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Abstract

Not in standard models. With conventional pricing frictions, imposing a flat Phillips curve
also imposes a price level that is rigid with respect to supply shocks. In the New Keynesian
model, price markup shocks need to be several orders of magnitude bigger than other shocks
in order to fit the data, leading to unreasonable assessments of the magnitude of the increase in
costs during inflationary episodes. To account for the facts, we propose a strategic microfoun-
dation of shock-dependent price stickiness: prices are sticky with respect to demand shocks but
flexible with respect to supply shocks. This friction is demand-intrinsic, in line with narrative
accounts for the imperfect adjustment of prices. Firms can credibly justify a price increase due
to a rise in costs, whereas it is harder to do so when demand increases. Inflation from supply
shocks is efficient and does not justify a monetary policy response.
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1 Introduction

The current global rise in inflation presents a challenge for macroeconomics. For over three

decades, inflation was virtually a non-story in advanced economies. Inflation remained incredi-

bly stable, even amidst several large and global recessions and substantial changes in fiscal and

monetary policy. One could say that there was a “great moderation” in inflation even as output

remained anything but moderate at times. In other words, the relationship between inflation and

demand—the so-called Phillips curve (PC)—has been flat, suggesting that demand shocks are not

important determinants of variations in inflation.

And yet, inflation globally is now running at levels not seen in decades. In fact, such rates

of inflation have not been observed in developed countries since the Great Inflation of the 1970s.

Moreover, the conjunction of higher inflation with global supply factors, both in the 1970s and in

the current episode, is hard to overlook. Indeed, it suggests that supply is a major determinant of

inflation.1

Thus, our paper is motivated by two empirical facts regarding the dynamics of inflation.

Fact 1: The Phillips Curve Is Very Flat. There is a significant body of evidence that for ad-

vanced economies the PC is incredibly flat, with a slope that is small or close to zero. Hazell,

Herreño, Nakamura, and Steinsson (2022) use cross-sectional data to provide evidence of only a

modest flattening of the PC since 1990. According to their findings, the PC has always been very

flat. Del Negro, Lenza, Primiceri, and Tambalotti (2020) find overwhelming evidence in favor

of a very flat PC, especially since 1990. Their findings are consistent with other New Keynesian

medium-scale DSGE estimations. Both papers estimate slopes on the order of 0.0020.2

Fact 2: Supply Shocks Are Inflationary. There is mounting evidence that supply-driven sources

explain a significant portion of the current inflation. Känzig (2021) finds that oil news shocks

1It is of course plausible that demand factors are also a major part of the explanation for the recent rise in inflation,
especially in the U.S., which enacted a significant post-COVID fiscal package. However, demand alone does not
readily explain inflation as a global phenomenon, or its magnitude and cross-country synchronization, especially
given flat estimates of the PC. More generally, it is well-known that in quantitative DSGE models, cost-push shocks
are the main drivers of inflation dynamics.

2To be clear, the arguments in our paper do not necessarily rely on the PC being very flat. A moderately flat PC
leads to the same remarks. We are more explicit about this in Section 2.
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alone explain 50% of the forecast error variance decomposition in the U.S. Consumer Price In-

dex (CPI), which provides a lower bound on how much supply disruptions affect inflation. In

considering firm-level pricing decisions in the UK following the pandemic, Bunn, Anayi, Bloom,

Mizen, Thwaites, and Yotzov (2022) conclude that “it is supply side factors that can explain most

of the rise in inflation since 2021.” They especially note the role of labor and materials short-

ages. Similarly, Ball, Leigh, and Mishra (2022) find that energy prices, supply-chain backlogs,

and auto-related prices have been most important in explaining U.S. inflation. Papers with more

modest findings attribute 40%–45% of the recent inflation to supply shocks (Di Giovanni et al.,

2022; Shapiro, 2022).

These two facts represent a challenge for standard models aiming to account for short-run

inflation dynamics. Consider first the New-Keynesian (NK) family of models. In these models,

because of the flatness of the PC, the degree of price stickiness required to fit the data is very high

(Del Negro et al., 2020; Hazell et al., 2022). The “Calvo fairy” does not visit firms very frequently.

But then, supply shocks of a reasonable size cannot be inflationary, since the fairy also needs to

visit firms for them to adjust prices when cost-push shocks hit.

A common misconception is that a flat PC means merely that variations in demand do not cause

variations in inflation—whereas variations in supply could cause inflation. In reality, there are no

empirically plausible structural shocks that will create significant variations in inflation when the

PC slope is close to zero. NK models cannot deliver periods of high inflation volatility if the PC

is flat, unless one is willing to accept the existence of cost shocks several orders of magnitude

larger than other structural shocks. It goes without saying that at times, inflation volatility is far

from zero. Using a simple calibration based on the estimates by Del Negro, Lenza, Primiceri, and

Tambalotti (2020), we find that in order to generate a 1 percentage point (pp) increase in inflation,

firms’ desired markups need to increase by 500%. A steeper PC reduces this required markup

increase somewhat, but actually not to reasonable levels. This observation is a variation on the

critiques in Chari, Kehoe, and McGrattan (2009); Bils, Klenow, and Malin (2012), but here we

show that the flat PC is the fundamental cause of the implausible price markup shocks that they

highlight.

Standard pricing frictions—such as Calvo, Taylor, menu, or Rotemberg costs—all suffer from
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the same issue. The reason is the common feature of treating rigidity with respect to supply and

demand symmetrically. Standard pricing frictions cannot account for significant variations in infla-

tion (such as the recent episode), and at the same time predict a flat PC, which is clearly evidenced

by the “missing disinflations” during the Great Recession and the onset of the COVID recession,

plus the “missing inflations” during the housing boom of the early 2000s, and during the unprece-

dented expansion of the Federal Reserve’s balance sheet of the last decade. Notice that the PC has

remained remarkably flat despite large movements in aggregate demand.3

Our main goal, therefore, is to present a model that can address both Facts 1 and 2. As we

observed, the data suggest that firms treat demand and supply disturbances distinctly when setting

prices. In other words, the evidence points towards shock-dependence in price adjustment. We pro-

vide a microfounded model of shock-dependent price stickiness in which inflation can be entirely

rigid with respect to demand shocks and yet entirely flexible with respect to supply shocks. In the

model, firms face no exogenous or technological constraints to adjust prices, such as menu costs

or the blessing of a Calvo fairy. The proposed microfoundation is based on a strategic interaction

between firms and consumers. The strategic environment we consider can simultaneously produce

a very flat PC while also producing significant inflation in response to supply disturbances.

Our model captures a strategic firm-consumer interaction where firms are better informed than

consumers about aggregate conditions. This can be motivated by the view that firms are sophisti-

cated players in many markets, or by the view that firms observe a wider range of transactions in

the market they supply. The ability to aggregate information puts firms in a privileged position.

For instance, firms may posses superior information about the state of aggregate demand (given

their observation of quantities sold), or about costs (given their observation of the cost of inputs).

As a result of their superior information, firms optimally evaluate the implications of alternative

pricing strategies. The formal macroeconomic setup builds on the models of L’Huillier (2020) and

L’Huillier and Zame (2022), with the addition of supply shocks. The central idea of this setup is

that prices may convey information possessed uniquely by the firm, and consumers’ perception of

alternative prices influence their purchase decision, and ultimately firms’ profits.4

3For instance, during the onset of the COVID pandemic in 2020:Q2, U.S. real GDP fell by more than 32%
(annualized) and unemployment rose to 15%, but headline CPI inflation was roughly -4%(annualized), and back to
positive territory in 2020:Q3.

4L’Huillier (2020) shows that this model delivers hump-shaped dynamic responses of both output and inflation,
even in the absence of bells and whistles. Thus, these models also deliver realistic predictions for the propagation
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More specifically, in the model, there are two aggregate shocks: a shock to aggregate demand

and a shock to aggregate supply. A fraction of consumers have less information than firms about

the realization of the shocks. Firms are monopolists, and set prices. We use standard preferences

and assumptions about agent rationality, and solve for a perfect Bayesian equilibrium of the game

played between firms and consumers. We find that prices can be endogenously sticky with respect

to demand shocks. But, firms always pass on cost increases to consumers (for any degree of

information asymmetry). Prices adjust flexibly to supply shocks.

The intuition underlying our results is provided by considering firms’ incentives, and how they

differ depending on the type of shock.

Consider first the case of demand shocks. A nominal demand shock determines whether it is

a “good time to buy” (or not). Suppose that, for exogenous reasons such as strong labor markets

or improved income prospects, it is now a good time to buy. If all agents know this, then firms

would post a high price in response to high demand. But what if a subset of consumers do not

know that now is a good time to buy? Call these consumers “uninformed.” The demand function

of uninformed consumers is, in equilibrium, sensitive to the firm’s pricing strategy. The question

is whether the firm can, by posting a higher price, convince the uninformed consumers that it is

indeed a good time to buy. If this were an equilibrium, the firm would be using the price increase

to stimulate total demand: posting a high price means it is a good time to buy, which makes the in-

formed consumers pay higher nominal prices for the same real quantity (hence shifting the demand

curve outwards). Crucially, high prices are not necessarily credible: firms are always tempted to

stimulate demand (even when it is not a good time to buy). Clearly, such behavior cannot lead to

an equilibrium with rational consumers: higher prices would fail to stimulate demand, and lead

to lower profits. Hence, a strategic friction emerges. As a result of this strategic friction, for low

fractions of informed consumers, the equilibrium is one where firms’ prices do not reflect the state

of demand, i.e. prices are endogenously sticky. If enough consumers are informed, they provide

discipline, and prices can perfectly adjust to reflect the demand shock.5

Consider now the case of supply shocks. In our model, a supply shock is real shock that

of shocks. L’Huillier and Zame (2022) show that the price stickiness result is robust to the consideration of optimal
mechanisms and contract setting.

5Formally, the firm’s incentive constraint of posting low prices when it is not a good time to buy needs to be
satisfied in equilibrium. This constraint is satisfied at a cutoff value on the fraction of informed consumers (high prices
are credible).
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determines the level of firms’ marginal costs. The crucial distinction between demand and sup-

ply shocks is that supply shocks are not payoff-relevant for consumers. By standard arguments,

consumers only care about the price they pay, and about their own demand (the realization of

the demand shock). Therefore, firms have no incentive to stimulate demand when costs increase.

Whether or not consumers know the costs, when costs are high, firms earn higher profits by charg-

ing higher prices; and when costs are low, firms earn higher profits by charging lower prices.

Profit-maximizing prices do not depend on consumers knowing firms’ costs. In this case, there is

no strategic friction, and the equilibrium is given by the solution to the standard monopoly prob-

lem. When costs rise, prices rise and consumers demand less. Nonetheless, higher prices are

necessary because of the higher costs.6

To summarize, demand changes lead to a strategic friction. Sticky prices emerge naturally as

a credible firm strategy. But supply disruptions do not lead to a strategic friction, and prices are

flexible. When both shocks arise simultaneously, the price can fully adjust to the supply shock, but

not adjust to the demand shock, an extreme case of shock-dependence in price adjustment.

Thus, our model can simultaneously produce a flat PC and large responses of inflation to supply

disturbances. This result helps rationalize the empirical evidence by Bunn et al. (2022), Känzig

(2021) and Ball et al. (2022), among others, which favors the interpretation that supply shocks are

responsible for the recent inflation. This is precisely what our model predicts.

In general equilibrium, our model delivers a PC with a slope that depends on the degree of

nominal rigidity with respect to output gaps, which are determined by the demand-side of the

economy, and can be zero. Furthermore, the PC’s intercept is determined by the supply side of the

economy. This is important: the PC can flexibly shift up and down with supply shocks, and, at the

same time, be entirely flat. This is impossible in standard models, because there the intercept is

fixed at steady state when the PC is flat (see Section 2).

The shape of the PC implied by our model has important policy implications. Supply shocks

shift the position of the PC, but do not generate output gaps nor price dispersion, resulting in an

efficient goods market allocation. An immediate implication is that no policy action is justified

6As a matter of fact, our model is one where firms would prefer to communicate that price increases are due to
cost increases (“we are raising our prices because our costs have increased”), rather than demand increases (“we are
raising our prices because our product has become more popular”). Whereas this is not exactly how firms behave in
the model, it is a useful thought to get intuition. It is worth noting that Blinder et al. (1998) provide survey evidence
that “when costs increase, [...] customers normally tolerate price increases” (see Table 7.3, p. 157).
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by supply disturbances. This offers thought-provoking results regarding the optimal behavior of a

central bank facing supply-driven inflation. Following a supply disruption, a rise in the price level

is socially optimal and simply reflects firms’ lower productivity or higher costs of production.

Higher prices result in lower demand, which is efficient. Therefore, there are no welfare losses

due to price rigidities. If the central bank raises interest rates to lower inflation, it will generate

a negative demand shock. The price level will turn sticky downward, and an inefficient negative

output gap will result as a consequence of the extra fall in demand generated by the central bank.

To sum up, in our model, price level fluctuations due to shifts in the supply side of the economy

are optimal and should not be actively stabilized. This type of prediction highlights the usefulness

of explicitly microfounding the sources of the price friction. Our paper underlines the importance

of capturing the shock-dependent response of inflation commanded by the data when thinking

about the optimal monetary response to alternative shocks.

Related Literature. There is a classic literature providing evidence that the firm-customer re-

lation is what limits price adjustment, suggesting that nominal price-setting frictions are demand-

based (Hall and Hitch, 1939; Okun, 1981; Kahneman et al., 1986; Greenwald and Stiglitz, 1989;

Blinder, 1991). Blinder et al. (1998) provide survey evidence that when asked to explain their

reluctance to increase prices after an increase in costs, firms’ managers usually answer that “price

increases cause difficulties with customers.” For recent work on the topic, see Rotemberg (2005),

Nakamura and Steinsson (2011), Gilchrist, Schoenle, Sim, and Zakrajšek (2017), Gaballo and Pa-

ciello (2021), and Dupraz (2017). To be best of our knowledge, none of these works share the

prediction that prices are sticky to demand shifts but flexible to supply shifts.

A recent number of papers argues that fairness concerns and other behavioral features constitute

bases for price rigidity in the survey evidence cited above (Rotemberg, 2005, 2011; Eyster et al.,

2021). Our line of work provides a theoretical foundation for this type of rigidity in a model

with standard assumptions on agents’ rationality and preferences. In our model, firms behave

strategically when setting prices, considering how consumers may perceive a posted price. The

key insight is that the degree of information among consumer may limit price adjustment, when

firms are strategic and may be tempted to stimulate demand.

There is a robust literature that attempts to reconcile the New Keynesian framework with the
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data. The first major challenge is explaining (or reinterpreting) the so-called missing inflations dur-

ing the Great Recession. It constitutes an anomaly within the standard paradigm. Several factors

have been considered to explain (or reinterpret) these phenomena, such as inflation expectations

(Jorgensen and Lansing, 2019), online retail (Cavallo, 2018), and globalization (Forbes, 2019).

See L’Huillier and Schoenle (2023) for related evidence of the link between the frequency of price

adjustment and the inflation target.

There are laudable contemporaneous attempts within the literature to improve the ability of

the NK model to match inflation dynamics, for example by taking seriously non-linearities or how

belief formation affects the PC (e.g., Ascari and Fosso, 2021; Ascari et al., 2022; Harding et al.,

2022, 2023). This literature moves the NK model in the right direction because it reconciles the

observed flat PC with the rise in inflation observed after 2021:Q2. In this vein, our contribution is

targeted at de-linking the tight restriction that symmetric rigidities impose within the NK model.

We argue that incorporating shock-dependent price rigidities (with respect to supply and demand

disturbances) will provide macroeconomists with the ability to better account for the facts.

Similarly, motivated by the previous findings, Benigno and Ricci (2011) shows that down-

ward nominal wage rigidities produce nonlinear PCs that flatten at low inflation. Coibion, Gorod-

nichenko, and Kamdar (2018) consider how belief formations affect the PC. Furlanetto et al. (2023)

analyze the role of monetary policy, observing that a firm commitment can generate stable inflation.

Blanco et al. (2022) study nonlinear PCs in menu cost economies. Fitzgerald et al. (2020) provide

evidence that the PC is stable. McLeay and Tenreyro (2020) show that, away from the zero lower

bound, the combination of cost-push and demand shocks leads to difficulties with identification of

the slope of the PC.

Many papers recognize that different microfoundations for price stickiness have important im-

plications for inflation and monetary policy (Ascari, 2004; Caballero and Engel, 2007; Karadi et al.,

2022; Ascari and Haber, 2022) and that the PC is endogenous, with important implications (Kiley,

2000; Levin and Yun, 2007; Kocherlakota, 2022; Gaballo and Paciello, 2021; Petrosky-Nadeau

and Bundick, 2021). Werning (2022) shows that the effect of inflation expectations on aggregate

inflation depends on the microfoundation for price stickiness.

There is a robust literature studying information frictions in price setting, pioneered by Mankiw

and Reis (2002). Ball, Mankiw, and Reis (2005) show that when price setters are slow to incor-
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porate macroeconomic information into the prices they set, the optimal monetary policy is price

level targeting. Acharya (2017) considers a sticky information model in which the endogenous de-

cision of when to acquire new information about different shocks leads prices to change frequently

and by large amounts in response to idiosyncratic shocks but sluggishly in response to monetary

shocks. Afrouzi and Yang (2021) study an economy with dynamic rational inattention and find

that more hawkish monetary policy flattens the PC. Gutiérrez-Daza (2022) considers an economy

in which consumers learn from shopping. Bernstein and Kamdar (2022) study optimal monetary

policy with central bank inattention. Ilut, Valchev, and Vincent (2020) demonstrate how ambiguity

aversion on the side of firms leads to a friction that matches both the micro and macro evidence on

price adjustment.

2 Motivation: No Cost-Push Inflation with a Flat Phillips Curve

in the New Keynesian Model

The structural New Keynesian (NK) PC is generally written as

π̂t = βEt [π̂t+1]+κ x̂t +λ ẑt , (1)

where π̂t denotes inflation, x̂t denotes the output gap, ẑt denotes a structural cost-push shock, and

β , κ and λ are parameters. β is the discount factor. κ , the slope of the PC, measures the sensitivity

of inflation to output gap fluctuations. λ measures the sensitivity of inflation to cost-push shocks.

(κ and λ are related by a proportionality coefficient.)

Empirical Evidence on κ and λ . Estimates of both κ and λ are very small. Hazell, Herreño,

Nakamura, and Steinsson (2022) estimate the slope of the PC in the cross section of U.S. states

using two distinct instrumental variables (IV) for aggregate demand (which, in their model, causes

unemployment to fluctuate). The first IV is given by lagged unemployment and non-tradeable

prices, which delivers an estimate of κ = 0.0062.7 Del Negro, Lenza, Primiceri, and Tambalotti

7The second IV captures tradeable demand spillovers as an instrument for demand (unemployment). Based on the
idea that supply shocks in tradeable sectors will differentially affect demand in non-tradeable sectors, they estimate
κ = 0.0062 using their preferred specification (remarkably, both strategies deliver the same estimate). They also
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(2020) use an alternative empirical strategy. They employ a medium-scale DSGE model with real

rigidities, sticky wages, and financial frictions. Their mean posterior estimates of λ are 0.015 pre-

1990 and 0.0015 post-1990. In sum, their empirical estimates imply a value of λ that is no more

than 0.015 in general and as small as 0.0015 post-1990.

Structural Cost-Push Shocks, Reduced-Form Cost-Push Shocks, and Inflation. The canon-

ical supply shocks are productivity shocks. In the NK model, negative supply shocks are in-

flationary because they create a positive output gap. However, productivity shocks cannot create

significant inflation because κ is almost zero. This is one reason why the NK literature has adopted

other shocks, such as a shocks to markups, as the standard inflationary supply shocks.

A common step in the literature consists of re-scaling markup shocks, especially in practice

when it comes to medium-scale DSGE estimation. Defining the reduced-form shock ν̂t ≡ λ ẑt , we

can write the NKPC in a form similar to equation (1):

π̂t = βEt [π̂t+1]+κ x̂t + ν̂t . (2)

While variations in x̂t cannot create inflation because κ and λ are so small, variations in the

reduced-form shock ν̂t , which affects inflation one-for-one, can.

This last step is problematic when it comes to empirics. Matching the empirical behavior of

inflation requires ascribing a great deal of volatility to the ν̂t term. But, the structural shock is

the change in underlying costs ẑt . If λ = 0.0020, which is the estimate from Hazell, Herreño,

Nakamura, and Steinsson (2022) (or rounding up the post-1990 mean posterior estimate from Del

Negro, Lenza, Primiceri, and Tambalotti 2020 at 0.0015), then generating a 1% variation in ν̂t

requires a change in ẑt by 1%/0.002 = 500%. If steady-state markups are 12.5%, then a shock of

this size requires that desired markups increase to 575%, an implausibly large structural shock.8

A 1 pp increase in inflation due to a cost-push shock requires implausibly large structural shocks.

The standard normalization is far from innocuous. It amounts to an important re-scaling of the

directly estimate λ = 0.0020 (see Table C.2 in their paper). These estimates point to a very flat PC.
8The shock is applied to the gross markup, thus the gross markup with the shock is 1.125(500%)+1.125 = 6.75,

which corresponds to a net markup of 575%. Since the gross markup is ε

ε−1 , where ε is the elasticity of substitution,
this means that the markup shock corresponds to a drop from the steady-state of 9 to 1.17. If the markup shock is
taken literally in terms of log deviations, then the increase in the gross markup is even larger (1.125e5).
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markup shock.

The severity of this problem can also be seen by considering an alternative reduced-form way

to write the cost-push shock ν̂t ≡ κ(ŷe
t − ŷn

t ), where ŷe
t and ŷn

t represent the efficient and natural

levels of output, respectively (Galı́, 2015). With κ = 0.0062, generating a 1% cost-push shock

requires the natural rate of output to differ from the efficient level by 1%/0.0062 = 161%. The

welfare implications of these cost-push shocks would, therefore, be enormous.

Our reading of the literature indicates that, while this point is understood, for instance, by

Chari, Kehoe, and McGrattan (2009) and Bils, Klenow, and Malin (2012), the novelty here is to

point out that this is a direct economic implication of the type of pricing friction present in NK

models, where the same degree of price rigidity applies to all shocks, symmetrically. In order to

generate a very flat PC, the model needs to be parameterized with very high degrees of rigidity.

The immediate implication of this is, clearly, that markup shocks cannot easily generate inflation

volatility.

How do these observations square with the recent global rise in inflation since the second

quarter of 2021? This rise in inflation has been much larger than 1%. For the sake of the argument,

consider an increase in costs capable of rising inflation from its steady state value by 5 pp (say

from 2% to 7%). To generate such an increase with a value of λ = 0.0020 requires a change in

ẑt of 2500%. In this scenario, desired markups increase from 12.5% to 2,812.5%. Equivalently,

the natural and efficient levels of output would have to differ by 806%. Both in the 1970s and in

the recent episode, the effect of supply shocks on inflation has been large. Therefore, the observed

large increases in inflation aggravate the issue raised by the usual normalization of cost-push shocks

in the NK model.

The re-scaling ν̂t ≡ λ ẑt or ν̂t ≡ κ(ye
t − yn

t ) is conceptually problematic for the reasons we

just gave. However, over time this problem has become acute as there is some evidence that

the PC may have flattened over the years (Del Negro, Lenza, Primiceri, and Tambalotti, 2020).

Some commentators have suggested that the very recent inflation episode is evidence that the

PC has steepened again. We are very cautious about overturning careful empirical work based on

decades of data and thoughtful identification strategies on the basis of one episode of high inflation.

However, even if the slope has increased, say, ten-fold, the problem remains: based on our first

calculation above, structural shocks would need to be at least 50% to generate a 1% reduced-form
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shock, or a 250% shock to generate a 5% increase in inflation. In terms of output levels, the natural

and efficient levels would still have to differ by 16% and 81% to generate those reduced-form

shocks.

These conclusions are robust in several dimensions. First, to visualize the robustness of our

conclusion to alternative values of the slope of the PC, Figure 1 presents the size of the markup

shock needed to generate a 1 pp increase in inflation as a function of λ . The y-axis, which presents

the size of the shock, is plotted on a logarithmic scale. The dark-green circle surrounds the most

plausible values, based on the Hazell, Herreño, Nakamura, and Steinsson (2022) and Del Negro,

Lenza, Primiceri, and Tambalotti (2020) papers. For these values, the conclusion is that the size

of the markup shock is orders of magnitude larger than the effect on inflation. Therefore, even

important increases in λ , such as Del Negro, Lenza, Primiceri, and Tambalotti (2020)’s pre-1990

estimate or a ten-times larger estimate than their baseline, do not affect our conclusion that the

markup shock is very large. Second, real rigidities or sticky wages could, in theory, reconcile a

very low κ with a larger λ . As we discuss in Appendix C, the empirical evidence does not favor

this possibility.

Figure 1: Markup Shock for 1 pp Increase in Inflation (Log Scale)

In the next section, we argue that this observation suggests considering price-setting frictions

with shock-dependent price rigidities: firms’ prices are flexible with respect to supply shocks but

simultaneously sticky with respect to demand disturbances. In essence, we propose a model in
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which λ and κ are not directly related, and one can have a very low κ without requiring a very low

λ , with plausible empirical relationships between marginal costs and output gaps.

3 Strategically Sticky Prices

We now present the microfoundation for shock-dependence in price adjustment. The framework

we use is parallel to L’Huillier (2020), with the addition of shocks to supply. For clarity, we

first consider the strategic behavior of firms in response to demand shocks and then consider their

behavior in response to supply shocks. Finally, we consider both shocks simultaneously. Crucially,

in our model, we can use a productivity shock as our canonical supply shock, though our results

apply to any type of shock that affects firms’ marginal costs.

For ease of exposition, we use a simple two-period, partial-equilibrium model. The same points

could be made in a more complicated infinite-horizon, general-equilibrium model (Appendix E).

3.1 Model Setup

There are two dates, the present and the future, which we interpret as the short run and the long

run. In the short run, production and trade in goods markets will be subject to frictions; in the long

run, agents have exogenous endowments and trade will be frictionless. All that follows is common

knowledge.

Setup: Geography, Agents and Markets. The economy is populated by firms, consumers, and

a central bank (CB). At each date, firms and consumers trade in a market for a single good. Short-

run markets are decentralized; we formalize this by positing a continuum of islands, each served

by a single monopolistic firm and populated by a continuum of consumers. Long-run markets are

centralized; we formalize this by positing that all consumers trade endowments in a Walrasian,

perfectly, competitive market. For convenience, we follow Lagos and Wright (2005), and denote

decentralized-market variables in lowercase and centralized-market variables in uppercase. Thus,

the good in the present is c and its price is p; the good in the future is C and its price is P. We

normalize the long-run price to P = 1. There is a short-run bond market with nominal interest rate
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i. We posit a cashless economy in which the CB sets the nominal interest rate. In this partial-

equilibrium setup, there is no labor supply.9

Aggregate State. In the present, there is uncertainty about the aggregate state of the economy,

denoted by {ξ ,z}. The aggregate state captures two dimensions of the economy: aggregate demand

pressure ξ and aggregate supply pressure z. To simplify notation, we drop state-subscripts when

not absolutely necessary. We assume that the two shocks are orthogonal.

We model aggregate demand as determined by a shock to consumers’ future nominal marginal

utility, captured by a random variable θ . Under consumption smoothing, shocks to future marginal

utility affect optimal nominal spending in the present. This modeling device is meant as a proxy

for the many possible reasons that the present would, all else equal, be a “good” or “bad time”

for consumers to spend, e.g., strong labor markets, rosy expectations of income growth, etc. We

do not take the preference shock literally, but rather suppose that it captures the various economic

mechanisms that would make nominal consumption relatively attractive in the present relative to

the future. For simplicity, we assume there are only two possible states, low θL and high θH , that

occur with equal probability.

A virtue of this nominal shock to future marginal utility is that it implicitly defines the con-

sumers’ discount rate, denoted by ρ . In the aggregate, it can also be interpreted as the economy’s

natural rate of interest, since mechanisms affecting nominal demand would affect the economy’s

natural rate of interest. Demand in the present will be high when consumers’ discount rate is high,

and therefore ρH corresponds to the high state, and ρL corresponds to the low state, with ρH > ρL.

The central bank sets the nominal interest rate, denoted is. Because monetary policy affects

aggregate demand, we define a net demand shock, or demand pressure, denoted by ξ . This is

given by the two realizations:

1+ρL

1+ iL
≡ ξL < ξH ≡ 1+ρH

1+ iH
.

Thus, the shock ξ captures changes in demand pressure caused by the changes in subjective and

market discount factors. Let ξ0 denote the harmonic mean of ξL,ξH , that is, ξ0 ≡
[1

2

(
ξ
−1
L +ξ

−1
H
)]−1

.

9Appendix E presents an equivalent model with labor and monetary frictions where the CB sets money supply.
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We normalize ξ0 = 1. The significance of ξ will be clear when we study the consumer problem

below.10

Aggregate supply pressure determines firms’ real marginal costs, denoted by z. We define

supply shocks as exogenous changes in marginal costs. We can think of variations in z as capturing

any variations in marginal costs, such as changes in the prices of intermediate goods or energy

(like oil), changes in wages driven either by shocks to labor supply or shocks to wage-bargaining,

or changes in productivity. Importantly, and different from the NK model, whether the change in z

represents an efficient or inefficient variation is not critical for our analysis. We develop this point

more deeply on Section 3.5. We use the terms “supply shocks” and “cost shocks” interchangeably.

For simplicity, we suppose that the supply shock can take only two values, high zH and low zL, that

occur with equal probability, with expectation E[z] = z0.

We suppose the economy begins at {ξ0,z0} and then experiences a shock in the present.

Islands: Consumer Types and Firms. Each island is populated by a continuum of consumers

of total mass one and a single monopolistic firm. There are two types of consumers: Insiders

(informed consumers) ι ∈ I and Outsiders (uninformed consumers) o ∈ O. Insiders are perfectly

informed about the state; Outsiders are uninformed about the state but know the probability distri-

bution, and may draw inferences from the price set by the firm with which they trade.

The fraction α ∈ [0,1) of Insiders on a particular island varies across islands. We use this

source of heterogeneneity to allow for distinct patterns of price adjustment across islands. We

assume the distribution of α is given by a cdf F whose support is not a singleton and has the

property that limα→1 F(α) = 1. That is, the fraction of islands on which all consumers are Insiders

is 0. Define α0,α1 to be the lower and upper limits of the support of F

α0 = sup{α ∈ [0,1] : F(α) = 0}

α1 = inf{α ∈ [0,1] : F(α) = 1}.

10Similar to L’Huillier (2020), it is possible to model the nominal demand shock as a shock to the future price
level, or, equivalently, as a shock to money supply (that implies a proportional adjustment of prices in the long run).
However, in this paper we prefer the current formulation in terms of shocks to future marginal utility (which could, for
instance, also be driven by expectations about future income) in order to allow for a standard specification of monetary
policy.
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Hence, [α0,α1] is the smallest closed interval that contains the support of F : α0 is the fraction

of Insiders on the least-informed island, and α1 is the fraction of Insiders on the most-informed

island. By assumption, the support of F is not a singleton, so α0 < α1.

Each island is inhabited by a single monopolistic firm with real marginal cost z. All firms know

the true state and the fraction of Insiders on their island; firms can condition the price they set on the

true state. The assumption that Insiders and firms know the true state is just a convenient abstraction

of the idea that they are better informed than Outsiders. L’Huillier (2020) motivates the assumption

of informed firms by the existence of a ‘time 0’ where firms observe market transactions.

Consumer Problem. We index a typical consumer by j. Consumers have a real endowment E in

the future and receive firm profits d in the present. All consumers have the same quasilinear utility

function U(c,C) = (c− c2/2)+β (θC), where β is a constant satisfying 0 < β < 1, and θ is the

random variable determining the realization of nominal marginal utility in the future. Outsiders are

uncertain about the value of their future nominal marginal utility. This potentially unknown shock

to future preferences captures uncertainty about future demand in a similar way that preference

shocks in Diamond and Dybvig (1983) capture unforeseen liquidity needs.11

Consumer j solves

max
c,C

E j[(c− c2/2)+β (θC)]

s.t. pc+QC = d +QE,

where E j[ · ] is consumer j’s expectation operator at the present (conditioned on information avail-

able to that consumer), p is the nominal price the consumer faces in the short run for goods, and

Q ≡ 1
1+i is the nominal price for bonds. The natural rate of interest ρ is defined implicitly by

the equation βθ ≡ 1
1+ρ

. Our assumptions guarantee that, in equilibrium, the consumer’s optimal

choice in the present will always lead to positive consumption in the future.12

11L’Huillier (2020) allows for learning about aggregate shocks in the decentralized market for goods. In such a
setup, α is a state variable. As a result of consumer learning, the impact of nominal demand shocks slowly grows over
time, as the information about future nominal adjustments diffuses among the consumer population. In the long run, α

tends to 1. Here, we simplify the setup by having a fixed α in every island, and focus on a static version of the model.
12As in Lagos and Wright (2005), quasilinearity in future consumption eliminates wealth effects. Quadratic utility

in present consumption is for analytical convenience.
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Firm Problem. Each island is populated by a single monopolistic firm. We assume that firms

produce the consumption good at a nominal marginal cost zξ , with zH < 1. Let y(p) denote the

consumer demand at the island given a price p. The firm profit given price p is (p− zξ )y(p).

Note that demand shocks mechanically affect firms’ nominal marginal costs, reflecting general

equilibrium adjustments under flexible product markets. One microfoundation that generates this

relationship would be a working capital assumption: the timing convention that production costs

(wages or intermediate goods) are paid at the end of the first period, and therefore the production

cost is the discounted value of the price level in the future; see Appendix E for a formalization. In

addition, if demand shocks represented nominal shocks to the money supply, then ξ would be the

future price level P and the nominal cost zP would directly reflect variations in the long-run price

level; see L’Huillier (2020) for a formalization.

Perfect Information Benchmark. The full-information benchmark is straightforward. Con-

sumer j’s optimal short-run demand is

c∗ = 1− p
βθ

Q
≡ 1− p

1
ξ
.

Note that when ξ is high, demand in the present is high, and thus ξ acts as a demand shifter. The

optimal price is p∗ = ξ (1+z)
2 , flexible with respect to both shocks, and the natural level of output,

denoted yn, is

yn =
1− z

2
.

Notice, output is fixed regardless of the demand shifter ξ (the demand shock is neutral). However,

the supply shock z does affect the natural level of output.

3.2 Demand Shocks and Strategically Sticky Prices

Here, we suppose that firms’ real marginal cost is fixed at z and we consider how variations in

demand ξ affect the slope of the PC. We denote the state (demand) by s.
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Equilibrium Short-Run Prices. With imperfect information, consumer j’s optimal short-run

demand is

c∗ = 1− pE j

[
βθs

Qs

]
≡ 1− pE j

[
1
ξs

]
.

Hence, E j

[
1
ξs

]
is the expectation of the net demand shock, determining whether demand in the

present is strong or weak.

When information is not perfect and consumers and firms behave strategically, we must ask

whether the full-information price is consistent with equilibrium in the implicit game between the

firm and the consumers. Because the full-information price varies with the state, we refer to the

full-information prices as the flexible price, with ps defined by p∗ above. The question is whether

adherence to the flexible price is optimal for the firm. For example, would the firm prefer to charge

the price pH even when the true state is L? It is possible that the firm will be tempted to charge pH

instead of pL to extract more rents, especially if many consumers are Outsiders. In this context,

the appropriate notion of equilibrium is Perfect Bayesian Equilibrium (PBE), so we should ask

whether the flexible price is consistent with some PBE. This guarantees that the firm does not

deviate from pL in state L. Lemma 1 provides a sharp answer to this question.

Lemma 1 (PBE with Flexible Prices). The flexible price {ps} is consistent with some PBE if and

only if α ≥ α ≡ 1−z
(ξH/ξL)(1+z)−2z .

When the fraction of Insiders is high enough, the flexible prices are in fact consistent with an

equilibrium. As a note, α is decreasing in z, and α = ξL
ξH

when marginal costs are zero.

The opposite end of the spectrum from the flexible price is a price schedule that is the same

in both states of the world—a sticky price. For simplicity, we focus on a particular sticky price,

denoted p0, which is a natural choice for two reasons: it is the price that would be optimal in the

absence of a shock (i.e., if ξ = ξ0), and it is the price that would be optimal if no consumers were

informed (α = 0). Of course, we require that p0 be consistent with some PBE as well; Lemma 2

provides a complete characterization.

Lemma 2 (PBE with Sticky Prices). The sticky price is p0 ≡ ξ0(1+ z)/2. For z sufficiently small,

p0 is consistent with some PBE if α ≤ α .
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When the fraction of Insiders is low enough, the sticky price is in fact consistent with an

equilibrium. Echoing what we said before: if too many consumers know the state, the sticky price

is not a sustainable strategy. Finally, whenever both the sticky price and the flexible price schedule

are consistent with PBE, the firm strictly prefers the flexible price schedule.13

Aggregate Prices and the Phillips Curve. On each island, the firm chooses between the sticky

price p0 and the flexible price schedule {ps} defined above, subject to the requirement that what-

ever it chooses should be consistent with PBE and deliver the higher profit. On islands where

α ≥ α , the firm will choose the flexible price schedule {ps} and demand will not depend on the

state (it will be at the natural level of output yn). On islands where α < α , the firm will choose the

sticky price p0 and demand will depend on the state. Keeping in mind that the Insiders know the

state but the Outsiders do not, we see that on these islands demand will be

ys(p0) = α

[
1− p0

1
ξs

]
+(1−α)

[
1− p0

1
ξ0

]
.

(The first term is the demand of the Insiders, who know the true state; the second term is the

demand of the Outsiders, who do not know the true state.) Having defined the local prices and

demands in each state s, aggregate prices p̄s and demands ȳs in state s are

p̄s =
∫

α

0
p0 dF(α)+

∫ 1

α

ps dF(α), (3)

ȳs =
∫

α

0

[
α

(
1− p0

1
ξs

)
+(1−α)yn

]
dF(α)+ yn[1−F (α)

]
. (4)

The baseline aggregate price used to define the PC is therefore given by p̄0 = ξ0(1+ z)/2,

which is the flexible price given the baseline demand shock ξ0, and baseline output is ȳ0 = yn.

Define the output gap as the difference between actual and natural output: x̄s ≡ ȳs − yn. We define

the PC to be the line crossing the two points (x̄s, p̄s) and (0, p̄0). We define the slope κ̄ of the PC

to be the ratio:

κ̄ =
p̄s − p̄0

x̄s
.

13We require that z not be so large because ξ affects both demand and nominal costs, and thus, a low z ensures that
this latter effect does not dominate.
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From equations (3) and (4), the slope of the PC is

κ̄ = ξs

(
1−F(α)∫
α

0 α dF(α)

)
. (5)

The price difference is the difference in the flexible prices for the measure of firms using flexible

prices. The output difference is the difference in demand from informed consumers on islands with

sticky prices.

The PC flattens (i.e., the slope κ̄ decreases) as the size of demand shocks decreases, and it

becomes perfectly flat (i.e. κ̄ = 0) in the limit as ξH → ξL. Small net demand shocks could reflect,

for example, a hawkish central bank. We can state the following result.

Lemma 3 (Flat Phillips Curve Under Demand Shocks). The Phillips curve is flat, κ̄ = 0, if demand

shocks are sufficiently small i.e., if ξH is sufficiently close to ξL.

To understand the mechanism underlying Lemma 3, note that, on all islands where sticky prices

prevail, the PC (for those islands) is horizontal (has slope 0): prices are independent of the state but

demands are not. Conversely, on all islands where flexible prices prevail, the PC (for those islands)

is vertical (has slope +∞): prices depend on the state but demands do not. As net demand shocks

decrease, more firms choose sticky prices and fewer firms choose flexible prices. Fundamental

demand shocks can still be large so long as the central bank policy offsets the shock, (i.e., raising

rates in response to positive shocks, see L’Huillier, Phelan, and Zame, 2022).

3.3 Supply Shocks and Strategically Flexible Prices

We now consider the consequences of a supply shock that directly affects firms’ costs. Recall

that the problem of standard models is having robust responsiveness of inflation to empirically

plausible supply shocks when the PC is very flat. To simplify exposition, we suppose there are no

demand shocks for now (ξ = ξ0 = 1). We denote the state (supply) by ς .

Let λ denote the marginal costs elasticity of aggregate prices. The response of inflation to

supply shocks is given by

λ ≡ ∂ p̄/p0

∂ zς/z0
.
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As we supposed with the demand shock, the firm and the Insiders know the value of zς , but the

Outsiders do not. Note that the Outsider demand depends only on the price p, which is observable.

Thus, it is a straightforward result that the firm will always choose a flexible price (for any fraction

of Insiders).

Proposition 1 (Flexible Prices with Inflationary Shocks). When the economy experiences shocks

to the marginal cost zς , all firms choose a flexible price pς =
1+zς

2 , output is at potential yn, and

λ = 1, for all α .

A few remarks are in order. First, in this model, in which prices are endogenously sticky for

strategic reasons, demand shocks can lead to price stickiness while supply shocks will never lead to

price stickiness. This means that the responsiveness of prices to cost shocks is completely different

from the responsiveness to demand shocks.

Second, even though costs are not payoff relevant for consumers, for consistency with the

previous section in this PBE consumers can be allowed learn the realization of costs from the price

(although one can construct the same equilibrium without this requirement, since zς is irrelevant

to consumers). Different from the case of demand shock, firms are not subject to an incentive

compatibility constraint (there is no strategic friction between firms and consumers).

Third, because the equilibrium is endogenously a flexible-price equilibrium, there is no welfare

loss in response to the inflationary shock, and thus the optimal response of the central bank is to do

nothing. In this model, there is no need for monetary policy to respond to the inflationary shock.

Nonetheless, central banks may have other reasons for wanting to respond to inflation in response

to a shock to marginal costs. In the next section we show that if Outsiders do not know how the

central bank will respond to an inflationary shock, then firms may adjust their prices in response

to the inflationary shock but not in response to the central bank.

3.4 Supply and Demand Shocks

We now introduce both supply and demand shocks, denoting as before the state of supply by ς and

the state of demand by s. The following result characterizes equilibrium prices. It characterizes

the consequences of shock dependence when both shocks hit the economy.
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Proposition 2 (Demand and Supply Shocks). When the economy experiences both supply and

demand shocks and α ≤ αH ≡ 1−zH
(ξH/ξL)(1+zH)−2zH

, aggregate prices are flexible with respect to the

supply shock but sticky with respect to the demand shock. Firms post p0,ς =
1+zς

2 .

In our shock-dependent model, equilibrium prices are sticky with respect to the demand shock

(and therefore firms do not condition their prices on it), but equilibrium prices are flexible with

respect to the supply shock (and therefore firms condition their prices on it). Stickiness with

respect to demand is evident in the lack of dependence of p0,ς on ξs (recall the normalization of

the state-state demand shocks term, ξ0 = 1). Flexibility with respect to supply is evident in the

dependence of p0,ς on the zς term.

We have already noted that firms have no strategic incentive to misrepresent the realization

of zς , and that remains true here. The firm can convey information about the shock zς without

conveying information about the demand shock ξ .

The Phillips Curve and Supply-Driven Inflation. How sticky aggregate prices are with respect

to demand depends on the fraction of firms choosing sticky prices. The aggregate price level given

cost z and demand ξ is therefore

p̄s,ς =
∫

ας

0

ξ0(1+ zς )

2
dF(α)+

∫ 1

ας

ξ (1+ zς )

2
dF(α) =

(
1+ zς

2

)(
ξ0 +(ξ −ξ0)(1−F(ας ))

)
,

(6)

where ας is parameterized by zς . As before, firms choose flexible prices if α > ας . Thus, the

aggregate price p̄s,ς is shifted directly by the cost z but also depends on demand through the fraction

of firms posting flexible prices, determined by ας .

Because in our model supply shocks do not cause output gaps, the PC will solely capture the

relationship between prices and demand pressure. Hence, the appropriate definition is to consider

curves parameterized by the supply shock zς relating how variations in demand ξs affect prices.

Demand shocks move along a PC, while supply shocks shift the PC (change the intercept). When

the supply shock is zς , we have a curve with slope κ̄ς connecting (x̄s,ς , p̄s,ς ) and (0, p̄0,ς ), where x̄s,ς

denotes the output gap when demand is ξs and the supply shock is zς . Defining ας ≡
1−zς

ξH
ξL

(1+zς )−2zς

,
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the slopes of the PCs given zς are

κ̄ς = ξ

(
1−F(ας )∫
α

0 α dF(α)

)
.

The levels of prices are shifted by the cost zς , and the slopes in the states may differ because

α depends on zς . α is decreasing in zς and therefore the lowest cutoff occurs when the supply

shock takes value zH (i.e., more firms choose sticky prices when the supply shock is low). Define

δ H ≡ 1−zH+2zHα1
α1(1+zH)

. If δ < δ H , then on every island α < ας for every realization of zς . This means

that the sticky price is consistent with PBE (there are not enough Insiders to induce firms to choose

flexible prices). This means that κ̄ς = 0; the PC is perfectly flat with respect to demand shocks,

but supply shocks create meaningful inflation. The following is an immediate consequence.

Corollary 1 (Phillips Curve Under Demand and Supply Shocks). If δ < δ H , then κ̄ς = 0 for all zς ;

the PC is perfectly flat with respect to demand shocks, but supply shocks create inflation (λ = 1).

Corollary 1 is crucial. Our model predicts that strategic price stickiness can lead to a completely

flat PC with κ = 0 and also that supply shocks can meaningfully feed through to inflation. Notice

that for the sticky price p0,ς , the elasticity λ with respect to zς is 1. The responsiveness of prices

to supply shocks will always exceed the responsiveness to demand shocks. If residual demand

shocks are not very volatile, then the PC will be completely flat, with all firms choosing prices that

are sticky with respect to demand but flexible with respect to supply. Even if some firms choose

flexible prices (i.e., if δ > δ H), some firms will choose prices that are sticky with respect to demand

(and flexible with respect to supply), but all firms will choose prices that are flexible with respect

to supply.

Loglinearized PC. To better understand our results, it is useful to derive a loglinearized approx-

imation of the PC to compare it to the standard NK PC. We add time indexes to the equation,

consistent with the notation of the infinite horizon model in the appendix (and suppress notation

for states s,ς ).

Proposition 3 (Loglinearized PC). If δ < δ H , we can write inflation in terms of the output gap as

π̂t = κ x̂t + ẑt , (7)
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where hats denote percentage deviations from steady state, and κ = 1−z0
1+z0

κ̄ is the PC slope defined

in terms of percentage deviations around the steady state.

With a flat PC we have κ ≈ 0, and so output gaps do not move inflation while the supply shock

ẑ does. When the PC is flat, inflation is not at all responsive to demand shocks but inflation remains

very responsive to supply shocks in our model. In sum, our model can endogenously produce a

perfectly flat PC with inflation that is responsive to structural supply shocks.

Equation (7) is the analog to the standard NK PC, which, dropping inflation expectations (as

justified, for instance, in Bilbiie, 2018, 2019), is written π̂t = κ x̂t + λ ẑt , with λ ≈ 0. Thus, our

model produces a PC in which supply shocks are not modified by an additional coefficient that is

nearly zero. In fact, in the NK model, a flat PC implies that the intercept is locked-in at the steady

state, making it impossible to get inflation out of supply shocks.

3.5 Structural Cost-Push Shocks

Our model, with equation (7), offers a structural theory of cost-push shocks. To see this, it is useful

to make the following comparison with the NK PC. Suppose the model features only preference

and productivity shocks. In this case, the NK PC is written in terms of output, not an output gap,

as

π̂t = κ ŷt −κ ât

where, for ease of comparison, we have made abstraction of forward-looking terms, and where

ât are shocks to log productivity. A positive productivity shock decreases marginal costs and,

therefore, for a given level of output, decreases inflation. In this setting, the output gap is x̂t =

ŷt − ât , which implies the familiar equation π̂t = κ x̂t . This algebra is trivial but provides two

important implications. First, since κ is very small, productivity shocks are unable to provide

meaningful inflation in the NK model. Second, in the NK model, a negative productivity shock

creates inflation by producing a positive output gap, even as output falls. But matching the data

requires a cost-push shock that creates inflation with a negative output gap. Accordingly, the NK

model needs to invoke an ad-hoc shock ν̂t (e.g. a shock to firms’ markups):

π̂t = κ x̂t + ν̂t ,
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to generate inflation together with a negative output gap. The shock ν̂t creates inflation, and the

tightening response of the CB creates a negative output gap. Productivity shocks do not produce

that outcome.

This is not the case in our model. Under productivity shocks ẑt =−ât . Equation (7) allows for

inflation dependence on both output gaps and on cost-push shocks, which originate in movements

in productivity. In our model, a negative productivity shock increases prices as marginal costs

increase. As we show in the next section, a negative output gap follows if the CB raises rates to

offset the rise in inflation. This is precisely the same equilibrium response in the NK model that

generate a negative output gap in response to a cost-push shock. Thus, a productivity shock in our

model does create inflation with a negative output gap in equilibrium.

This discussion emphasizes that shock-dependence allows for supply shocks, modelled simply

as shocks to productivity, to enter (structurally) the PC as cost-push shocks. The reason is that

shock-dependence tightly links output gap fluctuations to demand fluctuations. A negative produc-

tivity shock shock acts like a cost-push shock in our setup: inflation goes up (prices are flexible),

and output goes down. (In the NK model, with very sticky prices, prices do not move, and output

does not move if the shock is temporary, either.)

This point echoes the early critique by Chari, Kehoe, and McGrattan (2009). Their critique

qualifies shocks to markups as “non-structural”, since they do not have an evident counterpart in

reality. It also explains our focus, in Section 2, on “inefficient” (markup) shocks within the NK

model, and reconciles it with our usage of “efficient” (productivity) shocks in the current section.

3.6 Discussion: Relation to Other Frictions

In closing the section, the following remarks are in order. First, shock dependence is a unique

and novel feature of our model. Conventional models have the common feature of not distinguish-

ing between demand and supply shocks when predicting price adjustment, which, as emphasized

earlier, provides a challenge for quantitatively matching aggregate facts. We develop this theme

further in Appendix D, where we show qualitatively that, within this model setup, quadratic costs,

Calvo-Taylor, and fixed costs are all unable to obtain for cost-push inflation when the PC is entirely

flat. Our discussion in the appendix is somewhat simplistic and stylized; a full quantitative analysis
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in the context of other models is out of the scope of our contribution. However, the intuition we

propose is general, and applies to all that models that treat demand and supply symmetrically.

Second, besides the analysis in the appendix, a specific discussion of the connection to state-

dependent models is warranted. In state-dependent models, larger shocks imply more flexible

prices, a point recognized at least since Ball, Mankiw, and Romer (1988). State-dependence, and

the implied non-linearities that it offers, constitutes a complementary and promising channel to

understand the unprecedented global rise in inflation, where economies around the world have

been buffeted by shocks of immense magnitude. However, there, whether the shock is a demand

or a supply shock is irrelevant. By way of implication, non-linearities in price adjustment that

depend on the size of the shock also imply sizeable adjustment of prices to large demand shocks.

A priori, logic suggests that state-dependent models cannot simultaneously predict a flat Phillips

curve for large demand shocks (such as the Great Recession) and lots of inflation from supply

shocks. In our model, the nature of the shock, regardless of whether the shock is large or small, is

what determines the degree of adjustment. Therefore, prices are completely flexible with respect

supply shocks, and at the same time, completely rigid with respect to demand shocks.

4 Quantitative Implications and Monetary Policy

We now provide a calibrated model to determine the quantitative significance of our theoretical

results. We have shown that it is theoretically possible to have a flat PC in this setting and for supply

shocks to cause inflation. We now show that our proposed mechanism produces an empirically

realistic PC given a reasonable calibration. We then use our calibrated model to consider the

aggregate consequences of supply shocks when monetary policy responds to supply shocks.

4.1 Setup and Calibration

We modify the setup slightly in order to let the data discipline the degree of heterogeneity. First, in-

stead of having a distribution of Insiders across islands, we let firms have a distribution of marginal

costs. In this way, we can let empirical estimates discipline the distribution of productivity. Second,

we explicitly model the behavior of the central bank using a Taylor rule that determines interest

rates in equilibrium. Finally, we calibrate the fraction of Insiders to match the estimated slope of
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the PC, given particular Taylor coefficients disciplined by the data.

Firm Heterogeneity. Let the setup be modified as follows. The fraction of Insiders α is assumed

to be constant across islands, but now firms differ in their marginal costs z≤ 1. Let the idiosyncratic

component of marginal costs be distributed according to G, where G is a distribution with the usual

properties. Because α is constant across islands, one can show that there is a cutoff for sticky or

flexible prices now depends on the marginal cost (see Lemma 4 in Appendix B).

Monetary Policy. We suppose the CB responds to the aggregate state s by setting the nominal

interest rate is according to a standard Taylor rule, which we write

iTaylor
t = i0 +φπ π̂t +φxx̂t , (8)

where i0 is a base interest rate, φπ and φx are the Taylor coefficients. In equilibrium this means the

CB will endogenously set iL ≤ iH in response to the endogenous levels of inflation and the output

gap. In the model, the effects of monetary policy are akin to the effect of demand shocks, leading

endogenous to imperfect price adjustment to policy.14

In practice, monetary policy rules typically respond to output gaps and to inflation, rather than

to a directly observable shock. Therefore, because policy makers do not observe shocks directly,

the policy rule responds indirectly through observable macro variables. The Taylor coefficients φπ

and φx will endogenously determine how much the CB changes it in response to the shock.

Solving for equilibrium requires solving a fixed-point problem. Note that the interest rate it de-

termines ξ , which affects average prices and output—which are themselves the inputs in the Taylor

Rule. All else being equal, when the Taylor coefficients are large, the CB will respond aggressively

to variations in output and prices (offsetting the demand shock), which will endogenously lead to

smaller fluctuations in output and demand. In this way, the slope of the PC is determined by the

Taylor rule (see L’Huillier, Phelan, and Zame, 2022).

14We suppose that Outsiders do not know the stance of monetary policy but they do know the equilibrium distribu-
tion of possible interest rates. In this way, consistent with the model in Section 3, Outsiders do not know ξ even as the
CB responds to the supply shock.
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Calibration. We let the data discipline the degree of heterogeneity in the model, thus calibrat-

ing the slope of the PC in equilibrium. We target average markups to be 12.5%, as is standard in

the literature. With an average price of p = ξ0(1+z)
2 , we set p/z = 1.125 and ξ0 = 1, implying an

average marginal cost of 0.8. We calibrate the idiosyncratic distribution of productivities (inverse

of marginal costs) as log-normal with standard deviation of 5%. Bloom et al. (2018) find that the

unconditional standard deviation of micro-productivity shocks is 5.1%. The mean of the distribu-

tion of productivities is set so that the average marginal cost equals 0.8. The entire distribution of

marginal costs shifts with the aggregate supply shock ς by 1% (up or down). The household time

preference (natural rate) is set to r0 = 4%, and the discount factor shock (demand shock) is 1%.

Therefore, θL = 1.01
1+r0

and θH = 0.99
1+r0

.

We choose α to target the slope of the PC in equilibrium for the given Taylor coefficients.

We use estimates from Del Negro, Lenza, Primiceri, and Tambalotti (2020) who use 1990 as the

break in the sample. Their estimates for the relevant Taylor coefficients post-1990 are φπ = 1.5

and φx = 0.22. The posterior mean, median, and mode for κ post-1990 are 0.00151, 0.00140,

and 0.00196. These estimates are similar to what is found in Hazell, Herreño, Nakamura, and

Steinsson (2022). With α = 0.88, equilibrium features an equilibrium PC slope of κ = 0.0017.

In other words, the calibrated model can match the slope of the PC given the estimated the Taylor

rule parameters.

4.2 Results

A calibrated version of our model can produce a flat PC consistent with empirical estimates. Equi-

librium features endogenous monetary policy responses and firms with heterogeneous productiv-

ities disciplined by empirical estimates. We consider the aggregate dynamics of a 1% structural

demand shock and a 1% structural supply shock (an increase in marginal costs of 1%), each de-

caying at a rate of 0.9. We shut down learning dynamics so that α = 0.88 is constant across time.

(The simulation is obtained by simply repeating the short run equilibrium presented above.)

In this model, demand shocks produce virtually no change in average prices. In contrast, a

1% aggregate productivity shock, which would change marginal costs by 1%, changes aggregate

prices by 0.45% on impact. Thus, empirically plausible supply shocks can produce meaningful
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inflation even while demand shocks produce a very flat PC.
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(b) Output Gap

Figure 2: Aggregate consequences of a demand shock for inflation and output, varying the mone-
tary policy rule. Red: Baseline Taylor rule; Blue: Dovish MP with Taylor coefficients times 1/2;
Yellow: Hawkish MP with Taylor coefficients times 2.

We first consider a decaying demand shock. Figure 2 plots inflation and the output gap given

a 1% demand shock. We also consider variation in monetary policy, by considering more and

less hawkish Taylor rules. A dovish monetary policy (MP) response follows a Taylor rule with

coefficients multiplied by 1/2, and a hawkish MP response follows a Taylor rule with coefficients

multiplied by 2. The demand shock generates a positive output gap and negligible inflation (note

the scale on the y-axis). In response to the demand shock, the CB raises rates by almost 70 basis

points (bps) on impact with the baseline Taylor rule, decaying to about 10 bps (not shown). In this

model, the output gap is a “sufficient statistic” for welfare losses (whether the gap is positive or

negative). Because the demand shock leads to an output gap (the CB does not completely offset

the shock with MP), the shock creates welfare losses.

Figure 3 instead considers the aggregate consequences of a structural supply shock. In this

case, we vary the aggressiveness of the central bank in responding to inflation by varying φπ alone

while fixing φx at the baseline. In the hawkish case, the central bank has twice the response to

inflation without changing its weight on the output gap. In the dovish case, we set φπ = 0 and in

equilibrium there is no monetary policy response to a supply shock (interest rates are constant).

The theoretical result of our paper is that a supply shock leads to a flexible change in prices with

respect to the cost shock, but prices can remain sticky with respect to changes in demand, which
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Figure 3: Aggregate consequences of a supply shock for inflation and output, varying the hawk-
ishness of the monetary policy rule. Red: Baseline Taylor rule; Blue: Dovish MP, φπ = 0; Yellow:
Hawkish MP, φπ = 3.

in this case would be variations in monetary policy. Accordingly, a 1% structural supply shock

leads to 0.45% inflation on impact (orders of magnitude larger than the effects from a demand

shock) and meaningful negative output gaps in response to the increase in interest rates. The

negative output gap leads to welfare losses. In this case, more aggressive monetary policy is not

welfare-improving. Crucially, the inflation outcomes in all three scenarios are virtually identical:

the central bank response has virtually no effect on inflation. Importantly, an aggressive monetary

policy is not enough to bring down inflation.

When the central bank does not respond at all to the supply shock, there is no output gap

(flexible-price equilibrium), and therefore there are no welfare losses. Notice the absence of price

dispersion in this model, which is key for this result. Moreover, even a very hawkish response that

puts twice the baseline weight on inflation leads to almost no change in inflation. An extremely

hawkish response, tripling of the Taylor coefficient to φπ = 4.5, would raise rates in equilibrium

by 60 bps in response to a 1% supply shock and would still yield 0.32% inflation on impact while

creating a negative output gap of almost 4%. Our results suggest that a central bank attempting to

bring down inflation in response to a supply shock faces a daunting task. Because the PC is very

flat, a very aggressive response in interest rates is likely to have a large negative effect on output

without a significant effect on inflation.

In our simple benchmark model, our theoretical results suggest that the increase in prices in
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response to a supply shock would be efficient; the central bank should not respond by raising rates.

In reality, there are likely to be other frictions and rigidities in the economy so that inflation may be

costly. We have left out, for example, the possibility of embedded inflation expectations respond-

ing in adverse ways. Our analysis nonetheless highlights the policy challenges in responding to

inflation in the event that supply shocks lead to efficient inflation. To the extent that prices are less

rigid in response to supply shocks, the welfare losses due to nominal rigidities would necessarily

be lower. The next section provides empirical evidence that, indeed, aggregate prices are more

flexible with response to cost shocks, suggesting that the welfare considerations of supply shocks

are lower than those of demand shocks.

5 Empirical Evidence

In this section, we provide U.S. time-series evidence supporting the view that cost-push shocks

lead to stronger short-run inflation responses than demand shocks. Specifically, we identify both

of these shocks using a state-of-the-art procedure. For a similar effect on U.S. industrial production

(IP), we show that whereas demand shocks lead to a relatively small inflation response in the short

run, cost-push shocks deliver a response that is about 2.5 times larger over two years and more

than 5 times larger over one year.

Our empirical approach is fairly off-the-shelf. The simple time-series exercise we present

essentially collects and combines findings from recent studies. Both types of shocks are identified

using external instruments. In order to identify the effect of demand shocks on inflation and output,

we consider well-identified monetary shocks based on the instrument proposed by Gertler and

Karadi (2015). We follow their procedure closely by running a VAR on log IP, the log consumer

price index (CPI), the one-year government bond rate (as the policy indicator), and a credit spread,

and by using the three-month-ahead funds rate future surprise to identify monetary policy shocks.

In order to identify the effect of cost-push shocks on inflation and output, we consider well-

identified oil news shocks based on Känzig (2021). Here, we also follow his procedure closely by

running a VAR on the real price of oil, world oil production, world oil inventories, world IP, U.S.

industrial production, and the log CPI, and by using his series of high-frequency surprises around

OPEC announcements to identify oil shocks.
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For both exercises, the data are monthly and the sample spans 1983:4 through 2017:12. Both

VARs have 12 lags. Having identified the shocks, we compute the impulse response functions of

IP and inflation. As expected, following a monetary shock, IP and inflation co-move, but they do

not following a cost-push shock. For both types of shocks, we consider a shock that raises inflation

(i.e., an expansionary monetary shock and a contractionary cost-push shock). We set the size of an

oil news shock to one standard deviation and compute the responses of IP and CPI. We then scale

the size of a monetary shock as follows: we compute the IP response after the cost-push shock at

a horizon of 24 months, and then we re-size the monetary shock to deliver the same IP response at

the same horizon (in absolute value).

Figure 4 presents the results. It plots the impulse response functions (IRFs) at the point esti-

mate, and the corresponding 68% error bands. Looking at the monetary shock (the dashed, red

line), we see that IP rises gradually and reaches a 0.60% increase in 24 months. The CPI raises

by roughly 0.10% on impact of the shock, and then stays roughly constant over the horizon con-

sidered. For the cost-push shock (the solid, blue line), we estimate a gradual decline in IP, with a

fairly rapid rise in the CPI that peaks at 0.30% at 12 months. The inflation response drops slightly

thereafter, settling at 0.25% after 24 months.

Overall, for a similar effect on IP, we note that the response of inflation in the case of the cost-

push is roughly 2.5 times larger than in the case of the monetary shock over 24 months and more

than 5 times larger over 12 months. Moreover, the response in the case of the cost-push shock

is statistically different from zero at all horizons, whereas the response to the monetary shock is

actually not different from zero for the majority of the response.

6 Conclusion

Inflation data point towards a very flat Phillips curve, and also to meaningful inflation caused by

supply disturbances. These two features suggest that a model with shock-dependent friction is a

promising candidate for understanding inflation dynamics.

Motivated by this idea, we provide a microfoundation of price stickiness based on strategic

behavior of informed firms that can simultaneously produce both a very flat PC and also inflation

in response to supply shocks. When demand shocks hit, firms strategically choose sticky prices
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Figure 4: Estimated responses of U.S. Industrial Production and the Consumer Price Index to a
monetary shock (the dashed, red line), and to a cost-push shock (the solid, blue line). The cost-
push shock is re-sized to deliver the an IP response of the same size at 24 months.

that do not fluctuate. In contrast, firms have no strategic incentive to choose prices that do not

fluctuate in response to marginal costs, and therefore prices are flexible with respect to changes in

supply.

Our model is able to reconcile the facts that the PC. It does not need to resort to implausibly

large structural shocks to firms’ pricing decisions. Prices can be completely flexible with respect to

supply shocks and yet remain rigid with respect to demand shocks, including changes in monetary

policy. A calibrated version of our model shows that a 1% structural cost shock could increase

inflation on impact by 0.45% (orders of magnitude larger than a standard New Keynesian model)

and suggests that central banks might not want to respond to supply shocks.

More research is required on the broader consequences of shock-dependent rigidities. Our

baseline model does not incorporate any other frictions aside from nominal rigidities at the level

of firms’ pricing decisions. Future work ought to consider the role of wage rigidities, which are

unlikely to share the same microfoundation as we have proposed at the level of product prices.
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HARDING, M., J. LINDÉ, AND M. TRABANDT (2022): “Resolving the missing deflation puzzle,”

Journal of Monetary Economics, 126, 15–34.

——— (2023): “Understanding Post-Covid Inflation Dynamics,” Journal of Monetary Economics,

forthcoming.
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Appendices

A Main Proofs

Proof of Lemma 1 . ONLY IF: To find the cutoff α we need to confirm that in the low state the

firm would rather charge the low flexible price than the high flexible price (which would fool the

uninformed agents). If the flexible price {ps} is consistent with some PBE, then if the true state

is L the firm will not prefer to deviate and offer the price pH rather than the price pL. Note that if

the true state is L and the firm offers pH , Insiders will know that the true state is L but Outsiders

will believe the true state is H. Hence the firm will not want to offer pH = ξH(1+ z)/2 rather than

pL = ξL(1+ z)/2 if and only if:

(
ξL(1+ z)

2
− zξL

)[
1− ξL(1+ z)

2
1
ξL

]
≥
(

ξH(1+ z)
2

− zξL

){
α

[
1− ξH(1+ z)

2
1
ξL

]
+(1−α)

[
1− ξH(1+ z)

2
1

ξH

]}

Simplifying:

ξL
(1− z)

2

(
1− z

2

)
≥
(

ξH(1+ z)−2ξLz
2

)(
α

(
2− (1+ z)ξH/ξL

2

)
+(1−α)

(
1− z

2

))
ξL(1− z)(1− z)≥ (ξH(1+ z)−2ξLz)(α (2− (1+ z)ξH/ξL)+(1−α)(1− z))

Letting δ ≡ ξH/ξL and dividing both sides by ξL

(1− z)(1− z)≥ (δ (1+ z)−2z)(α (2− (1+ z)δ )+(1−α)(1− z))

(1− z)(1− z)≥ (δ (1+ z)−2z)((1− z)+α(1+ z)(1−δ )) .

Note that δ (1+ z)−2z > 1− z and δ > 1 so that 1−δ < 0. Then rearranging we have

α(1+ z)(δ −1)(δ (1+ z)−2z)≥ (δ (1+ z)−2z)(1− z)− (1− z)(1− z)

α ≥ 1− z
δ +δk−2z

≡ α,
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which is the desired result. Note that if z = 0, then we get α = 1/δ .

IF: Given that α ≥ α , We must construct a PBE in which prices along the equilibrium path are

pL, pH . Hence we must show that when the true state is s the firm will not wish to deviate to a

price p ̸= ps. PBE implies that when the Outsiders see the price ps, they believe the true state is

s, as in (a), (c). However, we are free to assign arbitrary beliefs to Outsiders if they see a price p

different from both pL and pH , as in (b), (d); in that event we assign to Outsiders the belief that the

true state is L. We must rule out four kinds of potentially profitable deviations

(a) The true state is L and the firm offers pH .

(b) The true state is L and the firm offers p ̸= pL, pH .

(c) The true state is H and the firm offers p = pH .

(b) The true state is H and the firm offers p ̸= pL, pH .

When Outsiders see a price p ̸= pL, pH they believe the state is L and PBE guarantees that when

Outsiders see the price pL they believe the state is L, so we can subsume (c), (d) into

(e) The true state is L and the firm offers p ̸= pH .

We now verify (a) , (b) , and (e) in turn.

(a) This follows immediately by following the steps in the ONLY IF case above, but in reverse

order, noting that each inequality is equivalent to the one above.

(b) We have posited that when Outsiders see a price p ̸= pL, pH they believe the state is L.

Insiders know the true state so they also believe the state is L. Hence aggregate demand if

the firm offers p will be 1− p 1
ξL

and firm profit will be (p− zξL)[1− p 1
ξL
]. By definition,

this quantity is maximized when p = 1/2 (1+z)
ξL

and the maximum profit will be 1/4 (1−z)2

ξL
.

However this is the profit when the firm offers pL so this cannot be a profitable deviation for

any such p.

(e) We must show that when the true state is H the firm’s profit if it offers pH is at least as great

as when it offers p ̸= pH ; i.e. we must show

ξH(1− z)2

4
≥ (p− zξH)

(
α[1− p

1
ξH

]+ (1−α)[1− p
1
ξL

]

= α(p− zξH)[1− p
1

ξH
]+ (1−α)(p− zξH)[1− p

1
ξL

] (9)

By definition, (p− zξH)[1− p 1
ξH
] would be maximized by setting p = pH and (p− zξH)[1−
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p 1
ξL
] would be maximized by setting p = pL so we must certainly have

α(p− zξH)[1− p
1

ξH
]≤ α

(
ξH(1− z)2

4

)
(10)

(1−α)(p− zξH)[1− p
1
ξL

]≤ (1−α)

(
ξL(1− z)2

4

)
(11)

The result follows by adding the inequalities (10) and (11) together with ξH > ξL so we have

verified (e) . Having verified (a) , (b) , and (e) , the proof is complete.

Proof of Lemma 2 . Assume the sticky price p0 = ξ0(1+ z)/2 is consistent with some PBE. Sup-

pose that, in that PBE, the true state is L and the firm offers a price p ̸= p0. Because the Insiders

know the true state, they will demand the quantity 1− p 1
ξL

. PBE requires that the Outsiders form

some belief about the true state and demand a quantity that is optimal with respect to that belief

about the true state; hence the Outsiders will demand 1− pEo

[
1
ξ

]
where Eo

[
1
ξ

]
is their expectation

of the shock. The profit of the firm will be:

dL(p) = (p− zξL)
(

α
[
1− p

1
ξL

]
+(1−α)

[
1− pEo

[
1
ξ

]])
For every p ̸= p0, this expression will be minimized if the Outsiders assign probability 1 to the

state L, in which case their expectation of the shock will be Eo(
1
ξs
) = 1

ξL
. Hence if the firm offers

p ̸= p0 we must have

dL(p)≥ (p− zξL)[1− p
1
ξL

]

In PBE the firm has no profitable deviation so it must be that dL(p0) ≥ dL(p) for every p; in

particular this inequality must hold when p = pL. We conclude that

(
ξ0(1+ z)

2
− zξL

)(
α

[
1− ξ0(1+ z)

2
1
ξL

]
+(1−α)

[
1− ξ0(1+ z)

2
Eo

[
1
ξ

]])
≥ ξL(1− z)2

4
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Because ξ0 is the harmonic mean of ξL,ξH , Eo

[
1
ξ

]
= 1/ξ0; substituting and simplifying yields

(ξ0(1+ z)−2zξL)

(
α

[
2− ξ0(1+ z)

ξL

]
+(1−α)(1− z)

)
≥ ξL(1− z)2

The LHS is decreasing in α; we must set α sufficiently low. Note that if α = 0 then the LHS equals

(ξ0(1+ z)−2zξL)(1− z) and ξ0(1+ z)−2zξL = ξ0 +(ξ0 −ξL)z− zξL > ξL(1− z) since ξ0 > ξL.

Thus, there exists a threshold α0 > 0 such that this inequality holds if α ≤ α0. Let δ0L ≡ ξ0
ξL

. Then

(δ0L(1+ z)−2z)(α [2−δ0L(1+ z)]+(1−α)(1− z))≥ (1− z)2

(δ0L(1+ z)−2z)(1− z+α [2−δ0L(1+ z)− (1− z)])≥ (1− z)2

(1− z)−α(δ0L −1)(1+ z)≥ (1− z)2

δ0L(1+ z)−2z

Recall that δ0L > 1 since ξL < ξ0, and therefore we have

(1− z)− (1− z)2

δ0L(1+ z)−2z
≥ α(δ0L −1)(1+ z)

(1− z)(δ0L −1)(1+ z)
δ0L(1+ z)−2z

≥ α(δ0L −1)(1+ z)

And therefore we can simplify to α ≤ 1−z
δ0L(1+z)−2z ≡ α0. Recall that

α ≡ 1− z
δ (1+ z)−2z

<
1− z

δ0L(1+ z)−2z

since δ ≡ ξH/ξL > δ0L ≡ ξ0/ξL. Thus, if α < α , it follows that α < α0 and therefore p0 is a PBE.

To construct a PBE in which p0 is offered in both states, we have to prescribe the behavior of

Outsiders when a price p ̸= p0 is offered. As the argument above suggests, we posit that when

when a price p ̸= p0 is offered, Outsiders believe the true state is L and hence demand 1− p 1
ξL

.

Insiders know the true state s and demand 1− p 1
ξs

so the profit of the firm is

ds(p) = (p− zξs)

(
α[1− p

1
ξs
]+ (1−α)[1− p

1
ξL

]

)
(12)

If the firm offers the putative equilibrium price p0, the Outsiders’ expectation of the future price
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will be 1/ξ0, so the profit of the firm will be

ds(p0) =

(
ξ0(1+ z)

2
− zξs

)(
α

[
1− ξ0(1+ z)

2
1
ξs

]
+

(1−α)(1− z)
2

)

The equilibrium condition is that

ds(p0)≥ ds(p) (13)

when s = L and when s = H, under the assumption that α ≤ α . That the inequality (13) is satisfied

when the true state s = L follows from the exercise we just did. To see that (13) is satisfied when

the true state s = H is more complicated. First note that simplifying the right side of (12) yields

dH(p) = (p− zξH)

(
1− p

[
α

1
ξH

+(1−α)
1
ξL

])

Define ξα ≡
(

α
1

ξH
+(1−α) 1

ξL

)−1
as the α-weighted harmonic mean of ξs. Since ξα < ξH ,

dH(p)< (p− zξα)

(
1− p

[
α

1
ξH

+(1−α)
1
ξL

])

and the RHS is maximized by setting p = ξα (1+z)
2 and equals ξα (1−z)2

4 . Thus, it suffices to show

that for α ≤ α0

(p0 − zξH)

(
1− p0

[
α

1
ξH

+(1−α)
1
ξ0

])
≥ ξα(1− z)2

4
.

Note first that this is satisfied for α = 0 but not for α = 1; in the first case there are no Informed

agents, so setting p = p0 is strictly dominant; in the second case there are only Informed agents so

the flexible price is optimal. Rearranging we have

(p0 − zξH)

(
1− p0

1
ξ0

+ p0α

(
1
ξ0

− 1
ξH

))
≥ (1− z)2

4
(

1
ξL
−α

(
1
ξL
− 1

ξH

)) .
Note that the LHS is increasing linearly in α since 1

ξ0
− 1

ξH
> 0. The RHS is increasing with α .
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Multiplying we have

(
1
ξL

−α

(
1
ξL

− 1
ξH

))
(p0 − zξH)

(
1− p0

1
ξ0

+ p0α

(
1
ξ0

− 1
ξH

))
≥ (1− z)2

4
,

which is a quadratic equation in α with a negative coefficient on α2. Thus, if this holds at α0 it

holds for all α ≤ α0. L’Huillier, Phelan, and Zame (2022) verify this condition holds for z = 0. By

continuity it holds for z sufficiently small.

Proof of Lemma 3 . First, to derive κ̄ , from equations (3) and (4), we can derive more convenient

expressions for the average price and demand difference:

p̄− p̄0 =
1
2
(ξ −ξ0)(1+ z)(1−F(α)) , (14)

x̄s =
(1+ z)

2

(
ξ −ξ0

ξ

)∫
α

0
α dF(α). (15)

The price difference is the difference in the flexible prices for the measure of firms using flexible

prices. The output difference is the difference in demand from Insiders on islands with sticky

prices.

Define δ ≡ ξH/ξL. Note that δ ≥ 1 and decreases as ξH → ξL. Define δ ≡ 1−z+2zα1
α1(1+z) . We

show that κ̄ = 0 whenever δ < δ First, α is decreasing in δ and equals 1 when δ = 1; the fraction

of islands posting sticky prices increases when δ is lower, converging to 1. Thus, the numerator

decreases, the denominator increases, and δ decreases to 1. Therefore, κ̄ is increasing in δ ; as

δ → 1 α → 1 and all islands post sticky prices. If δ < δ , then α > α1, which means that F(α) = 1,

all islands post sticky prices, and κ̄ = 0. Second, ξ → ξ0 as δ → 1.

Proof of Proposition 1. The proof is immediate. Note that conditional on the price p, Insiders and

Outsiders have the same demand, x = 1− pξ0. Thus, profit maximization means choosing p to

maximize (1− pξ0)
(

p− zς

)
, which yields the desired result.
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Online Appendices

B Additional Proofs

B.1 Proofs for Section 3.4, Strategic Model with Supply and Demand Shocks

Proof of Proposition 2. The proof follows quickly from earlier results. First, the firm can choose

prices that communicates information about ξs, thus achieving full information. Let ps,ς denote

the price when demand is ξs and supply is zς . The full-information prices are given by

pH,H =
ξH(1+ zH)

2
, pL,H =

ξL(1+ zH)

2
, pH,L =

ξH(1+ zL)

2
, pL,L =

ξL(1+ zL)

2
.

Second, the firm can choose prices that do not communicate information about ξs. Since the

demand shock is orthogonal to the shock to zς , it is easy to show that the following prices maximize

profits (as in the previous proof) without communicating information regarding ξs:

p0,H =
ξ0(1+ zH)

2
, p0,L =

ξ0(1+ zL)

2
.

Except by coincidence, these six prices are all distinct. Hence, in the high cost state (zH), the

firm can choose a price that is sticky with respect to ξs by offering p0,H = ξ0(1+zH)
2 , the firm can

choose a price that is flexible with respect to ξs by offering ps,H = ξs(1+zH)
2 . The cutoff for choosing

the sticky or flexible price is given by the threshold in Lemma 1 for a given zς . Recall that α is

decreasing in zς , so αH < αL and therefore α < α for both realizations of the supply shock.

In this way, the firm can choose a price that is flexible with respect to both shocks by offering

ps,ς =
ξs(1+zς )

2 or a price that is flexible with respect to the cost shock only by offering p0,ς =

ξ0(1+zς )
2 , which is sticky with respect to demand. The remaining results follow immediately from

Lemma 3.

Conditional on the price p, agents have the demand, x = 1− pE
[

1
ξs

]
. Hence, any incentive for

firms to convey or hide information via p can only operate through the expectation on ξs.

In the proposed equilibrium, Outsiders see a price p0,ς and conclude it conveys information

about the marginal cost alone (p0,ς =
1+zς

2 ξ0); they do not learn the demand shock or update their
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demands. Given these beliefs, on islands with a small number of Insiders, the firms’ problem is

equivalent to determining the profit-maximizing price as if the demand shock is ξ0, which provides

the price above. By our assumption that δ < δ H , no island has a sufficiently high number of

Insiders for the firm to want to set a price that responds to the demand shock. On each island, the

fraction of Outsider is large enough so that firms choose the price p0,ς =
1+zς

2 ξ0 taking as given

that Outsiders will set their demand with x0,ς = 1− p0,ςE
[

1
ξ0

]
. Thus, no firm on any island adjusts

prices in response to demand but every firm on every island adjusts prices in response to costs.

Proof of Proposition 3. Since prices are generally proportional to 1+ z, it is useful to define a

supply shock as the value 1+ z. Let p̄0 =
1+z0

2 ξ0 denote the steady-state price level. We suppose

the economy starts at steady state, and therefore this is the prior price level. Inflation is π̂ ≡ p̄−p̄0
p̄0

.

It is useful to define the shocks ξ̂ ≡ ξ−ξ0
ξ0

, and ẑ ≡ ∆z
1+z0

, and the percentage output gap x̂ = x̄−x̄0
x̄0

.

Rearranging κ̄ ≡ p̄−p0
x̄−x̄0

, we have p̄− p0 = κ̄ (x̄− x̄0). Note that z = z0 +∆z and therefore

p0 ≡
1+ z

2
ξ0 =

1+ z0 +∆z
2

ξ0 = p̄0 +
∆z
2

ξ0.

Alternatively, p0
p̄0

= 1+ ẑ. Therefore p̄−p̄0
p̄0

= p̄−p0
1+z0

2 ξ0
+ ẑ. Using p̄− p0 = κ̄ (x̄− x̄0), we have

π̂ =
κ̄

1+z0
2 ξ0

(x̄− x̄0)+ ẑ =
2κ̄

(1+ z0)ξ0
(x̄− x̄0)+ ẑ.

To write this in terms of a percentage output gap x̂,

π̂ =
2κ̄

(1+ z0)ξ0
x̄0

(
x̄− x̄0

x̄0

)
+ ẑ,

=
2κ̄

(1+ z0)ξ0

(
1− z

2

)
x̂+ ẑ,

= κ̄
1− z0

(1+ z0)ξ0
x̂− κ̄

ẑ
ξ0

x̂+ ẑ = κ̄
1− z0

(1+ z0)ξ0
x̂+ ẑ,

where the last line follows because the product of two small changes, ẑx̂ ≈ 0. κ is the PC defined
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in terms of percentage deviations from the steady state. Let z = z0 so that p0 = p̄0. Then

κ ≡ (p̄− p̄0)/p̄0

(x̄− x̄0)/x̄0
=

x̄0

p̄0
ξ

(
1−F(α)∫
α

0 α dF(α)

)
,

=
(1− z0)/2
(1+ z0)ξ0/2

κ̄ =
1− z0

1+ z0
κ̄,

where ξ0 = 1. As expected, the PC slope is indeed the PC slope, appropriately defined. Note that

with a flat PC we have κ ≈ 0, and so output gaps do not move inflation while the supply shock ẑ

does.

Furthermore, we can write the PC in terms of structural shocks directly as

π̂ = ξ̂ (1−F(α))+ ẑ. (16)

The aggregate price level given z and ξ is

p̄ =
∫

α

0

ξ0(1+ z)
2

dF(α)+
∫ 1

α

ξ (1+ z)
2

dF(α),

=

(
1+ z

2

)
(ξ0 +(ξ −ξ0)(1−F(α))) ,

=

(
1+ z

2

)
ξ0

(
1+ ξ̂ (1−F(α))

)
.

Dividing by the initial price level p̄0 and substituting ẑ

p̄
p̄0

=

(
1+ z
1+ z0

)(
1+ ξ̂ (1−F(α))

)
,

= (1+ ẑ)
(

1+ ξ̂ (1−F(α))
)
,

= 1+ ξ̂ (1−F(α))+ ẑ+ ẑξ̂ (1−F(α)).

Using that the product of hat variables is zero, the last term is annihilated. We therefore have

p̄
p̄0

−1 = ξ̂ (1−F(α))+ ẑ,

and therefore we have π̂ = ξ̂ (1−F(α))+ ẑ.
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B.2 Proof for Section 4

Lemma 4 (PBE with Flexible Prices and Marginal Costs). The flexible price {ps} is consistent

with some PBE if and only if

z ≥ z̄ ≡ 1−αξH/ξL

α(ξH/ξL −2)+1
.

The average prices p̄s and demands ȳs in state s can be written

p̄s =
∫ z̄

0
ξ0

1+ z
2

dG(z)+
∫ 1

z̄
ξs

1+ z
2

dG(z), (17)

ȳs =
∫ z̄

0

(
α

[
1− 1+ z

2
ξ0

ξs

]
+(1−α)

[
1− z

2

])
dG(z)+

∫ 1

z̄

1− z
2

dG(z). (18)

For symmetry, we define the PC comparing the outcomes in the high and low states, and therefore,

the slope of the PC is

κ̄ =
p̄H − p̄L

ȳH − ȳL
=

(
ξHξL

αξ0

) ∫ 1
z̄ (1+ z)dG(z)∫ z̄
0 (1+ z) dG(z)

. (19)

Compared to the baseline model, we aggregate using G instead of F ; the model behaves similarly.15

Proof of Lemma 4. Incentive-compatibility for the flexible-price equilibrium requires

(
ξL(1− z)

2

)(
1− z

2

)
≥(

ξH(1+ z)−2ξLz
2

)(
α

(
1−
(

1+ z
2

)
ξH

ξL

)
+(1−α)

(
1−
(

1+ z
2

)))

Simplifying:

ξL
(1− z)

2

(
1− z

2

)
≥
(

ξH(1+ z)−2ξLz
2

)(
α

(
2− (1+ z)ξH/ξL

2

)
+(1−α)

(
1− z

2

))
ξL(1− z)(1− z)≥ (ξH(1+ z)−2ξLz)(α (2− (1+ z)ξH/ξL)+(1−α)(1− z))

15As an aside, note that in this setting a supply shock that increases the distribution of z would increase the fraction
of flexible-price firms, which would all else being equal steepen the PC. Because this is not the main point of our
paper, we do not emphasize this result, but leave it to later work to further investigate this prediction.
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Letting δ = ξH/ξL and dividing both sides by ξL

(1− z)(1− z)≥ (δ (1+ z)−2z)(α (2− (1+ z)δ )+(1−α)(1− z))

(1− z)(1− z)≥ (δ (1+ z)−2z)((1− z)+α(1+ z)(1−δ ))

Note that δ (1+ z)−2z > 1− z and δ > 1 so that 1−δ < 0. Then rearranging we have

α(1+ z)(δ −1)(δ (1+ z)−2z)≥ (δ (1+ z)−2z)(1− z)− (1− z)(1− z)

α ≥ 1− z
δ +δk−2z

= α

Inverting the requirement (if z varies), then the cutoff for marginal cost solves

α(δ +δk−2z)≥ 1− z, =⇒ (α(δ −2)+1)k ≥ 1−αδ .

Note that 1+αδ > 1+α > 2α . Hence, α(δ −2)+1 > 0, and so we have z ≥ 1−αδ

α(δ−2)+1 = z̄.

C Real Rigidities in the NK Model

A possible way to generate a flat short-term PC is using various real rigidities. κ and λ are linked

to each other by a proportionality coefficient:

κ ≡ e ·λ , (20)

where e measures how marginal costs co-move with the output gap: m̂ct = e · x̂t . m̂ct denotes

deviations in marginal costs (or equivalently, deviations in firms’ desired markup). The parameter

e is determined by real rigidities.

Many real rigidities show up in λ , while some (like sticky wages) show up in e. Specifically,

high degrees of real rigidity in the mapping from the output gap to marginal costs can deliver a

low value of the parameter e (a low elasticity of marginal costs to the output gap). This raises the

question of whether λ could be large while κ small, resolving, , in the context of the NK model,

the issue that we bring up. As previewed, because empirical estimates of both κ and λ (separately)
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are small, real rigidities do not present a plausible resolution to the puzzle we highlight. In other

words, the empirical evidence suggests that the culprit for the observed flat PC is λ , and not e.

In a nutshell, the reason for this is strong evidence that marginal costs move whereas prices

remain largely fixed. To expand on this point, recall that the standard NKPC can equivalently be

written in linearized form as

π̂t = βEt [π̂t+1]+λ m̂ct = λ

∞

∑
s=0

β
sEt [m̂ct+s]. (21)

The second equality follows by iterating forward. Hence, inflation is caused by changes in firms’

marginal costs or desired markups. Importantly, the parameter λ measures how changes in marginal

costs translate into changes in prices. In general, λ is a function of the degree of price stickiness,

the elasticity of substitution across goods, the capital share in production, and real rigidities caused

by, for example, fixed production costs or kinked consumer demand (i.e., Kimball).

Marginal costs can increase due to demand or supply shocks. In response to demand shocks,

output gaps can increase marginal costs whenever there is curvature in production or labor supply,

leading to an increase in wages or capital costs. In response to supply shocks, marginal costs can

increase for a given level of production because of higher input costs or productivity shocks, or

firms may have a higher desired price for a given marginal cost. When marginal costs increase due

to an output gap, the PC is most often written as in (1).

In the NK model, therefore, to get a flat PC, either e or λ must be very small. The behavior of

inflation is entirely determined by the behavior of marginal costs and how much inflation responds

to marginal costs. A low co-movement between inflation and output gaps can be the result of low

co-movement between marginal costs and output (i.e., a low e) or a low co-movement between

prices and marginal costs (i.e., a low λ ). To the extent that marginal costs move sufficiently without

output gaps, generating a flat PC requires a low responsiveness of prices to marginal costs.

In the textbook NK model, the equilibrium relationship between output gaps and marginal costs

is given by e = σ−1+ ϕ−1+ζ

1−ζ
, where σ is the elasticity of intertemporal substitution (EIS), ϕ is the

Frisch elasticity, and ζ is the curvature of the production function (Galı́, 2015). For the plausible

values of σ = 1, ϕ = 1/5, and ζ = 1/3, then e = 9, implying that λ is an order of magnitude

smaller than κ in the standard NK model. An alternative textbook benchmark is a model with
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GHH preferences and constant returns to scale, in which case e = ϕ−1. Micro-level estimates

typically find ϕ to be less than 0.5, whereas macro-level estimates using aggregate variables find

ϕ in the range of 2-4. In either case, a very low κ necessitates a very low λ .

Most importantly, both Hazell et al. (2022) and Del Negro et al. (2020) provide clear empir-

ical evidence that, in the data, marginal costs fluctuate, with a very low pass-through to prices.

Specifically, Hazell et al. (2022)’s second IV strategy relies on marginal costs providing enough

exogenous variation to identify κ and λ . In particular, the estimation of λ is based on direct

measures of marginal costs variation embodied in tradeable prices, which are used as inputs of

production for non-tradeables. Similarly, Del Negro et al. (2020) also find considerable levels of

aggregate price rigidity, which they attribute to a low λ . Their model explicitly allows for the

possibility that e could be estimated to be very small, for example due to sticky wages. However,

the estimation does not support the view that a flat PC is due to a weak co-movement of marginal

costs with output gaps. Indeed, they find that the co-movement of all real variables and indicators

of firms’ cost pressures has been remarkably stable since 1964, and therefore the flat PC is most

likely caused by a low sensitivity of price changes to marginal costs (see the discussion on pp.

316-7).

Altogether, the evidence points to a flat PC that comes not from a low e but from a low λ .

D Standard Pricing Frictions

This section solves the baseline model from Section 3 with perfect information but with standard

pricing frictions. We consider quadratic adjustment costs (Rotemberg, 1982), contract frictions

(Calvo or Taylor), and fixed adjustment costs. None of these standard settings produce a flat PC

as well as significant responsiveness to supply shocks. This is due to the symmetry embedded in

these models regarding the reasons for the stickiness. In these settings, κ and λ move together,

as is the case in the NK model (for a given e). With standard frictions, a very flat PC requires

very large exogenous frictions to change prices. With standard price-setting frictions, variations

in inflation require implausibly large structural supply shocks, just as in the standard NK model.

The intuition is straightforward: if it is costly to change prices, then it is costly to change prices in

response to supply shocks as well as in response to demand shocks.

52



Quadratic Costs. Let the firm face quadratic costs to adjust prices from p0 to p, given by ϕ

2 (p−

p0)
2. Let p0 =

1−z
2 be the base price. The firm maximizes

(p− zξ )(1− p/ξ )− ϕ

2
(p− p0)

2. (22)

We can summarize equilibrium as follows:

Lemma 5 (Quadratic Costs). With quadratic adjustment costs for prices, all firms set a price

p∗ = ξ
1+z+ϕ p0

2+ϕξ
, and demand at each island is x = 1−z+ϕ(ξ−p0)

2+ϕξ
. The PC slope in this economy is

given by κ = 2
ϕ

.

Proof of Lemma 5. Profits are p− zξ − p2/ξ + pz− ϕ

2 (p− p0)
2. The first-order condition is

1+ z− 2
ξ

p−ϕ(p− p0) = 0, (23)

and solving for p, the optimal price is

p∗ =
1+ z+ϕ p0

2
ξ
+ϕ

= ξ
1+ z+ϕ p0

2+ϕξ
.

and total demand is

ȳ = 1− 1+ z+ϕ p0

2+ϕξ
=

1− z+ϕ(ξ − p0)

2+ϕξ
.

The PC is therefore given by

κ =
ξH

1+z+ϕ p0
2+ϕξH

−ξL
1+z+ϕ p0

2+ϕξL(
1− 1+z+ϕ p0

2+ϕξH

)
−
(

1− 1+z+ϕ p0
2+ϕξL

) =
2(ξH −ξL)

ϕξH −ϕξL
,

which simplifies finally to κ = 2
ϕ

.

A flat PC corresponds to a very high ϕ (i.e., a high cost of adjusting prices). Asymptotically, if

we want κ → 0, we have ϕ → ∞. In this setting, we cannot get inflation in response to cost shocks

with a flat PC. We calculate
∂ p∗

∂ z
=

ξ

2+ϕξ
.
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Thus, letting ϕ → ∞, we have λ → 0. If the PC is flat, a cost shock will not lead to a large change

in prices. The intuition is simple: a flat PC corresponds to a high cost of changing prices. It’s

still costly to change prices, whether responding to demand or supply shocks, and so firms don’t

change prices much.

Calvo-Taylor. Now suppose a fraction 1− ε of firms cannot change their price. Thus, a fraction

ε set their price to p∗, and the rest keep p0 (i.e., there are no strategical complementarities arising

from monopolistic competition à la Dixit-Stiglitz). This setting could correspond to probabilistic

price changes à la Calvo or staggered price setting à la Taylor. In either case, the fraction of firms

that adjust their price (whether probabilistic or pre-determined) is ε . The aggregate price and

output are thus

p̄ = εξ (1+ z)/2+(1− ε)p0, ȳ = ε
1− z

2
+(1− ε)

(
1− p0

ξ

)
.

Lemma 6 (Calvo-Taylor). With Calvo-Taylor frictions, the PC slope is κ = ε

1−ε
ξ .

Proof of Lemma 6. The PC slope is given by

κ =
ε(ξ −ξ0)(1+ z)/2

(1− ε)
(

p0
ξ0
− p0

ξ

) =
ε

1− ε

ξ ξ0(1+ z)
2p0

.

Since p0 = ξ0(1+ z)/2 this simplifies to κ = ε

1−ε
ξ .

A flat PC corresponds to a very low ε (i.e., a low probability of price adjustment). Asymptoti-

cally, if we want κ → 0, we have ε → 0. Again, we cannot get inflation in response to cost shocks

with a flat PC. We calculate
∂ p̄
∂ z

=
εξ

2
.

Letting ε → 0, we have λ → 0. If the PC is flat due to Calvo- or Taylor-style frictions, a cost shock

will not lead to a large change in prices. The intuition is simple: a flat PC means few firms have

the opportunity to change prices at all. If almost no firms can change prices, whether responding to

demand shocks or supply shocks, aggregate prices won’t change much in response to a cost shock.
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Fixed Costs. Suppose firms pay a fixed cost ki ∈ [k,k] to adjust prices, with costs distributed

according to CDF F . Adjusting firms choose p∗ = ξ (1+z)
2 , whereas not adjusting yields demand

x = 1− p0/ξ , for a profit d0 = (p0 − zξ )(1− p0/ξ ) = p0(1+ z)− zξ − p2
0/ξ . A firm will adjust

prices whenever

d∗ ≥ d0 =⇒ ki ≤ k∗(ξ )≡ ξ (1− z)2/4− (p0(1+ z)− zξ − p2
0/ξ ).

Thus, the fraction of firms adjusting will be F(k∗).

Lemma 7 (Fixed Costs). With fixed costs of adjusting prices, the PC slope in this economy is

κ =
F(k∗(ξ ))

1−F(k∗(ξ ))

(
ξ (ξ −ξ0)(1+ z)

1+ z−ξ0

)
. (24)

Proof of Lemma 7. Recall that p0 =
ξ0(1+z)

2 . Hence

k∗(ξ ) = ξ (1− z)2/4+ p2
0/ξ + zξ − p0(1+ z),

=
ξ

4
(1− z)2 +

ξ 2
0 (1+ z)2

4ξ
+ zξ − ξ0(1+ z)2

2
,

=
1
4

(
ξ (1− z)2 +

ξ 2
0 (1+ z)2

ξ

)
− ξ0(1+ z)2

2
+ zξ .

and we have

dk∗(ξ )
dξ

=
(1− z)2

4
− 1

4
ξ 2

0 (1+ z)2

ξ 2 + z =
1
4

(
(1− z)2 −

ξ 2
0 (1+ z)2

ξ 2

)
+ z.

Thus, k∗(ξ0) = 0 and is the global minimum. The average price is

p̄ = F(k∗(ξ ))
ξ (1+ z)

2
+(1−F(k∗(ξ )))p0,

and the level of output is

ȳ = F(k∗(ξ ))
1− z

2
+(1−F(k∗(ξ )))

(
1− p0

ξ

)
.
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Hence, we can write κ as

κ =
F(k∗(ξ ))ξ (1+z)

2 +(1−F(k∗(ξ )))p0 − p0

F(k∗(ξ ))1−z
2 +(1−F(k∗(ξ )))

(
1− ξ0

2ξ

)
− 1−z

2

=
F(k∗(ξ ))

(
ξ−ξ0

2

)
(1+ z)

(1−F(k∗(ξ )))
(

1+z−ξ0
2ξ

)
=

F(k∗(ξ ))
1−F(k∗(ξ ))

(
ξ (ξ −ξ0)(1+ z)

1+ z−ξ0

)
.

In this setting, we can get a flat PC from very small demand shocks or very large fixed ad-

justment costs. It is easy to show that κ is increasing in ξ . The numerator is increasing because

ξ (ξ −ξ0) is, and since k∗ is increasing, so is F(k∗). If k∗ < k, then no firms will adjust prices and

the PC will be perfectly flat. The denominator is decreasing by the same argument. Hence, smaller

shocks lead to a flatter PC as fewer firms adjust.

Suppose firms start with marginal cost z0, which then changes to z. This implies a cutoff k∗(z),

which is a different cost threshold for price-adjusting firms.

Lemma 8 (Inflation with Fixed Costs). With fixed costs of adjusting prices and a shock to marginal

costs, k∗(z) = ξ0
4 (z0 − z)2, which implies ∂ p̄

∂ z = F(k∗(z))ξ

2 .

Proof of Lemma 8. k∗ is defined as above. Now we modify p0 =
ξ0(1+z0)

2 . Hence we have

k∗(z) = ξ (1− z)2/4+ p2
0/ξ + zξ − p0(1+ z),

=
ξ

4
(1− z)2 +

ξ 2
0 (1+ z0)

2

4ξ
+ zξ − ξ0(1+ z0)(1+ z)

2
,

=
1
4

(
ξ (1− z)2 +

ξ 2
0 (1+ z0)

2

ξ

)
− ξ0(1+ z0)(1+ z)

2
+ zξ .

To consider a cost shock, we set ξ = ξ0 to get

k∗(z) =
1
4

(
ξ0(1− z)2 +

ξ 2
0 (1+ z0)

2

ξ0

)
− ξ0(1+ z0)(1+ z)

2
+ zξ0 =

ξ0

4
(z0 − z)2 .
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Note that k∗(ξ ) is linear in ξ , while k∗(z) is quadratic in z. Thus, if shocks are small (percent-

ages), then (z− z0)
2 is likely to be smaller than ξ , and thus for small shocks, k∗(z)< k∗(ξ ). This

means that we are likely to get even less response to a comparably sized supply shock than to a

demand shock. If few firms were adjusting in response to a demand shock, then few firms would

be adjusting in response to a (comparable) cost shock. If z is near z0, then the cutoff k∗ is small

and so few firms will adjust. Thus, it is completely plausible to have no response in this case as

well. If k∗ < k, then no firms will adjust prices in response to a change in z.

E General Equilibrium Framework

This section lays down a general equilibrium framework in which our model of price stickiness

can be embedded. We have two goals. The first is to clarify that the earlier results can be obtained

in a model with labor supply (and no endowments). The second is to clarify that the earlier results

can be obtained in a model in which money plays an essential role. The setup’s ingredients are

standard. However, putting the pieces together is quite involved. Therefore we start the model

description with a preview. We subsequently fully describe every piece of the model.

E.1 Preview

The setup is based on the foundational papers by Lagos and Wright (2005) and Lucas and Stokey

(1987). As in Lagos and Wright (2005), we exploit quasi-linearity and periods that are divided in

a day and a night to be able to handle agent (informational) heterogeneity. As in Lucas and Stokey

(1987), we use a cash-in-advance model with credit and cash goods. The presence of credit goods

is key for specifying trading in goods markets with partially informed consumers.

The population of the economy is composed by a unit mass of households. These households

own a unit mass of firms, which operate in different and segmented geographic locations called

islands. There is a unit mass of islands, and on each island there is a single firm.

Households are divided into workers and consumers. Workers supply labor, while consumers

shop for consumption goods.

As in Lagos and Wright (2005), each period is divided into two subperiods: a day and a night.

All the action of interest takes place during the day; the night is simply introduced as a technical
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device to close the model. Trading of credit goods takes place during the day; trading of cash

goods takes place during the night.

The exogenous aggregate state of the economy is given by a preference shock θ , which is the

discount factor between the day and the night, and by firms’ level of productivity A. As in most

of the literature, the preference shock is a modeling device to generate fluctuations in nominal

aggregate demand. As in the simple model presented in the paper, a key assumption of our setup

is that there is household heterogeneity in the information about the aggregate shocks. Some

households may be imperfectly informed about the value of discount factor at night.16 We model

this by making the sharp assumption that a fraction of households is perfectly informed about the

realization of the shock, and the complement is uninformed about the realization of the shock. As

discussed in the benchmark model, consumers’ knowledge of firms’ productivity is irrelevant in

equilibrium.

Firms, by assumption, are informed about the preference shock as well as their productivity.

We motivate this simplifying assumption by a story in which firms are able to aggregate consumer

demand via goods market trading. So long as a non-zero mass of each firm’s consumers are

informed, their demand then reveals the aggregate preference shock to firms. To simplify the

exposition, here we simply assume that firms are informed right from the start. On the other

hand, imperfectly informed consumers can learn by looking at firms’ prices. Notice that, our

informational assumptions force us to move away from monopolistic competition (or other forms

of centralized goods markets). In fact, firms and consumers play a sequential game. Consumers

and firms meet in decentralized locations. Each firm posts a price, consumers observe the price,

and then post their demand.

The central bank controls money supply, which determines relative price between the night

and day. The central bank uses a rule to determine its policy. This rule depends on deviations of

inflation from a target and on the output gap.

16One can also think about this shock representing a shift in marginal utility at night. Under this interpretation, the
assumption is that, during the day, imperfectly informed households do not receive full information about marginal
utility at night.
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E.2 Full Model

Population and Geography. The economy is populated by households, firms, and a central bank

(CB). The geography is given by a unit mass of islands, and a mainland. Each island is populated

by a continuum of households of mass one and is served by a single monopolistic firm. The

mainland is visited by all consumers in the economy at given dates, and is served by a competitive

representative firm. Households are divided in workers and consumers.

Time Structure. Time is discrete. Similar to Lagos and Wright (2005), periods are divided into

two subperiods, called day and night. Following their notation, we will denote day variables in

lower case, and night variables in upper case. Subperiods are indexed by τ: τ = 0 signifies the

day, and τ = 1 signifies the night. (However, to simplify the notation, we skip τ notation whenever

possible.) Periods are indexed by t and run from t = 0 to infinity.

Goods Markets. We start by describing day-time trading in the decentralized market. Each mass

of consumers are served by a price-setting monopolist (on a given island), which sells good c at a

nominal price p. These decentralized goods are bought on credit.

We now describe the functioning of the night-time, centralized, market. At night, all consumers

are sent to the mainland. There, they consume an aggregate good C, produced by a competitive

firm, and sold at an aggregate nominal price P. We also refer to this aggregate price P as the night

price level. This good is sold in exchange for cash.

Labor Markets. Labor markets are open during both the day and the night. During the day,

workers supply labor in a centralized labor market. Local firms hire workers from this centralized

market. At night, labor is supplied in the mainland. Both day and night markets are competi-

tive. Daytime labor is denoted l; nighttime labor is denoted L. We denote wages as w and W ,

respectively.

Credit, Financial, and Money Markets. During the day, all transactions take place on credit.

Consumers buy consumption goods on credit, workers bring back wages, and firms pay profits (the

firm is owned by local households).

59



At night, goods are bought in cash. (Labor is supplied on credit.)

The money market opens only at (the end of the) night. Similar to Lucas and Stokey (1987),

all credit transactions are settled at this moment. A (long-term) bond is available across periods.

These are trades in exchange of money holdings for the next period t + 1. Long term bonds and

cash holdings are denoted B and M respectively.

Exogenous Aggregate State. The exogenous aggregate state is given by the realizations of a

preference shock θt and aggregate productivity At . We specify the processes for these shocks

below.

Central Bank. The money supply set by the central bank determines the price level during the

night P.

Information Structure. Consumers are heterogeneous in terms of the information they possess.

There are two types of consumers: Insiders (informed consumers) and Outsiders (uninformed

consumers). Insiders are perfectly informed about the state {θt ,At}; Outsiders are uninformed

about the state but know the probability distribution, and may draw inferences from the price set

by the firm with which they trade. The fraction α ∈ [0,1) of Insiders on a particular island varies

across islands. We assume the distribution of α is given by a cdf F whose support is not a singleton

and has the property that

lim
α→1

F(α) = 1

That is, the fraction of islands on which all consumers are Insiders is 0. All other agents in the

economy have perfect information.

All of the above is common knowledge.

Household Optimization. We start by presenting an inner problem of the household. In this

problem, the household solves for all variables that trade in credit. This is the “day-to-night”

problem where the action happens. (The outer problem is presented below.) In contrast to the

setting in the main body, and without loss of generality, here we suppose that time discounting

with β occurs only across periods (i.e., the outer problem) rather than within the period (across
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sub-periods).

We index a typical household by j. The inner problem at date t consists in solving

max
ct ,l t,Lt

E jτ

[(
u(ct)− lt

)
+θt

(
U(C̄)−Lt

)]
where choices variables have been defined above. The variable C̄ denotes a fixed allocation of

the nighttime consumption good. Since this good is traded in cash, its consumption is fixed in

the inner problem (the outer problem will determine this quantity). The random variable θt de-

termines the discount factor between the day and the night. Following the previous sections, we

specify the process for θt to follow an i.i.d. binary Markov chain with two values, θL and θH ,

with Pr(θL) = Pr(θH) = 1/2 and E[θt ] = θ < 1. The realization θH corresponds to the high state,

and the realization θL corresponds to the low state. The household values daytime consumption

relatively more in the high state (and hence demand is higher than in the low state). Hence, the

realizations are such that θL > θH .17 The utility functions u(·) and U(·) are assumed to be twice

continuously differentiable on IR++, strictly increasing, and strictly concave. Below, we make an

assumption on u(·) such that the monopolist’s problem has a solution.18 We assume that there

is a value of C such that U ′(C) = 1/β . The expectation operator is indexed by j to signify the

household member’s information set at the time they make a choice.

This problem is subject to a constraint given by

ptct +PtC̄ = dt +wt lt +WtLt (25)

where prices have been defined above and dt are profits.

Denoting by λt the Lagrange multiplier of the constraint (25), the first-order condition for

daytime consumption c is

u′(ct) = E jτ [λt pt ]

It is important to emphasize that, depending on the index j, this condition may be taken under

17The model allows for richer specifications of the exogenous process for the state, such as persistent Markov
chains and AR(1). (To simplify the notation of this GE framework, we omit the subscript s to denote the state as in the
previous sections, and simply use the notation θt .)

18The earlier sections assume quadratic utility, which is a convenient assumption for welfare calculations. Here in
the GE framework we aim to show that this particular restriction is not needed to find a general equilibrium solution.
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imperfect information. Indeed, it defines the choice, in a decentralized market, by a consumer that

can be an Outsider. (Insiders have full information about the product λt pt .) Notice however that

Outsiders observe the price of the firm they meet, pt , and hence the expectation conditional on this

price. Therefore, it can be taken out of the expectation operator. We obtain the following set of

first-order conditions:

u′(ct) = ptE jτ [λt ]

1 = λtwt

θt = λtWt

(The remaining optimality conditions are taken under perfect information, since they involve

choices in centralized markets.)

From the second equation we observe that λt = 1/wt . Further manipulating the equations above

we can summarize the set of first-order conditions as

u′(ct) = ptE jτ

[
θt

Wt

]
(26)

1
wt

= θt
1

Wt
(27)

We continue by presenting the outer problem of the household. This is the problem solved from

one day to the next. This problem will give rise to an explicit role for money and hence allows us

to define the monetary policy instrument.

Define

U (ct , lt ,Ct ,Lt) =
(

u(ct)− lt
)
+θt

(
U(Ct)−Lt

)
In the outer problem, the household needs to solve

max
ct ,lt ,Ct ,Lt ,Mt ,Bt

E jτ

[
∞

∑
t=0

β
t U (ct , lt ,Ct ,Lt)

]

which involves choosing infinite sequences of consumption, labor supply, money and bond hold-
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ings subject to

ptct +PtCt +Bt +Mt = wt lt +WtLt +Mt−1 +Tt +
(
1+ iLT

t
)

B jt−1 +dt (28)

where iLT
t is a long-term nominal interest rate, and Tt is a lump-sum cash transfer set by the central

bank. Purchases of the cash good are also subject to a cash-in-advance (CIA) constraint

PtCt ≤ Mt−1 +Tt (29)

Denoting by χt the multiplier on the budget constraint (28) and by ψt the multiplier on the CIA

constraint (29), we get the set of first-order conditions

β t u′(ct) = E jτ [χt pt ] (30)

β
t = χtwt (31)

β
t
θtU ′(Ct) = (χt +ψt)Pt (32)

β
t
θt = χtWt (33)

χt = Et [χt+1 +ψt+1] (34)

χt =
(
1+ iLT

t+1
)
Et [χt+1] (35)

where it is important to notice the presence of two different expectation operators, the daytime ex-

pectation operator E jτ [ · ] (conditional on consumer j’s information), and the nighttime expectation

operator Et [ · ] (conditional on full information, which is available in the centralized market).

From (31) and (33), we observe that χt = β t/wt and χt = β tθt/Wt . Thus,

1
wt

= θt
1

Wt

which is the same as (27). Also, plugging in the expression for χt obtained from (33) into (30), we

get

u′(ct) = ptE jτ

[
θt

Wt

]
(36)

which is the same as (26).
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The remaining conditions, determining the demand for money and bonds, can be simplified as

follows. Equation (32), one period forward, is β t+1θt+1U ′(Ct+1) = (χt+1 +ψt+1)Pt+1. Solving

for χt+1 +ψt+1, and using the expression for χt , equation (34) becomes

θt

Wt
= β Et

[
θt+1

Pt+1
U ′(Ct+1)

]
(37)

Finally, equation (35) is equivalent to

θt

Wt
= β

(
1+ iLT

t+1
)
Et

[
θt+1

Wt+1

]
(38)

Production. All firms in the economy have a linear technology and produce using only labor.

Within every period, a monopolist of the decentralized market produces c according to the produc-

tion function ct = At lt . The real marginal cost is zt ≡ 1/At . Following the previous sections, we

specify the process for zt to follow an i.i.d. binary Markov chain with two values, zL and zH , with

Pr(zL) = Pr(zH) = 1/2.

The competitive firm produces C according to the production function Ct = Lt , where produc-

tivity has been normalized to 1.

Game in the Decentralized Market. The equilibrium notion for the game played between con-

sumers and firms is the one described in full detail in the body. Below we shall prove that this setup

is tractable in the following sense: Any equilibrium of this game is part of a general equilibrium

for the whole economy.

Central Bank. The central bank sets the money supply MS
t . An increase of the money supply

(away from its steady state value) is expansionary since it is increases aggregate demand, and vice

versa. The central banks behaves by adjusting money supply as a function of inflation and the

output gap, according to the following rule:

MS
t = M0

(
π̂t

)−φπ
(

x̂t

)−φx
(39)
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where M0 is the natural level of the money supply, π̂t is inflation, defined as the percentage de-

viation of the price level away from steady state p̄0: π̂t =
∫

p̄tdF(α)−p̄0
p̄0

, and x̂t is the output gap,

defined as the percentage deviation of aggregate output from the natural level yn: x̂t =
∫

ytdF(α)−yn

yn .

Below we show that this policy rule can be expressed as a rule for a short-term interest rate rate.

We are finally in a position where we can define a general equilibrium for the economy.

Definition of Equilibrium. A (general) equilibrium of this economy is given by consumption al-

locations, labor supply, bond holdings and money demand (for each household) {ct ,Ct , lt ,Lt ,Bt ,Mt},

labor demand (for each firm) {lD
jt ,L

D
t }, profits {dt}, money supply {MS

t }, nominal transfers {Tt},

nominal prices {pt ,Pt}, nominal wages {wt ,Wt}, long-term nominal interest rates {1+ iLT
t }, for

all t, such that:

1. Households’ conditions for optimality and corresponding constraints are satisfied;

2. The price-setting game is solved as specified above;

3. The representative firm maximizes profits taking the price as given;

4. The CB sets money supply as specified by the rule above;

5. Goods, labor, bonds, and money markets clear.

General Equilibrium Characterization. First, we conjecture that Ct is constant in equilibrium.

If so, then the price of this good is pinned down by the cash in advance constraint. We denote this

constant Ct = C̄. Second, we conjecture that Mt = MS
t , for all t . Then, Pt = Mt/C̄.

By the optimality condition for the production of the representative firm, the nominal wage

Wt = Pt (since productivity is normalized to 1). Thus,

Pt =Wt =
Mt

C̄
(40)

Now, taking equation (37) and writing it as

θt

Mt
= βU ′(C̄) Et

[
θt+1

Mt+1

]
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reveals that as long as U ′(C̄) = 1/β and θt/Mt is a martingale, equation (37) is satisfied. A mono-

tonic rule can be mapped into a degree of monetary policy adjustment γ . Hence, we write the

rule
1

Mt
= γ

1
θt

+(1− γ)
1

M0

According to this rule, when γ = 1, there is full adjustment (Mt = θt), and when γ = 0, there is no

adjustment (Mt = M0). This rule can be written

θt

Mt
= γ +(1− γ)

θt

M0

Taking the expectation of θt/Mt shows, trivially, that this ratio is a martingale, and thus equation

(37) is satisfied.

A similar argument for iLT
t = 1/β −1 shows that equation (38) is satisfied.

Since this is a closed economy with a zero net supply of bonds, we can simply set Bt = 0 for

all households. It remains to check that the labor markets clear. The centralized market clears

when each household supplies Lt =Ct . In the decentralized market, each household’s labor supply

is set to satisfy their respective budget constraints. Aggregating the budget constraint gives the

economy’s resource constraint, and from this one can establish that the labor market clears in each

island. (Notice, this implies that any equilibrium solution to the game played between firms and

consumers is a GE. This ensures a tractable and isolated treatment of the game.)

Finally, set Tt = Mt −Mt−1. At this point, we are able to verify our money demand and central-

ized good consumption conjectures. This completes the characterization of the GE framework.

Equivalence Results. In order to understand the sense in which the program of the household

admits an inner and an outer problem, notice first that the first order condition for ct in both

problems are the same (equations (26) and (36)). Also, since the equilibrium in the outer problem

requires Lt = Ct , and since Wt = Pt , Mt = Mt−1 +Tt and Bt = 0, then, setting E = C̄ the budget

constraints in both problems reduce to

ptct = dt +wt lt
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leading to the same choice of lt in both problems. The following result has then just been estab-

lished.

Lemma 9. The equilibrium allocations of ct , lt , Lt in the inner problem are the same as in the

outer problem. Moreover, the equilibrium allocation Ct is an admissible endowment E of the inner

problem.

To obtain the simple, partial-equilibrium model in the body, interpret the cash good as a nu-

meraire good. Since the credit good and the cash good are purchased in subsequent periods (call

them period 0 and period 1), the price Pt can be interpreted as the price of an asset traded at period

0, that pays 1 unit of the numeraire good in period 1. Denote this price Qt . Then, Qt = Pt .

In the simple model, the choice of C is determined by the budget constraint. Since households

are heterogeneous in terms of their information and implied choice of c for each consumer, nothing

guarantees that C is equal to E for each consumer. However, by linearity, one can verify that the

aggregate quantity of C is indeed equal to E (i.e., markets clear).

Notice that Mt = E ·Qt . So the rule (39) is

E ·Qt = E ·Q0

(
π̂t

)−φπ
(

x̂t

)−φx

which is

1+ it = (1+ i0)
(

π̂t

)φπ
(

x̂t

)φx

In logs

log(1+ it) = log(1+ i0)+φπ π̂t +φxx̂t

Finally, the simple model can be written using two periods only, which allows to drop the t

index and keep only the lower case and upper case notation for t = 0 and t = 1.

Thereby, the following lemma establishing the alleged equivalence has been proven.

Lemma 10. The model presented in the body has the same equilibrium allocation of ct as the full

GE model. Also, the aggregate consumption of C in the simple model is equal to E = C̄.
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