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Abstract

This paper develops a semi-structural model to jointly estimate “stars” — long-run

levels of output (its growth rate), the unemployment rate, the real interest rate, pro-

ductivity growth, price inflation, and wage inflation. It features links between survey

expectations and stars, time-variation in macroeconomic relationships, and stochastic

volatility. Survey data help discipline stars’ estimates and have been crucial in estimat-

ing a high-dimensional model since the pandemic. The model has desirable real-time

properties, competitive forecasting performance, and superior fit to the data compared

to variants without the empirical features mentioned above. The by-products are esti-

mates of various objects of great interest to the broader profession.
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1 Introduction

The long-run equilibrium levels of macroeconomic variables (often denoted with the “star”

symbol) are central to macroeconomics and policymaking. Their estimates inform counter-

cyclical responses and the long-run assessment of the economy.

In practice, determining the values of stars – which are unobserved – is difficult, not

least because even some of their determinants are unobserved. The multivariate unobserved

components (UC) models, which are statistical models that use economic theory to frame

the empirical specification, are the dominant methods for estimating stars (e.g., Kuttner,

1994; Laubach and Williams, 2003; Chan et al., 2016). With few exceptions, the popular UC

models focus on estimating up to two or three stars using minimal structure (e.g., Laubach

and Williams, 2003 [henceforth LW]). A few studies have incorporated greater information

to jointly estimate more stars but have abstracted from important empirical features such

as time-varying parameters and stochastic volatility (e.g., Hasenzagl et al., 2022; Del Negro

et al., 2017).

This paper takes on the challenge of implementing a semi-structural UC trend-cycle

model, with time-varying parameters and stochastic volatility [SV], to jointly estimate seven

macroeconomic stars: the level of potential output (gdp-star), the growth rate of potential

output (g-star), the long-run equilibrium levels of the unemployment rate (u-star), the real

short-term interest rate (r-star), labor productivity growth (p-star), price inflation (pi-star),

and the nominal wage inflation (w-star).1 The model has several other distinctive features,

discussed below. By jointly estimating seven long-run equilibrium variables in a single large

model, it can exploit numerous cross-equation equilibrium restrictions, allowing more infor-

mation to estimate each star. The model has a rich structure for each star, whose elements are

guided by past research and informed by economic theory. For instance, to estimate r-star,
1The subset of these stars–p-star, g-star, u-star, and r-star–reflect the fundamental structural features of

the economy, whereas others–pi-star and w-star–are influenced by monetary policy.
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the investment-savings (IS) equation provides information about the trend in the long-run

real interest rates; the Taylor-type rule equation provides information about the trend in

short-run interest rates; g-star and r-star are theoretically linked; and r-star is related to its

survey expectations. The rich structure combined with time variation in select parameters

and SV should in principle allow the model to better distinguish between cyclical fluctuations

and lower-frequency movements in macroeconomic aggregates, helping provide more credible

estimates of stars and other model parameters.

Chan et al. (2018) – henceforth CCK – use long-run survey expectations of inflation to

improve the estimation of pi-star. I extend their approach to other macroeconomic stars.

Specifically, I model the direct relationships between the select model-based stars (g-star,

r-star, u-star, and pi-star) and the expectations about those stars contained in the Blue

Chip survey of economic forecasters (or as reported by the Congressional Budget Office

[CBO] for the pre-1983 period when the survey estimate is not available). Each relationship

is estimated and allowed to be flexible and data-dependent. In particular, the data may

suggest that survey expectations are equated to stars in some periods or that the two are

unrelated or something in between.

The paper is differentiated from those in the existing literature by its novel combination of

features: (1) time-varying parameters, (2) stochastic volatility, (3) joint modeling of multiple

stars, (4) implementation of a richer structure, (5) allowing for a direct relationship between

stars and long-term survey expectations, and (6) the provision of w-star (and its model-based

decomposition into its theoretical determinants p-star and u-star). Many popular small-scale

UC models could be viewed as special nested cases of my larger UC model, facilitating model

comparison. I estimate the feature-rich UC model using Bayesian techniques.

To assess the empirical relevance of features included in the large (baseline) model, such as

survey data, time variation in parameters, and SV, several model specifications are estimated

that restrict one or more of these features. The full-sample and real-time properties of

the stars, the model’s fit to the data, the precision of the stars, and the real-time forecast
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performance are compared across the various model specifications. The estimates of the

stars from the baseline model are also compared to parsimonious smaller-scale UC models

routinely used by Federal Reserve staff and academic research. Lastly, the usefulness of the

stars from the baseline model is evaluated as steady-state values for external models.

The results indicate that including the survey data on expectations- targeted and "di-

rect" measures of stars - is a crucial element of the model, particularly in times of high

uncertainty. These data are generally helpful in disciplining model estimates of the stars.

But, since the onset of the pandemic, survey data have been critical for estimating the high-

dimensional model. The model’s rich features, including SV and time-varying parameters,

make estimation complex, and feeding in pandemic data results in the failure of the estima-

tion to converge without the survey data. The survey data have the most influence on the

estimation of pi-star, followed by r-star and u-star, and is somewhat helpful for g-star.

The results also indicate that SV is highly effective in identifying high-volatility periods,

including the extreme data fluctuations associated with the pandemic. This helps limit

the influence of these observations on model estimates, yielding more credible and precise

parameter inference. Broadly speaking, volatility estimates show more time variation than

estimates of the parameters. Therefore, regarding inference about the stars, allowing for SV is

more important than time variation in parameters. The baseline model with and without time

variation in parameters generally implies similar estimates of stars but improves the precision

of the estimates of most stars, the model’s fit to the data, and out-of-sample predictions.

It has been widely acknowledged that considerable uncertainty surrounds the estimated

stars, complicating reliable inference. My baseline model estimates suggest that the esti-

mated uncertainty around the stars is lower than what we are used to seeing, though it has

increased since the onset of the pandemic. The results indicate that each feature incorporated

into the Base model, which includes a richer structure (including multivariate information),

time-variation in some parameters, SV in cyclical components, and the inclusion of survey

expectations, contributes to improved precision of the stars and the output gap. This is an
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encouraging result, since it increases the appeal of relying on the estimates of the stars for

policymaking.

When assessed over long periods, the broad contours of estimated stars echo those doc-

umented elsewhere, which is not surprising because, for a given star, the main underlying

variable is the same across papers (e.g., real GDP for g-star), so stars are expected to track

the long-run movements in the respective underlying variables. The differences in modeling

choices and assumptions lead to potential differences in the stars’ estimates over certain pe-

riods. Indeed, my model estimates indicate differences in some stars over extended periods,

differences that are significant enough to matter for policymaking. Based on an extensive ex-

amination using this paper’s unified framework, the stars most sensitive to modeling choices

are r-star and u-star, followed by pi-star, w-star, and g-star (and the output gap), with p-star

(trend productivity) being the least sensitive.

A key challenge in the literature is that real-time estimates of stars tend to be unstable;

that is, there are notable differences between real-time and final estimates. This instability

has contributed to their limited use in policy discussions in recent years (see Powell, 2018).

This paper has made progress along this dimension as well. Including survey data and SV

improves the real-time stability of the stars.

This paper also demonstrates the usefulness of the proposed model’s estimated stars

as terminal values in other (external) models. Previous research shows that forecasting

models, such as steady-state vector autoregressive (VAR) models, often improve their forecast

accuracy by using external information about steady states informed by long-run survey

expectations (e.g., Wright, 2013). Using a real-time forecasting comparison, I show that if one

were to inform steady states in a VAR with the stars from my baseline UC model, one would

achieve gains in forecast accuracy for some variables compared to the standard approach

relying on survey expectations. An advantage of the proposed framework compared to surveys

is that it provides estimates of stars for variables not covered by surveys (e.g., w-star) and

offers both point and uncertainty estimates. Research has recently shown the benefits of
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using survey data to inform medium-run trend estimates in DSGE models (e.g., Rychalovska

et al., 2023). Hence, this paper’s estimates of stars, which are internally consistent, could be

helpful for a broad class of models.

As a second real-time out-of-sample predictive exercise, I show that the baseline model

predictions themselves do at least as well as the standard “hard to beat” benchmark models

in the literature. Supplementary exercises suggest that including survey data, SV, and pa-

rameter time variation all contribute to improved predictions. Hence, this model produces

accurate forecasts of key macroeconomic variables of broader interest.

The model’s estimates yield insights into several policy questions that have been of high

interest since the 2021 inflation surge. Two are highlighted here.

Permanent vs. transitory inflation: While the post-pandemic inflation surge was in full

swing, there was considerable interest in determining how much was permanent versus tran-

sitory. By 2023, however, inflation had moderated quickly from a high of 8% to a rate closer

to 3%, indicating that most of the surge was transitory. Somewhat remarkably, the baseline

model and its variants, which include survey expectations, during the surge indicated that

pi-star had risen only 0.5-0.6 percentage points. Dropping survey data from the model(s)

yielded sharply different inferences, attributing most of the pandemic surge to pi-star, similar

to the UC model of Stock and Watson (2007) and that of Schmitt-Grohe and Uribe (2024)

when those models are estimated with postwar inflation data. Schmitt-Grohe and Uribe, who

do not use survey data, show that if one were to estimate their model with data starting in

1900, the model infers the recent surge as mostly transitory. They conjecture that the latter

inference is more credible given the recent developments in inflation and hence, they advocate

estimating macro models with data that start in 1900. In contrast, my results indicate that

if survey data on inflation are included, estimation with postwar data is sufficient to get a

similar (credible) inference.

Strength of the Phillips curve: Post-COVID inflation dynamics have renewed interest in

the Phillips curve (PC relationship). Many models estimate a weakening of the PC relation-
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ship after the 2008 financial collapse, and several recent papers (e.g., Hobijn et al., 2023;

Cecchetti et al., 2023) find evidence of a steepening in the PC slope since the pandemic’s

onset. In contrast, my model indicates that the strength of the PC relationship has remained

stable from the mid-1980s through 2023 (though the PC parameter estimate over this period,

near -0.2, is about half of what it was during the 1970s).

The paper is organized as follows. The next section describes the semi-structural model

and its variants in detail. Section 3 describes the data and estimation. Section 4 presents

and discusses empirical results based on full-sample estimation. Section 5 reports real-time

estimates of stars, compares them to the final estimates, and summarizes the forecasting

results. Section 6 concludes. This paper has a supplementary online appendix that discusses

the related literature, a detailed model description, Bayesian estimation steps, prior and

posterior comparison, and additional results.

2 Empirical Macro Model and Variants

The ingredients of the proposed econometric model are guided both by economic theory and

by empirical considerations – namely, features that previous research has demonstrated to

be empirically relevant. These features include SV and time-varying parameters, implying

time-varying predictability. Collectively, these empirical features permit flexible modeling of

changing macroeconomic relationships.

Following CCK, Mertens (2016), among others, this paper defines the long-run equilibrium

(or star) of a particular macroeconomic series as its infinite-horizon forecast conditional on the

current information set. This definition of a star is consistent with the notion of Beveridge-

Nelson trend decomposition, and an extensive literature has adopted it to estimate stars.

I represent the empirical baseline model using six blocks of equations. These six blocks,

which allow for contemporaneous interactions between them, characterize the joint dynamics

of the unemployment rate, output growth, labor productivity growth, price inflation, nominal
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wage inflation, the nominal interest rate, and corresponding stars. To be sure, the model

assumes that all innovations are uncorrelated both serially and across equations. However,

I emphasize that any assumed current period correlations between the cyclical components

and/or between stars are directly modeled via the model equations that define the contem-

poraneous relationships between the components (e.g., the cyclical output gap at time t with

the cyclical unemployment gap at t; r-star and g-star).

For space reasons, I describe briefly the elements of the various model blocks, but in

Appendix A2, I provide a detailed description of the model blocks, including references

motivating modeling choices.

2.1 Bringing in survey expectations

An important contribution of this paper is to provide a direct role for long-run survey ex-

pectations in refining the stars’ estimates. CCK explicitly estimate an equation linking the

observed measure of a long-run survey expectation of inflation to unobserved trend inflation

(pi-star). I extend their approach to four of the six macroeconomic stars considered in this

paper. Specifically, with the exceptions of nominal wage inflation and labor productivity,

for each of the remaining four variables, I model a direct but flexible link between long-run

survey projections (or the long-run CBO projections in the years for which survey projections

are unavailable) and the corresponding star using the following econometric equations:2

(1) Zj
t = Cj

t + βjj∗t + εzjt , εzjt ∼ N(0, σ2
zj), j = π, u, g, r

(2) Cj
t = Cj

t−1 + εcjt , εcjt ∼ N(0, σ2
cj), j = π, u, g, r

where π refers to price inflation, u refers to the unemployment rate, g refers to real GDP

growth, r refers to the real short-term interest rate, Zj
t refers to the long-run survey forecast

2For the long-run inflation forecast, I use the Survey of Professional Forecasters (SPF) (and the PTR

series that is available to download from the website of the Federal Reserve Board), and for the long-run

forecasts of the other three variables, I use the Blue Chip (BC) survey.
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corresponding to the variable j, and j∗t is the unobserved j star.3

Cj
t is a time-varying intercept assumed to evolve as an RW process to possibly capture

the permanent wedge between the survey estimate and the model-based star. This wedge

can arise for several reasons, including the fact that star is assumed to be the infinite-horizon

forecast, whereas the survey forecast refers to the average forecast for the five-year period

starting seven years into the future in the case of BC and the ten-year-ahead forecast in the

case of the SPF (for price inflation).

2.2 Unemployment block

Following Chan et al. (2016) [henceforth CKP], the observed unemployment rate is decom-

posed into a (bounded) RW trend component (u-star) and a stationary cyclical component.

(3) Ut = U∗
t + U c

t

The cyclical component is modeled as an AR(2) process. Because I also model the output

gap, I depart from CKP by adding the output gap (denoted ogap) to the equation.

(4) Ut − U∗
t = ρu1(Ut−1 − U∗

t−1) + ρu2(Ut−2 − U∗
t−2) + ϕuogapt + εut , εut ∼ N(0, eh

u
t )

where ρu1 +ρu2 < 1, ρu2 −ρu1 < 1, and |ρu2 | < 1. The estimate, 1−ρu1−ρu2
ϕu , could be interpreted

as the Okun’s law coefficient. U-star is modeled as a bounded RW, where the bounds’ values

are fixed at 3.5% (lower bound) and 7.5% (upper bound).4

(5) U∗
t = U∗

t−1 + εu∗t , εu∗t ∼ TN(au − U∗
t−1, bu − U∗

t−1; 0, σ
2
u∗)

3Because survey expectations of g-star, i.e., Zg, are reported as annualized rates, the precise formulation

of the equation linking survey expectations to g-star is Zg
t = Cg

t + βg ∗ 4 ∗ g∗t + εzgt . I note that r-star

survey projections are not direct estimates; instead, they are inferred from the Blue Chip survey’s long-run

projections of the GDP deflator and short-term interest rates using the long-run Fisher equation. The inferred

estimates of survey expectations for r-star go back to 1983.Q1. Please refer to Appendix A4 for details on

the procedure to back-cast estimates all the way back to 1959.
4These values are informed by estimating the CKP model over the estimation sample and are close to

values reported in CKP based on their estimation sample. As a further check, most estimates of u-star

reported in the commonly cited literature fall within the bounds used in this paper.

8



where the notation TN(a, b;µ, σ2) refers to normal distribution with mean µ and variance

σ2 but truncated in the interval (a, b).

2.3 Output block

To feasibly estimate both the potential output (i.e., gdp∗) and the growth rate in potential

output (i.e., g∗), I follow the commonly adopted approach, which decomposes the level of

aggregate output into the level of potential output and a cyclical component (output gap).

(6) gdpt = gdp∗t + ogapt

where gdp ≡ log(GDP ) and gdp∗ refers to potential output, which is unobserved.

As in Grant and Chan (2017), gdp∗ is assumed to follow a second-order Markov process.

(7) gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2
gdp∗)

Assuming, g∗t ≡ △gdp∗t , where △ is the first difference operator, then,

(8) g∗t = g∗t−1 + εgdp∗t

The cyclical component, ogap, is assumed to be a stationary AR2 process augmented

with additional variables: the real interest rate gap and the unemployment gap,5,

(9) ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rLt − r∗t − tp∗t ) + λg(Ut − U∗
t ) + εogapt

where, εogapt ∼ N(0, eh
o
t ), ρg1 + ρg2 < 1, ρg2 − ρg1 < 1, and |ρg2| < 1

Equation (9) could be interpreted as defining an IS-curve (as in LW and subsequent papers

modeling r-star) that allows feedback (via parameter ar) from the real interest rate gap to

the output gap. The long-term real interest rate, rL, is treated as an exogenous (observable)

variable and is constructed as the difference between the nominal yield on a 10-year Treasury

bond and the 10-year inflation expectations (i.e., the PTR series for PCE inflation). The

long-run value of the term premium, tp∗, is also treated as an exogenous variable and is

constructed as the average of the differential between the long-term interest rate (i.e., the
5Morley and Wong (2020), Grant and Chan (2017), and Fleischman and Roberts (2011), among many,

have shown the usefulness of the unemployment rate for the output gap estimation.
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10-year Treasury bond) and the federal funds rate, similar to Johannsen and Mertens (2021).

2.4 Productivity block

The productivity gap, defined as (nonfarm) labor productivity growth (quarterly annualized)

less p-star, is modeled as a function of a one-quarter lag in the productivity gap and the

contemporaneous cyclical unemployment gap.

(10) Pt − P ∗
t = ρp(Pt−1 − P ∗

t−1) + λp
t (Ut − U∗

t ) + εpt , εpt ∼ N(0, eh
p
t )

where |ρp| < 1. Including the cyclical unemployment gap helps tease out movements in

productivity associated with the business cycle. Galí and van Rens (2021) find a weaken-

ing correlation between labor productivity and the cyclical indicator, which motivates time

variation in the coefficient λp.

(11) λp
t = λp

t−1 + ελpt , ελpt ∼ N(0, σ2
λp)

P-star is modeled as a driftless random walk component.

(12) P ∗
t = P ∗

t−1 + εp∗t , εp∗t ∼ N(0, σ2
p∗)

2.5 Price inflation block

The formulation for the price inflation block closely follows CKP and CCK, combining ele-

ments from both papers: a link to survey data, time-varying parameters to capture evolving

inflation persistence, and the Phillips curve relationship. Specifically, the inflation gap (de-

fined as the deviation of inflation from pi-star) is modeled as a function of the one-quarter

lagged inflation gap and the unemployment gap.

(13) πt − π∗
t = ρπt (πt−1 − π∗

t−1) + λπ
t (Ut − U∗

t ) + επt , επt ∼ N(0, eh
π
t )

(14) ρπt = ρπt−1 + ερπt , ερπt ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ
2
ρπ)

The innovations to the AR(1) coefficient, ρπ are truncated so that 0 < ρπt < 1.

(15) λπ
t = λπ

t−1 + ελπt , ελπt ∼ TN(−1− λπ
t−1, 0− λπ

t−1; 0, σ
2
λπ)

10



λπ, the slope of the price Phillips curve, is constrained in the interval (-1,0). Pi-star is

modeled as a driftless random walk component (as in CKP).

(16) π∗
t = π∗

t−1 + επ∗t , επ∗t ∼ N(0, σ2
π∗)

2.6 Wage inflation block

In the long run, economic theory posits that nominal wage inflation equals the sum of its

fundamentals—the long-run growth rate of labor productivity and the long-run level of price

inflation. I impose this relationship to define w-star.

(17) W ∗
t = π∗

t + P ∗
t +Wedget + εw∗

t , εw∗
t ∼ N(0, σ2

w∗)

(18) Wedget = Wedget−1 + εwlr
t , εwlr

t ∼ N(0, σ2
wlr)

Because the data on all three–nominal wage inflation, price inflation, and labor pro-

ductivity growth–come from different sources, they differ in scope and coverage; hence, a

time-varying wedge, which is assumed to evolve as an RW process, is added to the above

equation. The above equation implies that W ∗ adjusted for the wedge is approximately equal

to the sum of π∗
t + P ∗

t .

Equation (19) relates the nominal wage inflation gap – defined as the difference between

the nominal wage inflation and w-star – to its one-quarter lagged gap, the cyclical unemploy-

ment gap, and the price inflation gap.

(19) Wt −W ∗
t = ρwt (Wt−1 −W ∗

t−1) + λw
t (Ut − U∗

t ) + κw
t (πt − π∗

t ) + εwt , εwt ∼ N(0, eh
w
t )

The findings in previous research motivate time-variation in the parameters, ρw, which

quantifies the persistence in wage inflation dynamics; λw, which measures the strength of

the cyclical relationship between the nominal wage gap and labor market slack (aka the

slope of the wage Phillips curve); and κw, which measures the link between price inflation

and nominal wage inflation – the expression κw
t

1−ρwt
could be interpreted as an estimate of the

short-run pass-through from price inflation to wage inflation.
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(20) ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ
2
ρw)

The innovations to the AR(1) coefficient, ρw, are truncated so that 0 < ρwt < 1.

(21) λw
t = λw

t−1 + ελwt , ελwt ∼ TN(−1− λw
t−1, 0− λw

t−1; 0, σ
2
λw)

λw in equation (19), the slope of the wage Phillips curve is constrained in the interval (-1,0).

(22) κw
t = κw

t−1 + εκwt , εκwt ∼ N(0, σ2
κw)

2.7 Interest rate block

I close the model with the interest rate block characterizing the interest rate dynamics and

the law of motion for r-star (the long-run equilibrium real short-term interest rate).

The first equation of the block relates the nominal interest rate gap (based on the shadow

federal funds rate) to its one-period lag interest rate gap, the current quarter inflation gap,

and the unemployment rate gap. This equation roughly characterizes the monetary policy

reaction function. To capture both conventional and unconventional monetary policy effects

when the (observed) nominal federal funds rate is constrained at the effective lower bound

(ELB), I use the shadow interest rate measure of Wu and Xia (2016).

(23) it − π∗
t − r∗t = ρi(it−1 − π∗

t−1 − r∗t−1) + λi(Ut − U∗
t ) + κi(πt − π∗

t ) + εit, εit ∼ N(0, eh
i
t)

where ρi is truncated so that 0 < ρi < 1. The second equation, motivated by economic

theory (and LW), expresses r-star as a linear function of g-star and a “catch-all” component

D, which follows a random walk process.

(24) r∗t = ζg∗t +Dt.

(25) Dt = Dt−1 + εdt , εdt ∼ N(0, σ2
d)

2.8 Stochastic volatility in "gap" equations

As discussed earlier, the variance of the error terms, εut , ε
ogap
t , εpt , επt , εwt , and εit is allowed

to vary over time. This implies that the model permits sudden and/or persistent increases
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and reductions in the volatility of the shocks to processes defining the gap components of

unemployment, output, productivity, price inflation, nominal wage inflation, and the nominal

interest rate. The choice not to incorporate SV into shocks to equations defining stars is made

for two reasons: one, to keep the estimation manageable, and two, the literature documenting

weak empirical support for SV in stars’ equations when using smaller models, except for pi-

star, for which there is mixed evidence (see footnote 12 in Appendix A2). The SV process is

modeled as a driftless random walk in the log-variance.

(26) hid
t = hid

t−1 + εjt , εjt ∼ N(0, σ2
j ) id = {u, ogap, p, π, w, i}, j = {hu, ho, hp, hπ, hw, hi}

2.9 Model discussion

In this subsection, I highlight at a high level the unique features of my model, the assumptions,

and differences relative to prior work. For a more detailed discussion, including references to

prior work motivating my modeling choices, please see Appendix A2.

As indicated in the introduction, in contrast to the previous research on estimating stars

using UC models, I jointly estimate a greater number of blocks and, within a block, imple-

ment a richer structure. CCK use long-run survey expectations of inflation to improve the

estimation of pi-star. I extend their approach to other macroeconomic stars. As a result,

four of the six macroeconomic stars considered in this paper are directly informed by survey

data. Following a long list of papers, in my model setup, the persistence of the output and

the unemployment gaps is modeled using a time-invariant AR2 process and of other variables

using an AR1 process, with time-variation permitted in the case of price inflation and nom-

inal wage inflation; in the case of the interest rate gap and the labor productivity gap, the

data preferred a time-invariant AR1 process over a time-varying AR1. (Recall the equation

for the interest-rate gap mirrors the monetary policy reaction function, and the literature

has commonly adopted a fixed value of 0.85 for the inertia parameter.)

In estimating u-star, with few exceptions (e.g., Hasenzagl et al. (2022)), most of the
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previous literature has relied on bivariate UC models focused on joint modeling of the unem-

ployment rate combined with either price inflation (price PC), real GDP growth (Okun’s law

relationship), or nominal wages (wage PC). Recently, research using small-scale UC models

has shown the empirical relevance of allowing for TVP in parameters (capturing inflation

persistence, price, and wage PC relationships) and support for SV in the cyclical components

of price inflation, the unemployment rate, and real GDP. CKP extend the bivariate Phillips

curve UC model by proposing a bounded RW for u-star. In my model, I combine elements

from this research and go further by using information from interest rates, productivity, and

survey data on u-star to estimate u-star.

Similarly, for g-star (and gdp-star), researchers have generally relied on univariate and

bivariate UC models (Okun’s law or IS curve equations), mainly without SV. I combine ele-

ments from this previous research (including Okun’s law and IS curve), allow SV in equations

defining cyclical components of output and unemployment, and use survey data on g-star.

Some of the previous research permits the contemporaneous interactions between the output

and the unemployment gaps via the error covariance structure; I instead allow for direct con-

temporaneous interactions between the two gaps. The IS (output gap) equation is inspired

by LW but with two modifications. First, I use the long-term real interest rate instead of the

short-term real rate. Second, information about the unemployment gap is included.

The estimation of r-star is informed by various channels: information from long-term

interest rates (via the IS eq.), from short-term interest rates (TR eq.), an equation linking

r-star to survey expectations (unique to this paper), and an equation relating r-star to g-star

(popularized by LW). The previous research has entertained only a subset of these channels

in estimating r-star. SV is included in both the IS and TR equations, but other parameters

are assumed to be time-invariant because the empirical evidence against it was weak.

The formulation for the price inflation block combines elements from CKP and CCK.

The bivariate models in CKP and CCK are extensions of the univariate Stock and Watson

(2007). In my model, the equation linking pi-star and survey expectations is motivated by
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CCK, time-variation in the price Phillips curve by CKP, and time-variation in the persistence

of the inflation gap by CKP and CCK. Following much of the literature, pi-star is modeled

as a driftless random walk component, and the variance of the shocks to this component

is assumed to be constant (as in CKP, among others), in contrast to Stock and Watson

(2007), and select others. My reason for not incorporating SV into shocks to pi-star is to

keep the estimation manageable and maintain consistency with the modeling assumptions

for the other stars, for which evidence in favor of SV has been shown to be weak.

In estimating p-star, some researchers (e.g., Kahn and Rich, 2007) have proposed using

additional variables alongside labor productivity to tease out movements in productivity as-

sociated with the business cycle. Many studies apply the univariate UC (without SV) model

to productivity data to estimate p-star. Accordingly, I model the productivity gap as a

function of a one-quarter lag in the productivity gap and the contemporaneous unemploy-

ment gap. In contrast to the existing literature, I allow time variation in the parameter λp

that captures the strength of the cyclical relationship and SV in the equation defining the

productivity gap. P-star is modeled as a driftless random walk component.

Lastly, to motivate the elements of the wage block, I take guidance from several theoretical

and empirical studies (reported in Appendix A2). Specifically, in the nominal wage gap

equation, I allow for a time-varying wage PC, short-run passthrough from prices to wages,

and SV. The law of motion for w-star is governed by the theoretical restriction that labor

productivity growth is the only fundamental driver of real wages, i.e., w-star = pi-star +

p-star + wedge. (The time-varying wedge is added for the reasons mentioned earlier.) This

theoretical restriction acts as an additional channel influencing pi-star and p-star. Because

modeling w-star is one of the novelties of this paper, this restriction is unique to this paper,

and I find that it improves the overall model fit to the data.
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2.10 Base model and its variants

The equations (1), (2). . . (26) define our baseline model formulation (denoted Base). Section

A5.a. of the appendix lists all of the equations for the Base model for easy reference. To

assess the usefulness of various empirical features incorporated in the Base model, additional

model specifications are estimated. The five main specifications are listed below, and several

additional variants are detailed in Appendix A3.

Base-NoSV. To assess the empirical support of SV in shock variances, I estimate a

variant of the baseline model with no SV in any of the measurement (gap) equations.

Base-NoTVP. To assess the empirical support of time variation in important macroeco-

nomic relationships, I estimate a variant of the baseline model that shuts down time variation

in the parameters, λp (eq.10), λπ and ρπ (eq. 13), Wedge (eq. 17), rhow, λw, and κw (eq.

19). I still allow for SV in the measurement (gap) equations.

Base-NoSV-NoTVP. To jointly assess the empirical support of SV in shock variances

and time variation in important macroeconomic relationships, I estimate a variant of the

baseline model with no SV in any of the measurement (gap) equations and no time variation

in the parameters capturing macroeconomic relationships (similarly to Base-NoTVP).

Base-NoSurvey. To assess the usefulness of survey expectations, I estimate a variant

of the baseline model that excludes all the equations linking surveys to stars.

Base-NoSV-NoTVP-NoSurvey. Because the model variant Base-NoSurvey fails to

estimate with COVID-19 pandemic data, I estimate this specification, which shuts down SV

and time-variation in the parameters, in addition to excluding equations linking surveys to

stars. Comparing this model specification’s estimates with Base-NoSV-NoTVP provides a

sense of the usefulness of the survey data.
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3 Data and Bayesian Estimation

3.1 Data

I estimate the empirical model using the following quarterly data: (1) the unemployment

rate; (2) real GDP growth; (3) nonfarm labor productivity growth; (4) the inflation rate

in the personal consumption expenditures (PCE) price index; (5) average hourly earnings

(AHE) of production and nonsupervisory workers (total private industries);6 (6) the federal

funds rate; (7) the nominal yield on the 10-year Treasury bond; (8) the shadow federal funds

rate from Wu and Xia (2016); (9) Blue Chip7 (real-time) long-run projections of three-month

Treasury bill, real output growth, the unemployment rate, and GDP deflator inflation; and

(10) long-run inflation expectations of PCE inflation (PTR series). I also collect the real-

time long-run CBO projections of real output growth, the level of real potential output,

and the natural rate of unemployment. I use data starting in 1959Q4 through 2023Q3

from the 2023Q4 vintage (downloaded from Haver Analytics) as a featured sample for this

paper. For production of real-time estimates of stars and forecast evaluation exercises, the

real-time data vintages of real GDP growth, PCE inflation, the unemployment rate, AHE,

and nonfarm labor productivity spanning 1998Q1 through 2023Q3 are downloaded from the

ALFRED database maintained by the St. Louis Fed and the real-time database maintained

by the Federal Reserve Bank of Philadelphia.

3.2 Bayesian estimation

I use Bayesian methods to estimate the Base model and its variants. The use of inequality

restrictions on latent parameters in the model(s) setup leads to a nonlinear state-space model,

which renders estimation using standard Kalman filter methods infeasible. Accordingly, I im-
6AHE of production and nonsupervisory workers in total private industries goes back to 1964Q1. From

1959Q4 through 1963Q4, I use the AHE of workers in goods-producing industries. I splice them together.
7Blue Chip Economic Indicators data published by Wolters Kluwer Legal and Regulatory Solutions U.S.
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plement the Markov chain Monte Carlo (MCMC) posterior sampler based on computational

methods developed in CKP, who use the band and sparse matrix algorithms detailed in Chan

and Jeliazkov (2009). The CKP posterior sample developed for a relatively smaller-scale non-

linear state-space model is carefully extended to accommodate the additional structure and

numerous features of my model(s). Since the computational methods I use are an extension

of those based on CKP, I relegate the specific details of the sampler to Appendix A5.c.8

Bayesian model comparison is based on the marginal likelihood (ML) metric. In comput-

ing ML for various models, I use the approach proposed by CCK (also used by Carriero et al.,

2022), which decomposes the marginal density of the data (e.g., inflation) into the product

of predictive likelihoods; see Appendix A5.d for details. An advantage of the CCK approach

is that it permits the computation of marginal data density for each variable of interest. The

variable-specific marginal densities prove useful because they allow for deeper insights into

the source of the deficiencies, which helps differentiate models at a more granular level.

As discussed in CCK, UC models with several unobserved variables, such as the one

developed in this paper, require informative priors. Accordingly, the prior values for most

parameters are only slightly informative and are similar to those used in CKP, CCK, and

González-Astudillo and Laforte (2020) for the common parameters. The use of inequality

restrictions on some parameters, such as the Phillips curve, persistence, and bounds on u-star,

could be viewed as additional sources of information that eliminate the need for tight priors.

I use relatively tight priors for the parameters on which there is agreement in the empirical

literature on their values, such as the Taylor-rule equation parameters. The priors are kept the

same for the common parameters across models in model comparison exercises. In Appendix

A9, I provide figures plotting prior and posterior distributions for each parameter. The

plots in those figures indicate that for most parameters, the data influence the posterior
8For each model specification, I simulate 1 million posterior draws from the MCMC posterior sampler. I

then discard the first 500,000 draws, and of the remaining, I keep every 100th draw. Accordingly, all of the

reported results for the Base model and its variants are based on 5000 retained draws.
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estimates as evidenced by well-peaked posterior distributions and/or movements in posterior

distributions away from prior distributions. (Also, see Appendix A10 for additional analysis.)

I also performed a simple prior sensitivity analysis, which I report in Appendix A7.

4 Full Sample Estimation Results

This section discusses the results obtained by estimating the models using the entire sample

from 1959Q4 through 2023Q3.

4.1 Stars and the output gap from the Base model

Figure 1 presents estimates of the six stars (pi-star, p-star, w-star, u-star, g-star, and r-star)

and the output gap (in place of gdp-star) from the Base model. Also plotted are the survey

estimates of stars that enter the Base model to provide a visual sense of the influence of

survey data for model-based stars. Complementing the visual evidence, Figure 2 plots the

posterior estimates of the coefficients capturing the estimated relationships between survey

expectations and model-based stars.

Figure 1, upon careful visual inspection, reveals periods of a tight association between

stars, as dictated by economic theory, in that periods of higher p-star are generally associated

with higher g-star, r-star, w-star, and lower u-star; and vice versa. For example, from the

mid-1990s to the late-1990s, a period of strong economic growth fueled by the technology

boom, the Base model estimates paths of rapidly increasing p-star, g-star, and r-star and

steadily falling u-star and modestly rising w-star. Similarly, a coherent narrative is evident

during and immediately following the Great Recession, with p-star, g-star, r-star, w-star

falling, and u-star remaining elevated. This consistency lends credibility to the Base model

and its estimates of various objects.

Panel (a) of Figure 1 presents the estimates of pi-star. The model indicates that pi-star

was low in the 1960s, high in the 1970s (model inferred significant increases in inflation as
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mostly permanent), fell sharply in the 1980s, continued a steady deceleration in the 1990s,

fluctuated in a narrow range between 2.0% and 2.5% in the 2000s, held steady at 1.8-2.0%

from 2012 through 2021Q1, increased gradually during the post-pandemic inflation surge to

reach 2.3% by 2022, and falling only by a tenth, to 2.2%, in 2023.

The two periods, 2012-2019 and post-COVID, were of great interest from the perspective

of pi-star. In the first period from 2012 to 2019, when inflation remained stubbornly below

2%, pi-star is estimated to be stable at a touch below 2%. The model explains low inflation

realizations partly by slack in the labor market (positive unemployment rate gap, as u-star is

estimated to be above the unemployment rate; see the figure in Appendix A12; or equivalently,

a negative output gap, see panel g in Figure 1) over most of this period and partly by the

increasing volatility of the (mostly negative) shocks to the inflation gap. During the post-

COVID inflation surge, pi-star is estimated to rise only modestly, about 0.4 ppts. The model

inferred the sharp spike in inflation as mostly transitory, evidenced by the increasing volatility

of the (positive) shocks to the inflation gap (see Figure 3, panel d), and the remainder of

the spike is explained by a tight labor market, a negative unemployment gap, with the

unemployment rate averaging 0.6 ppts below the estimated u-star.

The survey’s influence on pi-star estimation is strong, as seen in Figure 1 and confirmed

by estimates reported in panel (b) of Figure 2: posterior mean of 0.99 for βπ, with 90%

credible intervals spanning 0.91 to 1.07 (also reported in Appendix A6). The estimates of

the time-varying intercept Cπ (panel a) indicate evidence of time variation in the estimated

relationship between the survey pi-star and model pi-star. Specifically, in the first half of the

sample, there are sizeable deviations between the model and survey pi-star; however, since

2000, the gap between the two has diminished.

Panel (b) of Figure 1 presents the estimates of p-star. After averaging between 2% and 3%

in the 1960s, the estimates indicate that p-star experienced a sharp deceleration in the 1970s

through the mid-1980s, mirroring the dramatic fall in productivity growth (not shown). The

mean estimates show p-star trending lower from 2.8% in early 1970 to 1.1% by the mid-1980s;
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from there on through the late 1990s, p-star increased sharply, at a pace roughly equivalent

to its deceleration in prior periods, to reach a level of 2.5% by 1999. The literature attributes

part of this acceleration in the latter half of the 1990s to the information technology (IT)

boom. In the 2000s, p-star gradually drifts lower to a level close to 1.0% by 2012. It remained

close to that level until 2016, after which it steadily increased to 1.6% by early 2020, right

before the pandemic started. Since then, it is estimated to have remained stable at 1.6%

with 68% credible intervals ranging from 1.1% to 2.2%.

Panel (c) of Figure 1 presents the posterior estimates of w-star. Movements in pi-star

and p-star mainly govern the dynamics of w-star. (Appendix A13 provides a more elaborate

decomposition of w-star into its drivers, pi-star and p-star, and the time-varying wedge.) W-

star increased steadily in the 1970s and peaked at 6.8% in the early 1980s. This increasing

w-star reflected an upward drift in pi-star that offset the downward drift in p-star. Thereafter,

w-star decelerated, slowing to 2.7% by the end of 2017. From then on, it gradually increased,

with the pace increasing sharply during the post-COVID inflation surge.

From 2020 through the end of 2022, w-star is estimated to have increased by 0.5 ppts

(from 3.4% to 3.9%), reflecting a 0.4 ppts increase in pi-star and 0.1 ppts increase in p-star.

Over this same period, nominal wage growth fluctuated wildly from an annualized quarterly

growth of +16.0% (in 2020Q2) to -3.2% (in 2020Q3). The model attributes these extreme

swings to the spike in the volatility of the transitory shocks to the wage inflation gap (see

panel e, Figure 3). Since then, the increased volatility of the shocks has mostly reversed, but

as of 2023Q3, it is still estimated to be higher than in normal periods.

Panel (d) of Figure 1 presents the estimates of u-star. From 1960 through the early

1980s, u-star gradually increased from 5.5% to 6.6%. It held stable at or close to 6.6%

until the mid-1980s. From thereon, it steadily drifted lower, reaching 5.1% by the late

1990s, likely reflecting the declining reallocation in the labor market. From the early 2000s

until the onset of the Great Recession, u-star fluctuated in a narrow range between 5.1 to

5.3%. During the Great Recession and the subsequent recovery, u-star is estimated to have

21



increased to 5.9%, about the same as the survey estimate. In the literature on u-star, the

increase of this magnitude during that period is attributed to structural factors such as

extended unemployment benefits. It is instructive to highlight that during this period, the

unemployment rate increased by 5.6 percentage points, from 4.4% to 10.0%. With u-star

estimated to have increased by only 0.9 percentage points, the Base model attributes the

bulk of the rise in the unemployment rate to the cyclical component (see Appendix A12).

Since the onset of the COVID pandemic, which included a brief period of unprecedented

swings in the unemployment rate, u-star is estimated to have remained remarkably stable

at 4.5%, about 0.5 ppts higher than the survey u-star of 4.0-4.1%. During this period, the

sudden and unprecedented simultaneous movements in the unemployment rate and real GDP

(as discussed below) but stable survey expectations of u-star and g-star led the model to infer

these movements in the data as large transitory shocks, reflected in the spikes in the volatility

of the transitory shocks to these variables’ cyclical components.

As the plots show, u-star from the survey displays more pronounced shifts than the model-

based u-star estimates. However, due to a strong estimated relationship between the survey

u-star and Base u-star (posterior mean of βu = 0.95, Figure 2), the Base estimate of u-star

reflects the contours in survey u-star. During the pandemic, survey data were critical in

guiding the model-based estimates of u-star to sensible values.

Panel (e) of Figure 1 presents the estimates of g-star, and panel (g) the output gap

estimates. According to the posterior mean of g-star, the growth rate of potential output has

steadily drifted lower from an annualized rate of close to 4.5% in early 1960 to a pessimistic

rate of 1.2% in 2014, except for a temporary rise in the late 1990s, likely reflecting the internet

technology boom. This latter increase in g-star is consistent with the rise in p-star shown in

panel (b) and the fall in u-star to its lowest level at the time, shown in panel (d).9

Similarly, a coherent narrative (consistent with the characterization of “secular stagna-
9The Base model variant that defines g-star as a function of p-star attributes most of the increase in

g-star to p-star over this boom period.
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tion”) emerged following the Great Recession. The plots suggest an economic environment

characterized by low p-star, low and falling g-star, high u-star, and steadily declining r-star

until 2014. The fact that g-star continued to decline during and after the Great Recession

indicates that the recession contributed to lowering g-star. From 2014 onward, an increas-

ingly positive economic climate emerged that drove g-star steadily higher, reaching 1.9% just

before the COVID-19 pandemic and 2.1% by 2023Q3. This gradual acceleration in g-star

has been accompanied by rising p-star and falling u-star.

More notably, the plots of g-star reveal a large and persistent deviation of the Base model’s

g-star from the survey estimate from 1990 to 2019. This is also indicative in the posterior

estimates of parameters βg and Cg, which define the relationship between g-star and the

survey data. The estimates suggest statistically significant deviations of Cg from zero over

the period 1990 through 2019. Survey participants were very slow in recognizing the growth

slowdown following the Great Recession compared to the model’s smoothed estimate (panel

e) and real-time estimate (Appendix A19). In contrast, during the post-pandemic period,

the survey expectations of g-star have been less optimistic than the model, since they have

hovered close to the model’s lower bound of the 68% intervals.

The relatively modest uptick in the model estimates of g-star during the pandemic and

afterward suggests that according to the model, most of the fluctuations in real GDP are

attributed to the cyclical component, as evidenced by the widening output gap (panel g)

and increasing volatility of the transitory shocks to the output gap (Figure 3, panel b).

The posterior mean estimates of parameters ρg1 and ρg2 indicate a high degree of persistence

(ρg1 + ρg2 = 0.73; see Table 2 in Appendix A6) and suggest a hump-shaped response of the

output gap to transitory shocks (as ρg1 > 1). These parameters are precisely estimated as

evidenced by tight posterior credible intervals. The output gap estimate from the Base model

aligns well with the NBER recession dates. It supports the business cycle asymmetry in that

recessions are shorter in duration but deeper than expansions in the US.

The parameter estimates indicate a strong Okun’s law relationship in the data. The

23



implied mean of the Okun’s law coefficient, (1−ρu1−ρu2 )

ϕu
, is −2.1, with 90% credible intervals

spanning −2.4 to −1.9 and is identical to the conventional estimate reported in macroeco-

nomic textbooks. Therefore, the estimated output and unemployment gaps (Appendix A12)

reveal similar cyclical dynamics. For instance, according to both cyclical measures, the 1981-

82 recession is estimated to have been more profound than the Great Recession. The more

negative output gap (−8.7%; posterior mean) during the 1981-82 recession compared to the

Great Recession (−6.4%) occurred because, during the Great Recession, g-star (and gdp-star

not shown) fell significantly more, resulting in a smaller negative output gap.

Panel (f) of Figure 1 presents the estimates of r-star. The posterior mean estimate from

the Base model shows r-star staying relatively flat at 3.4% in the 1960s and then slowly

trending down through the 1970s, reaching 2.5% by early 1980. Thereafter, it fluctuates

between 2.0% and 3.0% until the beginning of 2000. From there on, it steadily declines,

reaching 0.7% by mid-2021. Since then, it has slowly increased to 1.0% in 2023Q3. To

understand the evolution of r-star, looking at the dynamics of g-star (panel e) and the

nongrowth component D, plotted in Appendix A14 (panel (c) of the figure), is helpful. The

estimated link between r-star and g-star is of moderate strength (posterior mean of parameter

m = ζ
4
= 0.65; see Table 2); therefore, movements in g-star play an influential role in driving

r-star. The estimated dynamics of component D are shaped by the survey data on r-star and

information from the Taylor rule and IS equations.

According to the posterior mean of component D, which is imprecisely estimated, in the

1960s, it exerts a slight upward force on r-star that is mostly offset by a downward pull coming

from g-star (via equation 27), helping to keep r-star relatively flat. From 1970 through 1999,

with D remaining flat, developments in g-star shape the trajectory of r-star. From 2000

through 2012, all economic forces (as captured through the model structure) worked in the

same direction to drive r-star steadily downward. Besides g-star, these forces likely include

rising premiums for convenience yield (Del Negro et al., 2017) and excess global savings

(Pescatori and Turunen, 2016), captured in the model via component D. From 2012 through
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2021, with g-star moving higher, the upward force from g-star is more than offset by the

downward pull from D, resulting in continuing decline in r-star.

As can be seen, the contours of r-star from the Base model track the survey estimate.

This suggests that survey data influence the model’s assessment of r-star via its D; confirmed

by the joint assessment of the parameters βr and Cr (last row in Figure 2).

4.2 Estimates of SV and TVP in the Base model

Figure 3 plots the posterior mean estimates of the time-varying standard deviation of the

transitory shocks to the Base model’s gap components: the unemployment rate gap, output

gap, labor productivity gap, price inflation gap, nominal wage inflation gap, and the nominal

interest rate gap. Also plotted are the corresponding 90% credible intervals. The plots

indicate statistically significant evidence of time variation in the volatility of the shocks in

all of the gap equations. Importantly, the estimates suggest that SV is highly effective in

identifying high-volatility periods in the postwar data, including the extreme fluctuations

in nominal wages, the unemployment rate, and real output associated with the pandemic in

2020. For example, the standard deviation of the shocks to the unemployment gap in 2020Q2

and 2020Q3 is estimated to be about 9 times larger than in 2009Q1 (Great Recession) and

35 times larger than that of a typical period.

The volatility spikes identified during the pandemic are characterized as short-lived for

unemployment, wages, and output, effectively categorizing the observations during that pe-

riod as outliers. However, for labor productivity, price inflation, and interest rates, the

increase in volatility was less extreme and moderated only partially. The volatility estimates

also highlight the flexibility of the assumed SV process, since it can capture sudden and/or

persistent increases and reductions in the volatility of the shocks.

Figure 4 presents the time-varying posterior mean estimates (and the 68% credible in-

tervals) of the parameters from the Base model describing the persistence in the price and
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nominal wage inflation gaps, the price and wage Phillips curves, the short-run pass-through

from prices to wages, and the cyclical dynamics of labor productivity. Also plotted are the

estimates from the Base model variant that shuts down time-variation in the parameters (i.e.,

Base-NoTVP). A comparison between the estimates from the two models provides a sense of

the importance of time variation in the parameters.

Price inflation gap persistence (Panel a, Figure 4). There is strong evidence of time

variation in parameter ρπ, inflation gap persistence. For example, gap persistence was low

(0.25) in the early 1960s, high in the 1970s and early 1980s, declined steadily in the 1990s,

remained stable in the 2000s, and increased sharply during the post-COVID inflation surge.

Nominal wage gap persistence (Panel b, Figure 4). The posterior mean estimate of the

parameter ρw, capturing the persistence in the nominal wage inflation gap, indicates weak

evidence of time variation in this parameter. However, the estimate, which has varied between

0.15 and 0.30, mostly falls outside of the 68% interval of the Base-NoTVP model, suggesting

it may be worthwhile to allow time-variation in this parameter, since doing so improves the

precision of w-star and forecast accuracy of nominal wage inflation (discussed later).

Price Phillips curve (Panel c, Figure 4). The plot indicates time variation in the slope

of the Phillips curve (λπ). The estimated relationship between prices and unemployment at

business cycle frequency was strong in the 1970s, subsequently weakened by the mid-1980s,

and has remained stable since then, including through the post-pandemic inflation surge.

This latter result contrasts with the findings of others who estimate a weakening of the PC

relationship after the 2008 financial collapse and evidence of a steepening in the PC slope

since the pandemic’s onset. (e.g., Hobijn et al., 2023; Cecchetti et al., 2023). See Appendix

A15 for the reasoning behind this contrasting finding.

Wage Phillips curve (Panel d, Figure 4). The plot provides evidence supporting the

existence of the wage Phillips curve in the postwar data but weak evidence of time variation

in the slope of the wage PC (λw). According to the posterior mean estimate, the strength

of the wage Phillips curve has ranged in a narrow band between -0.2 and -0.4, with the
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most negative (strongest) during the period of the mid-1980s through the mid-2000s and

the weakest during the post-Great Recession period. The mean estimate of the slope of the

wage PC from the Base-NoTVP model is -0.26, which is close to the Base model’s time-

varying estimate through most sample periods except for the mid-1980s to the mid-2000s.

Interestingly, similar to the price PC, the strength of the estimated wage PC has remained

stable over the post-pandemic period.

Short-run pass-through from prices to wages (Panel e, Figure 4). The posterior esti-

mate of pass-through ( κw
t

1−ρwt
) indicates a weakening relationship between wages and prices at

business cycle frequency over the estimation sample up through the COVID-19 pandemic.

The relationship between the two was strong from the 1970s to the mid-1980s; thereafter, it

gradually weakened to near zero in the decade before the COVID-19 pandemic. Since the

post-pandemic inflation surge, the pass-through is estimated to have increased to a positive

(though moderate) level, and the increase is statistically significant.

Cyclical dynamics of labor productivity (Panel f, Figure 4). The plot of the estimate of the

parameter λp indicates a countercyclical behavior of labor productivity, with this relationship

exhibiting weak evidence of time variation.

4.3 Base vs. Variants of Base: Role of SV, TVP, and Survey data

To formally assess the importance of SV, TVP, and survey data in the Base model, Table 1

reports the Bayesian model comparison metric of marginal data densities (MDD) for the Base

and its variants. The top panel reports the models’ fit to the data over the entire sample, and

the bottom panel over the pre-COVID pandemic sample. The MDDs indicate that compared

to its variants, the Base model provides the best data fit for all postwar data. Including

survey data, allowing for time-varying parameters in some relationships, and modeling SV

in the cyclical components all contribute to the Base model’s improved fit to the data.

Including SV substantially enhances the model’s fit to the data, as evidenced by the
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significantly inferior fit of the Base-NoSV model to the data compared to the Base and model

variants that allow for SV. Without SV, the pandemic outlier observations drastically affect

some of the model’s parameter estimates, as illustrated in Appendix A18, and evidenced

by a significant deterioration in the model fit of the Base-NoSV when comparing the top

and bottom panels of Table 1. Further improvements in model fit are achieved by adding

time variation in the parameters. Regarding survey data, even though bringing in additional

information from surveys leads to more reasonable and precise estimates of stars, the model

comparison between Base vs. Base-NoSurvey and between Base-NoSV-NoTVP vs. Base-

NoSV-NoTVP-NoSurvey reveals mixed results. Adding survey data to a model with SV

and TVP overall neither hurts nor improves the fit to the data (Base=−1587.3 vs. Base-

NoSurvey=−1587.1). However, in the model that does not have SV and TVP, adding survey

data to it worsens the fit to the data: Base-NoSV-NoTVP-NoSurvey=−1941.6 (pre-COVID

sample), −2622.2 (full) vs. Base-NoSV-NoTVP=−1969.7 (pre-COVID), −2653.2 (full).

To get a visual sense of the empirical relevance of the various features incorporated into

the Base model, Figure 5 plots the estimates of stars from the Base and its variants: Base-

NoSV (shuts down SV), Base-NoSV-NoTVP (shuts down both SV and time-variation in

parameters capturing macro relationships), and Base-NoSV-NoTVP-NoSurvey (shuts down

SV, time-variation in parameters, and excludes survey data); the latter variant is featured

because the Base-NoSurvey model fails estimation with pandemic data. The figure in Ap-

pendix A16 presents the corresponding precision estimates of the stars from the Base and

its variants (where precision is measured as the width of the 90% intervals). The precision

estimates indicate that all three features, including survey data, SV, and time-variation in

parameters, generally help improve the precision of the stars, as evidenced by the precision

plots corresponding to the Base model lying below the other plots with few exceptions.

Figure 5 shows that stars’ estimates are sensitive to modeling choices (SV, TVP, and

survey data), with those sensitivities varying with the sample period. These modeling choices

matter somewhat less for the estimation of g-star, as can be seen by the trivial differences
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in the estimates across models except for two periods: the late 1990s (IT boom) and the

recovery years following the Great Recession. In those two periods, Base model estimates

of g-star indicate notable divergence compared to other models. Whereas variants of the

Base model estimated g-star to be stable at or close to 3.2% during the second half of the

1990s, the Base model had g-star accelerating to 3.7%. Similarly, in the years following the

Great Recession through mid-2013, the Base model had g-star falling more than its variants.

More recently, the Base has g-star very slowly moving up to 2.1% by 2023Q3, whereas other

models have g-star remaining stable at 1.7%. These differences may appear small, but they

are important enough to affect the output gap estimates. Furthermore, the differences are

more significant in real-time (as seen in the figure in Appendix A19), with SV playing an

essential role in helping with the real-time stability of the output gap.

The Base model and its variants with survey data generate estimates of stars whose

broader contours are similar. However, there are sizeable and important differences in the

stars’ estimates due to the inclusion of SV and/or time-variation in parameters. The model,

Base-NoSV, produces estimates of u-star that are well above the estimates from the Base

and other variants, and its estimates of pi-star, w-star, and r-star are consistently below the

estimates from other models. For example, during the Great Inflation and the post-pandemic

inflation surge, Base-NoSV had the lowest pi-star. At first pass, this seems surprising, as

without SV, one would expect to see a higher pi-star during inflation spikes due to the model’s

inability to attribute realizations of high inflation to the increasing volatility of shocks to the

inflation gap. However, because this model includes survey data, which are estimated to have

a tight link with the model pi-star, pi-star is estimated to stay close to the survey estimate.

Instead, the model mainly attributes high inflation to tighter labor markets (a more negative

unemployment gap) via estimating a higher u-star, as can be seen in panel (d) of Figure 5.

In contrast, the model variant that excludes both SV and survey data in addition to

TVP (Base-NoSV-NoTVP-NoSurvey) produces a pi-star that responds strongly to inflation

spikes. Accordingly, this model variant had the highest pi-star during the Great Inflation of
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the 1970s and the recent post-pandemic inflation surge. In the latter period, the Base-NoSV-

NoTVP-NoSurvey model had pi-star increasing to 4.0% in 2022 compared to 2.3% estimated

in the Base. Schmitt-Grohe and Uribe (2024) emphasize that differences of this magnitude

can have policy implications. The story is similar for w-star, partly because pi-star informs

the movements in w-star. Specifically, not bringing in survey data and shutting down both

SV and TVP (including the time-varying wedge in w-star) have notable implications for

the estimate of w-star, its precision, and the model’s fit to the wage data. The resulting

estimate is more volatile as it responds strongly to movements in nominal wages; during the

Great Inflation period of the 1970s and the post-COVID inflation surge, when nominal wages

accelerated sharply, the model attributes most of the increase to w-star.

The inclusion of SV in model equations contributes to the sizeable but constant differential

in the r-star estimates from the mid-1990s onward, as is evident when comparing the Base and

Base-NoSV models. The r-star estimates from the Base model are roughly 100 basis points

higher than those from the Base-NoSV model over this later sample period. Given the slight

difference in the estimates of g-star between the Base and Base-NoSV models, the source

of the differential in r-star estimates comes from the estimates of component D. Without

SV in the Taylor rule and IS equations, the estimated trajectory of D is significantly lower

than in the Base model, resulting in lower r-star (as can be seen in Appendix A14). During

the pandemic, the r-star from the Base-NoSV model became slightly negative compared

to the Base model, whose mean estimates only fell modestly in the range between 0.7-1.0

percent, and the lower bound of the 68% credible intervals remained positive. Allowing for

time-variation in the parameters has a modest effect on r-star, as is evident when comparing

r-star estimates between Base-NoSV and Base-NoSV-NoTVP.

The survey data play a vital role in influencing the trajectory of r-star. This is because

including survey data in the models leads to a stronger role of g-star driving r-star. (The

posterior mean of m = ζ
4

in Base is 0.65, in Base-NoSV is 0.69, and in Base-NoSV-NoTVP

is 0.68.) Without survey data, the estimated link between g-star and r-star is substantially
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weaker, i.e., in the model Base-NoSV-NoTVP-NoSurvey, the parameter m = ζ
4

is 0.30.

The uncertainty around the r-star estimate from the Base-NoSV-NoTVP-NoSurvey model

is substantially higher than that in the Base and its variants that include survey data, as

seen in panel f of the figure in Appendix A16. The increased uncertainty in r-star comes from

D, which is imprecisely estimated without the survey data. It is evident that including all

three – survey data, SV, and TVP- contributes to the improved precision of r-star. Based on

the model comparison metric reported in Table 1, the Base model ranks as the best-fitting

model for the interest rate data.

4.4 Stars: Base vs. External models

Figure 6 compares the smoothed estimates of pi-star (panel a), p-star (panel b), w-star

(panel c), u-star (panel d), g-star (panel e), r-star (panel f), and the output gap (panel g)

from the Base model and outside sources, which include small-scale UC models routinely

used by Federal Reserve staff and featured in academic research. To better highlight the

differences and similarities in the estimates across models, the plots are shown to span the

sample period from 1990 onward. These plots reveal interesting similarities and differences

between the Base model estimates and those from outside models. As can be seen, at times,

the differences in the estimates are sizeable enough to have policy implications. For space

reasons, the detailed discussion of the estimates’ comparison is relegated to Appendix A17,

which also includes an analogous figure showing a comparison over the full sample.

5 Real-Time Estimates and Forecasting

Real-time versus final estimates. Up to this point, I have presented the smoothed estimates

of the stars inferred using all the sample data, i.e., from 1959Q4 through 2023Q3, which

I denote here as final estimates. As discussed in CKP and Clark and Kozicki (2005), the

examination of final estimates is beneficial for “historical analysis,” such as the evaluation of
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past policy. However, for real-time analysis, such as forecasting and policymaking, real-time

estimates at time t – estimates based on the data and model estimation through time t

(instead of through 1:T) – are the relevant measures. In estimating the stars, a voluminous

number of papers have documented the typical pattern of notable differences between real-

time and final estimates; e.g., see Clark and Kozicki (2005) for r-star. These differences have

contributed to past policy mistakes (e.g., see Powell (2018) and references therein). Hence,

there is a preference for methods that provide credible inferences about stars in real-time.

Figure 7 plots the real-time posterior estimates of r-star and u-star and figures in Ap-

pendix A19 for other stars and the output gap from 1999Q1 to 2023Q3. Also plotted are the

corresponding final or smoothed posterior estimates and the 68% and 90% credible bands,

respectively. In all figures, the top row plots the estimates from the Base model, the middle

row from Base-NoSV, and the bottom row from Base-NoSV-NoTVP-NoSurvey. The esti-

mates from the latter two models are presented to highlight the role of SV and survey data

in helping improve real-time stability. The estimates from the Base-NoTVP are not shown

because they are similar to those from the Base model. The real-time estimates are the

end-sample posterior mean (of the smoothed) estimates at any given period.

As can be seen by comparing the rows in each figure, it is generally the case for the Base

model that real-time and final estimates track each other closely, suggesting real-time stability

of the inference about the stars. Shutting down SV makes the inference less reliable, and

excluding information from surveys adversely impacts the inference. These results indicate

that in the Base model, survey data and SV contribute to the real-time stability of the

stars and the output gap. It is also evident that including survey data leads to more precise

inference, since the uncertainty bands are much narrower for the Base and Base-NoSV models

than for the Base-NoSV-NoTVP-NoSurvey model. For example, in the case of rstar, the

width of the estimated 90% intervals from the Base model has ranged between 1.7 and 2.3%

in the last 25 years compared to the Base-NoSV-NoTVP-NoSurvey model’s range of 3.0 to

3.8%. For reference, the typical estimates of 90% bands from popular models such as LW
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and Lubik and Matthes (2015) have a width averaging more than 3.5%.

Forecasting evaluation. This subsection summarizes the results of three real-time out-

of-sample forecasting exercises. The first two exercises examine the forecasting prowess of

the Base model to its main variants and “hard to beat” benchmarks, and the third exercise

examines the usefulness of the Base model’s stars for external models. The evaluation sample

spans 1999Q1 through 2019Q4. For purposes of brevity, I relegate the presentation and

detailed discussion of forecasting results to Appendices A21 and A22, respectively.

Specifically, in the first exercise, I compare the forecasting performance of the Base model

to its variants Base-NoSV, Base-NoTVP, and Base-NoSV-NoTVP-NoSurvey. I evaluate the

accuracy of the point and density forecast for real GDP growth, PCE inflation, the unem-

ployment rate, nominal wage inflation, labor productivity growth, and the shadow federal

funds rate. The results, which are shown in Appendix A20, indicate that the Base model is

generally more accurate on average compared to its variants for all variables considered. Fore-

casting results also indicate that variants of the Base model that include survey expectations

data are more accurate than the variants that exclude survey information. In the second

exercise, I compare the Base model’s point and density accuracy to standard benchmark

models, including small-scale UC models. The results of this exercise support the Base’s

comparable and, in some cases, superior forecasting properties relative to benchmarks.

In the third forecasting exercise, using the Base model’s real-time stars’ estimates ob-

tained, as discussed in the previous section, I illustrate their usefulness in forecasting with

external models (e.g., steady-state VARs). Forecasters often use survey estimates to inform

the steady-state values in VAR forecasting models, as doing so has been shown to improve

forecasts. In this exercise, I show that if one were to inform the steady state values of the

VAR model using the Base model’s estimates of stars, then one would achieve further im-

provements in the forecast accuracy of the VAR variables (see Appendix A21). An additional

advantage of stars from my framework is the availability of w-star, since surveys do not illicit

responses about nominal wages. Overall, the real-time estimates of stars and forecast evalua-
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tion based on the past 25 years of data provide empirical evidence supporting the competitive

forecasting and stable real-time properties of the Base model.

6 Conclusion

This paper implements a semi-structural model to jointly estimate the dynamics of inflation,

nominal wages, labor productivity, the unemployment rate, real GDP, and interest rates to

back out estimates of the long-run counterparts of these variables, i.e., stars. In contrast to

the existing literature, the model features a novel combination of (1) time-varying parame-

ters, (2) stochastic volatility, (3) joint modeling of multiple stars, (4) implementation of a

richer structure, (5) allowing for a direct relationship between stars and long-term survey

expectations, and (6) the provision of w-star (and its model-based decomposition into its

theoretical determinants p-star and u-star). Doing so permits joint inference about stars and

other macroeconomic objects of interest.

Several variants of the baseline model are estimated to assess the usefulness of survey

data, time variation in parameters, SV, and expanded structure. The model comparison

metric of marginal likelihood, real-time stability properties, precision metric, and real-time

forecasting exercises favor the baseline model, suggesting support for including the various

features. The results indicate that SV is highly effective in identifying high-volatility periods,

including the extreme data fluctuations associated with the pandemic in 2020. This helps

limit the influence of pandemic outliers on model estimates and, in turn, parametric inference.

The use of survey data has helped discipline the estimates of the stars and improve their

precision. More importantly, since the onset of the pandemic, the survey data have been

the critical ingredient in permitting the estimation of the high-dimensional model and its

variants. Lastly, the paper documents the competitive real-time forecasting properties of

both the baseline model and, separately, the estimates of the stars if they were to be used as

steady-state values in external macroeconomic models.
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Figure 1: Full Sample Estimates of Stars and Output Gap from the Base model

Note: The posterior estimates are based on the full sample (from 1959Q4 through 2023Q3). Shaded area
represents the 68% credible intervals
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Figure 2: Link between Survey Expectations and Base Stars

Note: Plotted are the posterior estimates using the full sample (from 1959Q4 through 2023Q3). In panels
on the left column, the shaded area represents the 68% credible intervals and the dotted red lines represent
90% credible intervals. The panels on the right plot the posterior distribution of the Beta parameters.
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Figure 3: Full Sample Estimates of Stochastic Volatility

Note: Plotted are the posterior estimates that are computed using the full sample (from 1959Q4 through
2023Q3). The dotted red lines represent 90% credible intervals.

37



Figure 4: Full Sample Estimates of Time Varying Parameters

Note: Plotted are the posterior estimates that are computed using the full sample (from 1959Q4 through
2023Q3). Shaded area represents the 68% credible intervals.
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Figure 5: Full Sample Estimates of Stars: Base model vs. Alternative Variants

Note: Plotted are the posterior mean estimates, which are based on the full sample (from 1959Q4 through
2023Q3).
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Figure 6: Estimates of Stars and Output Gap: Base model vs. Outside models

Note: Plotted are the (posterior) mean estimates that are computed using the full sample (from 1959Q4
through 2023Q3).
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Figure 7: Real-time Recursive Estimates of Stars vs. Smoothed Stars

Note: The first row plots r-star and u-star estimates from the Base model. The second and third rows plot
the corresponding estimates from the models Base-NoSV and Base-NoSV-NoTVP-NoSurvey, respectively.
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Table 1: Bayesian Model Comparison: Base Model and Main Variants

Panel A: Based on estimation through 2023Q3, full-sample

Base Base- Base- Base- Base- Base-
NoSV NoTVP NoSV NoSV NoSurvey

NoTVP NoTVP
NoSurvey

MDD of Inflation -407.1 -456.7 -422.3 -473.6 -464.7 —

MDD of Productivity -663.2 -686.1 -671.1 -689.8 -688.2 —

MDD of Nominal Wage -319.2 -369.5 -321.2 -475.7 -471.2 —

MDD of Unemployment 64.7 -276.0 70.8 -280.9 -268.7 —

MDD of Interest rate -231.6 -343.8 -236.3 -346.3 -347.7 —

MDD of GDP -255.3 -386.3 -253.9 -387.0 -381.7 —

MDD -1811.6 -2518.5 -1834.0 -2653.2 -2622.2 —

Panel B: Based on estimation through 2019Q4, pre-COVID

Base Base- Base- Base- Base- Base-
NoSV NoTVP NoSV NoSV NoSurvey

NoTVP NoTVP
NoSurvey

MDD of Inflation -365.2 -412.5 -379.8 -427.7 -420.7 -365.6

MDD of Productivity -604.3 -630.1 -612.0 -635.1 -631.7 -603.7

MDD of Nominal Wage -275.3 -341.6 -273.3 -348.3 -343.6 -274.1

MDD of Unemployment 89.4 40.9 89.3 40.7 53.4 93.1

MDD of Interest rate -211.7 -323.3 -215.9 -326.2 -326.7 -215.5

MDD of GDP -220.1 -273.0 -220.1 -273.1 -272.4 -221.4

MDD -1587.3 -1939.7 -1611.8 -1969.7 -1941.6 -1587.1
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