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1 Introduction

This paper outlines the dynamic stochastic general equilibrium (DSGE) model developed at the

Federal Reserve Bank of Cleveland as part of the suite of models used for forecasting and policy

analysis by Cleveland Fed researchers, which we have nicknamed Clementine (CLeveland Equi-

librium ModEl iNcluding Trend INformation and the Effective lower bound). Clementine is a

practical policy tool, designed to support decision-making through forecasting exercises and policy

counterfactuals to complement the existing set of models and data that are routinely consulted.

Rather than following the standard style of an academic paper, it adopts a practitioner’s guide

approach, detailing the construction of the model and offering practical guidance on its use as

a policy tool. This document will be subject to regular updates to ensure that it remains an

up-to-date and accessible resource.

The model uses a medium-scale New Keynesian framework with search and matching frictions

in the labor market, building upon the work of Gertler, Sala, and Trigari (2008) and Furlanetto and

Groshenny (2016). The model is estimated using Bayesian techniques to fit it to data on several

US macroeconomic variables. Our framework builds upon the Smets and Wouters (2007) model

by incorporating search and matching frictions in the labor market to enhance the model’s ability

to capture observed labor market developments. The Smets and Wouters model is a medium-scale

New Keynesian DSGE model without search and matching frictions that has been widely used for

macroeconomic forecasting and policy analysis. It features a variety of nominal and real rigidities,

such as sticky prices and wages, habit formation in consumption, and investment-adjustment

costs. In the model, households maximize utility by choosing consumption, investment, and labor

supply, while firms produce goods and services using a combination of labor and capital under

monopolistic competition. The models incorporate various shocks to capture fluctuations in the

economy, including technology shocks, preference shocks, investment-specific technology shocks,

and monetary policy shocks. The central bank follows a Taylor-type rule for setting the nominal

interest rate in response to fluctuations in inflation and output growth. These features help capture

the persistence observed in macroeconomic data and the transmission mechanisms of monetary

policy.

The medium-scale New Keynesian models developed by Gertler et al. (2008) and Furlanetto and

Groshenny (2016) build upon the Smets and Wouters (2007) framework by incorporating search

and matching friction in the labor market. Search and matching frictions arise from the time

and resources required to match job seekers with available job vacancies. In this framework, both

workers and firms engage in a costly and time-consuming process to form employment relationships,

resulting in a richer depiction of labor market behavior.

By building on these foundational models, the model proposed in this paper aims to enhance

the predictive power of medium-scale New Keynesian models by incorporating additional features,

notably, a) time-varying job-separation rates, b) low-frequency components that capture trends in
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the main macroeconomic variables, and c) a zero-lower-bound constraint on the nominal interest

rate set by the central bank. These innovations allow the model to account for a broader range of

economic fluctuations and long-term trends. First, the incorporation of time-varying job separation

allows the model to account for fluctuations in the unemployment rate more comprehensively,

as unemployment fluctuations cannot be accounted for only by movements in job-finding rates

(Shimer, 2005).

Second, low-frequency components are included to act as attraction points for forecasts at the 5-

to 12-year horizon. A low-frequency component in the inflation rate is attributed to a time-varying

inflation target in the monetary policy rule followed by the central bank as in Ireland (2007), while

slow-moving exogenous trends in the spirit of Ferroni (2011) and Canova (2014) influence growth

rates, the unemployment rate, and the real risk-free rate. While, with the exception of the inflation

target, these trends have no structural interpretation in the model, they are meant to capture

elements outside of the model such as demographic changes and shifts in government policies, in

preferences, or in the overall rate of innovation. To discipline these trend terms, the empirical

analysis incorporates additional time series data, namely, long-range survey expectations from the

Survey of Professional Forecasters (SPF) and Blue Chip (Wolters Kluwer Legal and Regulatory

Solutions U.S).

Third, we consider how the model’s dynamics change when the zero lower bound on the interest

rate set by the central bank is binding. Namely, the model utilizes a piecewise linear solution

technique that combines two linearizations corresponding to two monetary policy regimes: one

with an unconstrained interest rate and another with the interest rate constrained at the zero

lower bound. Unlike the approximation strategy in Guerrieri and Iacoviello (2015), this model

allows agents to incorporate the possibility of switching between the two regimes when forming

their expectations. These probabilities of switching are endogenously determined and consistent

with the approximate solution of the model.

The rest of the paper is organized as follows. Two versions of this model will be presented:

Section 2 will present a one-regime version of the model that disregards the zero lower bound;

Section 3 will present the baseline version of the model, namely, the two-regime version that is

solved by a piecewise linear approximation. Section 4 presents the data used to parameterize the

model and presents the estimation results. Section 5 presents the quantitative analysis, illustrates

the responses of the two versions of the model to different shocks, and decomposes the observed time

series into the relative contribution of the different shocks that hit the economy. By providing the

two versions, we illustrate the model’s behavior and its implications under different policy regimes.
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2 Model: One-Regime Version

2.1 Households

There is a continuum of identical households of mass one. Each household is a large family, made

up of a continuum of infinitely lived agents indexed by i ∈ (0, 1) at time t that derive utility from the

consumption of market consumption goods Cit and home consumption goods Hit. Following Merz

(1995) and Andolfatto (1996), the family offers perfect consumption insurance to its members.

At each date family members are in one of two states: employed or unemployed. An unem-

ployed household member produces and consumes home consumption goods. Specifically, individ-

ual agents have intertemporal utility

E0

∞∑
t=0

βtωt [ln(Cit − hcCit−1) + χ ln(Hit − hhHit−1)]

where 0 < β < 1. When hc > 0 and hh > 0, the model allows for internal habit formation in market

and home consumption, respectively. The preference shock ωt follows the autoregressive process

lnωt = ρω lnωt−1 + εωt, (1)

where εωt ∼ Niid(0, σ2
ω).

Each period Nt family members are employed and 1−Nt members are unemployed and searching

for a job. Since perfect consumption insurance implies Cit = Ct and Hit = Ht, where Ct =
∫ 1
0 Citdi

and Ht =
∫ 1
0 Hitdi are per capita market and home consumption, the household’s aggregate utility

function is given by

E0

∞∑
t=0

βtωt

∫
[ln(Cit − hcCit−1) + χ ln(Hit − hhHit−1)] di

= E0

∞∑
t=0

βtωt [ln(Ct − hcCt−1) + χ ln(Ht − hhHt−1)] (2)

At each date t, Nt (j) family members are employed by intermediate goods-producing firm

j ∈ (0, 1). Each worker employed at firm j works a fixed amount of hours and earns the nominal

wage Wt (j), under the assumption that newly employed workers and all other employed workers

in firm j earn the same wage. (By the symmetry of the problem of firms, it will turn out that all

employed workers will earn the same wage.) Nt denotes aggregate employment in period t and is

given by

Nt =

∫ 1

0
Nt (j) dj (3)

At the beginning of period t, aggregate unemployment equals the number of household members

who are not employed, Ut = 1−Nt, who receive nominal unemployment benefits bt financed through

4



lump-sum taxes. To ensure that the model is consistent with balanced growth, unemployment

benefits bt are proportional to the value of the nominal wage along the balanced-growth path

bt = τWss,t, where τ is the replacement ratio and Wss,t = wPtAt is the nominal wage rate on a

balanced-growth path, for a steady-state real-wage-to-productivity rate w.

The technology to produce home consumption goods for the ith individual is At1it, where 1it

is 1 for an individual unemployed at time t and 0 otherwise, and where At is the exogenous state

of technology, described below, and common to the market production sector. It follows that

Ht =

∫
At1itdi = At

∫ Ut

0
di = AtUt = At(1−Nt) (4)

At the end of period t−1, workers who were employed in the period separate from their current

match with the exogenous probability st−1. At the beginning of period t, any worker out of those

who are unemployed, Ut−1 + st−1Nt−1, searches for a job. The total number of job searchers is

St = 1− (1− st−1)Nt−1 (5)

where

ln st = ρs ln st−1 + εst, (6)

where εst ∼ Niid(0, σ2
s).

Each period, a fraction pt of job searchers finds a job. Therefore, employment evolves as

Nt = (1− st−1)Nt−1 + ptSt = (1− st−1)Nt−1 + pt[1− (1− st−1)Nt−1] (7)

By the symmetry of the problem of firms, it will turn out that all employed workers have the same

job-finding probability.

Each identical family enters each period t with Bt−1 bonds and Xt−1 units of physical capital.

At the beginning of each period, bonds mature, providing Bt−1 units of money. The family uses

some of this money to purchase Bt new bonds at nominal cost e−itBt, where it denotes the net

nominal interest rate between period t and t+ 1.

The family owns capital and chooses the capital utilization rate, υt, which transforms physical

capital into effective capital according to

Kt = υtXt−1. (8)

The household rents Kt (i) units of effective capital to intermediate-goods-producing firm i ∈ [0, 1]

at the real rate Rkt. The household’s choice of Kt (i) must satisfy

Kt =

∫ 1

0
Kt (i) di. (9)
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The cost of capital utilization is a (υt) per unit of physical capital. We assume the following

functional form for the function a,

a (υt) = ϕu (υt − 1) +
ϕuu

2
(υt − 1)2 , (10)

for some parameters ϕu and ϕuu, and that υt = 1 in the steady state.

During period t, the household receives total nominal factor payments PtRktKt +WtNt + btUt.

In addition, the household also receives nominal profits Dt (i) from each firm i ∈ [0, 1], for a total

of

Dt =

∫ 1

0
Dt (i) di. (11)

In each period t the family uses these resources to purchase finished goods, for both consumption

and investment purposes, from the finished goods-producing firms at the nominal price Pt. The

law of motion of physical capital is

Xt ≤ (1− δk)Xt−1 + µt

[
1− F

(
It
It−1

)]
It, (12)

where δk denotes the depreciation rate of physical capital. The function F captures the presence

of adjustment costs in investment, as in Christiano, Eichenbaum and Evans (2005). We assume

the following functional form for the function F,

F

(
It
It−1

)
=

ϕI

2

(
It
It−1

− z

)2

, (13)

for some adjustment cost parameter ϕI , where z is the steady-state growth rate of investment.

Hence, along the balanced-growth path, F (z) = F ′(z) = 0 and F ′′(z) = ϕI > 0. µt is an investment-

specific technology shock affecting the efficiency with which consumption goods are transformed

into capital. The investment-specific shock follows the exogenous stationary autoregressive process

lnµt = ρµ lnµt−1 + εµt, (14)

where εµt ∼ Niid(0, σ2
µ).

The family’s budget constraint is given by

PtCt + PtIt + e−itBt ≤ Bt−1 +WtNt + bt (1−Nt) + PtRktυtXt−1 − Pta (υt)Xt−1 +Dt (15)

The family chooses Ct, Nt, Bt, υt, It, and Xt for each t to maximize the expected lifetime

utility (2) subject to the constraints (7), (12), and (15), taking the job-finding rate pt as given,

since each family is infinitesimal.
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We can set up a Lagrangian for this problem as

E0

∞∑
t=0

(
βtωt

(
ln (Ct − hcCt−1) + χ ln [At(1−Nt)− hhAt−1(1−Nt−1)]

)
+ βtΛt

Pt

[
Bt−1 +WtNt + bt (1−Nt) + PtRktυtXt−1 − Pta (υt)Xt−1 − PtCt − PtIt − e−itBt +Dt

]
+ βtΛtQt

[
(1− δk)Xt−1 + µt

(
1− ϕI

2

(
It
It−1

− z

)2
)
It −Xt

]

+ βtΛtΥt [(1− st−1)Nt−1 + pt − pt(1− st−1)Nt−1 −Nt]

)

where it is convenient to express the Lagrange multipliers Qt and Υt in time t consumption units

by scaling them by the Lagrange multiplier Λt.

This problem implies the first-order conditions for consumption Ct

Λt =
ωt

Ct − hcCt−1
− βhcEt

ωt+1

Ct+1 − hcCt
(16)

for hours worked Nt

Υt =
Wt − bt

Pt
−MRSt + Etβ

Λt+1

Λt
Υt+1(1− st)(1− pt+1) (17)

where MRS denotes the marginal rate of substitution between consumption and labor,

MRSt =
1

Λt

ωtχAt

Ht − hhHt−1
− βhh

Λt
Et

ωt+1χAt

Ht+1 − hhHt

for bond holdings Bt

Λt = eitβEt

(
Λt+1

Pt

Pt+1

)
(18)

for capital utilization υt

(ϕu − ϕuu) + ϕuuυt = Rkt (19)

for investment It

1 = Qtµt

[
1− ϕI

2

(
It
It−1

− z

)2

− ϕI

(
It
It−1

− z

)(
It
It−1

)]
+ βEtQt+1µt+1

Λt+1

Λt
ϕI

(
It+1

It
− z

)(
It+1

It

)2

(20)

where Qt is the marginal Tobin’s Q, and for capital Xt

Qt = βEt

{
Λt+1

Λt
[(1− δk)Qt+1 +Rkt+1υt+1 − a (υt+1)]

}
(21)

7



The budget constraint holds with equality as

Bt−1 +WtNt + bt (1−Nt) + PtRktυtXt−1 +Dt

Pt
− a (υt)Kt−1 = Ct + It + e−it

Bt

Pt
(22)

where Λt denotes the Lagrange multiplier on (15), and the law of motion of capital implies

Xt = (1− δk)Xt−1 + µt

[
1− ϕI

2

(
It
It−1

− z

)2
]
It (23)

2.2 Finished-goods-producing firms

At each date t, identical finished-goods-producing firms use Yt (j) units of each intermediate good

j ∈ (0, 1), purchased at the nominal price Pt(j), to manufacture Yt units of the finished good

according to the constant-returns-to-scale technology

[∫ 1

0
Yt (j)

(θt−1)/θt dj

]θt/(θt−1)

≥ Yt, (24)

where θt translates into a random shock to the markup of price over marginal cost. This markup

shock follows the autoregressive process

ln θt = (1− ρθ) ln θ + ρθ ln θt−1 + εθt, (25)

where εθt ∼ Niid(0, σ2
θ).

Intermediate good j sells at the nominal price Pt (j), while the finished good sells at the nominal

price Pt. Given these prices, the finished-goods-producing firm chooses Yt and Yt(j) for all j ∈ (0, 1)

to maximize its profits

PtYt −
∫ 1

0
Pt(j)Yt(j)dj, (26)

subject to the constraint (17) at each t. The first-order conditions for this problem are (17) with

equality and

Yt(j) =

(
Pt(j)

Pt

)−θt

Yt (27)

for all j ∈ (0, 1) and t.

Competition in the market for the finished good drives the finished goods-producing firm’s

profits to zero in equilibrium. This zero-profit condition determines Pt as

Pt =

(∫ 1

0
Pt(j)

1−θtdj

)1/(1−θt)

(28)

for all t.
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2.3 Intermediate-goods-producing firms

Each intermediate-goods-producing firm j ∈ (0, 1) enters in period t with a stock of Nt−1(j) em-

ployees carried over from the previous period. At the end of period t − 1, st−1Nt−1(j) jobs are

destroyed. The pool of workers st−1Nt−1 who have lost their job at the end of period t − 1 starts

searching in period t and can find a match in period t. The number of employees at firm j evolves

according to

Nt(j) = (1− st−1)Nt−1(j) +mt(j), (29)

where mt(j) denotes the new matches in firm j in period t, and is given by

mt(j) = qtVt(j), (30)

where Vt(j) denotes the vacancies posted by firm j in period t and qt is the aggregate probability

of filling a vacancy in period t. Workers hired in period t take part in period t production.

Aggregate employment Nt =
∫ 1
0 Nt(j)dj evolves over time according to (7), or

Nt = (1− st−1)Nt−1 +mt, (31)

where mt =
∫ 1
0 mt (j) dj denotes aggregate matches in period t. Similarly, the aggregate vacancies

are equal to Vt =
∫ 1
0 Vt(j)dj. The pool of job seekers in period t, denoted by St, is given by (5).

The matching process is described by the following aggregate CRS function

mt = ζtS
σ
t V

1−σ
t , (32)

where ζt is an exogenous disturbance to the efficiency of the matching technology that follows the

exogenous stationary stochastic process

ln ζt = (1− ρζ) ln ζ + ρζ ln ζt−1 + εζt, (33)

where εζt ∼ Niid(0, σ2
ζ ).

The job-filling probability qt in period t is given by

qt =
mt

Vt
= ζtΘ

−σ
t , (34)

where Θ denotes the tightness of the labor market Θt = Vt/St. The probability pt that a job seeker

finds a job is

pt =
mt

St
= qtΘt = ζtΘ

1−σ
t . (35)

At each date t, each intermediate-goods-producing firm combines Nt(j) homogeneous employees

with Kt(j) units of capital to produce Yt(j) units of intermediate good j according to the CRS
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technology

Yt(j) = [AtNt(j)]
1−αKt(j)

α (36)

where At is an aggregate labor-augmenting technology shock whose growth rate, zt ≡ At/At−1,

follows the exogenous stationary stochastic process

ln zt = (1− ρz) ln z + ρz ln zt−1 + εzt, (37)

where εzt ∼ Niid(0, σ2
z).

The firm faces costs to hiring workers. As in Yashiv (2000) and Furlanetto and Groshenny

(2016), hiring costs are a convex function of the linear combination of the number of vacancies and

the number of hires. Hiring costs are measured in terms of aggregate output, which implies they

are compatible with balanced growth, and given by

κ̃

2

(
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

)2

Yt, (38)

where the parameters κ̃ and ϕV govern the magnitude of these costs.

Intermediate goods substitute imperfectly for one another in the production function of finished-

goods-producing firms. Hence, each intermediate-goods-producing firm j ∈ (0, 1) sells its output

Yt(j) in a monopolistically competitive market, setting Pt(j), the price of its own product, with

the commitment to satisfy the demand for good j at that price. Firms take the nominal wage as

given when maximizing the discounted value of expected future profits.

Each intermediate-goods-producing firm faces costs of adjusting its nominal price between

periods (Rotemberg, 1982), measured in terms of the finished good and given by

ϕP

2

(
Pt(j)

eςπt−1+(1−ς)π∗t Pt−1(j)
− 1

)2

Yt. (39)

where ϕP ≥ 0 governs the magnitude of the price-adjustment cost. πt = ln(Pt/Pt−1) denotes the

inflation rate in period t. π∗
t denotes a time-varying target for the inflation rate that coincides

with the central bank’s target in the monetary policy rule, and with steady-state value π∗ > 0.

The parameter 0 ≤ ς ≤ 1 governs the importance of backward-looking behavior in price setting.

Firms face quadratic wage-adjustment costs that are proportional to the size of their workforce

and measured in terms of the finished good

ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Nt(j)Yt, (40)

where ϕW ≥ 0 governs the magnitude of the wage-adjustment cost. The parameter 0 ≤ ϱ ≤ 1

governs the importance of backward-looking behavior in wage setting.

Adjustment costs to hiring and to price and wage changes make the problem of the intermediate-
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goods-producing firm dynamic. The firm chooses Kt(j), Nt(j), Vt(j), Yt(j), and Pt(j) at each date

t to maximize the expected discounted value of profits,

Et

∞∑
s=0

βsΛt+s
Dt+s(j)

Pt+s
(41)

where βtΛt/Pt measures the marginal utility to the families, who own the firms, of an additional

dollar of profits during period t and where

Dt(j) = Pt(j)Yt(j)−
(
1− 1

θ

)
(Wt(j)Nt(j) + PtRktKt(j))−

(
1− 1

θ

)
κ̃

2

(
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

)2

PtYt

− ϕP

2

(
Pt(j)

eςπt−1+(1−ς)π∗t Pt−1(j)
− 1

)2

PtYt −
ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Nt(j)PtYt − PtTt,

subject to the constraints

Yt(j) =

[
Pt(j)

Pt

]−θt

Yt (42)

Yt(j) ≤ [AtNt(j)]
1−αKt(j)

α (43)

Nt(j) = (1− st−1)Nt−1(j) + qtVt(j) (44)

and taking the job-filling rate qt as given.

The firm receives from the government an employment, hiring, and capital rental subsidy equal

to 1/θ levied by the government in a lump-sum fashion on firms via transfers Tt. This subsidy

offsets any steady-state distortions due to monopolistic competition. For convenience, we define

the scaled hiring cost parameter κ = (1− 1/θ)κ̃.

This problem is equivalent to the one of choosing Kt(j), Nt(j), Vt(j) and Pt(j) to maximize (41),

where

Dt(j)

Pt
=

(
Pt(j)

Pt

)1−θt

Yt −
(
1− 1

θ

)
Wt(j)Nt(j) + PtRktKt(j)

Pt
− κ

2

(
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

)2

Yt

− ϕP

2

(
Pt(j)

eςπt−1+(1−ς)π∗t Pt−1(j)
− 1

)2

Yt −
ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Nt(j)Yt − Tt,

subject to the constraints

[
Pt(j)

Pt

]−θt

Yt ≤ [AtNt(j)]
1−αKt(j)

α (45)

Nt(j) = (1− st−1)Nt−1(j) + qtVt(j), (46)

for all t.

11



We can set up a Lagrangian for this problem as

E0

∞∑
t=0

βtΛt

((
Pt(j)

Pt

)1−θt

Yt −
(
1− 1

θ

)
Wt(j)Nt(j) + PtRktKt(j)

Pt
− κ

2

(
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

)2

Yt

− ϕP

2

(
Pt(j)

eςπt−1+(1−ς)π∗t Pt−1(j)
− 1

)2

Yt −
ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Nt(j)Yt − Tt

+Ψt(j) [(1− st−1)Nt−1(j) + qtVt(j)−Nt(j)] + ξt(j)

[
[AtNt(j)]

1−αKt(j)
α −

(
Pt(j)

Pt

)−θt

Yt

])

The multiplier Ψt(j) measures the value to firm j in time-t consumption units of an additional

job in period t. The multiplier ξt(j) measures the value to firm j in time-t consumption units of an

additional unit of output in period t, or the jth firm’s real marginal cost in period t.

We derive the first-order conditions for this problem for demand of capital services Kt(j)(
1− 1

θ

)
Rkt = ξt(j)α [AtNt(j)]

1−αKt(j)
α−1 (47)

for labor demand Nt(j)

Ψt(j) = ξt(j) (1− α)
Yt(j)

Nt(j)
−
(
1− 1

θ

)
Wt(j)

Pt
− ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Yt

+
κ

Nt(j)

[
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

]2
Yt + β(1− st)

Λt+1

Λt
Ψt+1(j) (48)

which equates the costs and benefits of hiring an additional worker, of vacancy posting Vt(j)

Ψt(j) =

(
ϕV + (1− ϕV ) qt

Nt(j)

)2 κYtVt(j)

qt
(49)

which is the analogue of the familiar free-entry condition, and for newly set prices Pt(j)

(1− θt)

(
Pt(j)

Pt

)−θt

= ϕP

(
Pt(j)

eςπt−1+(1−ς)π∗t Pt−1(j)
− 1

)(
Pt

eςπt−1+(1−ς)π∗t Pt−1(j)

)
− θtξt(j)

(
Pt(j)

Pt

)−(1+θt)

− βϕPEt

[
Λt+1

Λt

(
Pt+1(j)

eςπt+(1−ς)π∗t+1Pt(j)
− 1

)(
Pt+1(j)

eςπt+(1−ς)π∗t+1Pt(j)

)
Yt+1

Yt

Pt

Pt(j)

]
(50)

The law of motion of employment is

Nt(j) = (1− st−1)Nt−1(j) + qtVt(j) (51)
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and the production function combined with the product demand curve implies

A1−α
t Kt(j)

αNt(j)
1−α =

(
Pt(j)

Pt

)−θt

Yt (52)

2.4 Wage setting

Each period, intermediate-goods-producing firm j bargains with each of its employees over the

nominal wage Wt(j) to split the match surplus according to Nash bargaining.

The Nash-bargained flow wage solves

Wt = argmax Υηt
t Ψ1−ηt

t (53)

where Υt denotes the surplus of the worker and Ψt denotes the surplus of the firm. Both Υt and

Ψt are expressed in time-t consumption units. ηt denotes the worker’s bargaining power, which

evolves exogenously according to

ln ηt = (1− ρη) ln η + ρη ln ηt−1 + εηt, (54)

where εηt ∼ Niid(0, σ2
η).

Here the family’s surplus from employing an additional worker at firm j, expressed in time-t

consumption goods, is given by the Lagrange multiplier Υt in (17), namely,

Υt =
Wt

Pt
− bt

Pt
−MRSt + βEt(1− st) (1− pt+1)

Λt+1

Λt
Υt+1 (55)

and the employer’s surplus from the match is given by Ψt(j) in (48), namely,

Ψt(j) = ξt(j) (1− α)
Yt(j)

Nt(j)
−
(
1− 1

θ

)
Wt(j)

Pt
− ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Yt

+
κ

Nt(j)

[
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

]2
Yt + β(1− st)

Λt+1

Λt
Ψt+1(j) (56)

Nash bargaining over the nominal wage yields the following first-order condition

ηtΨt(j)
∂Υt(j)

∂Wt(j)
= − (1− ηt)Υt(j)

∂Ψt(j)

∂Wt(j)
, (57)
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where

∂Υt(j)

∂Wt(j)
=

1

Pt
, (58)

− ∂Ψt(j)

∂Wt(j)
=

(
1− 1

θ

)
1

Pt
+ ϕWYt

(
1

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)

)(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)
(59)

− β(1− st)ϕWEt

[
Λt+1Yt+1

ΛtWt(j)

(
Wt+1(j)

zeϱπt+(1−ϱ)π∗t+1Wt(j)

)(
Wt+1(j)

zeϱπt+(1−ϱ)π∗t+1Wt(j)
− 1

)]

or

Υt(j) = ΓjtΨt(j), (60)

where

Γjt ≡ − ηt
1− ηt

∂Υt(j)/∂Wt(j)

∂Ψt(j)/∂Wt(j)
(61)

Substituting the expressions of the two partial derivatives into the first-order condition, we

obtain

Γjt

[
ξt(j) (1− α)

Yt(j)

Nt(j)
−
(
1− 1

θ

)
Wt(j)

Pt
− ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Yt

]

+ Γjt

[
κ

Nt(j)

(
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

)2

Yt

]

+ Γjtβ(1− st)Et

[
Λt+1

Λt
Ψt+1(j)

]
=

Wt(j)

Pt
− bt

Pt
−MRSt + β(1− st)Et

[
(1− pt+1)

Λt+1

Λt
Υt+1(j)

]
Using the fact that Υt+1(j) = Γjt+1Ψt+1(j) in the above equation, we obtain

Γjt

[
ξt(j) (1− α)

Yt(j)

Nt(j)
−
(
1− 1

θ

)
Wt(j)

Pt
− ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Yt

]

+ Γjt

[
κ

Nt(j)

(
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

)2

Yt

]

+ Γjtβ(1− st)Et

[
Λt+1

Λt
Ψt+1(j)

]
=

Wt(j)

Pt
− bt

Pt
−MRSt + β(1− st)Et

[
(1− pt+1)

Λt+1

Λt
Γjt+1Ψt+1(j)

]
Now, let us recall the definition of the firm’s surplus

Ψt(j) =

(
ϕV + (1− ϕV ) qt

Nt(j)

)2 κYtVt(j)

qt
(62)
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Using this expression of Ψt+1(j), the real-wage equation becomes

Wt(j)

Pt
− Γjt

[
ξt(j) (1− α)

Yt(j)

Nt(j)
−
(
1− 1

θ

)
Wt(j)

Pt
− ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Yt

]

− Γjt

[
κ

Nt(j)

(
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

)2

Yt

]

= Γjtβ(1− st)Et

[
Λt+1

Λt

(
ϕV + (1− ϕV ) qt+1

Nt+1(j)

)2 κYt+1Vt+1(j)

qt+1

]

+
bt
Pt

+MRSt − β(1− st)Et

[
(1− pt+1)

Λt+1

Λt
Γjt+1

(
ϕV + (1− ϕV ) qt+1

Nt+1(j)

)2 κYt+1Vt+1(j)

qt+1

]

Finally, the equation governing the dynamics of the real wage at firm j is given by

Wt(j)

Pt
=

Γjt

1 +
(
1− 1

θ

)
Γjt

[
ξt(j) (1− α)

Yt(j)

Nt(j)
− ϕW

2

(
Wt(j)

zeϱπt−1+(1−ϱ)π∗t Wt−1(j)
− 1

)2

Yt

]
(63)

+
Γjt

1 +
(
1− 1

θ

)
Γjt

κ

Nt(j)

(
ϕV Vt(j) + (1− ϕV ) qtVt(j)

Nt(j)

)2

Yt

+
Γjt

1 +
(
1− 1

θ

)
Γjt

β(1− st)Et
Λt+1

Λt

(
ϕV + (1− ϕV ) qt+1

Nt+1(j)

)2 κYt+1Vt+1(j)

qt+1

+
1

1 +
(
1− 1

θ

)
Γjt

[
bt
Pt

+MRSt − β(1− st)EtΓjt+1 (1− pt+1)
Λt+1

Λt

(
ϕV + (1− ϕV ) qt+1

Nt+1(j)

)2 κYt+1Vt+1(j)

qt+1

]

2.5 Government

The central bank adjusts the short-term nominal interest rate it according to a Taylor-type rule

it = ρrit−1 + (1− ρr) [r + π∗
t + ρπ(πt − π∗

t ) + ρy∆yt] + εmt

= ρrit−1 + (1− ρr)
[
r + π∗

t + ρπ(πt − π∗
t ) + ρy(∆yobst − g∗t )

]
+ εmt

where ∆yt = ln(Yt/Yt−1) denotes the growth rate of output and ∆yobst the observed growth rate of

output, which differs from the growth rate ∆yt by a trend component g∗t . π∗
t and g∗t denote the

time-varying inflation target and a slow-moving exogenous component in output, respectively, that

capture components outside of the model such as demographic forces. The degree of interest-rate

smoothing ρr and the reaction coefficients ρπ and ρy are positive. The monetary policy shock is

distributed as εmt ∼ Niid(0, σ2
m), while the inflation target and slow-moving growth shocks π∗

t and

g∗t follow AR(1) processes

π∗
t = ρ∗π

∗
t−1 + ε∗πt (64)

g∗t = ρ∗g
∗
t−1 + ε∗gt (65)
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where ε∗πt ∼ Niid(0, σ2
π∗) and ε∗gt ∼ Niid(0, σ2

g∗).

The government’s budget constraint is of the form

PtGt + bt (1−Nt) = e−itBt −Bt−1, (66)

In the background, note that the subsidies for intermediate-goods-producing firms are exactly

offset by their lump-sum taxation; so those terms do not show up in the government’s budget

constraint. Public spending is an exogenous time-varying fraction of GDP,

Gt = γtYt, (67)

where γt evolves according to

ln γt = (1− ργ) ln γ + ργ ln γt−1 + εγt, (68)

with εγt ∼ Niid(0, σ2
γ).

2.6 Aggregate resource constraint

In a symmetric equilibrium, all intermediate-goods-producing firms make identical decisions, so

that Yt(j) = Yt, Pt (i) = Pt, Nt(j) = Nt, Vt(j) = Vt, Kt(j) = Kt for all j ∈ (0, 1) and t. Moreover,

workers are homogeneous and all workers at a given firm j receive the same nominal wage Wt(j);

hence Wt(j) = Wt for all j ∈ (0, 1) and t. The aggregate resource constraint is obtained by

aggregating the household budget constraint over all intermediate sectors j ∈ (0, 1),[
1− κ

2
M2

t − ϕP

2

(
Pt

eςπt−1+(1−ς)π∗t Pt−1

− 1

)2

− ϕW

2

(
Wt

zeϱπt−1+(1−ϱ)π∗t Wt−1

− 1

)2

Nt

]
Yt (69)

= Ct + It +Gt +

[
ϕu (υt − 1) +

ϕuu

2
(υt − 1)2

]
Xt−1

where

Mt =
ϕV Vt + (1− ϕV )mt

Nt

2.7 Long-run trends

In the data, there are important slow-moving components in inflation, output growth, unemploy-

ment, and the real rate. While we choose to attribute such slow-moving components in inflation

to the monetary policy stance, through an exogenous choice for an inflation target, we instead at-

tribute the slow-moving components in output growth, unemployment, and the real rate to factors

outside of the model, for example, those related to demographic changes or slow-moving changes
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in government policies or the overall rate of innovation.

Our model, even in the two-regime version described below, will have a unique steady state

to which the (detrended) economy will revert. Such a steady state reflects historical mean values

and is typically not a relevant point to anchor forecasts at a 5- to 12-year horizon. It is therefore

important to include components that slow down such a mean reversion of the model. In fact, by

including such highly persistent components, this mean reversion can be made arbitrarily slow—in

practice, it can be made to take several decades—with the slow-moving components acting as

attraction points at the forecast horizons relevant for policymaking. Namely, we use long-run

survey expectations about the inflation rate, the unemployment rate, the output growth rate,

and the real interest rate to discipline such slow-moving components, and hence pin down our

5- to 12-year forecasts to values that are more realistic than the steady state of the model. The

inclusion of long-range forecasts to improve the forecasting performance of dynamic models has

been documented, for example, by Tallman and Zaman (2020) in a BVAR setup, while Del Negro

and Schorfheide (2013) and Del Negro, Giannoni, and Schorfheide (2015) incorporate long-run

survey expectations of inflation and output growth in DSGE setups.

In practice, we therefore model a link between long-run survey forecasts and the model variables

as follows:

• The 5y/5y inflation rate forecasts from the Survey of Professional Forecasters (SPF) available

from the website of the Federal Reserve Bank of Philadelphia,1 denoted as πobs
lr,t, are linked

to the variables in the model as

πobs
lr,t =

40∑
j=20

Etπt+j (70)

We consider the SPF long-run forecast rather than the similar Blue Chip version because

of its more common usage in the BVAR and DSGE literature (e.g., Del Negro et al., 2015;

Tallman and Zaman, 2020).

The corresponding shock to account for such observations is the slow-moving inflation target

π∗
t = ρ∗π

∗
t−1 + ε∗πt (71)

which will turn out to play the most important role in accounting for movements in the

long-run inflation expectations of the model.

• The 7y/5y real rate forecasts from Blue Chip,2 denoted as robslr,t, are linked to the variables in

1The SPF is a quarterly survey of macroeconomic forecasts in the US from several individual economists collected
since 1968 and covering short- and long-run forecasts.

2The Blue Chip long-range consensus US economic projections are a quarterly survey collecting macroeconomic
forecasts related to the US economy by polling several business economists.

17



the model as

robslr,t =

48∑
j=28

Et(i
obs
t+j − πt+j+1) (72)

with iobst = it + r∗t , where the measurement error r∗t is the exogenous process

r∗t = ρ∗r
∗
t−1 + ε∗rt (73)

where ε∗rt ∼ Niid(0, σ2
r∗).

• The 7y/5y GDP growth forecasts from Blue Chip, denoted as∆yobslr,t, are linked to the variables

in the model as

∆yobslr,t =

48∑
j=28

Et∆yobst+j (74)

with the observed growth rates of output ∆yobst = ∆yt + g∗t , consumption ∆cobst = ∆ct + g∗t ,

investment ∆invobst = ∆invt + g∗t , and real wages ∆wobs
t = ∆wt + g∗t , where the measurement

error g∗t is the exogenous process

g∗t = ρ∗g
∗
t−1 + ε∗gt (75)

where ε∗gt ∼ Niid(0, σ2
g∗).

Here note that, even though long-run survey expectations of output, consumption, invest-

ment and real wages need not coincide in practice, the assumption of a common trend is a

parsimonious one and can be motivated, for example, as a trend component in technology

that would therefore be common to all real growth rates. Still, an extension that allows

for multiple trends in growth rates informed by the respective long-range forecasts could be

easily accommodated in our methodology.

• The 7y/5y unemployment rate forecasts from Blue Chip, denoted as Uobs
lr,t , are linked to the

variables in the model as

Uobs
lr,t =

48∑
j=28

EtU
obs
t+j (76)

with Uobs
t = Ut + u∗t , where the measurement error u∗t is the exogenous process

u∗t = ρ∗u
∗
t−1 + ε∗ut (77)

where ε∗ut ∼ Niid(0, σ2
u∗).
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2.8 Symmetric equilibrium and the balanced-growth path

Since all firms face the same optimization problem, we will look at a symmetric equilibrium such

that Yt(j) = Yt, Pt(j) = Pt, Nt(j) = Nt, Vt(j) = Vt, Kt(j) = Kt, Wt(j) = Wt for all j ∈ (0, 1) and t.

Moreover, output, consumption, investment, capital, and the real wage share the stochastic

trend induced by the unit root process of neutral technological progress. We therefore rewrite

the model in terms of stationary variables. In the absence of shocks, such a detrended economy

converges to a steady-state growth path in which all stationary variables are constant.

We then log-linearize this transformed model economy around its steady state. This approxi-

mate model can then be solved using standard methods.

2.9 Natural efficient allocation

We can compute a counterfactual competitive equilibrium that removes the frictions due to the

monopolistic competition in the goods market, that removes the nominal rigidities in the goods and

labor markets, and that removes inefficiencies in wage setting. Namely, we define an alternative

version of our economy in which we set nominal price- and wage-adjustment costs to zero (ϕP =

ϕW = 0); in which we neutralize the markups, including their time variation, due to monopolistic

competition (σθ = 0); and in which we neutralize inefficiencies in the labor market due to Nash

bargaining (ση = 0).

In the background, note that the presence in the steady state of the subsidy τf = 1/θ for firms

removes the steady-state effect of monopolistic competition, while the Hosios (1990) condition

σ = η removes steady-state inefficiencies in wage setting due to the bargaining protocol. Therefore,

by removing the shocks that generate any remaining departures from competition in the goods

market (the shocks to the markup θt) and from efficient wage setting (the shocks to the workers’

bargaining power, so that it equals the curvature of the matching function at all dates t) we remove

any distortions caused by these two frictions.

In this sense, this economy defines a flexible-price constrained-efficient allocation. We denote

the associated levels of the variables by an n subscript. For example, Ynt is the natural output,

Rnt the natural real interest rate, and so on.

Accordingly, since these are benchmark variables often discussed in the literature, we can define

the output gap as the distance of output from this benchmark level,

ỹt = yt − ynt

and the natural 10-year real rate, or natural r-star, r∗nt, as

r∗nt =
1

40

40∑
j=1

Et(r̃nt+j)
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where r̃nt = rnt + r∗t is the natural real rate that includes the real rate trend. Note that we include

in this variable the trend r∗t , so that it shares the same long-run expectations as the real rate of

the model with frictions; consequently, the real rate gap iobst − Etπt+1 − r̃nt is independent of r∗t .

3 Model: Two-Regime Version

This section extends the model described in the previous section to incorporate how the model’s

dynamics change when the zero lower bound on the interest rate set by the central bank is binding.

Notably, the zero lower bound has been a constraint in practice on monetary policy during the

Great Recession and during the COVID period.

To capture such nonlinearities, we develop here a piecewise linear solution technique that com-

bines two linearizations corresponding to two monetary policy regimes: one with an unconstrained

interest rate and another with the interest rate constrained at the zero lower bound. Unlike the

approximation strategy in Guerrieri and Iacoviello (2015), this model allows agents to incorporate

the possibility of switching between the two regimes when forming their expectations. In partic-

ular, the novelty of our approximation is that these probabilities of switching are endogenously

determined and consistent with the approximate solution of the model.

The key change to the model’s equations in the two-regime version of the model is in the

monetary policy rule. In particular, we replace the Taylor rule (64) with the following rule

it = max(0, ĩt) (78)

ĩt = ρr ĩt−1 + (1− ρr) [r + π∗
t + ρπ(πt − π∗

t ) + ρy∆yt] + εmt, (79)

where ĩt denotes a latent interest rate unconstrained by the zero lower bound on the interest rate.

To capture the change in dynamics implied by the zero lower bound, this section describes how

we build an approximate piecewise linear solution of the model.

As we introduce the zero-lower-bound constraint in the monetary policy rule, we reinterpret

our model as a two-regime model with an endogenous probability of switching between regimes.

The two regimes of interest are an unconstrained regime (regime 1) in which the interest rate

is unrestricted and a constrained regime (regime 2) in which the interest rate is constrained by

the zero lower bound. Specifically, the linearized solution in the unconstrained regime crosses the

steady state associated with the strictly positive interest rate, which Aruoba, Cuba-Borda, and

Schorfheide (2018) name the targeted-inflation regime. The solution in the constrained regime

represents a deviation from that solution that captures in a piecewise linear form the change in

policy rules when the interest rate rule becomes constrained.

Therefore, we do not consider the possibility of switching to what Aruoba et al. (2018) call the

deflationary steady state and of the (linearized) solutions around it. Doing so would bring about

two additional regimes, for a total of four regimes determined by whether the model reverts back to
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the targeted-inflation or the deflationary regimes and by whether the interest rate is constrained or

unconstrained.3 Whether the piecewise solution around the targeted-inflation regime or the piece-

wise solution around the deflationary regime holds at a given date is theoretically indeterminate,

so an agnostic approach following Aruoba et al. (2018) would be to assume an exogenous Markov

chain representing a sunspot that indicates on which steady state people coordinate, and hence

which piecewise solution holds at any given date. The data would then be used to determine at

each date which regime is most likely, thereby pinning down the sunspot and its transition matrix.

Thus, while our solution method can be extended to switch across four regimes, we follow Aruoba

et al. (2018), who find that the historical evidence suggests that the US has never shifted to

the deflationary steady state. We therefore disregard the regimes around the deflationary steady

state.4

When looking at linear approximate solutions, two key elements characterize the two regimes

and the probabilities of switching between them. First, since regimes 1 and 2 have a common

steady state to which they revert, we define a perturbation such that the different sets of equa-

tions associated with the two regimes can nonetheless both be satisfied at the expansion point.

Second, the switching probabilities between regimes 1 and 2 are endogenous in that they equal the

conditional probability that the latent interest rate falls below zero.

3.1 General framework for the endogenous ZLB model

The model can be written as:

0 = Est,tf(xt−1, xt, xt+1, εt, st, st+1)

st = 1{S′xt≥0} + (1− 1{S′xt≥0})2
(80)

where S ∈ Rnx is a selection matrix that selects the latent interest rate ĩt = Sxt out of the vector

xt ∈ Rnx that contains all variables except the innovations εt and a Markov state st described next.

st ∈ {1, 2} is the state at time t of a 2-state Markov chain with endogenous, time-varying transition

matrix

Pt =

[
P11t P12t

P21t P22t

]

and εt ∼ Niid(0, I) are exogenous shocks other than shocks to st. Function f maps into Rnx . The

expectations operator Est,t(·) denotes the integral over both the Markov state st+1 and the shock

εt+1, conditional on the current state. Here the current state is (xt−1, εt, st).

3People’s expectations will consistently reflect the possibility of switching between these four regimes. Note
that this fact can imply the determinacy in the Blanchard and Kahn (1980) sense of the whole model even though
taken separately the deflationary regime, when it is sufficiently persistent, is well-known to be associated with
indeterminate dynamics.

4See also Aruoba et al. (2021) for an alternative piecewise linear approximation method that discusses how to
deal with these four regimes.
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Note that here the regime-switching probabilities are endogenous. In particular, the switching is

driven entirely by the condition ĩt ≥ 0, which indicates regime 1 (̃it ≥ 0 ⇔ st = 1), and the condition

ĩt < 0, which indicates regime 2 (̃it < 0 ⇔ st = 2). Accordingly, the switching probabilities are the

probability of starting in regime 1 and staying in regime 1,

P11t = Prob(̃it+1 ≥ 0|xt, st = 1)

and the probability of starting in regime 2 and staying in regime 2,

P22t = Prob(̃it+1 < 0|xt, st = 2)

while the other two switching probabilities satisfy P12t = 1− P11t and P21t = 1− P22t.

We posit that the solution takes the piecewise form

xstt = h(st)(xt−1, εt), xt = 1{st=1}x1t + (1− 1{st=1})x2t (81)

where 1{st=i} is an indicator function, equal to one when in regime st = i at date t, that controls

which part of the piecewise solution holds at a given date.

We next introduce the notation

f (i,j)(xt−1, xit, xjt+1, εt) ≡ f(xt−1, xt, xt+1, εt, i, j), i, j = 1, 2

to make the dependence of function f on the Markov state more compact, and accordingly

rewrite (80) by writing out the conditional expectation with respect to the Markov state as

0 =

2∑
j=1

PijtEtf
(i,j)(xt−1, xit, xjt+1, εt)

=

2∑
j=1

PijtEtf
(i,j)
(
xt−1, h

(i)(xt−1, εt), h
(j)
(
h(i)(xt−1, εt), εt+1

)
, εt

)
(82)

where the operator Et(·) now denotes the integral only over the innovations εt+1, and where the

last equality used the unknown solution (81).
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3.1.1 A perturbation consistent with two regimes around a common steady state

We now parameterize the problem by the scalars σ and τ as follows:

0 = Pi1t(τ)Etf
(i,1)
(
xt−1, h

(i)(xt−1, σεt, σ, τ), h
(1)
(
h(i)(xt−1, σεt, σ, τ), σεt+1, σ, τ

)
, σεt

)
+ [1− Pi1t(τ)]Etf

(i,2)
(
xt−1, h

(i)(xt−1, σεt, σ, τ), h
(2)
(
h(i)(xt−1, σεt, σ, τ), σεt+1, σ, τ

)
, σεt

)
+ (1− σ)

[
f (1,1)(x, x, x, 0)− Pi1t(τ)f

(i,1)(x, x, x, 0)− [1− Pi1t(τ)]f
(i,2)(x, x, x, 0)

]
, i = 1, 2 (83)

where Pi1t(τ) = τPi1t+(1−τ)π(i)(xt−1, εt) and we specify π(i) below, and where we posited a solution

with form

xit = h(i)(xt−1, σεt, σ, τ)

By construction, system (83) coincides with (82) when σ = τ = 1.

We define in the usual manner the (anchored-expectations) deterministic steady state as the

point (xt−1, σεt, σ, τ) = (x, 0, 0, 0) that satisfies

f (1,1)(x, x, x, 0) = 0, x = h(1)(x, 0, 0, 0) (84)

and verify that the property that system (83) evaluated at (xt−1, σεt, σ, τ) = (x, 0, 0, 0) is satisfied.

Namely, evaluating system (83) at the deterministic steady state, we have

0 = f (1,1)
(
x, x, x, 0

)
+ Pi1(0)

[
f (i,1)

(
x, h(i)(x, 0, 0, 0), h(1)

(
h(i)(x, 0, 0, 0), 0, 0, 0

)
, 0
)
− f (i,1)

(
x, x, x, 0

)]
+ [1− Pi1(0)]

[
f (i,2)

(
x, h(i)(x, 0, 0, 0), h(2)

(
h(i)(x, 0, 0, 0), 0, 0, 0

)
, 0
)
− f (i,2)

(
x, x, x, 0

)]
(85)

which has a solution for h(2)(x, 0, 0, 0) = x. The deterministic steady state can therefore be used as

an expansion point that satisfies equation (83) for both i = 1, 2.

A first-order perturbed solution to system (83) will result in the piecewise linear approximate

solution with form

xit = h(i)(xt−1, σεt, σ, 0) = x+ h
(i)
1 x̂t−1 + h

(i)
2 σεt + h

(i)
3 σ (86)

with, as in (81), xt = 1{st=1}x1t + (1− 1{st=1})x2t.

3.1.2 Approximate endogenous switching probabilities

Using the definition of the selection matrix S, which selects the latent interest rate out of the vector

of variables x, we further assume that S′x ≥ 0; so the Markov state in the anchored-expectations
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deterministic steady state is s = 1.5 The transition probabilities are characterized by

P11t = Pr(S′x1t+1 ≥ 0|xt−1, εt, st = 1), P22t = Pr(S′x1t+1 < 0|xt−1, εt, st = 2)

We can now use the approximate solution (86) to characterize the transition probabilities.

Namely, when σ = 1, the approximate solution (86) implies

Pr
(
S′[x+ h

(1)
1 x̂t + h

(1)
2 εt+1 + h

(1)
3 ] ≥ 0

∣∣∣xt−1, εt, st = i
)

(87)

= Pr

εt+1 ≥ −S′[x+ h
(1)
3 + h

(1)
1 x̂it]√

S′h
(1)
2 h

(1)
2

′S

∣∣∣xt−1, εt


= 1− Φ

−S′[x+ h
(1)
3 + h

(1)
1 (h

(i)
3 + h

(i)
1 x̂t−1 + h

(i)
2 εt)]√

S′h
(1)
2 h

(1)
2

′S


= Φ

S′[x+ h
(1)
3 + h

(1)
1 (h

(i)
3 + h

(i)
1 x̂t−1 + h

(i)
2 εt)]√

S′h
(1)
2 h

(1)
2

′S

 ≡ π(i)(xt−1, εt) (88)

where Φ is the standard normal cumulative distribution function. Through probabilities π(i)(xt−1, εt)

the endogeneity of the switching probabilities is characterized consistently with the approximate

solution.

3.1.3 Approximate piecewise solution

Denoting f (i,j) ≡ f (i,j)(x, x, x, 0) and using f (1,1)(x, x, x, 0) = 0, we rewrite (83) evaluated at τ = 0

for i = 1:

0 = π(1)(xt−1, σεt)Et

[
f (1,1)

(
xt−1, h

(1)(xt−1, σεt, σ, 0), h
(1)
(
h(1)(xt−1, σεt, σ, 0), σεt+1, σ, 0

)
, σεt

)]
+ [1− π(1)(xt−1, σεt)]Et

[
f (1,2)

(
xt−1, h

(1)(xt−1, σεt, σ, 0), h
(2)
(
h(1)(xt−1, σεt, σ, 0), σεt+1, σ, 0

)
, σεt

)
− (1− σ)f (1,2)

]
and for i = 2:

0 = π(2)(xt−1, σεt)Et

[
f (2,1)

(
xt−1, h

(2)(xt−1, σεt, σ, 0), h
(1)
(
h(2)(xt−1, σεt, σ, 0), σεt+1, σ, 0

)
, σεt

)
− (1− σ)f (2,1)

]
+ [1− π(2)(xt−1, σεt)]Et

[
f (2,2)

(
xt−1, h

(2)(xt−1, σεt, σ, 0), h
(2)
(
h(2)(xt−1, σεt, σ, 0), σεt+1, σ, 0

)
, σεt

)
− (1− σ)f (2,2)

]
5Here note that the deflationary deterministic steady state, which is the solution xd such that

f (2,2)(xd, xd, xd, 0) = 0, is not a solution to system (83) because of the last term in (83).
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and then expand both equations around the deterministic steady state (xt−1, σεt, σ) = (x, 0, 0). The
expansion of the equation for i = 1 results in

0 = π(1)
(
f
(1,1)
1 x̂t−1 + f

(1,1)
2 [h

(1)
1 x̂t−1 + h

(1)
2 σεt + h

(1)
3 σ] + f

(1,1)
3 h

(1)
1 [h

(1)
1 x̂t−1 + h

(1)
2 σεt + h

(1)
3 σ] + f

(1,1)
3 h

(1)
3 σ + f

(1,1)
4 σεt

)
+ (1− π(1))

(
f
(1,2)
1 x̂t−1 + f

(1,2)
2 [h

(1)
1 x̂t−1 + h

(1)
2 σεt + h

(1)
3 σ] + f

(1,2)
3 h

(2)
1 [h

(1)
1 x̂t−1 + h

(1)
2 σεt + h

(1)
3 σ] + f

(1,2)
3 h

(2)
3 σ + f

(1,2)
4 σεt

)
+ (1− π(1))f (1,2)σ (89)

while the expansion of the equation for i = 2 yields:

0 = π(2)
(
f
(2,1)
1 x̂t−1 + f

(2,1)
2 [h

(2)
1 x̂t−1 + h

(2)
2 σεt + h

(2)
3 σ] + f

(2,1)
3 h

(1)
1 [h

(2)
1 x̂t−1 + h

(2)
2 σεt + h

(2)
3 σ] + f

(2,1)
3 h

(1)
3 σ + f

(2,1)
4 σεt

)
+ (1− π(2))

(
f
(2,2)
1 x̂t−1 + f

(2,2)
2 [h

(2)
1 x̂t−1 + h

(2)
2 σεt + h

(2)
3 σ] + f

(2,2)
3 h

(2)
1 [h

(2)
1 x̂t−1 + h

(2)
2 σεt + h

(2)
3 σ] + f

(2,2)
3 h

(2)
3 σ + f

(2,2)
4 σεt

)
+ π(2)f (2,1)σ + (1− π(2))f (2,2)σ (90)

We can now match the coefficients and find the system of equations that identifies coefficient

h
(i)
1 :

0 = π(1)
[
f
(1,1)
1 + f

(1,1)
2 h

(1)
1 + f

(1,1)
3 h

(1)
1 h

(1)
1

]
+ (1− π(1))

[
f
(1,2)
1 + f

(1,2)
2 h

(1)
1 + f

(1,2)
3 h

(2)
1 h

(1)
1

]
0 = π(2)

[
f
(2,1)
1 + f

(2,1)
2 h

(2)
1 + f

(2,1)
3 h

(1)
1 h

(2)
1

]
+ (1− π(2))

[
f
(2,2)
1 + f

(2,2)
2 h

(2)
1 + f

(2,2)
3 h

(2)
1 h

(2)
1

] (91)

coefficient h
(i)
2 :

0 = π(1)
[
f
(1,1)
2 h

(1)
2 + f

(1,1)
3 h

(1)
1 h

(1)
2 + f

(1,1)
4

]
+ (1− π(1))

[
f
(1,2)
2 h

(1)
2 + f

(1,2)
3 h

(2)
1 h

(1)
2 + f

(1,2)
4

]
0 = π(2)

[
f
(2,1)
2 h

(2)
2 + f

(2,1)
3 h

(1)
1 h

(2)
2 + f

(2,1)
4

]
+ (1− π(2))

[
f
(2,2)
2 h

(2)
2 + f

(2,2)
3 h

(2)
1 h

(2)
2 + f

(2,2)
4

] (92)

and coefficient h
(i)
3 :

0 = π(1)
[
f
(1,1)
2 h

(1)
3 + f

(1,1)
3 h

(1)
1 h

(1)
3 + f

(1,1)
3 h

(1)
3

]
+ (1− π(1))

[
f
(1,2)
2 h

(1)
3 + f

(1,2)
3 h

(2)
1 h

(1)
3 + f

(1,2)
3 h

(2)
3 + f (1,2)

]
0 = π(2)

[
f
(2,1)
2 h

(2)
3 + f

(2,1)
3 h

(1)
1 h

(2)
3 + f

(2,1)
3 h

(1)
3 + f (2,1)

]
+ (1− π(2))

[
f
(2,2)
2 h

(2)
3 + f

(2,2)
3 h

(2)
1 h

(2)
3 + f

(2,2)
3 h

(2)
3 + f (2,2)

]
(93)

thereby completely characterizing the unknown solution (86).

Here note that there is a constant correction of the solution in that, generically, h(i)3 = 0 is not

a solution to (93). Note also that the time variation in probabilities does not affect the solution to

first order. Still, the average values of π(1) and π(2) are consistent with the endogenous switching

probabilities when the state x is at the deterministic steady state.

Finally, note that in our application to the zero lower bound, f (1,1) = f (1,2) and f (2,1) = f (2,2), and

f (2,1) differs from f (1,1) in only one equation, the one associated with the Taylor rule—constrained

at it = 0 in the second regime.
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3.1.4 Stationary distribution

We can define the stationary distribution of the variables in the model. Namely, the stationary

distribution

pi ≡ Prob(s = i), i = 1, 2

of our 2-state Markov chain with transition matrix P is

p1 = P11p1 + (1− P22)(1− p1) =
1− P22

2− P11 − P22

and p2 = 1− p1.

We then define the variable

xt = (p1 + ŝt)x1t + (1− p1 − ŝt)x2t

where ŝt ≡ 1{st=1} − p1 is a Bernoulli variable that equals 1− p1 when st = 1 and −p1 when st = 2.

The stationary distribution of ŝt is such that it equals 1 − p1 with probability p1 and −p1 with

probability 1 − p1. The variable has therefore mean 0 and variance p1(1 − p1). Indeed, in the

implementation, we will approximate ŝt ∼ Niid(0, p1(1 − p1)). Therefore, the ergodic steady-state

value of variable xt, which holds when ŝ = 0, can be computed as

x = p1x1 + (1− p1)x2

which intuitively acts as an unconditional value to be targeted using moments from the data.

When calibrating the model, this ergodic steady-state value of the variables is the natural value

to be matched to moments of the model.

3.2 Filtering and forecasts

Filtering of the latent Markov state can be computed by a simple guess-and-verify strategy. Fore-

casts and impulse responses can be computed by simulations.

3.2.1 Filtering

The two-regime structure adds the Markov state st to the filtering problem. In practice, this

filtering can be done as follows. At each given date t and given the history of shocks up to time

t − 1 backed out to account for the observations up until date t − 1, we start from the guess that

st = 1 and proceed to reconstruct the shocks that account for the observables at date t. At this

stage we can compute the latent interest rate at date t, ĩt, and if it turns out that ĩt ≥ 0, then the

guess is confirmed. If instead ĩt < 0, we update our guess to st = 2 and repeat the construction of

the shocks at time t.
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3.2.2 Impulse responses

The nonlinearities introduced by the piecewise linear solution imply that the responses of the

variables to a shock will not be independent of the state of the economy when the shock hits the

economy and will not simply scale with the size of the shock.

In this context, impulse responses can be computed as generalized impulse responses by sim-

ulations. Namely, for a given initial state at time 0, x0 = x, for example, the ergodic steady

state described above, we can draw T vectors of shocks from the distribution of the shock vector,

{εt}Tt=0, and simulate the model forward. As we do so, we proceed by making a guess similar

to that described in the filtering procedure: at the simulated date t, we guess that st = 1 and

compute all variables at date t accordingly, including the latent interest rate ĩt; if ĩt ≥ 0, the guess

is verified and we can proceed to the next date; otherwise, we update the guess to st = 2. This

T -period simulation will be repeated a large number of times and averaged out to find a forecast

E0(xt|ε0, ..., εt, x0 = x).

We then repeat the same procedure by replacing at date 1 the simulated innovations ε1 with

ε1 + ∆ for some perturbation ∆, representing the shock that hits the economy at date 1. By

averaging the simulations as before, we now find the forecast E0(xt|ε0, ε1 +∆, ε2, ..., εt, x0 = x).

The impulse responses are then computed as the difference

E0(xt|ε0, ε1 +∆, ε2, ..., εt, x0 = x)− E0(xt|ε0, ..., εt, x0 = x)

which represents the predicted effect of the perturbation ∆ on the future variables.

Analogously, we can compute confidence intervals around these impulse responses by computing

the quantiles of the variable xt across simulations, reflecting uncertainty around the realization of

the shocks.

3.2.3 Forecasts

Forecasts at date t + h can be computed similarly to how we compute impulse responses by sim-

ulations. Namely, for filtered shocks and backed out variables x̂t up until date t, we construct a

forecast at date t+ h as

Et(xt+h|εt, ..., εt+h, xt = x̂t)

by the same procedure as described above for impulse responses.6

Using the same procedure as for impulse responses, we can compute confidence intervals around

these forecasts by computing the quantiles xt+h across the simulated paths. This dispersion reflects

6Note that, while the presence of the measurement error component r∗t to account for the observed interest rate
iobst = it + r∗t poses no issue when it comes to filtering the historical shocks, in that the observed iobst is above the
zero lower bound and always explicitly accounted for by the model, nothing guarantees that our forecast for iobst+h

is always positive, since the model only ensures that it+h is. Accordingly, when simulating future observed interest
rates, we compute them as iobsj,t+h = ij,t+h +max(−ij,t+h, r

∗
j,t+h), where j denotes the jth simulation.
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uncertainty around the realization of the future shocks.

4 Data and Parameterization

4.1 Data

The estimation uses quarterly data on 13 macroeconomic variables over the period 1959Q1-2020Q1.

All data except the survey expectations data are public data downloadable from FRED. We choose

a relatively long sample period, which includes, for example, periods of persistently high inflation

in the 1970s and persistently low inflation during the Great Moderation period, precisely because

of our inclusion of low-frequency trends, which will arguably capture such slow movements in the

structure of the economy.

Here note that we explicitly include in the estimation stage the period following the Great

Recession, in which the policy rate was constrained by the zero lower bound, which the model is

suited to capture owing to the regime-switching structure. However, we exclude from the estima-

tion stage the COVID pandemic period starting in 2020Q1, which was characterized by extreme

fluctuations in the real variables, especially over 2020Q2-2020Q3. We do, however, include those

data points when running our historical decompositions and forecasting exercises. In other words,

we assume that the deep parameters of the economy can be estimated with less noise on a sample

that excludes the COVID pandemic period but that they have remained stable after the COVID

period; so the parameters and shocks of the model remain appropriate to account for the observed

data during the pandemic period and the subsequent recovery.

We use the following observations from FRED:

• Real GDP growth per capita (GDPC1 on FRED), transformed to per capita using the civilian

noninstitutional population (CNP16OV);

• Real investment growth per capita, measured as the growth rate of the sum of PCE durable

consumption goods (PDCG) and of gross private domestic investment (GPDI), transformed

to per capita using the civilian noninstitutional population and transformed into real terms

using the GDP price deflator (GDPDEF);

• Real consumption growth per capita, measured as the growth rate of the sum of PCE non-

durable consumption goods (PCND) and PCE service goods (PCESV), transformed to per

capita using the civilian noninstitutional population and transformed into real terms using

the GDP price deflator;

• Core PCE inflation, measured as the growth rate of the PCE price index less food and energy

(JCXFE);
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• Real wage growth, measured as the growth rate of the nonfarm business sector compensation

per hour (COMPNFB) transformed into real terms using the GDP price deflator;

• Effective federal funds rate (DFF);

• Civilian unemployment rate (UNRATE);

• Vacancy rate, measured as total nonfarm job openings (JTSJOR) since 2001 and using the

series constructed by Barnichon (2010) before 2001, all expressed as the ratio of vacancies to

the sum of vacancies and the number of employed people;

• Job-finding rate, measured as in Shimer (2005) by combining the civilian unemployment rate

and a measure of short-term unemployment, namely, the number of unemployed for less than

5 weeks (UEMPLT5). Following Elsby, Michaels and Solon (2009), we scale the short-term

unemployment rate by 1.16 after 1994 to account for the redesign in the survey that occurred

at that date. The monthly job-finding rate can then be constructed as

pmt = 1− ut+1 − us,t+1

ut

where us denotes the measure of short-term unemployment, and the associated monthly

measure of the job-separation rate can be constructed, under the assumption of a uniform

separation probability over the month, as

smt =
us,t+1

(1− ut)(1− 0.5pmt)

The quarterly job-finding rate is then constructed as the probability that a worker unem-

ployed at the start of a given month t is employed three months later, which can be computed

as

pt = pmtsm,t+1/3pm,t+2/3 + pmt(1− sm,t+1/3)(1− sm,t+2/3)+

+ (1− pmt)pm,t+1/3(1− sm,t+2/3) + (1− pmt)(1− pm,t+1/3)pm,t+1/3

Note that the presence of both job-finding and vacancy rates as observables, along with the

unemployment rate, allows us to pin down the match-efficiency and job-separation shocks

separately. In fact, the law of motion of unemployment can be written as

Ut = st−1(1− Ut−1) + Ut−1 − ptSt (94)

= st−1Nt−1 + Ut−1 − ζt

(
Vt

St

)1−σ

St (95)
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with job searchers St = st−1 + (1− st−1)Ut−1. Therefore, by observing Ut and pt we pin down

the exogenous processes st−1 by solving (94) rewritten as

Ut = st−1(1− Ut−1) + Ut−1 − pt[st−1 + (1− st−1)Ut−1]

for st−1; and by observing Ut and Vt, using the backed-out st−1 to pin down St, we pin down

ζt from (95).

Moreover, we use long-term survey expectations to discipline the low-frequency components of

the model that act as attraction points for the forecasts at the 5- to 12-year horizon, as discussed

above. In particular, we use the following data:

• 5-year average inflation expectations starting 5 years in the future, measured from 5-year and

10-year median core PCE survey expectations from the Survey of Professional Forecasters

after 2007, and proxied as the PTR average inflation forecasts constructed using the FRB/US

model before 2007;

• 5-year average real GDP growth expectations starting 7 years in the future, measured as the

quarterly long-range Blue Chip forecasts for real GDP growth;

• 5-year average unemployment rate expectations starting 7 years in the future, measured as

the quarterly long-range Blue Chip forecasts for the unemployment rate;

• 5-year average real short rate expectations starting 7 years in the future, measured as in

Zaman (2022) as the quarterly long-range Blue Chip forecasts for the 3-month Treasury bill

nominal rate minus inflation in the GDP chained price index plus 0.3 percentage points to

account for the historical difference between the fed funds rate and the 3-month T-bill rate.

These observed variables are associated with an equal number of shocks in the model. Namely,

the model includes 13 exogenous states: the preference shock ωt, the job-separation shock st, the

investment-specific shock µt, the markup shock θt, the match-efficiency shock ζt, the productivity

shock zt, the bargaining-power shock ηt, the government spending shock γt, the monetary policy

shock εmt, the inflation target shock π∗
t , and the slow-moving measurement error shocks g∗t in the

real growth rate, u∗t in the unemployment rate, and r∗t in the real interest rate.

4.2 Calibrated parameters

Table 1 reports all calibrated parameter values. The steady-state values of output growth, inflation,

the interest rate, and the unemployment rate are set equal to their respective sample average over

the period 1959Q1-2020Q1—equal an annualized rate of 1.6 percent, 3.2 percent, 4.8 percent, and

5.9 percent, respectively.
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Calibrated parameters
z Steady-state output growth 0.0041
π Steady-state inflation 0.0079
i Steady-state interest rate 0.0124
U Steady-state unemployment rate 0.0595
p Job-finding rate 0.7900
δk Capital depreciation rate 0.0250
α Capital share of value added 0.3300
θ Elasticity of substitution between intermediate goods 6.0000

G/Y Government spending-to-output ratio 0.2000
κ̃ Hiring cost 0.4890
ρ∗ Persistence of the slow-moving components 0.9950
γ Steady-state government spending shock 1.2500

Parameters implied by steady-state restrictions
s Job-separation rate 0.2380
κ Scaled hiring cost 0.5867
β Discount rate 0.9997
ζ Steady-state match-efficiency shock 0.7900
η Steady-state workers’ bargaining-power shock 0.3780

Table 1: Calibrated parameters

Note: The implied parameters are computed by setting the estimated parameters at the posterior modes of their

estimated posterior distributions.

We calibrate the average job-destruction rate to equal the average job-destruction rate at a

quarterly frequency we construct in the data. Namely, in our construction of the job-finding and

job-separation rates at a monthly frequency described above, we find an average monthly job-

finding rate of pm = 0.43 and an average monthly job-separation rate of sm = 0.032. These monthly

numbers imply a job-finding rate at a quarterly frequency equal to p = smp2m+pm(1−sm)2+pm(1−
pm)(1− sm) + pm(1− pm)2 = 0.79. Given the steady-state value of unemployment U , we derive the

quarterly steady-state job-separation rate residually as s = pU/(1− p)(1− U) = 0.24.

We impose the condition that the elasticity of the matching function with respect to unem-

ployment σ equals the steady-state workers’ bargaining power η, consistent with the Hosios (1990)

condition holding at the steady state, and we will estimate the common parameter below. We

normalize the value of market tightness by choosing the steady-state value of match efficiency to

imply a steady-state job-filling rate equal to the steady-state job-finding rate.

We choose a standard value for the capital depreciation rate of 0.025 at a quarterly frequency.

The capital share of value added parameter α = 0.33 is chosen to hit a steady-state labor share of

0.56, as observed over the sample period. The elasticity of substitution between intermediate goods

is set equal to 6, implying a steady-state markup of 20 percent as in Rotemberg and Woodford

(1995). The home consumption habit parameter is set equal to the market consumption habit

parameter, hc = hh = h, which will in turn be estimated below. The steady-state government-

spending-to-output ratio is set equal to 0.20, as in Furlanetto and Groshenny (2016). Finally, we

specify hiring costs to equal 3.6 percent of the labor share, consistent with the evidence in Silva and
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Toledo (2009) on turnover costs. Together with the replacement rate, which will also be estimated,

since its dispersion in the literature is large, this number will pin down the utility parameter χ.

We also calibrate the persistence of the slow-moving components ρ∗ = 0.995 to have processes

close to random walks that can act as the relevant attraction points for forecasts at the 5- to

12-year horizon. Slightly different choices such as ρ∗ = 0.99 or ρ∗ = 0.999 yield similar forecasts at

the 5- to 12-year horizon.

4.3 Estimated parameters

The rest of the parameters of the model are estimated using standard Bayesian techniques. Our

priors for the exogenous shock processes are similar to the ones routinely used in the literature

(Smets and Wouters 2007; Gertler et al. 2008; Furlanetto and Groshenny, 2016). The priors for

the remaining deep parameters cover typical parameters found in the literature. The priors for

the parameters of the policy function, for the habit parameter, and for the adjustment-cost and

indexation parameters are standard. We adopt a relatively wide prior for the weight of pre-match

hiring costs in the matching function, and, similar to Shimer (2005), we center the curvature of

the matching function around 0.6 and the replacement rate around 0.4.

We use a random walk Metropolis-Hastings algorithm to generate 1,000,000 draws from the

posterior distribution and discard the first 250,000 draws. The algorithm is tuned to achieve the

benchmark acceptance ratio of 25 to 30 percent. Table 2 summarizes the prior and posterior

distributions.

5 Empirical Illustration

This section illustrates the role of some of the main ingredients of the model. We describe the

decomposition of the observed time series into the relative contribution of the different shocks that

hit the economy and discuss the main drivers of the observables and their transmission mechanism.

We also discuss here the roles of the two-regime structure and of the long-range survey forecasts.

5.1 Historical decompositions and transmission mechanism

Figures 1 to 9 plot the historical decompositions of the main observable variables used to estimate

the model. Additionally, Figures 10 and 11 report the historical decompositions of two benchmark

variables defined above: the output gap and the natural r-star.

Table 3 reports the average contribution of each shock in the historical decomposition of Fig-

ures 1 to 9. We compute such contributions as follows: at each date, we compute the movement

(in absolute value) in a variable associated with a shock as a fraction of the total movement in the
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Prior Posterior
Deep and policy parameters Distr. Mean Std. 5% Mean 95% Mode

ρr Interest smoothing parameter Beta 0.7 0.2 0.7584 0.7875 0.8181 0.7832
ρπ Monetary policy response to inflation gap IG 1.5 0.1 1.6388 1.8379 2.0349 1.8269
ρy Monetary policy response to output growth IG 0.5 0.1 0.2950 0.3669 0.4352 0.3535
hc = hh Habit formation Beta 0.7 0.2 0.7471 0.7874 0.8303 0.7893
ϕV Weight of pre-match hiring cost Beta 0.6 0.2 0.0646 0.0943 0.1247 0.0870
σ = η Curvature of matching function Beta 0.6 0.1 0.4429 0.4979 0.5506 0.5115
τ Replacement rate Beta 0.4 0.05 0.3474 0.4224 0.4966 0.4135
ϕI Investment adjustment costs IG 5.0 1.0 2.5879 3.1580 3.7219 2.9887
ϕuu Capital utilization costs IG 0.5 0.1 0.5865 0.9242 1.2477 0.8239
ϕP Price-adjustment costs IG 50 20 82.797 115.20 146.19 109.44
ς Price indexation Beta 0.5 0.2 0.0255 0.1090 0.1894 0.0922
ϕW Wage-adjustment costs IG 50 20 248.66 373.47 488.17 353.46
ϱ Wage indexation Beta 0.5 0.2 0.7895 0.8855 0.9864 0.9233

Exogenous shock parameters

σω Preference shock volatility IG 0.03 0.1 0.0219 0.0264 0.0309 0.0265
σs Separation shock volatility IG 0.03 0.1 0.0883 0.0969 0.1058 0.0953
σµ Investment-specific shock volatility IG 0.03 0.1 0.0470 0.0585 0.0697 0.0561
σθ Markup shock volatility IG 0.03 0.1 0.0752 0.1047 0.1310 0.0994
σζ Match efficiency volatility IG 0.03 0.1 0.1183 0.1352 0.1519 0.1311
σz Productivity volatility IG 0.03 0.1 0.0096 0.0104 0.0113 0.0104
ση Bargaining shock volatility IG 0.03 0.1 1.4817 2.4605 3.3992 2.2474
σγ Government spending volatility IG 0.03 0.1 0.0076 0.0082 0.0089 0.0081
σm Monetary policy shock volatility IG 0.03 0.1 0.0025 0.0028 0.0030 0.0028
σπ∗ Inflation target volatility IG 0.03 0.1 0.0004 0.0005 0.0006 0.0005
σg∗ Growth measurement shock volatility IG 0.03 0.1 0.0017 0.0019 0.0021 0.0019
σu∗ Unemp. measurement shock volatility IG 0.03 0.1 0.0303 0.0338 0.0373 0.0340
σr∗ Real rate measurement shock volatility IG 0.03 0.1 0.0018 0.0020 0.0021 0.0020
ρω Productivity persistence Beta 0.6 0.1 0.5675 0.6885 0.8164 0.7114
ρs Separation shock persistence Beta 0.6 0.1 0.8809 0.8995 0.9183 0.9000
ρµ Investment-specific shock persistence Beta 0.6 0.1 0.4741 0.5513 0.6274 0.5465
ρθ Markup shock persistence Beta 0.6 0.1 0.7905 0.8635 0.9750 0.8447
ρζ Match efficiency persistence Beta 0.6 0.1 0.9848 0.9916 0.9985 0.9940
ρz Productivity persistence Beta 0.3 0.1 0.0909 0.1625 0.2380 0.1616
ρη Bargaining shock persistence Beta 0.6 0.1 0.0314 0.1089 0.1823 0.0944
ργ Government spending persistence Beta 0.6 0.1 0.8999 0.9189 0.9381 0.9224

Table 2: Priors and posteriors of estimated structural parameters

Note: In the ‘Distribution’ column, Beta denotes a beta distribution and IG an inverted Gamma distribution.
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z εm µ ω θ γ s ζ η π∗ g∗, u∗, r∗ Regime

GDP growth 13.5 4.3 19.3 6.4 7.0 18.2 16.3 2.3 5.0 1.0 5.7 1.2
Consumption growth 21.8 3.1 7.3 23.6 2.5 11.0 7.3 3.4 4.7 0.7 14.1 0.6
Investment growth 15.1 6.1 26.9 5.8 10.6 11.8 8.3 1.3 7.2 1.2 4.2 1.5
Real wage growth 13.3 3.7 14.6 4.6 11.8 13.9 11.6 1.9 15.8 0.5 7.2 1.2
Inflation rate 11.9 11.9 14.5 8.9 7.9 10.7 7.3 1.6 5.6 19.8 0 0.0
Fed funds rate 5.9 7.9 13.6 8.5 3.1 10.3 5.8 1.9 2.9 13.9 11.9 14.4
Unemployment rate 13.3 5.9 11.6 3.2 10.2 10.2 9.5 12.6 13.3 1.2 8.5 0.5
Vacancy rate 9.6 3.9 10.1 2.9 6.9 8.3 22.0 27.0 8.1 0.8 0 0.5
Job-finding rate 14.6 6.4 13.0 3.7 11.0 11.3 10.7 13.1 14.3 1.3 0 0.6

Table 3: Summary of historical decompositions

Note: Average contribution of each shock in the historical decomposition, in percentage points. z: productivity;

εm: monetary policy; µ: investment-specific technology; ω: preference; θ: markup; γ: government spending; s:

separation; ζ: match efficiency; η: workers’ bargaining power; π∗: inflation target; g∗: growth measurement; u∗:

unemployment measurement; r∗: real rate measurement; ‘Regime’: shock to 2-state regime.

variable, defined as the sum of movements associated with each individual shock. We then average

these movement shares through time over our sample for each variable.

Technology shocks, including labor-augmenting and investment-specific technology shocks, are

the main drivers of our model. They account for 25 to 40 percent of the fluctuations in the growth

rates of output, consumption, investment, and real wages over the sample and for 20-25 percent of

the fluctuations in the inflation, unemployment, vacancy, job-finding, and interest rates. Figure 12

plots impulse responses to all shocks for the main variables of interest in the one-regime version of

the model. Figures 12a and 12b plot impulse responses to these shocks for the main variables of

interest in the one-regime version of the model, which is unaffected by the nonlinearities and by the

initial state of the economy. (We will later illustrate how the zero-lower-bound constraint distorts

these impulse responses.) Labor-augmenting technology shocks produce positive comovement in

output, consumption, and investment but the inflation rate and, at least initially, employment

move in the opposite direction by standard forces. In contrast, investment-specific shocks produce

positive comovement in output, investment, employment, and the inflation rate, but consumption

moves in the opposite direction, as the opportunity cost of consumption becomes larger.

Monetary policy shocks play a minor role in overall fluctuations, in line with the literature (e.g.,

Smets and Wouters, 2007; Furlanetto and Groshenny, 2016). Still, they account for more than

10 percent of fluctuations in inflation. Figure 12c shows the response of the main variables to a

monetary policy shock, ignoring the zero lower bound on the interest rate. A surprise interest-rate

increase of 90 basis points is associated with peak drops in GDP of 30 basis points, in consumption

of nearly 10 basis points, in investment of 60 basis points, and in inflation of 40 basis points; at

the same time, the peak increase in the unemployment rate is around 40 basis points. These

numbers and their front-loaded effects are in line with the literature (for example, the evidence

in Miranda-Agrippino and Ricco, 2021, as well as the models in Christiano, Eichenbaum, and
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Trabandt, 2016).

Preference shocks play a major role in consumption growth, accounting for nearly a quarter of

its fluctuations, and a sizable role, close to 10 percent, in the inflation and interest rates. Figure 12d

shows the response of the main variables to a preference shock. GDP, consumption, employment,

and inflation comove positively after a preference shock, while investment moves in the opposite

direction, as its opportunity cost of devoting consumption goods to investment increases.

Markup shocks play a sizable role in this model for inflation, accounting for around 8 percent

of its fluctuations. Note that this number is lower than the number in Smets and Wouters (2007)

but is in line with the model in Furlanetto and Groshenny (2016) with labor market frictions.

Also as in Furlanetto and Groshenny (2016), since markup shocks drive profitability, in this setup

with search and matching frictions they are likewise a notable driver of labor market variables

and investment. Figure 12e shows how markup shocks produce positive comovement in output,

consumption, investment, and employment but send inflation in the opposite direction, as firms’

prices comove with their markups.

Government spending shocks play a similar role across our observables, accounting for 10 to

15 percent of fluctuations. Figure 12f shows how a positive government spending shock reduces

consumption, investment, and employment as it increases output and causes inflationary pressures.

Labor market shocks, including shocks to job separation, to match efficiency, and to workers’

bargaining power, are the main drivers of labor market variables—nearly 40 percent of the fluc-

tuations in the unemployment and job-finding rates and 60 percent of fluctuations in the vacancy

rate—and account for up to a quarter of fluctuations in output. Figures 12g, 12h, and 12i show

the effects of these shocks on the main variables. They produce comovement in output and em-

ployment and have different effects on the labor market. A positive job-separation shock has a

contractionary effect on impact, but subsequently increases vacancy creation, job-finding rates,

and employment, as necessary to maintain employment when labor market churn is higher. A

positive match-efficiency shock reduces vacancies, since fewer openings are needed to produce a

given number of matches; after an initial negative effect on employment, it therefore increases,

along with the job-finding rate. Finally, a positive shock to workers’ bargaining power, which is a

major driver of real wages, increases wages and inflation, and depresses employment and output.

Finally, we note the contribution of the slow-moving components, represented by the inflation

target shock π∗ and the measurement shocks, which include g∗, u∗, and r∗, and the contribution

of the regime-switching shock, which in the shock decomposition contribute a level shift in the

variables that depends on the regime at each date. Changes in the central bank’s inflation target

account for nearly 20 percent of fluctuations in the inflation rate. In particular, a shock to the

central bank’s inflation target increases inflation persistently and has an accommodative effect on

economic activity. Still, this shock does not operate at business cycle frequencies and has instead a

low-frequency effect on the variables. Changes in the growth-rate trend account for 5 to 15 percent

of the fluctuations in output, consumption, investment, and real wage growth rates. Changes in
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dynamics due to changes in the policy regime account for more than 10 percent of the dynamics

of the federal funds rate, but play a minor role for all other variables.

5.2 The role of the zero lower bound in the interest rate

We further illustrate the mechanism behind the historical decomposition by looking at the response

of the observable variables to their main drivers. Recall that the nonlinearities imposed by the

zero lower bound imply that the responses of the variables to a shock will not be independent of

the state of the economy when the shock hits and will not simply scale with the size of the shock.

Therefore, while the impulse response functions in the unconstrained version of the model reported

above were unaffected by the nonlinearities, it is no longer the case in the two-regime version of

the model.

We illustrate how our piecewise linear approximation captures the effects of the presence of the

zero-lower-bound constraint by considering the effects of shocks when the state of the economy is

near the zero lower bound. In practice, we will consider an economy that starts at the steady state

and is hit by a large, persistent monetary policy shock that brings the federal funds rate close to

but strictly above zero. We then hit that economy with additional shocks to send the interest rate

against the zero-lower-bound constraint.

Accordingly, Figure 13 plots such impulse response functions to the main drivers of the nominal

interest rate. The system starts at the steady state and is sent close to the zero lower bound as

just described. The additional shocks that send the fed funds rate against the zero lower bound

then allow us to illustrate the solution of the two-regime model and compare it to the one-regime

version. The blue lines describe the effects of shocks in the two-regime structure that cause a

switch to a zero-lower-bound regime on impact relative to the effects of those same shocks in the

one-regime version of the model.

The piecewise approximation strategy captures a well-documented property of the New Key-

nesian model at the zero lower bound, namely, deflationary forces and more depressed economic

activity relative to an unconstrained model, in which the interest rate can fall below zero, with

the associated accommodative effect on the economy. Indeed, across all shocks, the economy con-

strained by the zero lower bound displays a slightly lower inflation rate, markedly lower growth

rates, and higher unemployment rates. The strength of the deflationary and contractionary forces

varies across parameterizations, but it is qualitatively robust across them. In particular, at the

estimated parameters, the deflationary forces are relatively minor and the contractionary forces

are sizable.

In the background, we note that at the parameter estimates, the model implies an average

switching probability of staying in the unconstrained regime of 0.99 and an average switching

probability of staying in the constrained regime of 0.31. Therefore, people expect that spells at

the zero-lower-bound regime will be short-lived.

36



5.3 The role of long-range expectations

Long-range survey expectations discipline the slow-moving components that now act as attraction

points at the 5- to 12-year horizon. Figure 14 reports the forecasts of the model over a period of

100 years for the inflation rate, the unemployment rate, the fed funds rate, and GDP growth rates

(solid black lines). The figure also reports the projected long-run forecasts predicted by the model

that would exist at each date (dashed blue lines), namely, the 5y/5y inflation rate and the 7y/5y

unemployment, fed funds, and GDP growth rates, respectively.

These long-range forecasts show how the slow-moving components act as the relevant attraction

points for the forecasts at the 5- to 12-year horizon and slow down the reversion of the variables

to their historical sample means—equal to 1.6 percent per annum for output growth per capita,

3.2 percent per annum for the inflation rate, 4.8 percent per annum for the interest rate, and 5.9

percent for the unemployment rate, respectively. In fact, such a reversion to the mean takes several

decades—only 100 years out, around 2120, would the variables of interest be forecasted to equal

their historical sample means. Similarly, the long-run expectations implied by the model would be

attracted by those same points, and their reversion is likewise very slow.

Thus, the steady state of the model remains an attraction point for forecasts by the stationarity

of the model. Still, it is not a point that affects the forecasts at the business-cycle frequency—the

typical forecast horizon of interest for policymakers. The long run over which the reversion to the

historical sample mean is complete can take up to 100 years to manifest.

6 Concluding Remarks

This paper has presented a practitioner’s guide to the DSGE model developed at the Federal

Reserve Bank of Cleveland as part of the suite of models used for forecasting and policy analysis

by Cleveland Fed researchers, which we have nicknamed Clementine. This model is a practical

policy tool designed for forecasting exercises and policy counterfactuals to help support decision-

making and complement the existing set of models and data that are routinely consulted. Departing

from the standard academic style, this document details the construction of the model and offers

practical guidance for using the model.
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Silva, José Ignacio and Manuel Toledo (2009). “Labor turnover costs and the cyclical be-

havior of vacancies and unemployment.” Macroeconomic Dynamics, 13(S1), pp. 76–96.

doi:10.1017/S1365100509080122.

Smets, Frank and Rafael Wouters (2007). “Shocks and frictions in US business cycles: A Bayesian

DSGE approach.” American Economic Review, 97(3), pp. 586–606. doi:10.1257/aer.97.3.586.

Tallman, Ellis W and Saeed Zaman (2020). “Combining survey long-run forecasts and nowcasts

with BVAR forecasts using relative entropy.” International Journal of Forecasting, 36(2), pp.

373–398. doi:10.1016/j.ijforecast.2019.04.024.

Yashiv, Eran (2000). “The determinants of equilibrium unemployment.” American Economic

Review, 90(5), pp. 1297–1322. doi:10.1257/aer.90.5.1297.

Zaman, Saeed (2022). “A unified framework to estimate macroeconomic stars.” Technical report,

FRB of Cleveland Working Paper 21-23R. doi:10.26509/frbc-wp-202123r.

39

https://doi.org/10.1016/j.jmoneco.2014.08.005
https://doi.org/10.2307/2297382
https://doi.org/10.2307/2297382
https://doi.org/10.1016/0304-3932(95)01216-8
https://doi.org/10.1257/mac.20180124
https://doi.org/10.2307/2297284
https://doi.org/10.1515/9780691218052-013
https://doi.org/10.1257/0002828053828572
https://doi.org/10.1017/S1365100509080122
https://doi.org/10.1257/aer.97.3.586
https://doi.org/10.1016/j.ijforecast.2019.04.024
https://doi.org/10.1257/aer.90.5.1297
https://doi.org/10.26509/frbc-wp-202123r


1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 1: Historical decomposition of the real GDP growth rate
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Figure 2: Historical decomposition of the real consumption growth rate
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Figure 3: Historical decomposition of the real investment growth rate
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Figure 4: Historical decomposition of the (demeaned) real wage growth rate
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Figure 5: Historical decomposition of the (demeaned) core PCE inflation rate

44



1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 6: Historical decomposition of the (demeaned) fed funds rate
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Figure 7: Historical decomposition of the (demeaned) unemployment rate
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Figure 8: Historical decomposition of the (demeaned) vacancy rate
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Figure 9: Historical decomposition of the (demeaned) job-finding rate
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Figure 10: Historical decomposition of the (demeaned) output gap
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Figure 11: Historical decomposition of the (demeaned) natural r-star
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(a) Technology shock.
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(b) Investment-specific shock.
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(c) Monetary policy shock.
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(d) Preference shock.

0 5 10 15
0

0.2

0.4

0 5 10 15
0

0.05

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

0 5 10 15

-0.4

-0.2

0

0 5 10 15
-0.2

-0.1

0

0 5 10 15
-0.6

-0.4

-0.2

0

0 5 10 15

0

0.5

1

0 5 10 15

0

1

2

(e) Markup shock.
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(f) Government spending shock.
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(g) Job separation shock.
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(h) Match efficiency shock.
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(i) Bargaining power shock.

Figure 12: Impulse responses in the one-regime version of the model to 1-standard deviation shocks
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(a) Technology shock.
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(b) Investment specific shock.
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(c) Preference shock.
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(d) Markup shock.
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(e) Government spending shock.
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(h) Bargaining power shock.
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Figure 13: Effect of the zero-lower-bound constraint on the response of the economy to different shocks

Note: Impulse responses in the two-regime model minus impulse responses in the one-regime model. The economy starts at the steady state and is hit in

period 1 by a persistent, three-standard-deviation monetary policy shock that brings the federal funds rate to a level close to zero but still strictly positive.

On top of that scenario, we add the indicated shocks, which are single five-standard-deviation shocks that hit the economy in period 1 and trigger the

zero-lower-bound constraint.
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Figure 14: Long-run forecasts

Note: Long-run forecasts starting from observations up to 2023q1 (black solid lines) and corresponding long-run

expectations predicted by the model (dashed blue lines).
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