1
2 ιTh

w − 1
2(W − (K−1

w µw +W ∗))′K
′
wΩ

−1
w Kw(W − (K−1

w µw +W ∗))

The second source is the state equation of W ∗, which describes W ∗ as the sum of P ∗ and
π∗. This equation can be thought of as describing the prior density for W ∗. Rewrite it in a
matrix form.

W ∗ = P ∗ + π∗ +Wedge+ εw∗ εw∗ ∼ N(0,Ωw∗) (60)

p(W ∗|P ∗, π∗, σ2w∗) ∝ −1
2(W

∗ − (P ∗ + π∗ +Wedge))
′
Ω−1
w∗(W

∗ − (P ∗ + π∗ +Wedge))

Combining the above two conditional densities we obtain,

log p(W ∗|Y, •) ∝ −1
2(W

∗ − Ŵ ∗)
′
D−1

W∗(W
∗ − Ŵ ∗)

where,

DW∗ = (K
′
wΩ

−1
w Kw +Ω−1

W∗)
−1

Ŵ ∗ = DW∗(K
′
wΩ

−1
w (KwW − µw) + Ω−1

w∗(P
∗ + π∗))

The candidate draws are sampled from N(Ŵ ∗, DW∗) using the precision-based algorithm.

Step 6. Derive the conditional distribution p(r∗|Y, •)
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The information about r∗ comes from four sources. Below, I derive an expression for each
of these sources.

The first source is the output gap measurement equation. We rewrite it in a matrix nota-
tion as follows,

Hrhogogap = αogap − arr∗ + εogap εogap ∼ N(0,Ωogap) (61)

where,

αogap =


ρg1(ogap0) + ρg2(ogap−1) + arr1 + λg(U1 − U∗

1 )
ρg2(ogap0) + arr2 + λg(U2 − U∗

2 )
arr3 + λg(U3 − U∗

3 )
...

arrT + λg(UT − U∗
T )


Ignoring any terms not involving r∗, we have
log p(ogap|r∗, •) ∝ −1

2(ogap−H
−1
rhog(αogap−arr∗))′H

′
rhogΩ

−1
ogapHrhog(ogap−H−1

rhog(αogap−arr∗))

The second source is the state equation linking r∗ to g∗. We rewrite it in a matrix notation as
follows,

r∗ = ζ△gdp∗ +H−1εd εd ∼ N(0,Ωd), where Ωd = diag(ω2
d, σ

2
d, ..., σ

2
d) (62)

Ignoring any terms not involving r∗, the prior density for r∗ is given by
log p(r∗|gdp∗, σ2d, •) ∝ −1

2(r
∗ − ζ△gdp∗)′H ′Ω−1

d H(r∗ − ζ△gdp∗)

The third source is the Taylor-type rule equation. We rewrite it in a matrix notation as follows,

M ri = αri +Kπir
∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh

i
1 , eh

i
2 , ..., eh

i
T ) (63)

where,

mri
t = it − ρiit−1 − π∗t + ρiπ∗t−1 − λi(Ut − U∗

t )− κi(πt − π∗t ),

M ri = (mri
1 ,m

ri
2 , ...,m

ri
T )

′

αri =


−ρir∗0

0
0
...
0

 , Kπi =


1 0 0 · · · 0

−ρi 1 0 · · · 0
0 −ρi 1 · · · 0
...

. . .
...

0 0 · · · −ρi 1


Ignoring any terms not involving r∗, we have
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log p(i|r∗, •) ∝ −1
2 ιTh

i − 1
2(M

ri − (αri +Kπir
∗))′Ω−1

i (M ri − (αri +Kπir
∗))

The fourth source of information comes from the measurement equation that links surveys
to r∗. Rewrite the equation in a matrix notation,

F r = βrr∗ + εzr εzr ∼ N(0,Ωzr), where Ωzr = diag(σ2zr, ..., σ
2
zr) (64)

where,

f rt = Zr
t − Cr

t ,

F r = (f r1 , ..., f
r
T )

′

Ignoring any terms not involving r∗, we have

log p(Zr|r∗, •) ∝ −1
2(F

r − βrr∗)′Ω−1
zr (F

r − βrr∗)

Combining the above four conditional densities we obtain,

log p(r∗|Y, •) ∝ −1
2(r

∗ − r̂∗)
′
D−1

r∗ (r
∗ − r̂∗)

where,
Dr∗ = ((−ar)2Ω−1

ogap +H
′
Ω−1
d H +K

′
πiΩ

−1
i Kπi + (βr)(2)Ω−1

zr )
−1

r̂∗ = Dr∗(−arΩ−1
ogap(Hrhogogap−αogap)+H

′
Ω−1
d Hζ△gdp∗+K ′

πiΩ
−1
i (M ri−αri)+β

rΩ−1
zr F

r)

The candidate draws are sampled from N(r̂∗, Dr∗) using the precision-based algorithm.

Step 7. Derive the conditional distribution p(λp|Y, •)

The information about λp comes from two sources. Below, I derive an expression for each
of these two sources.

The first source is the productivity measurement equation. Rewrite it in a matrix notation,

B = Xuλ
p + εp εp ∼ N(0,Ωp) (65)

where,

B = (p̃1 − ρpp̃0, ..., p̃T − ρpp̃T−1)
p̃t = pt − p∗t
ũt = Ut − U∗

t

Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λp, the likelihood is
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log p(p|λp, •) ∝ −1
2(B −Xuλ

p)′Ω−1
p (B −Xuλ

p)

The second source of information comes from the state equation for λp. We rewrite it in a
matrix notation as follows,

Hλp = ελp ελp ∼ N(0,Ωλp), where Ωλp = diag(ω2
λp, σ

2
λp, ..., σ

2
λp) (66)

Ignoring any terms not involving λp, the prior density for λp is given by

log p(λp|σ2λp,Ωλp) ∝ −1
2(λ

p)′H ′Ω−1
λpH(λp)

Combining the above two conditional densities we obtain,

log p(λp|Y, •) ∝ −1
2(λ

p − λ̂p)
′
D−1

λp (λp − λ̂p)

where,
Dλp = (H ′Ω−1

λpH +X ′
uΩ

−1
p Xu)

−1

λ̂p = Dλp(X ′
uΩ

−1
p B)

The candidate draws are sampled from N(λ̂p, Dλp) using the precision-based algorithm.

Step 8. Derive the conditional distribution p(ρπ|Y, •)

The information about ρπ comes from two sources. Below, I derive an expression for each
of these two sources.

First, I define some notation,

π̃t = πt − π∗t
ũt = Ut − U∗

t

Π̃ = (π̃1, ..., π̃T )
′

ũ = (ũ1, ..., ũT )
′

The first source is the price inflation measurement equation. Rewrite it in a matrix notation,

Π̃ + Λũ = Xπρ
π + επ επ ∼ N(0,Ωπ) (67)

where,

Xπ = diag(π̃0, ..., π̃T−1)
Λ = diag(−λπ1 , ...,−λπT )

Ignoring any terms not involving ρπ, the likelihood is
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log p(π|ρπ, •) ∝ −1
2(Π̃− (Xπρ

π − Λũ))′Ω−1
π (Π̃− (Xπρ

π − Λũ))

The second source comes from the state equation for ρπ. We rewrite it in a matrix notation as
follows,

Hρπ = ερπ ερπ ∼ N(0,Ωρπ), where Ωρπ = diag(ω2
ρπ, σ

2
ρπ, ..., σ

2
ρπ) (68)

0 < ρπt < 1 for t=1,....,T

Ignoring any terms not involving ρπ, the prior density for ρπ is given by

log p(ρπ|σ2ρπ,Ωρπ) ∝ −1
2(ρ

π)′H ′Ω−1
ρπH(ρπ) + gρπ(ρ

π, σ2ρπ)

where,

gρπ(ρ
π, σ2ρπ) = −

T∑
t=2

log

(
Φ

(
1− ρπt−1

σρπ

)
− Φ

(
0− ρπt−1

σρπ

))
Combining the above two conditional densities we obtain,

log p(ρπ|Y, •) ∝ −1
2(ρ

π − ρ̂π)
′
D−1

ρπ (ρ
π − ρ̂π) + gρπ(ρ

π, σ2ρπ)

where,
Dρπ = (H ′Ω−1

ρπH +X ′
πΩ

−1
π Xπ)

−1

ρ̂π = Dρπ(X
′
πΩ

−1
π (Π̃ + Λũ))

The addition of the term gρπ(ρ
π, σ2ρπ) leads to a non-standard density. Accordingly, I sam-

ple ρπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(ρ̂π, Dρπ) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).

Step 9. Derive the conditional distribution p(λπ|Y, •)

The information about λπ comes from two sources. Below, I derive an expression for each
of these two sources.

First, I define some notation,

π̃t = πt − π∗t
ũt = Ut − U∗

t

NW = (π̃1 − ρπ1 π̃0, ..., π̃T − ρπT π̃T−1)
′
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The first source is the price inflation measurement equation. Rewrite it in a matrix notation,

NW = Xuλ
π + επ επ ∼ N(0,Ωπ) (69)

where,

Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λπ, the likelihood is

log p(π|λπ, •) ∝ −1
2(NW −Xuλ

π)′Ω−1
π (NW −Xuλ

π)

The second source comes from the state equation for λπ. We rewrite it in a matrix notation as
follows,

Hλπ = ελπ ελπ ∼ N(0,Ωλπ), where Ωλπ = diag(ω2
λπ, σ

2
λπ, ..., σ

2
λπ) (70)

−1 < λπt < 0 for t=1,....,T

Ignoring any terms not involving λπ, the prior density for λπ is given by

log p(λπ|σ2λπ,Ωλπ) ∝ −1
2(λ

π)′H ′Ω−1
λπH(λπ) + gλπ(λ

π, σ2λπ)

where,

gλπ(λ
π, σ2λπ) = −

T∑
t=2

log

(
Φ

(
0− λπt−1

σλπ

)
− Φ

(−1− λπt−1

σλπ

))
Combining the above two conditional densities we obtain,

log p(λπ|Y, •) ∝ −1
2(λ

π − λ̂π)
′
D−1

λπ (λπ − λ̂π) + gλπ(λ
π, σ2λπ)

where,
Dλπ = (H ′Ω−1

λπH +X ′
uΩ

−1
π Xu)

−1

λ̂π = Dλπ(X ′
uΩ

−1
π NW )

The addition of the term gλπ(λ
π, σ2λπ) leads to a non-standard density. Accordingly, I sam-

ple λπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(λ̂π, Dλπ) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).
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Step 10. Derive the conditional distribution p(ρw|Y, •)

The information about ρw comes from two sources. Below, I derive an expression for each
of these two sources.

First, I define some notation,

w̃t = wt − w∗
t

ũt = Ut − U∗
t

w̃ = (w̃1, ..., w̃T )
′

ũ = (ũ1, ..., ũT )
′

π̃t = πt − π∗t
π̃ = (π̃1, ..., π̃T )

′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

w̃ + Λwũ+ Λwππ̃ = Xwρ
w + ερw ερw ∼ N(0,Ωw) (71)

where,

Xw = diag(w̃0, ..., w̃T−1)
Λw = diag(−λw1 , ...,−λwT )
Λwπ = diag(−κw1 , ...,−κwT )

Ignoring any terms not involving ρw, the likelihood is

log p(w|ρw, •) ∝ −1
2(w̃ − (Xwρ

w − Λwũ− Λwππ̃))′Ω−1
w (w̃ − (Xwρ

w − Λwũ− Λwππ̃))

The second source comes from the state equation for ρw. We rewrite it in a matrix notation as
follows,

Hρw = ερw ερw ∼ N(0,Ωρw), where Ωρw = diag(ω2
ρw, σ

2
ρw, ..., σ

2
ρw) (72)

0 < ρwt < 1 for t=1,....,T

Ignoring any terms not involving ρw, the prior density for ρw is given by

log p(ρw|σ2ρw,Ωρw) ∝ −1
2(ρ

w)′H ′Ω−1
ρwH(ρw) + gρw(ρ

w, σ2ρw)

where,
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gρw(ρ
w, σ2ρw) = −

T∑
t=2

log

(
Φ

(
1− ρwt−1

σρw

)
− Φ

(
0− ρwt−1

σρw

))
Combining the above two conditional densities we obtain,

log p(ρw|Y, •) ∝ −1
2(ρ

w − ρ̂w)
′
D−1

ρw (ρ
w − ρ̂w) + gρw(ρ

w, σ2ρw)

where,
Dρw = (H ′Ω−1

ρwH +X ′
wΩ

−1
w Xw)

−1

ρ̂w = Dρw(X
′
wΩ

−1
w (w̃ + Λwũ+ Λwππ̃))

The addition of the term gρπ(ρ
π, σ2ρπ) leads to a non-standard density. Accordingly, I sam-

ple ρπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(ρ̂π, Dρπ) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).

Step 11. Derive the conditional distribution p(λw|Y, •)

The information about λw comes from two sources. Below, I derive an expression for each
of these two sources.

First, I define some notation,

w̃t = wt − w∗
t

ũt = Ut − U∗
t

π̃t = πt − π∗t
Bw = (w̃1 − ρw1 w̃0 − κw1 π̃1, ..., w̃T − ρwT w̃T−1 − κwT−1π̃T )

′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

Bw = Xuλ
w + εw εw ∼ N(0,Ωw) (73)

where,

Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λw, the likelihood is

log p(w|λw, •) ∝ −1
2(B

w −Xuλ
w)′Ω−1

w (Bw −Xuλ
w)

The second source comes from the state equation for λw. We rewrite it in a matrix notation as
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follows,

Hλw = ελw ελw ∼ N(0,Ωλw), where Ωλw = diag(ω2
λw, σ

2
λw, ..., σ

2
λw) (74)

−1 < λwt < 0 for t=1,....,T

Ignoring any terms not involving λw, the prior density for λw is given by

log p(λw|σ2λw,Ωλw) ∝ −1
2(λ

w)′H ′Ω−1
λwH(λw) + gλw(λ

w, σ2λw)

where,

gλw(λ
w, σ2λw) = −

T∑
t=2

log

(
Φ

(
0− λwt−1

σλw

)
− Φ

(−1− λwt−1

σλw

))
Combining the above two conditional densities we obtain,

log p(λw|Y, •) ∝ −1
2(λ

w − λ̂w)
′
D−1

λw (λw − λ̂w) + gλw(λ
w, σ2λw)

where,
Dλw = (H ′Ω−1

λwH +X ′
uΩ

−1
w Xu)

−1

λ̂w = Dλw(X ′
uΩ

−1
w Bw)

The addition of the term gλw(λ
w, σ2λw) leads to a non-standard density. Accordingly, I sample

λw using an independence-chain Metropolis-Hastings (MH) procedure. This involves first gen-
erating candidate draws from N(λ̂w, Dλw) using the precision-based algorithm that are then
accepted or rejected based on the accept-reject Metropolis-Hastings (ARMH) algorithm (dis-
cussed in Chan and Strachan, 2012).

Step 12. Derive the conditional distribution p(κw|Y, •)

The information about κw comes from two sources. Below, I derive an expression for each
of these two sources.

First, I define some notation,

w̃t = wt − w∗
t

ũt = Ut − U∗
t

π̃t = πt − π∗t
Bκw = (w̃1 − ρw1 w̃0 − λw1 ũ1, ..., w̃T − ρwT w̃T−1 − λwT−1ũT )

′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

Bκw = Xπκ
w + εw εw ∼ N(0,Ωw) (75)
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where,

Xπ = diag(π̃1, ..., π̃T )

Ignoring any terms not involving κw, the likelihood is

log p(w|κw, •) ∝ −1
2(B

κw −Xπκ
w)′Ω−1

w (Bκw −Xπκ
w)

The second source comes from the state equation for κw. We rewrite it in a matrix notation as
follows,

Hκw = εκw εκw ∼ N(0,Ωκw), where Ωκw = diag(ω2
κw, σ

2
κw, ..., σ

2
κw) (76)

Ignoring any terms not involving κw, the prior density for κw is given by

log p(κw|σ2κw,Ωκw) ∝ −1
2(κ

w)′H ′Ω−1
κwH(κw)

Combining the above two conditional densities we obtain,

log p(κw|Y, •) ∝ −1
2(κ

w − κ̂w)
′
D−1

κw (κw − κ̂w)

where,
Dκw = (H ′Ω−1

κwH +X ′
πΩ

−1
w Xπ)

−1

κ̂w = Dκw(X ′
πΩ

−1
w Bκw)

The candidate draws are sampled from N(κ̂w, Dκw) using the precision-based algorithm.

Step 13. Derive the conditional distribution p(hu, ho, hp, hπ, hw, hi|Y, •)

Given parameters and other latent states, the stochastic volatility, hu, ho, hp, hπ, hw, hi are con-
ditionally independent and so can be drawn separately. Following, Chan, Koop, and Potter
(2013; 2016), I draw hu, ho, hp, hπ, hw, hi using the accept-reject independence-chain Metropolis
Hastings (ARMH) algorithm of Chan and Strachan (2012; page 32-34).

Step 14. Derive the conditional distribution p(Cu, Cg, Cπ, Cr,Wedge|Y, •)

Given parameters and other latent states, Cu, Cg, Cπ, Cr are conditionally independent and
so can be drawn separately.
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Beginning with Cu, the information about it comes from two sources. Below, I derive an
expression for each of these two sources.

The first source is the measurement equation linking survey to U∗. Rewrite it in a matrix
notation,

N zu = Cu + εzu εzu ∼ N(0,Ωzu) (77)

where,

nzut = Zu
t − βuU∗

N zu = (nzu1 , n
zu
2 , ..., n

zu
T )′

Ωzu = diag(σ2zu, ..., σ
2
zu)

Ignoring any terms not involving Cu, the likelihood is

log p(Zu|Cu, •) ∝ −1
2(N

zu − Cu)′Ω−1
zu (N

zu − Cu)

The second source comes from the state equation for Cu. We rewrite it in a matrix nota-
tion as follows,

HCu = αcu + εcu εcu ∼ N(0,Ωcu), where Ωcu = diag(ω2
cu, σ

2
cu, ..., σ

2
cu) (78)

where,

αcu =


Cu
0

0
0
...
0


Ignoring any terms not involving Cu, the prior density for Cu is given by

log p(Cu|σ2cu,Ωcu) ∝ −1
2(C

u −H−1αcu)
′H ′Ω−1

cu H(Cu −H−1αcu)

Combining the above two conditional densities we obtain,

log p(Cu|Y, •) ∝ −1
2(C

u − Ĉu)
′
D−1

Cu(Cu − Ĉu)

where,
DCu = (H ′Ω−1

cu H +Ω−1
zu )

−1

Ĉu = DCu(H ′Ω−1
cu αcu +Ω−1

zuN
zu)

The candidate draws are sampled from N(Ĉu, DCu) using the precision-based algorithm.
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Following similar logic,

N(Ĉr, DCr)

DCr = (H ′Ω−1
cr H +Ω−1

zr )
−1

Ĉr = DCr(H ′Ω−1
cr αcr +Ω−1

zr N
zr)

where,

nzrt = Zr
t − βrr∗

N zr = (nzr1 , n
zr
2 , ..., n

zr
T )′

Ωzr = diag(σ2zr, ..., σ
2
zr)

N(Ĉπ, DCπ)

DCπ = (H ′Ω−1
cπ H +Ω−1

zπ )
−1

Ĉπ = DCπ(H ′Ω−1
cπ αcπ +Ω−1

zπN
zπ)

where,

nzπt = Zπ
t − βππ∗

N zπ = (nzπ1 , nzπ2 , ..., nzπT )′

Ωzπ = diag(σ2zπ, ..., σ
2
zπ)

N(Ĉg, DCg)

DCg = (H ′Ω−1
cg H +Ω−1

zg )
−1

Ĉg = DCg(H ′Ω−1
cg αcg +Ω−1

zg N
zg)

where,

nzgt = Zg
t + βgαg − βggdp∗

N zg = (nzg1 , n
zg
2 , ..., n

zg
T )′

Ωzg = diag(σ2zg, ..., σ
2
zg)

αg = (gdp∗0, 0, 0, ...., 0)
′

N( ˆWedge,DWedge)

DWedge = (H ′Ω−1
wlrH +Ω−1

w∗)
−1

ˆWedge = DWedge(H
′Ω−1

wlrαwedge +Ω−1
w∗N

wedge)
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where,

nwedge
t =W ∗

t − P ∗
t − π∗t

Nwedge = (nwedge
1 , nwedge

2 , ..., nwedge
T )′

Ωw∗ = diag(σ2w∗, ..., σ
2
w∗)

Ωwlr = diag(ω2
wlr, σ

2
wlr, ..., σ

2
wlr)

αwedge = (Wedge0, 0, 0, ...., 0)
′

Step 15. Derive the conditional distribution p(D|Y, •)

Given the posterior draws of r∗, ζ, and g∗, the posterior draw for D is constructed as,

D = r∗ − ζg∗ (79)

Step 16. Derive the conditional distribution p(θ|Y, •)

There are 41 parameters in the vector θ. These parameters are drawn in 39 separate blocks
using standard regression procedures. Following similar notation to Chan, Koop, and Potter
(2016), I denote θ−x to refer all parameters in θ except the parameter x.

Substep 16.1 Derive the conditional distribution p(ρu|Y, •)

Given the stationary constraints, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1

ρu = (ρu1 , ρ
u
2)

′ is a bivariate truncated normal. To obtain draws from this truncated normal
distribution, ARMH sampling algorithm is applied to the candidate draws from the proposal
density, N(ρ̂u, Dρu).

Dρu = (V −1
ρu +X

′
uΩ

−1
u Xu)

−1

ρ̂u = Dρu(V
−1
ρu ρ

u
0 +X

′
uΩ

−1
wlr(ũ− ϕuogap))

where,

V −1
ρu is the prior variance and ρu0 is the prior mean,

Xu =


ũ0 ũ−1

ũ1 ũ0
...

ũT−1 ũT−2


Substep 16.2 Derive the conditional distribution p(σ2hu|Y, •)
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p(σ2hu|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2hu|Y, •) ∼ IG(νhu0 +
T−1
2 , Shu0 +

1
2

T∑
t=2

(hut − hut−1)
2)

Substep 16.3 Derive the conditional distribution p(ϕu|Y, •)

Given the constraint ϕu < 0, the conditional distribution p(ϕu|Y, •) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(ϕ̂u, Dϕu) using the
precision-based algorithm, and a simple accept-reject step is applied to the candidate draws.

Rewrite the unemployment rate (gap) measurement equation in matrix notation as

Y ϕ = ϕuogap+ εu εu ∼ N(0,Ωu) (80)

where,

yϕt = ũt − ρu1 ũt−1 − ρu2 ũt−2

Y ϕ = (yϕ1 , ..., y
ϕ
T )

′

Dϕu = (V −1
ϕu + ogap

′
Ω−1
u ogap)−1

ϕ̂u = Dϕu(V
−1
ϕu ϕ

u
0 + ogap

′
Ω−1
u Y ϕ)

where,

V −1
ϕu is the prior variance and ϕu0 is the prior mean,

Substep 16.4 Derive the conditional distribution p(σ2u∗|Y, •)

p(σ2u∗|Y, •) is a non-standard density because U∗ is a bounded random walk,

log p(σ2u∗|Y, •) ∝ −(νu∗0+1)log σ2u∗− Su∗0
σ2
u∗

− T−1
2 log σ2u∗− 1

2σ2
u∗

∑T
t=2(U

∗
t −U∗

t−1)
2+gu∗(U

∗, σ2u∗)

The candidate draws from p(σ2u∗|Y, •) are obtained via the MH step with the proposal den-
sity

IG(νu∗0 +
T−1
2 , Su∗0 +

1
2

T∑
t=2

(U∗
t − U∗

t−1)
2)

Substep 16.5 Derive the conditional distribution p(βu|Y, •)
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Candidate draws are sampled from N(β̂u, Dβu) using the precision-based algorithm.

where,

Dβu = (V −1
βu + U∗′Ω−1

zuU
∗)−1

β̂u = Dβu(V
−1
βu β

u
0 + U∗′Ω−1

zu J
zu)

jzut = Zu
t − Cu

t

Jzu = (jzu1 , ..., jzuT )′

V −1
βu is the prior variance and βu0 is the prior mean for βu

Substep 16.6 Derive the conditional distribution p(σ2zu|Y, •)

p(σ2zu|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2zu|Y, •) ∼ IG(νzu0 +
T
2 , Szu0 +

1
2

T∑
t=1

(Zu
t − Cu

t − βuU∗)2)

Substep 16.7 Derive the conditional distribution p(σ2cu|Y, •)

p(σ2cu|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2cu|Y, •) ∼ IG(νcu0 +
T−1
2 , Scu0 +

1
2

T∑
t=2

(Cu
t − Cu

t−1)
2)

Substep 16.8 Derive the conditional distribution p(σ2gdp∗|Y, •)

p(σ2gdp∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2gdp∗|Y, •) ∼ IG(νgdp∗0 +
T−1
2 , Sgdp∗0 + (gdp∗ − αgdp∗)

′ ∗H2H2 ∗ (gdp∗ − αgdp∗)/2)

where (although they are defined above but for convenience I redefine them),

αgdp∗ =


gdp∗0 +△gdp∗0

−gdp∗0
0
...
0

 , H2 =



1 0 0 0 · · · 0
−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
...

0 · · · 0 1 −2 1


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H2 is a band matrix with unit determinant and hence is invertible.

Substep 16.9 Derive the conditional distribution p(ρg|Y, •)

Given the stationary constraints, ρg1 + ρg2 < 1, ρg2 − ρg1 < 1, and |ρg2| < 1

ρg = (ρg1, ρ
g
2)

′ is a bivariate truncated normal. To obtain draws from this truncated normal
distribution, ARMH sampling algorithm is applied to the candidate draws from the proposal
density, N(ρ̂g, Dρg).

Dρg = (V −1
ρg +X

′
ρgΩ

−1
ogapXρg)

−1

ρ̂g = Dρg(V
−1
ρg ρ

g
0 +X

′
ρgΩ

−1
ogapYogap)

where,

V −1
ρg is the prior variance and ρg0 is the prior mean,

Xρg =


0 0

ogap1 0
ogap2 ogap1

...
ogapT−1 ogapT−2


yogapt = ogapt − ar(rt − rt−1)− λgũt)
Yogap = (yogap1 , ..., yogapT )′

Substep 16.10 Derive the conditional distribution p(ar|Y, •)

Candidate draws are sampled from N(âr, Dar) using the precision-based algorithm.

where,

Dar = (V −1
ar +X

′
arΩ

−1
ogapXar)

−1

âr = Dar(V
−1
ar a

r
0 +X

′
arΩ

−1
ogapJ

ar)

jart = ogapt − ρg1ogapt−1 − ρg2ogapt−2 − λgũt
Jar = (jar1 , ..., j

ar
T )′

Xar = (r̃1, ..., r̃T )
′

r̃t = rt − r∗t

V −1
ar is the prior variance and ar0 is the prior mean for ar

Substep 16.11 Derive the conditional distribution p(λg|Y, •)
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Given the constraint λg < 0, the conditional distribution p(λg|Y, •) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(λ̂g, Dλg) using the
precision-based algorithm, and a simple accept-reject step is applied to the candidate draws.

where,

Dλg = (V −1
λg +X

′
uΩ

−1
ogapXu)

−1

λ̂g = Dλg(V
−1
λg λ

g
0 +X

′
uΩ

−1
ogapB

g)

bgt = ogapt − ρg1ogapt−1 − ρg2ogapt−2 − arr̃t
Bg = (bg1, ..., b

g
T )

′

Xu = diag(ũ1, ..., ũT )
′

r̃t = rt − r∗t

V −1
λg is the prior variance and λg0 is the prior mean for λg

Substep 16.12 Derive the conditional distribution p(σ2ho|Y, •)

p(σ2ho|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2ho|Y, •) ∼ IG(νho0 +
T−1
2 , Sho0 +

1
2

T∑
t=2

(hot − hot−1)
2)

Substep 16.13 Derive the conditional distribution p(σ2zg|Y, •)

p(σ2zg|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2zg|Y, •) ∼ IG(νzg0 +
T
2 , Szg0 +

1
2

T∑
t=1

(Zg
t − Cg

t − βggdp∗t−1 + βggdp∗t )
2)

Substep 16.14 Derive the conditional distribution p(σ2cg|Y, •)

p(σ2cg|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2cg|Y, •) ∼ IG(νcg0 +
T−1
2 , Scg0 +

1
2

T∑
t=2

(Cg
t − Cg

t−1)
2)

Substep 16.15 Derive the conditional distribution p(βg|Y, •)
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Candidate draws are sampled from N(β̂g, Dβg) using the precision-based algorithm.

where,

Dβg = (V −1
βg + (Hgdp∗ − αg)

′
Ω−1
zg (Hgdp

∗ − αg))
−1

β̂g = Dβg(V
−1
βg β

g
0 + (Hgdp∗ − αg)Ω

−1
zg J

zg)

jzgt = Zg
t − Cg

t

Jzg = (jzg1 , ..., j
zg
T )′

αg = (gdp∗0, 0, 0, ...., 0)
′

V −1
βg is the prior variance and βg0 is the prior mean for βg

Substep 16.16 Derive the conditional distribution p(ρp|Y, •)

Given the stationary constraint, |ρp| < 1

ρp is a truncated normal. To obtain draws from this truncated normal distribution, AR sam-
pling step is applied to the candidate draws from the proposal density, N(ρ̂p, Dρp).

Dρp = (V −1
ρp +X

′
prodΩ

−1
P Xprod)

−1

ρ̂p = Dρp(V
−1
ρp ρ

p
0 +X

′
prodΩ

−1
P Y prod)

where,

V −1
ρp is the prior variance and ρp0 is the prior mean,

p̃t = Pt − P ∗
t

Xprod = (p̃0, ..., p̃T−1)
′

yprodt = p̃t − λpt ũt

Y prod = (yprod1 , ..., yprodT )′

Substep 16.17 Derive the conditional distribution p(σ2hp|Y, •)

p(σ2hp|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from
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p(σ2hp|Y, •) ∼ IG(νhp0 +
T−1
2 , Shp0 +

1
2

T∑
t=2

(hpt − hpt−1)
2)

Substep 16.18 Derive the conditional distribution p(σ2p∗|Y, •)

p(σ2p∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2p∗|Y, •) ∼ IG(νp∗0 +
T−1
2 , Sp∗0 +

1
2

T∑
t=2

(P ∗
t − P ∗

t−1)
2)

Substep 16.19 Derive the conditional distribution p(σ2λπ|Y, •)

p(σ2λπ|Y, •) is a non-standard density because of the constraints on λπ,

log p(σ2λπ|Y, •) ∝ −(νλπ0+1)log σ2λπ−
Sλπ0

σ2
λπ

− T−1
2 log σ2λπ−

1
2σ2

λπ

∑T
t=2(λ

π
t −λπt−1)

2+gλπ(λ
π, σ2λπ)

The candidate draws from p(σ2λπ|Y, •) are obtained via the MH step with the proposal den-
sity

IG(νλπ0 +
T−1
2 , Sλπ0 +

1
2

T∑
t=2

(λπt − λπt−1)
2)

Substep 16.20 Derive the conditional distribution p(σ2ρπ|Y, •)

p(σ2ρπ|Y, •) is a non-standard density because of the constraints on ρπ,

log p(σ2ρπ|Y, •) ∝ −(νρπ0+1)log σ2ρπ−
Sρπ0

σ2
ρπ

− T−1
2 log σ2ρπ− 1

2σ2
ρπ

∑T
t=2(ρ

π
t −ρπt−1)

2+gρπ(ρ
π, σ2ρπ)

The candidate draws from p(σ2ρπ|Y, •) are obtained via the MH step with the proposal den-
sity

IG(νρπ0 +
T−1
2 , Sρπ0 +

1
2

T∑
t=2

(ρπt − ρπt−1)
2)

Substep 16.21 Derive the conditional distribution p(σ2hπ|Y, •)

p(σ2hπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2hπ|Y, •) ∼ IG(νhπ0 +
T−1
2 , Shπ0 +

1
2

T∑
t=2

(hπt − hπt−1)
2)
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Substep 16.22 Derive the conditional distribution p(σ2π∗|Y, •)

p(σ2π∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2π∗|Y, •) ∼ IG(νπ∗0 +
T−1
2 , Sπ∗0 +

1
2

T∑
t=2

(π∗t − π∗t−1)
2)

Substep 16.23 Derive the conditional distribution p(σ2zπ|Y, •)

p(σ2zπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2zπ|Y, •) ∼ IG(νzπ0 +
T
2 , Szπ0 +

1
2

T∑
t=1

(Zπ
t − Cπ

t − βππ∗)2)

Substep 16.24 Derive the conditional distribution p(σ2cπ|Y, •)

p(σ2cπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2cπ|Y, •) ∼ IG(νcπ0 +
T−1
2 , Scπ0 +

1
2

T∑
t=2

(Cπ
t − Cπ

t−1)
2)

Substep 16.25 Derive the conditional distribution p(βπ|Y, •)

Candidate draws are sampled from N(β̂π, Dβπ) using the precision-based algorithm.

where,

Dβπ = (V −1
βπ + π∗

′
Ω−1
zπ π

∗)−1

β̂π = Dβπ(V
−1
βπ β

π
0 + π∗

′
Ω−1
zπ J

zπ)

jzπt = Zπ
t − Cπ

t

Jzπ = (jzπ1 , ..., jzπT )′

V −1
βπ is the prior variance and βπ0 is the prior mean for βπ

Substep 16.26 Derive the conditional distribution p(σ2w∗|Y, •)

p(σ2w∗|Y, •) is a standard inverse-Gamma density,
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Candidate draws are sampled from

p(σ2w∗|Y, •) ∼ IG(νw∗0 +
T−1
2 , Sw∗0 +

1
2

T∑
t=2

(w∗
t − π∗t − P ∗

t )
2)

Substep 16.27 Derive the conditional distribution p(σ2hw|Y, •)

p(σ2hw|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2hw|Y, •) ∼ IG(νhw0 +
T−1
2 , Shw0 +

1
2

T∑
t=2

(hwt − hwt−1)
2)

Substep 16.28 Derive the conditional distribution p(σ2ρw|Y, •)

p(σ2ρw|Y, •) is a non-standard density because of the constraints on ρw,

log p(σ2ρw|Y, •) ∝ −(νρw0+1)log σ2ρw−
Sρw0

σ2
ρw

−T−1
2 log σ2ρw− 1

2σ2
ρw

∑T
t=2(ρ

w
t −ρwt−1)

2+gρw(ρ
w, σ2ρw)

The candidate draws from p(σ2ρw|Y, •) are obtained via the MH step with the proposal den-
sity

IG(νρw0 +
T−1
2 , Sρw0 +

1
2

T∑
t=2

(ρwt − ρwt−1)
2)

Substep 16.29 Derive the conditional distribution p(σ2λw|Y, •)

p(σ2λw|Y, •) is a non-standard density because of the constraints on λw,

log p(σ2λw|Y, •) ∝ −(νλw0+1)log σ2λw−
Sλw0

σ2
λw

−T−1
2 log σ2λw−

1
2σ2

λw

∑T
t=2(λ

w
t −λwt−1)

2+gλw(λ
w, σ2λw)

The candidate draws from p(σ2λw|Y, •) are obtained via the MH step with the proposal density

IG(νλw0 +
T−1
2 , Sλw0 +

1
2

T∑
t=2

(λwt − λwt−1)
2)

Substep 16.30 Derive the conditional distribution p(σ2κw|Y, •)

The candidate draws are obtained from

IG(νκw0 +
T−1
2 , Sκw0 +

1
2

T∑
t=2

(κwt − κwt−1)
2)

51



Substep 16.31 Derive the conditional distribution p(ρi|Y, •)

Given the constraint |ρi| < 1, the conditional distribution p(ρi|Y, •) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(ρ̂i, Dρi) using the
precision-based algorithm, and a simple accept-reject step is applied to the candidate draws.

where,

Dρi = (V −1
ρi +X

′
ρiΩ

−1
i Xρi)

−1

ρ̂i = Dρi(V
−1
ρi ρ

i
0 +X

′
ρiΩ

−1
i Mρi)

mρi
t = it − π∗t − r∗t − λiũt − κiπ̃t

Mρi = (mρi
1 , ...,m

ρi
T )

′

Xρi = (i0 − π∗0 − r∗0, ..., iT−1 − π∗T−1 − r∗T−1)
′

V −1
ρi is the prior variance and ρi0 is the prior mean for ρi

Substep 16.32 Derive the conditional distribution p(λi|Y, •)

The candidate draws are sampled from the proposal distribution N(λ̂i, Dλi) using the precision-
based algorithm.

where,

Dλi = (V −1
λi +X

′
λiΩ

−1
i Xλi)

−1

λ̂i = Dλi(V
−1
λi λ

i
0 +X

′
λiΩ

−1
i Mλi)

mλi
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− κiπ̃t

Mλi = (mλi
1 , ...,m

λi
T )′

Xλi = (ũ1, ..., ũT )
′

V −1
λi is the prior variance and λi0 is the prior mean for λi

Substep 16.33 Derive the conditional distribution p(κi|Y, •)

The candidate draws are sampled from the proposal distribution N(κ̂i, Dκi) using the precision-
based algorithm.

where,
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Dκi = (V −1
κi +X

′
κiΩ

−1
i Xκi)

−1

κ̂i = Dκi(V
−1
κi κ

i
0 +X

′
κiΩ

−1
i Mκi)

mκi
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− λiũt

Mκi = (mκi
1 , ...,m

κi
T )′

Xκi = (π̃1, ..., π̃T )
′

V −1
κi is the prior variance and κi0 is the prior mean for κi

Substep 16.34 Derive the conditional distribution p(σ2hi|Y, •)

p(σ2hi|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2hi|Y, •) ∼ IG(νhi0 +
T−1
2 , Shi0 +

1
2

T∑
t=2

(hit − hit−1)
2)

Substep 16.35 Derive the conditional distribution p(σ2zr|Y, •)

p(σ2zr|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2zr|Y, •) ∼ IG(νzr0 +
T
2 , Szr0 +

1
2

T∑
t=1

(Zr
t − Cr

t − βrr∗t )
2)

Substep 16.36 Derive the conditional distribution p(σ2cr|Y, •)

p(σ2cr|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2cr|Y, •) ∼ IG(νcr0 +
T−1
2 , Scr0 +

1
2

T∑
t=2

(Cr
t − Cr

t−1)
2)

Substep 16.37 Derive the conditional distribution p(βr|Y, •)

Candidate draws are sampled from N(β̂r, Dβr) using the precision-based algorithm.

where,

Dβr = (V −1
βr + r∗

′
Ω−1
zr r

∗)−1
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β̂r = Dβr(V
−1
βr β

r
0 + r∗

′
Ω−1
zr J

zr)

jzrt = Zr
t − Cr

t

Jzr = (jzr1 , ..., j
zr
T )′

V −1
βr is the prior variance and βr0 is the prior mean for βr

Substep 16.38 Derive the conditional distribution p(σ2d|Y, •)

p(σ2d|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2d|Y, •) ∼ IG(νd0 +
T−1
2 , Sd0 +

1
2

T∑
t=2

(Dt −Dt−1)
2)

Substep 16.39 Derive the conditional distribution p(σ2wlr|Y, •)

p(σ2wlr|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2wlr|Y, •) ∼ IG(νwlr0 +
T−1
2 , Swlr0 +

1
2

T∑
t=2

(Wedget −Wedget−1)
2)
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A5.d Marginal likelihood computation

Bayesian model comparison is based on the marginal likelihood (marginal data density) metric.
In computing marginal likelihood for various models, I use the approach proposed by CCK,
which decomposes the marginal density of the data (e.g., inflation) into the product of predic-
tive likelihoods. This approach allows us to separately compute marginal data density for each
variable of interest: inflation, nominal wages, interest rate, real GDP, the unemployment rate,
and labor productivity. The variable-specific marginal densities prove quite useful because they
allow for deeper insights about the source of the deficiencies, which in turn helps differentiate
models at a more disaggregated level.

Specifically, the marginal data density of the variables of interest is computed as follows,

p(yj |Xj
i ,Mi) =

T∏
t=3

p(yjt |y
j
1:t−1, X

j
1:t,i,Mi) (81)

where, j = PCE inflation (π), unemployment rate(ur), real GDP(gdp), labor productivity(prod),
nominal wage inflation(wage), nominal short-term interest rate(int);
p(yjt |y

j
1:t−1, X

j
1:t,i,Mi) is the predictive likelihood for variable j, and Xj

i is a set of covariates that
influences variable j in model Mi. For example, in the case of the short-term interest rate, the
covariates in the Base model include ur, π, gdp, and survey data, whereas in the Base-NoSurv
model, the covariates will not include the survey data.

To compute the overall marginal data density of Y = (yπ, yur, ygdp, yprod, ywage, yint)′ for
model Mi,

p(Y |Xi,Mi) = p(yπ|Xπ
i ,Mi)× p(yur|Xur

i ,Mi)× p(ygdp|Xgdp
i ,Mi)...

×p(yprod|Xprod
i ,Mi)× p(ywage|Xwage

i ,Mi)× p(yint|Xint
i ,Mi) (82)
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A6. Posterior Parameter Estimates: Base Model

Table 2: Parameter Estimates Based on Estimation Sample, 1959Q4-2023Q3
Parameter Parameter description Posterior estimates

Base

Mean 5% 95%
ar Coefficient on interest-rate gap -0.053 -0.102 -0.007
ρg1 + ρg2 Persistence in output gap 0.725 0.668 0.783
ρu1 Lag 1 coefficient on UR gap 1.274 1.230 1.320
ρu2 Lag 2 coefficient on UR gap -0.492 -0.528 -0.456
ρu1 + ρu2 Persistence in UR gap 0.783 0.742 0.825
ρp Persistence in productivity gap -0.012 -0.126 0.100

m = ζ
4 Relationship between r* and g* 0.652 0.571 0.737

ρi Persistence in interest-rate gap 0.882 0.844 0.921
λi Interest rate sensitivity to UR gap -0.254 -0.302 -0.205
κi Interest rate sensitivity to inflation 0.058 0.013 0.102
λg Output gap response to UR gap -0.464 -0.593 -0.339
ϕu UR gap response to Output gap -0.102 -0.121 -0.082
(1−ρu1−ρu2 )

ϕu
Implied Okun’s Law -2.145 -2.403 -1.908

βg Link between g* and survey 0.876 0.720 1.033
βu Link between u* and survey 0.948 0.881 1.020
βr Link between r* and survey 1.024 0.921 1.129
βπ Link between π∗ and survey 0.995 0.914 1.074
σ2π∗ Variance of the shocks to π∗ 0.1172 0.0982 0.1362

σ2p∗ Variance of the shocks to p∗ 0.1472 0.1132 0.1862

σ2u∗ Variance of the shocks to u∗ 0.0912 0.0772 0.1042

σ2gdp∗ Variance of the shocks to gdp∗ 0.0232 0.0182 0.0292

σ2d Variance of the shocks to d 0.0962 0.0792 0.1132

σ2w∗ Variance of the shocks to w∗ 0.0322 0.0242 0.0412

σ2ho Var. of the Volatility – Output gap eq. 0.5942 0.5022 0.6932

σ2hu Var. of the Volatility – UR gap eq. 0.8362 0.6692 1.0222

σ2hp Var. of the Volatility – Productivity eq. 0.2802 0.2232 0.3452

σ2h Var. of the Volatility – Price Inf. eq. 0.3062 0.2422 0.3772

σ2hw Var. of the Volatility – Wage Inf. eq. 0.4262 0.3312 0.5312

σ2hi Var. of the Volatility – Interest rate eq. 0.3902 0.3062 0.4812

σ2λπ Var. of the shocks to TVP λπ 0.0412 0.0322 0.0532

σ2λw Var. of the shocks to TVP λw 0.0412 0.0322 0.0532

σ2λp Var. of the shocks to TVP λp 0.0452 0.0342 0.0592

σ2κw Var. of the shocks to TVP κw, PT 0.0422 0.0332 0.0532

σ2ρw Var. of the shocks to TVP ρw 0.0412 0.0322 0.0522

σ2ρπ Var. of the shocks to TVP ρπ 0.0502 0.0372 0.0642
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A7. Prior Sensitivity Analysis

In the paper, I noted that the prior settings (in the baseline model) are similar to those used
in CKP, CCK, and Gonzalez-Astudillo and Laforte (2020). As discussed in CCK, UC models
with several unobserved variables, such as the one developed in this paper, require informative
priors. That said, the priors I use for most variables are only slightly informative. The use of
inequality restrictions on some parameters such as the Phillips curve, persistence, bounds on
u-star could be viewed as additional sources of information that eliminate the need for tight
priors, something also noted by CKP. The parameters for which there is a strong agreement
in the empirical literature on their values, such as the Taylor-rule equation parameters, I use
relatively tight priors, such that prior distributions are centered on prior means with small
variance. So besides the prior on the Taylor-rule equation parameters, all other prior settings
are taken from related papers.

Here, I examine the sensitivity of loosening the priors on the variances of the shocks to the
pi-star, p-star, u-star, and r-star (i.e., for the process D). Specifically, I double the prior mean
of the variances from 0.01 to 0.03. Table reports the posterior estimates. The top panel reports
the posterior estimates from the baseline prior setting to facilitate easy comparison, and Panel
(B) reports the posterior estimates of re-running the Base and Base-NoSV-NoTVP-NoSurvey
models with these new prior values. It is worth noting that these new prior values are too
loose to estimate Base-NoSurvey feasibly. In the case of the Base model, the results indicate
that for pi-star, u-star, and r-star, the posterior mean estimates’ differences between the two
panels are small, and interestingly, the posterior mean estimates from the run with looser priors
are pushed toward values that are closer to the prior mean estimates used in the main paper,
lending credibility to the default prior settings for these parameters. For p-star, the difference
between the posterior and prior is small in both runs, suggesting the strong influence of the
prior in shaping the posterior. As a result, the difference between the posteriors across the two
panels for p-star is non-trivial.

In the case of Base-NoSV-NoTVP-NoSurvey model, with the exception of pi-star, the dif-
ferences between the two panels are larger than the Base model. In particular, for u-star and
r-star, the differences are quite sizable. Unlike in the case of Base, the posterior estimates of
p-star are less similar than corresponding priors.

Given the smaller differences in the posterior estimates of pi-star, r-star, and u-star across
the two runs of the Base model, the estimates of the stars are similar across the two runs, as
shown in Figure 2. In contrast, the sizable differences in some of the stars across the two runs
of the Base-NoSV-NoTVP-NoSurvey model translate into bigger differences in the estimates of
the stars, especially u-star and r-star, as seen in Figure 3.
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Table 3: Parameter Estimates

Panel A: Default prior setting, where prior E(σ2π∗) = E(σ2u∗) = E(σ2d) = 0.12 and E(σ2p∗) = 0.142

Parameter Parameter description Posterior estimates
Base Base-NoSV-NoTVP-NoSurvey

Mean 5% 95% Mean 5% 95%
σ2π∗ Variance of the shocks to π∗ 0.1172 0.0982 0.1362 0.2212 0.1472 0.2882

σ2p∗ Variance of the shocks to p∗ 0.1472 0.1132 0.1862 0.1572 0.1192 0.2002

σ2u∗ Variance of the shocks to u∗ 0.0912 0.0772 0.1042 0.1302 0.0872 0.1792

σ2d Variance of the shocks to d 0.0962 0.0792 0.1132 0.1012 0.0762 0.1302

Panel B: Prior sensitivity, where prior E(σ2π∗) = E(σ2u∗) = E(σ2d) = E(σ2p∗) = 0.1732

Parameter Parameter description Posterior estimates
Base Base-NoSV-NoTVP-NoSurvey

Mean 5% 95% Mean 5% 95%
σ2π∗ Variance of the shocks to π∗ 0.1392 0.1212 0.1572 0.2462 0.1912 0.3002

σ2p∗ Variance of the shocks to p∗ 0.1752 0.1352 0.2182 0.1862 0.1392 0.2392

σ2u∗ Variance of the shocks to u∗ 0.1132 0.1002 0.1252 0.2992 0.1702 0.4072

σ2d Variance of the shocks to d 0.1242 0.1072 0.1412 0.1692 0.1312 0.2122
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Figure 2: Prior Sensitivity: Base model (default prior) vs. Base model (loose prior)

Note: plots in solid blue are estimates from the Base model with default priors and plots in dotted red are

estimates from the Base model with looser priors for the variances of shocks to equations defining stars.
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Figure 3: Prior Sensitivity: Base-NoSV-NoTVP-NoSurvey model, default prior vs. loose prior

Note: plots in solid blue are estimates from the Base-NoSV-NoTVP-NoSurvey model with default priors and plots

in dotted red are estimates from the Base-NoSV-NoTVP-NoSurvey model with looser priors for the variances of

shocks to equations defining stars.
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A8. MCMC Convergence Diagnostics

This section documents the diagnostic properties of the Base model’s MCMC algorithm. Fol-
lowing Primiceri (2005), Koop, Leon-Gonzalez, and Strachan (2010), and Korobilis (2017), for
the time-invariant parameters (including those governing the time-variation in selected parame-
ters), I report the autocorrelation functions of the posterior draws (10th and 50th order sample
autocorrelation), inefficiency factors (IFs), and convergence diagnostic (CD) of Geweke (1992).17

One of the most common metrics examined to assess the efficiency of the MCMC sampler
is to look at the autocorrelation function of the draws, which indicates how well the chain is
mixing. Low autocorrelations are preferred to higher because the lower the autocorrelation, the
closer the draws are to being independent and the higher the efficiency of the algorithm. The
plots shown in the top panel of the Figure 4 correspond to the 10th and 50th order autocorre-
lations in the draws, and as can be seen, they indicate very low autocorrelation. In the case of
the 50th order autocorrelation, except for a couple of them, most indicate correlation close to
zero, and in the case of 10th order except for a few, most indicate correlation below 0.2.

The inefficiency factor related to the autocorrelation functions is the inverse of Geweke’s
(1992) relative numerical efficiency measure (RNE). It is computed using the following formula,
(1 + 2

∑∞
i=1 ρi), where ρi refers to the k − th order autocorrelation of the chain. The middle

panel in Figure A1 plots the IF for the model parameters. The values lower than or close to 20
are considered desirable. As shown, in the case of the Base model, most of the IFs are below 20.
(Note: IFs are computed using the default setting in LeSage’s toolbox: estimation of spectral
density at frequency zero uses a tapered window of 4%.)

As discussed in Koop, Leon-Gonzalez, and Strachan (2010), to assess whether the MCMC
sampler has converged, a rough rule of thumb is to look at the CDs and see whether 95% of
them are less than 2. If they are, then convergence is likely achieved. Based on the plots in
Figure A1 (third panel), most CDs are within +/- 2.

I also note that the results are fairly identical to the different initial conditions of the chain
(picked randomly) and to a significantly lower number of simulations (and burn-in). For ex-
ample, a run using 320K posterior draws with a burn-in of the first 300K and retaining all the
remaining draws provides similar inference. However, the MCMC convergence properties favor
higher simulations because it allows for a greater degree of thinning.

Overall, these diagnostic measures give me confidence in the good convergence properties
of the MCMC algorithm developed for the Base model.

17In computing some of these metrics, I have benefitted from the Matlab toolbox developed by James P.
LeSage. A detailed explanation, including intuition for these convergence diagnostics, is provided in Koop (2003;
page 67-68) and Chan et al. (2019; page 209).
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Figure 4: MCMC Diagnostics of Base Model
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A9. Prior and Posterior Distributions of the Parameters: Base
Model

Figure 5: Prior and Posterior Distributions of the Parameters: Base Model

Note: Plotted in dotted red lines are the prior distributions, in blue are the posterior distributions based on

estimating data from 1959Q4 through 2019Q4, and in green are the posterior distributions based on estimating

data from 1959 through 2023Q3, which includes pandemic and post-pandemic data.
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Figure 6: Prior and Posterior Distributions of the Parameters: Base Model, continued

Note: Plotted in dotted red lines are the prior distributions, in blue are the posterior distributions based on

estimating data from 1959Q4 through 2019Q4, and in green are the posterior distributions based on estimating

data from 1959 through 2023Q3, which includes pandemic and post-pandemic data.
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Figure 7: Prior and Posterior Distributions of the Parameters: Base Model, continued

Note: Plotted in dotted red lines are the prior distributions, in blue are the posterior distributions based on

estimating data from 1959Q4 through 2019Q4, and in green are the posterior distributions based on estimating

data from 1959 through 2023Q3, which includes pandemic and post-pandemic data.
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Figure 8: Prior and Posterior Distributions of the Parameters: Base Model, continued

Note: Plotted in dotted red lines are the prior distributions, in blue are the posterior distributions based on

estimating data from 1959Q4 through 2019Q4, and in green are the posterior distributions based on estimating

data from 1959 through 2023Q3, which includes pandemic and post-pandemic data.
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A10. Prior and Posterior Distributions: Deeper Dive

As is evident from the figures shown in the previous section, encouragingly, for most parameters,
the data influence the posterior estimates, as evidenced by well-peaked posterior distributions
and/or movements in posterior distributions away from prior distributions. For a select few
parameters, the data appear to have only a trivial to no role. However, a deeper examination
of some of these cases suggests this inference is misleading. I say this because, for a couple of
the parameters, it just so happens that the default prior setting in the baseline model coincides
(or is generally in line) with what the data would dictate, hence the similar prior and posterior
distributions, as illustrated in the figure below. Put differently, if I change or loosen the prior
significantly (new looser prior), the updated posterior mean shifts closer to the old posterior
mean (which happens to match the old prior).

One of those parameters is βπ, which is the parameter linking survey expectations to the
model star. For this parameter, the mean of the posterior distribution (0.995) coincides with the
prior distribution (1.0). If I make the prior distribution for βπ looser (diffuse) by centering it at a
lower mean value (0.8 instead of 1.0), the posterior mean shifts upward to 0.953 (which is closer
to the original prior and posterior). If I make the prior distribution for βπ significantly looser
(much more diffuse) by centering it at a lower mean value (0.5 instead of 1.0), the posterior
mean shifts upward to 0.943 (which is again closer to the original prior and posterior). It is also
to be noted that to get a sense of the relationship between survey expectations and the model-
based star, one should look at both the β parameter and the variance of the innovation of the
process governing the time-variation in the intercept C (and in turn the estimates of the time-
varying C); see equation (2) in the main paper. For all four equations defining relationships
between survey expectations and stars, the data influence the posterior of the intercept C (as
evidenced by comparing the prior and posterior plots of parameters defining the variance of the
innovations in equations defining Cs).

Figure 9, shown on the next page, plots prior and posterior distributions for the parameter
βπ, which relates inflation survey expectations to model-based pi-star, for three different prior
settings:

Panel (a): Baseline: prior mean = 1.0 (prior s.d. = 0.05) and posterior mean = .995

Panel (b): Loose prior: prior mean = 0.8 (prior s.d. = 0.3) and posterior mean = 0.953

Panel (c): Very loose prior: prior mean = 0.5 (prior s.d. = 0.4) and posterior mean = 0.943

As can be seen, no matter the prior setting, the posterior means of the β parameter are
very similar. Not surprisingly, the corresponding estimates of the posterior mean of pi-star
are identical (suggesting robustness to different priors), as evident from the plots shown in
the top panel of Figure 10. The difference in the prior settings influences the precision of
the pi-star, as seen in the bottom panel of Figure 10: Pi-star from the Base model is more
precisely estimated in the first half of the sample and less precisely estimated in the latter part
of the sample compared to specifications with looser priors. Bayesian model comparison metrics
overwhelmingly support the default Base prior setting over the looser priors.
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No matter the prior setting, the posterior means of βπ are very similar

Figure 9: Prior Sensitivity of Parameter, βπ

Figure 10: Prior Sensitivity of Parameter, βπ: Pi-star
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Another parameter that indicates a trivial difference in the prior and posterior distributions
is the variance of the shocks to the parameter governing the evolution of the slope of the price
Phillips curve (see panel (a) in Figure 9). Accordingly, I did a robustness check by significantly
loosening the prior for this parameter while keeping priors for all other parameters the same
as in the Baseline model. Doing so gives posterior a distribution that has a higher peak and
is narrower than the prior distribution (panel (b), 9). As shown in Figure 10, loosening the
prior on this parameter leads to a more volatile estimate of this parameter. However, the
overall inference remains robust, as the posterior mean of the PC slope for the looser prior
setting lies within the 68% (and 90%) credible intervals of the Baseline model’s price PC slope
parameter. The default (Base) prior for σ2λπ is IG(10, 0.042 × 9), versus for the Looser Prior
σ2λπ is IG(10, 0.12 × 9).

Figure 11: Prior Sensitivity of Parameter, λπ

Robust Inference: posterior mean of PC slope for looser prior setting lies within
the 68% credible intervals of the Baseline model’s price PC slope parameter:
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Figure 12: Time-varying estimate of parameter, λπ

A11. Stars from Base Model: Zoomed In
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Figure 13: Pi-star and P-star

Note: The posterior estimates are based on the full sample (from 1959Q4 through 2023Q3). The dotted

lines represent the 68% credible intervals.
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Figure 14: W-star and U-star

Note: The posterior estimates are based on the full sample (from 1959Q4 through 2023Q3). The dotted

lines represent the 68% credible intervals.
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Figure 15: G-star and R-star

Note: The posterior estimates are based on the full sample (from 1959Q4 through 2023Q3). The dotted

lines represent the 68% credible intervals.
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A12. Base Model: Estimate of the Cyclical Unemployment Rate

Figure 16: Unemployment Rate Gap and Output Gap

Note: Plotted are the posterior mean estimates based on estimating data from 1959Q4 through 2023Q3.
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A13. W-star Decomposition: Base Model

Figure 17: W*: Base Model

Note: Plotted are the posterior mean estimates based on estimating data from 1959Q4 through 2023Q3.
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A14. R-star Decomposition: Base Model and Variants

Figure 18: Posterior Mean Estimates

Note: Plotted are the posterior mean estimates based on the full sample from 1959Q4 through 2023Q3.
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A15. Phillips curve slope (post-Pandemic): Base vs. External
Studies

According to my baseline model’s posterior mean estimates (with data through 2023Q3), the
slope of the PC is estimated to be pretty much stable at −0.2 over the past three decades,
which would be consistent with your assessment. I would point out that the finding in my paper
(revised version) that the strength of the PC relationship has remained stable (and weak) since
the onset of the pandemic is a new result and contrasts with some recent work (with simpler
models than those developed in this paper) that evidence strengthening in this relationship, e.g.,
see Hobijn et al. (2023), and Cecchetti et al. (2023). These papers do not feature stochastic
volatility when modeling inflation’s dynamics and do not allow for endogenous changes to u-star
(and, in turn, labor tightness); hence, most of the inflation surge during the 2021-2022 period
is likely associated with a steeper slope in the PC relationship. However, in my model, because
I have SV in the inflation gap, a majority of the inflation surge is seen as a large temporary
spike in the idiosyncratic component. And because, in my model, u-star is allowed to respond
to incoming data, the inferred unemployment gap widens (increased labor market tightness)
to explain the remaining portion of the high inflation. Although the jury is still out, inflation
has come down quickly without any significant movements in the unemployment rate (and the
unemployment rate gap), suggesting the temporary nature of the inflation surge providing a
validity check on my model’s inference.
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A16. Precision of Stars: Base Model vs. Variants of Base

Figure 19: Precision of Stars: Base model vs. Base specs

Note: Precision is measured as the width of 90% credible intervals. The sample spans 1959Q4 through 2023Q3.
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A17. Base vs. External Models: Comparison of Stars

This subsection compares Base model estimates of stars with those produced by external sources,

including small-scale UC models routinely used by Federal Reserve staff and featured in aca-

demic research. Figure 20 compares the smoothed estimates of pi-star (panel a), p-star (panel

b), w-star (panel c), u-star (panel d), g-star (panel e), r-star (panel f), and the output gap

(panel g) from the Base model and outside sources. To better highlight the differences and

similarities in the estimates across models, the plots are shown to span the sample period from

1990 onward; however, Figure 21 shows a comparison over the full sample.

Beginning with pi-star, panel (a) plots posterior mean estimates of pi-star from the Base,

the celebrated univariate UC model of Stock and Watson (2007) [SW], the bivariate UC model

of Chan, Koop, and Potter (2016) [CKP], and the recently popularized bivariate UC model of

Chan, Clark, and Koop (2018) [CCK]. The inflation block in the Base model combines many

of the elements from these three models so they could be viewed as restricted variants of the

Base model.

There are some interesting similarities and differences across the pi-star estimates. Whereas

UCSV displays very volatile and erratic estimates, other models show a smoother evolution.

From 1992 through 1998, CKP and CCK tracked each other closely, with a Base a few tenths

higher (0.5 ppts higher in 1995). Since 1998 onward, CCK indicate a lower pi-star than others;

from 1995 through 2020, it is almost a straight line at 1.6%. CKP and the Base tracked each

other from 1998 through 2012, but thereafter, they diverged, with the Base remaining higher

than CKP. Interestingly, except for SW, the other models indicate only modest increases in

pi-star during the post-pandemic inflation surge. In contrast, the SW model attributes most

of the pandemic surge to pi-star, as pi-star is estimated to increase to 7.1% by early 2022 (not

shown because of the scale of the y-axis) compared to 2.3% in the Base and 1.8% in CKP and

CCK. These differences in pi-star are arguably sizable for inflation targeting central banks, such

as the Federal Reserve.

Panel (b) in Figure 20 plots the estimates of p-star from the Base model and three additional

sources: univariate UC model of Stock and Watson applied to productivity data [UCSV-SW],

the two-regime Markov-switching model of Kahn and Rich (2007) [KH], and smoothed estimate

of the biweight filtered productivity data, where the source of the productivity data is John

Fernald’s series obtained from the San Francisco Fed’s website [denoted SFFed-Fernald-BW].

A regime-switching framework (as in Kahn and Rich) [KR] allows for deterministic values

of p-star, where the number of deterministic values equals the number of possible regimes.

Accordingly, in the 2-regime setup of KR, the estimated p-star periodically alternates from

a low productivity regime (p-star=1.3%) to a high productivity regime (p-star=3.0%). In

contrast, the random walk assumption for p-star in the Base model allows for the possibility

that p-star may be (slowly) changing in every period. This latter assumption implies that the

possible values of p-star could equal the number of periods in the estimation sample. Because

of the latter fact, the stochastic conception underlying the Base model is arguably more flexible
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and informative than the KR model.

The flexibility of the Base over the KR model is evident in the following comparison. Over

the period from 1995 through 2005, the KR model indicates a p-star at 3.0% (roughly similar to

the univariate model) and almost a whole percentage point higher than the SFFed-Fernald-BW

estimate of 2.1%. In contrast, the Base model, which in 1995 estimated a p-star similar to KH,

has a p-star drifting lower over the period, reaching 1.7% by mid-2004, about 1.3 percentage

points lower than Kahn and Rich, a sizable gap. The later model, eventually, with a delay of a

couple of quarters, caught up with the Base model’s assessment.

Following the Great Recession, except for SFFed-Fernald-BW, which has very gradual decel-

eration, others, including the Base model, have p-star falling sharply close to 1.0%, and remain-

ing at that level until 2015. Since the pandemic’s onset, the Base and the SFFed-Fernald-BW

have been stable at 1.6%. In contrast, the UCSV-SW model displays volatility, as p-star falls

initially and then rebounds, mirroring movements in the productivity data. Because the KR

model had difficulties dealing with the extreme pandemic observations, the estimates of p-star

are based on estimating the model with data through 2020Q1. Unsurprisingly, they cautioned

about how much signal to take from their model’s estimates. Specifically, they say, “We have

been cautious about drawing strong conclusions from the model since the onset of the pandemic

because of the extreme outliers in the data from 2020 to 2022.”

Panel (c) in Figure 20 plots the estimates of w-star from the Base model and the univariate

model of Stock and Watson applied to the nominal wage data. As indicated earlier, estimates

of w-star are a novel aspect of this paper. A natural comparison for w-star is to compare it

with the state-of-the-art univariate model of Stock and Watson that assumes an RW process for

w-star. As the plots show, the w-star from the univariate model displays significant variation as

it responds strongly to movements in nominal wages. In contrast, the estimate from the Base

model is smoother even though it tracks the broad contours of the estimate from the univariate

model. It is worth remembering that no survey data on wages are included in the model. But,

because pi-star informs the w-star trajectory, survey data on inflation expectations indirectly

influence w-star.

Panel (d) in Figure 20 plots the estimates of the u-star from the Base model, the CBO,

the medium-scale UC model of Hasenzagl et al. (2022) [Hasenzagl], which does not feature SV

or TVP, and the bivariate Phillips curve UC model of Chan, Koop, and Potter (2016) [CKP].

Over most of the sample period shown, there are notable differences in the estimates across the

models. Both Hasenzagl and the Base models indicate similar u-star from 1990 through 1995,

but they diverge significantly after that. The Hasenzagl model has u-star increasing from 5.5%

to 6.7% from 1995 to 2010, whereas the Base model has u-star remaining steady for a good ten

years and then in 2005 begins to move higher to reach a peak of 5.9% in 2010. Since 2015, the

Base model has a u-star close to 4.5 percent, whereas Hasenzagl has a u-star fluctuating up

and down randomly in a narrow range between 5.0 and 5.4%; a deeper dive reveals the model’s

difficulty in handling extreme pandemic-induced movements in the unemployment rate leading
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to weird variations in u-star.

The u-star from the CKP model is smoother and significantly higher than the estimates from

the Base and Hasenzagl. The CBO estimate indicates a steady decline in u-star from 5.7% to

4.4% over the sample. Between 1995 and 2000, and from 2015 onward, the CBO estimate is

identical to the Base model, and both indicate u-star remaining stable from 2019 through 2023,

suggesting that they attribute movements in the unemployment rate to be mostly of cyclical

nature.

Panel (e) in Figure 20 plots the mean estimates of the g-star from the Base model, CBO,

Laubach and Williams (2003) [LW] model, and the Grant and Chan (2017b) univariate model

of real GDP. Panel (g) plots the corresponding estimates of the output gap. As can be seen,

the inference about g-star from the univariate model over most of the sample period is notably

different than others. Over an extended period, starting from the onset of the Great Recession

and continuing through the onset of the pandemic recession, there are sizable differences in the

g-star estimates between the Base and others, whereas immediately before the Great Recession,

the Base model estimated a g-star of 2.3% (same as the univariate), and the CBO and LW

indicate a much lower g-star of 1.6%. After that, estimates between the Base and others begin

to diverge; as the univariate model stays steady at 2.3%, CBO and LW gradually drift higher,

while the Base model trends lower. This diverging pattern continues until 2014. From thereon,

the Base model has g-star steadily increasing and catching up with the others by 2022.

Like g-star, there are sizable differences in the output gap estimates implied from Grant

and Chan’s univariate model. For instance, the univariate model suggests a less dramatic

fall in the output gap in the 2007-09 recession (and in the 1973-74 and 1981-82 recessions, as

shown in Figure 21) but a steeper fall than others during the pandemic of 2020. In the mild 2001

recession, the univariate model estimates a positive output gap compared to others. Continuing

with its pattern of opposing inference compared to others, as of 2023Q3, the output gap estimate

remains negative, in sharp contrast to the other two models. The contrasting inference from

the univariate model shouldn’t be surprising given its univariate nature; it has an incomplete

picture of the economic environment and arguably generates estimates of g-star and the output

gap with less economic content. The formal Bayesian model comparison confirms the inferior

fit of the univariate model to the GDP data compared to the Base model (Base: -255.3 vs.

univariate of Grant and Chan: -410.6)

There have also been notable differences in the estimates between the Base and the LW

models since the onset of the Great Recession. During the Great Recession and the pandemic

recession, the output gap from LW turned only slightly negative. At the same time, the CBO

and the Base model indicate a much sharper decline in the output gap (attributed to large

transitory shocks). The slight negative gaps in the LW model reflect much bigger hits to

the level of potential output (without affecting g-star much) than the Base and the CBO.

As detailed in Holston et al. (2023), to capture the direct effects of the COVID pandemic,

downward adjustment to the level of potential output is incorporated in 2020, 2021, and 2022
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via an exogenous indicator in the LW model (i.e., a temporary supply shock that permanently

lowers the level of potential output). This adjustment has direct implications for the estimates

of the output gap. Given the significant hit to an estimated level of potential output in 2020 in

the LW model, and with a strong recovery in actual output after that, the LW model implies a

strongly positive output gap that is notably higher than the estimate from the Base model.

Panel (f) in Figure 20 plots the estimates of r-star from the Base model and three additional

models widely used to inform estimates of the r-star. These models include Laubach and

Williams (2003) [LW], Johannsen and Mertens (2021) [JM], and Lubik and Matthes (2015).

The LW and JM models are small-scale UC models, whereas Lubik and Matthes model is a

small-scale time-varying VAR with SV. LW, whose estimates are available to download from the

New York Fed’s website, paused the production of their estimates during the COVID pandemic

because the model had difficulties dealing with the extreme volatility of the data. After making

important adjustments to the model, LW resumed production of the estimates in the summer

of 2023. Lubik and Matthes model, which is estimated with Bayesian methods, continued to

provide estimates through the pandemic and afterward; however, recently, the authors assessed

the need to re-calibrate some of the model parameters, and so the estimates shown are based

on their updated model setting.

As can be seen, there are sizable differences in the estimates across the models. Lubik

and Matthes model displays considerable volatility compared to the others, whereas JM, who

model r-star as an RW, is essentially a straight line around 2%; from the 1990 to 2023, it

inches down by only 0.3 ppts, from 2.3% to 2.0%. Although both LW and the Base show

some similarity in the contours of r-star in that both have r-star declining over the sample

shown, there are sizable differences between the estimates. At times, the difference between the

estimates exceeds 200 basis points, e.g., in 2007. LW has r-star declining starting in early 2000,

whereas in the Base model, the descent begins a year later and from a higher level. The two

models provide contrasting inferences from 2009 to 2017, with the LW model estimating r-star

gradually moving up and the Base model estimating r-star drifting lower. It is worth pointing

out that the similarity in the contours of r-star between the two models mainly stems from the

fact that in both models, g-star influences the r-star trajectory, with the influence stronger in

the LW model than in the Base model; the estimate of the parameter capturing the strength of

the relationship between g-star and r-star is 0.65 in the Base versus 1.13 in LW.
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Figure 20: Estimates of Stars and Output Gap: Base model vs. Outside models, from 1990+

Note: Plotted are the (posterior) mean estimates that are computed using the full sample (from 1959Q4 through

2023Q3) but are shown for the period, 1990Q1 to 2023Q3.
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Figure 21: Estimates of Stars and Output Gap: Base model vs. Outside models, from 1959+

Note: Plotted are the (posterior) mean estimates that are computed using the full sample (from 1959Q4 through

2023Q3).
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A18. COVID-19 Pandemic Effects on Variants of Base Model

Without SV, there is significant distortion in some of the parameter estimates from COVID

outliers.

Figure 22: Base-NoSV Model
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Without SV, there is significant distortion in some of the parameter estimates from COVID

outliers.

Figure 23: Base-NoSV-NoTVP-NoSurvey Model
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Figure 24: Base vs. Base variants without SV: COVID outliers effect on the persistence
parameters in the equation defining the Unemployment Rate gap (the cyclical component)

[ Base-NoSV Model ]

[ Base-NoSV-NoTVP-NoSurvey Model ]

[ Base Model: Trivial effect of COVID outliers ]
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A19. Additional Real-Time Estimates of Stars

Figure 25: Real-Time Recursive Estimates vs. Smoothed: Output Gap

Notes: The first row plots estimates of the output gap from the Base model. The second and third rows plot

the corresponding estimates from the models Base-NoSV and Base-NoSV-NoTVP-NoSurvey, respectively. The

plots in blue correspond to estimates based on the full sample, i.e., 1959.Q4 through 2023.Q3. The plots in red

correspond to real-time recursive estimates generated by estimating a given model at different points in time,

specifically 1999.Q1 through 2023.Q3.
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Figure 26: Real-Time Recursive Estimates of Stars vs. Smoothed Stars: pi-star and w-star

Notes: The first row plots pi-star and w-star estimates from the Base model. The second and third rows plot

the corresponding estimates from the models Base-NoSV and Base-NoSV-NoTVP-NoSurvey, respectively. The

plots in blue correspond to estimates based on the full sample, i.e., 1959.Q4 through 2023.Q3. The plots in red

correspond to real-time recursive estimates generated by estimating a given model at different points in time,

specifically 1999.Q1 through 2023.Q3.
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Figure 27: Real-time Recursive Estimates of Stars vs. Smoothed Stars: p-star and g-star

Notes: The first row plots p-star and g-star estimates from the Base model. The second and third rows plot the

corresponding estimates from the models Base-NoSV and Base-NoSV-NoTVP-NoSurvey, respectively. The plots

in blue correspond to estimates based on the full sample information, i.e., 1959.Q4 through 2023.Q3. The plots

in red correspond to real-time recursive estimates generated by estimating a given model at different points in

time, specifically 1999.Q1 through 2023.Q3.
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A20. Forecasting Results I: Base vs. Base Variants and Base vs.

Benchmarks

Base vs. Base Variants

Table 4 presents the results comparing the out-of-sample point forecasting performance of the

Base model to its variants over the forecast evaluation sample spanning 1999Q1 through 2019Q4.

The forecast evaluation is based on real-time data vintages and uses a recursively expanding

estimation window, where each recursive run uses an additional quarterly data point in the

estimation sample.18 The forecast accuracy is computed from one-quarter ahead to 12 quarters

out. Partly due to focus on the medium-term horizon and partly in the interest of space, I

report accuracy metrics for 4, 6, 8, 10, and 12 quarters ahead. I evaluate the forecast accuracy

using real-time data; specifically, I treat the “actual” as the third release of a given quarterly

estimate.19 For instance, in the case of real GDP, the third estimate for 2018Q4 corresponds to

the GDP data available in late 2019Q1. The point forecast accuracy is assessed using the root

mean squared error (RMSE) metric, and the statistical significance of the forecast accuracy is

gauged using the Diebold-Mariano and West test.

The numbers reported in the table correspond to relative RMSE –RMSE Base relative to

RMSE of the Base variant. Hence, numbers less than one suggest that the point forecast

accuracy of the Base forecast is more accurate on average than the comparative Base variant.

As is evident by the numbers reported in the table, the evidence generally favors the Base

model as more accurate than any of the variants.

18Going back in time means that relatively fewer observations are being used to estimate model(s). As is
commonly done when performing real-time forecasting using multivariate UC models, I impose tighter priors on
the shocks’ variances driving the latent components (see, for instance, Barbarino et al., 2020). Accordingly, I
devise a systematic approach to adjusting the prior on the scale parameters of the inverse gamma distributions
defining the variances of the stars. I multiply the scale parameter with the factor = ( 2T

N
− 1) ∗ ( T

N+5(N−T )
),

where N is the total sample size from 1959Q4 through 2019Q4, and T refers to the number of data points in a
given data vintage. At the end of the sample, the factor = 1 because T = N .

19Results are qualitatively similar if I instead use the revised data (2020Q1 vintage data) as the actual values
in the forecast evaluation exercises.
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Table 4: Real-Time Point Forecasting Accuracy: Base vs. Base Variants

Panel A: Base vs. Base-NoSV (Recursive evaluation: 1999.Q1-2019.Q4)

Relative RMSE: RMSE Base / RMSE BaseNoSV

h=4Q h=6Q h=8Q h=10Q h=12Q

Real GDP 0.95* 0.98* 0.97* 0.96* 0.98*
PCE Inflation 0.99 0.99 0.97 0.98 0.99
Productivity 0.98* 1.00 1.00 0.99 0.99*
Nominal Wage (AHE) 0.88 0.86 0.84 0.82 0.83
Unemployment Rate 0.99 1.00 0.99 0.99 0.99
Shadow FFR 0.94* 0.94* 0.94* 0.95 0.95

Panel B: Base vs. Base-NoTVP (Recursive evaluation: 1999.Q1-2019.Q4)

Relative RMSE: RMSE Base / RMSE BaseNoTVP

h=4Q h=6Q h=8Q h=10Q h=12Q

Real GDP 0.99* 0.99* 0.98* 0.99 0.98
PCE Inflation 0.96* 0.97* 0.98 1.01 1.01*
Productivity 0.98* 0.98* 0.98* 0.99 0.98*
Nominal Wage (AHE) 1.04 1.05* 1.00 0.97 0.98
Unemployment Rate 0.98* 0.98* 0.98* 0.98 0.97
Shadow FFR 1.01 1.02 1.03* 1.03 1.03

Panel C: Base vs. Base-NoSurv (Recursive evaluation: 1999.Q1-2019.Q4)

Relative RMSE: RMSE Base / RMSE BaseNoSurv

h=4Q h=6Q h=8Q h=10Q h=12Q

Real GDP 1.02 0.98* 0.99 0.99* 1.00
PCE Inflation 0.96 0.92* 0.93* 0.91* 0.90
Productivity 0.99 1.01 1.01 1.01 0.98*
Nominal Wage (AHE) 0.98 0.94* 0.90* 0.92* 0.93*
Unemployment Rate 1.02 1.02 1.01 1.00 0.98
Shadow FFR 1.05 1.07* 1.11* 1.13* 1.14*

Panel D: Base vs. Base-NoSVNoTVPNoSurv (Recursive evaluation: 1999.Q1-2019.Q4)

Relative RMSE: RMSE Base / RMSE BaseNoSVNoTVPNoSurv

h=4Q h=6Q h=8Q h=10Q h=12Q

Real GDP 0.99 0.98 0.97* 0.97 0.98
PCE Inflation 0.90* 0.87* 0.87 0.87 0.91
Productivity 0.98 0.98 0.98 0.96* 0.96*
Nominal Wage (AHE) 0.80* 0.79* 0.73* 0.72 0.73
Unemployment Rate 1.02 1.01 1.00 0.98 0.97*
Shadow FFR 0.95 0.95 0.94 0.94 0.94

Notes: Numbers less than 1 indicate that the Base model is more accurate on average than the variant. The table reports statistical

significance based on the Diebold-Mariano and West test (with the lag h− 1 truncation parameter of the HAC variance estimator) for the

point forecast accuracy. The test statistics use two-sided standard normal critical values for horizons less than or equal to 8 quarters, and

two-sided t-statistics for horizons greater than 8 quarters. *up to 10% significance level.
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Base vs. Benchmarks In this section I compare the real-time forecasting performance of

the Base model to the outside benchmark models, which the forecasting literature has shown to

be useful forecasting devices. Specifically, I compare the accuracy of the inflation forecasts from

the Base model to the following three models: UCSV of Stock and Watson (2007) [UCSV], Chan

et al. (2016) [CKP], and Chan et al. (2018) [CCK]. I compare the accuracy of the unemployment

rate forecasts from the Base model to the CKP, and the accuracy of the nominal wage inflation

from the Base model to the UCSV model applied to the nominal wage inflation – motivated by

Knotek II (2015).

Table 5 presents the forecast evaluation results for headline PCE inflation, nominal wage

inflation, and the unemployment rate. These results indicate the following three observations.

First, in terms of point forecast accuracy, inflation forecasts from all four models considered

are competitive with each other. There is some statistically significant evidence that the Base

model is more accurate than UCSV at h=12Q. Regarding the density forecast accuracy, the

Base model is more accurate than the UCSV but inferior to CCK, as the latter produces more

precise intervals than the Base model. Second, in the case of nominal wage inflation, the Base

model generates more accurate forecasts (both point and density) than UCSV, and the gains

are statistically significant for the most part.

Third, the accuracy of the unemployment forecasts from the Base model is competitive with

the CKP model statistically speaking, even though the relative numbers favor CKP. A closer

inspection of the forecast errors reveals that the Base model, which incorporates survey forecasts

of the unemployment rate, experienced significantly bigger misses than the CKP model around

the Great Recession period. Outside of this period, the Base model is slightly more accurate

than the CKP, and when combined with the Great Recession period, on the net, the much

bigger misses of the Base model result in overall slightly higher RMSE.

As illustrated in Tallman and Zaman (2020), just before and at the onset of the Great

Recession, survey participants projected relatively upbeat long-run forecasts of unemployment,

which indicated a declining natural rate of unemployment. It was not until a few months into

the recession that survey participants recognized the extent of the labor market damage and

began to revise their estimates of the long-run unemployment rate higher. Hence, models such

as the Base model that take signals from the survey forecasts experienced big misses.

To sum up, I view these forecasting results as providing evidence supporting the Base model’s

competitive forecasting properties.
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Table 5: Out-of-Sample Forecasting Performance: Base vs. Benchmarks

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting Density forecasting
4Q 8Q 12Q 20Q 4Q 8Q 12Q 20Q

PCE Inflation
Relative RMSE Relative Log Score
Base/UCSV 0.96 0.96 0.93* 0.95 Base - UCSV 0.012* 0.022* 0.027* 0.025*
Base/CCK 1.02 1.04* 1.02 1.02 Base - CCK -0.018* -0.032* -0.048* -0.076*
Base/CKP 1.00 0.98 0.98 1.00 Base - CKP 0.001 -0.001 -0.004* -0.024*

Nominal Wage
Relative RMSE Relative Log Score
Base/UCSV 0.88* 0.78* 0.80* 0.50 Base - UCSV 0.017* 0.035* 0.031* 0.010

Unemployment Rate
Relative MSE Relative Log Score
Base/CKP 1.01 1.03 1.05 1.06 Base - CKP 0.115* 0.025 -0.019 -0.059*

Notes: For variables PCE inflation and nominal wage (i.e., average hourly earnings), the forecasts and associated accuracy correspond to

the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in which the steady states are assumed to be

the estimates of the stars from the Base model. UCSV forecast corresponds to the forecast from the univariate unobserved component

stochastic volatility model similar to Stock and Watson (2007). The model is used to construct forecasts of PCE inflation and nominal

wage inflation. CCK forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility model of Chan,

Clark and Koop (2018). CKP forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility model of

Chan, Koop and Potter (2016), with the bounds on u-star fixed to values identical to the Base model. The left panel reports results for the

point forecast accuracy (relative root mean squared errors) and the right panel reports the corresponding density forecast accuracy (mean

of the relative log predictive score). The table reports statistical significance based on the Diebold-Mariano and West test with the lag

h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by

Harvey, Leybourne, and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal critical values for

horizons less than or equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.
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A21. Forecasting Results II: SSBVAR, Base Stars vs. Survey

In macroeconomic forecasting, research by Wright (2013) and Tallman and Zaman (2020),

among others, using workhorse Bayesian VAR models shows that the predictive performance

boils down to good starting conditions (i.e., nowcasts) and terminal conditions (i.e., steady

states proxied by stars). Survey forecasts provide both nowcasts and long-run projections,

whose accuracy has been shown by past research to be quite good. Wright (2019) empha-

sizes the desirable forecasting properties of the survey forecasts and highlights that econometric

approaches utilizing survey projections are at the forecasting frontier, especially in inflation

forecasting. Most empirical research on forecasting has focused on proposing methods to im-

prove the accuracy of the nowcast estimates relative to survey nowcasts’ accuracy, but only

little effort has been dedicated to improving estimates of long-run projections. Hence, this

paper raises a natural curiosity about the usefulness of the stars’ estimates from this paper’s

modeling framework for macroeconomic forecasting using Bayesian VARs (via the imposition

of steady states).

To assess the efficacy of the Base model’s stars’ estimates for the external VAR models, I

perform a real-time out-of-sample forecasting evaluation similar to Wright (2013) and Tallman

and Zaman (2020). These studies informed the time-varying steady states for the steady-state

(SS) BVAR using long-run survey projections and found that doing so leads to significant gains

in accuracy. Accordingly, the design of the forecasting examination is as follows. I take the

SSBVAR from Tallman and Zaman (2020) and perform two sets of recursive real-time out-

of-sample forecasting runs. In the first run, I inform the steady states for real GDP growth,

PCE inflation, core PCE inflation, the unemployment rate, nominal wage inflation, and labor

productivity growth using long-run survey projections. For the latter two variables, I use the

survey expectations from the SPF.20 The forecasts from this run are denoted ‘Survey’ in Table

6. In the second run, I repeat the exercise, but this time inform the steady-states using the

real-time estimates of the stars from the Base model, denoted ‘Base’.

Each of the two forecasting runs is based on estimating the SSBVAR with a recursively

expanding sample, i.e., the recursive execution uses an additional quarterly data point in the

estimation. The SSBVAR is estimated with quarterly data beginning 1959Q2. The model

consists of ten variables: (1) real GDP growth; (2)real consumption expenditures; (3) headline

PCE inflation; (4) core PCE inflation; (5) labor productivity growth; (6) growth in average

hourly earnings; (7) growth in payroll employment; (8) the unemployment rate; (9) the shadow

federal funds rate; and (10) the risk spread, defined as the difference between the yield on the

10-year Treasury bond and yield on BAA-rated bond. The out-of-sample forecasting period

spans 1999Q1 through 2019Q4. The forecast accuracy (point and density) is computed from

one-quarter-ahead to 20 quarters out. Partly due to the focus on the medium-term horizon and

partly in the interest of space, I report accuracy metrics for 4, 8, 12, and 20 quarters ahead.

20In the case of nominal wage inflation, I construct an implied survey projection by adding the survey expec-
tation of PCE inflation and productivity, both of which are obtained from the SPF.
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I evaluate the forecast accuracy using real-time data; specifically, I treat the “actual” as the

third quarterly estimate. For instance, in the case of real GDP, the third estimate for 2018Q4

corresponds to the GDP data available in late 2019Q1. The point forecast accuracy is assessed

using the root mean squared error (RMSE) metric, and the density forecast accuracy is assessed

using the continuous ranked probability score (CRPS). Forecasts with lower RSME and CRPS

are preferred. The statistical significance of the point and density forecast accuracy is gauged

using the Diebold-Mariano and West test. The description of these tests is listed in the notes

accompanying the tables reporting forecast accuracy.

Table 6 reports forecast evaluation results corresponding to this exercise. The left panel

reports the point forecast accuracy results, while the right panel reports results for the density

forecast accuracy. I evaluate and compare the point and density forecast accuracies of the two

forecasting runs in a pairwise fashion. For each variable, the row reports the relative RMSE

(Base relative to Survey) for point forecast accuracy and the relative CRPS for density forecast

accuracy. A model with lower values of RMSE and CRPS is preferred to a model with higher

values. These relative metrics indicate the competitive accuracy of the stars’ estimates from

the Base model compared to Survey.

In the case of nominal wage inflation and the unemployment rate, the SSBVAR with steady

states informed by the Base model generates forecasts that are substantially more accurate than

Survey on average. The gains are statistically significant for the most part.

Overall, these forecasting results lend credibility to Base model’s stars’ estimates in their

use to inform steady states for VAR forecasting models. I also note that the results in this

section lend support to the survey projections in their use as proxies for stars, something

also documented by Tallman and Zaman (2020), among others. However, the preference is for

forecasts (or estimates of stars) obtained using a single multivariate model because the resulting

forecasts will be coherent and allow for a credible narrative in a systematic manner.
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Table 6: Out-of-Sample Forecasting Performance: Steady-State BVAR

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting Density forecasting
4Q 8Q 12Q 20Q 4Q 8Q 12Q 20Q

Real GDP
Relative RMSE Relative CRPS
Base/Survey 0.96 1.00 1.03 1.01 Base - Survey -0.05 0.02 0.04 0.02

PCE Inflation
Relative RMSE Relative CRPS
Base/Survey 0.98 1.00 1.02 1.01 Base - Survey -0.02* 0.01 0.03 0.02

Productivity
Relative RMSE Relative CRPS
Base/Survey 1.03 1.04 1.04 1.01* Base - Survey 0.02 0.04 0.04 0.01*

Nominal Wage
Relative RMSE Relative CRPS
Base/Survey 0.71* 0.68* 0.67* 0.71* Base - Survey -0.09* -0.13* -0.18* -0.26*

Unemployment Rate
Relative MSE Relative CRPS
Base/Survey 0.93* 0.91* 0.90 0.92 Base - Survey -0.04 -0.12 -0.16 -0.12

Shadow FFR
Relative RMSE Relative CRPS
Base/Survey 0.99 0.97 0.96 0.95* Base - Survey -0.01 -0.07 -0.13 0.16*

Notes: For the variables real GDP, PCE inflation, productivity, nominal wage (i.e., average hourly earnings), the forecasts and the

associated accuracy correspond to the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in which

the steady states are assumed to be the estimates of the stars from the Base model. The left panel reports results for the point forecast

accuracy (relative root mean squared errors) and the right panel reports the corresponding density forecast accuracy (mean of the relative

continuous ranked probability score). The table reports statistical significance based on the Diebold-Mariano and West test with the lag

h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by

Harvey, Leybourne, and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal critical values for

horizons less than or equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.
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A22. Assessment of Policy Stance: Base Model

Figure 28 provides an assessment of the stance of monetary policy, defined as the deviation of

the short-term nominal interest rate from the implied long-run nominal neutral rate of interest

(sum of r* and pi*) – this is the interest rate gap from the Taylor-rule equation. A positive

interest rate gap characterizes a restrictive monetary policy stance, and a negative interest rate

gap implies a stimulative stance. The solid line corresponds to the posterior mean estimate of

the policy stance inferred from the Base model and the dashed lines are the 68% credible bands.

According to the Base model estimates, after remaining quite accommodative following the

COVID pandemic shock, the policy stance turned restrictive at the end of 2022, and as of 2023Q3

is more restrictive than anytime prior to 1990. However, in comparison to the early 1980s (when

inflation was in double digits), the stance is significantly less restrictive. The stance was slightly

restrictive before the Great Recession, but at the onset of the Great Recession, the policy stance

immediately turned accommodative. It remained very accommodative (reflecting the effects of

unconventional monetary policy) until late 2015, after which the degree of accommodation

gradually declined (i.e., the interest rate gap became less negative), such that, by the end of

2019, it edged closer to the neutral threshold. Soon after, the COVID-19 pandemic shock

happened, and in response the stance turned very accommodative yet again.

A closer inspection of the figure reveals an interesting insight. Since 1990, both the degree

and the duration of policy accommodation in response to the recession have been more signifi-

cant than in the previous recession, with the COVID-19 pandemic as an exception. For instance,

the monetary policy stance was more accommodative in terms of both level and duration fol-

lowing the 2001 recession than following the 1990-1991 recession. Similarly, during the Great

Recession and afterward, the policy stance, in terms of level and duration, was more significant

than following the 2001 recession. This reflects the fact that each subsequent recession was

more severe than the previous one. In the case of the COVID recession, although the stance

was more accommodative than in 1990-91 and 2001 recessions, due to its shorter duration than

the Great Recession, the stance was relatively less accommodative than post-Great Recession.
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Figure 28: Policy Stance

Notes: Plotted are the posterior mean estimates based on estimation using the full sample (from
1959Q4 through 2023Q3).
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Feunou, Bruno and Jean-Sébastien Fontaine (2023). “Secular Economic Changes and Bond

Yields.” The Review of Economics and Statistics, pp. 1–17. doi:10.1162/rest a 01034.

Fleischman, Charles A. and John M. Roberts (2011). “From Many Series, One Cycle: Improved

Estimates of the Business Cycle from a Multivariate Unobserved Components Model.” Tech-

nical Report 2011-46, Board of Governors of the Federal Reserve System.
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Gaĺı, Jordi and Thijs van Rens (2021). “The vanishing procyclicality of labour productivity.”

The Economic Journal, 131(633), pp. 302–326. doi:10.1093/ej/ueaa065.
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