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Abstract

This paper examines the forecasting efficacy and implications of the recently popular break-

down of core inflation into three components: goods excluding food and energy, services exclud-

ing energy and housing, and housing. A comprehensive historical evaluation of the accuracy of

point and density forecasts from a range of models and approaches shows that a BVAR with

stochastic volatility in aggregate core inflation, its three components, and wage growth is an

effective tool for forecasting inflation’s components as well as aggregate core inflation. Looking

ahead, the model’s baseline projection puts core inflation at 2.6 percent in 2026, well below its

2023 level but still elevated relative to the Federal Reserve’s 2 percent objective. The probability

that core inflation will return to 2 percent or less is much higher when conditioning on goods or

non-housing services inflation slowing to pre-pandemic levels than when conditioning on these

components remaining above the same thresholds. Scenario analysis indicates that slower wage

growth will likely be associated with reduced inflation in all three components, especially goods

and non-housing services, helping to return core inflation to near the 2 percent target by 2026.
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analysis
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1 Introduction

Since inflation surged following the outbreak of the COVID-19 pandemic and Russia’s war against

Ukraine, central banks around the world have focused on the challenge of reducing inflation. In

these efforts, forecasts of inflation have played an important role in policymakers’ assessments.

Recently, in commenting on inflation developments, policymakers in the United States have often

drawn attention to a three-component breakdown of core inflation into goods excluding food and

energy, services excluding energy and housing (also known as supercore inflation), and housing.

As summarized in sources such as Powell (2022), a common narrative has maintained that the

normalization of pandemic-driven changes in supply and demand would contribute to significant

declines in the goods and housing components of core inflation, with some progress already evident.

That same narrative has indicated that a slowing of inflation in non-housing services, which has

a weight of more than 50 percent in core inflation, would be crucial to returning inflation to the

Federal Reserve’s 2 percent target and perhaps more challenging to achieve than reductions in the

other components. Because labor is even more important than goods as an input to services, a

common suggestion has been that a slowing of aggregate wage growth to pre-pandemic levels will

be needed to achieve a reduction in core services inflation.

These policy-driven interests raise a number of questions for research. First, how well can the

goods, housing, and services components of core inflation be forecast as compared to aggregate core

inflation? Second, is aggregate inflation best forecast directly or by aggregating forecasts of the

three components? Third, how important is wage growth to slower inflation in services ex housing

as well as the other components of core inflation? Finally, based on historical comovement, how

are the components likely to evolve as aggregate inflation slows? Is it most likely the case that all

three components will need to return to pre-pandemic levels in order for aggregate core inflation

to reach 2 percent?

Of course, to varying degrees, previous research has shed some light on these and related

questions, although not necessarily directly in the current context. In particular, the forecasting

literature has established the following. First, simple univariate models for forecasting aggregate

core inflation are very hard to beat compared with multivariate models that include elements of

the Phillips curve or other variables such as wage growth (see, e.g., Faust and Wright (2013) and
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Stock and Watson (2007)). Second, most studies (but not all; some have obtained positive results)

have found that it is generally difficult to consistently improve accuracy by combining predictions

of components rather than forecasting aggregate core inflation directly (see, e.g., Faust and Wright

(2013), Hubrich (2005), Joseph, et al. (2022), McGregor and Toscani (2022), Tallman and Zaman

(2017), and Verbrugge and Zaman (2023)).1 Third, allowing some time variation in means and

other regression parameters of a model can help forecast accuracy (see, e.g., Banbura and van

Vlodrop (2018), and D’Agostino, Gambetti, and Giannone (2013)), although it is not assured of

doing so (e.g., Chan (2023)). Finally, allowing time variation in conditional variances can improve

the accuracy of both point and density forecasts (see, e.g., Chan and Eisenstat (2018), Clark (2011),

Clark and Ravazzolo (2015), and D’Agostino, Gambetti, and Giannone (2013)).

Building on existing work, in this paper we examine the efficacy and implications of forecasts

of the three-component breakdown of core inflation in the US. Of course, the accuracy of inflation

forecasts has been widely studied; our examination is novel in its focus on the three-component

breakdown of core inflation. We begin by evaluating the accuracy of inflation and component rate

forecasts from a range of models and approaches that include some of the key features noted above,

particularly stochastic volatility. While our analysis has considered additional models with larger

variable sets and non-linearities (without finding much payoff), we primarily focus on forecasts

from Bayesian vector autoregressions (BVARs) that include as variables aggregate core inflation,

its goods-housing-services ex housing components, and wage growth. Our specifications vary in the

features of the model — for example, we consider some models with time-varying parameters —

as well as in the formulation of the coefficient priors. We compare the forecast performance of this

range of models to the univariate unobserved components-stochastic volatility model that Stock

and Watson (2007) established as a good model for forecasting aggregate inflation.

After establishing the historical efficacy of our preferred BVAR model specification, we examine

medium-term forecasts for the period ahead, 2023 through 2026, and the likelihood (according to

our model) of inflation returning to the Federal Reserve’s 2 percent target. We conclude the paper

with scenario analysis, that is, forecasts of inflation and its components conditional on selected

scenarios or conditions. We implement conditional forecasting with entropic tilting (introduced to

1While most studies noted in the text have focused on point forecasts, some work has examined whether density
accuracy can be improved by aggregating component forecasts. For example, Ravazzolo and Vahey (2014) find some
benefits to using linear opinion pooling to combine the forecast densities of inflation components.
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macroeconomic forecasting by Robertson, Tallman, and Whiteman (2005)), which can be seen as a

non-parametric approach to conditional forecasting. One scenario conditions on a gradual decline

of wage growth to near its pre-pandemic level to assess the likelihood that such a development may

be key to continued disinflation. The second scenario conditions on a decline of aggregate core

inflation to 2 percent to provide a joint assessment of the paths of component inflation rates and

wage growth most likely associated with a return of aggregate inflation to target.

Overall, we find that a BVAR with stochastic volatility estimated with an adaptive Minnesota-

style prior (as developed in Chan (2021)) is an effective tool for forecasting inflation in the core

services ex housing, housing, and core goods components of core inflation, as well as aggregate core

inflation. Not surprisingly, compared to the range of models we consider, this BVARmodel performs

better for some components than others. For some inflation measures, its advantage over univariate

benchmarks in forecast accuracy has increased over the past several years, which include pandemic-

induced variability in inflation. Regarding the specific questions noted above, our findings indicate

that the inflation components can be forecast about as well as aggregate core inflation; in fact,

our preferred BVAR tends to perform better, compared to a univariate benchmark, for inflation

components than for aggregate inflation. However, aggregate inflation is best forecast directly;

no consistent benefit can be achieved by aggregating disaggregate components. In our baseline

predictive distributions, a return of core inflation to 2 percent or less over the next few years is

much higher when conditioning on goods or supercore inflation slowing to near pre-pandemic levels

than when conditioning on these components remaining above the same thresholds. Our scenario

analyses indicate that slower wage growth will likely be associated with reduced inflation in all

three components, not just supercore, but housing less so than goods and supercore inflation. In

addition, it is most likely the case that a return of core inflation to the Federal Reserve’s 2 percent

target will be associated with all three components returning to near pre-pandemic levels.

The paper proceeds as follows. Section 2 describes the data used. Section 3 reviews the models

used and details our approaches to estimation and forecasting. Section 4 presents our historical

forecast evaluation, and Section 5 provides forecasts and scenario analysis for the next few years.

Section 6 concludes.
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2 Data

Because the Federal Reserve’s inflation target is stated in terms of the price index for personal

consumption expenditures (PCE), we focus on forecasting PCE inflation excluding food and energy

(core PCE inflation) and its goods, housing, and services excluding housing components.2 Our

primary results use quarterly data on PCE price indexes — aggregate core inflation and its three

components — as well as the employment cost index (ECI).3 We obtained all of these raw data

series from Haver Analytics.4 Some additional results in the supplemental appendix add to the

models 19 other macroeconomic variables taken from the FRED-MD database maintained by the

Federal Reserve Bank of St. Louis.

Inflation and wage growth rates are measured as 400 times log changes in index levels. The raw

data sample (before transformations) for our forecasting exercise is 1959:Q1 through 2022:Q4. We

extend our conditional forecast exercises to include data through 2023:Q3. In the case of the ECI,

the raw data do not begin until 1980. We extend the series back to 1959 by backcasting the growth

rate of the ECI with fitted values from a regression of ECI growth on the growth rate of the series

on compensation per hour (non-farm business sector) from the Bureau of Labor Statistics.

3 Models, Estimation, and Forecasting

This section details the models used for inflation forecasting, their estimation, and our approach

to forecasting. For convenience, Table 1 lists the ensemble of models that we consider in our

forecasting exercises.

2The PCE time series feature a methodologically-consistent treatment of housing over time, based on owner-
equivalent rent. In contrast, in published data on the consumer price index (CPI), methodological improvements
are applied going forward but not to past data. Consequently, published CPI series suffer a significant break in the
treatment of housing in 1983, when measurement changed to use the current approach based on owner-equivalent
rent.

3The ECI abstracts from cyclical changes in the sectoral composition of employment, avoiding some of the
composition bias that affects other wage measures.

4Our data used in historical forecast analysis were sourced prior to the Bureau of Economic Analysis’ 2023 revision
to NIPA/PCE data. As a result, those results use the price index for PCE services excluding housing and energy that
was available from Haver Analytics when we compiled our data files, based on weighting the relevant components by
their expenditure shares. The BEA now publishes a chain-weighted price index for core services excluding housing;
this updated series is used in our forecasting of inflation for 2023:Q4 through 2026:Q4.
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3.1 Models

We consider three families of models. The first is multivariate and the other two are univariate.

Our first family consists of BVARs with stochastic volatility, referred to as the BVAR-SV

specification. This specification takes the following form, for the n × 1 data vector yt, which

includes aggregate core inflation, its three components, and wage growth:5

yt = Π0 +

p∑
i=1

Πiyt−i + vt

vt = A−1Λ0.5
t ϵt, ϵt ∼ N(0, In), Λt ≡ diag(λ1,t, . . . , λn,t) (1)

ln(λi,t) = ln(λi,t−1) + νi,t, i = 1, . . . , n

νt ≡ (ν1,t, ν2,t, . . . , νn,t)
′ ∼ N(0,Φ),

where A is a lower triangular matrix with ones on the diagonal and non-zero coefficients below the

diagonal, and the diagonal matrix Λt contains the time-varying variances of conditionally Gaussian

shocks. This model implies that the reduced-form variance-covariance matrix of innovations to the

BVAR is var(vt) ≡ Σt = A−1ΛtA
−1′. Note that, as in the implementation of Primiceri (2005),

innovations to log volatility are allowed to be correlated across variables; Φ is not restricted to

be diagonal. For notational simplicity, let Π denote the collection of the BVAR’s coefficients. In

implementation, we include four lags in the BVAR.

Furthermore, we consider versions of the BVAR-SV model extended in two dimensions (sep-

arately as well as together). First, we treat the intercepts of the VAR as time-varying. In this

case, the intercepts follow random walk processes; this makes the model a restricted version of the

time-varying parameter VAR of Primiceri (2005), with time variation of intercepts and conditional

volatilities but constant slope parameters in the VAR. The time variation of intercepts allows for

time variation of the implied conditional means of the data, i.e., time shifts in trend inflation. Sec-

ond, to reduce the impacts of the extreme, temporary volatility of macroeconomic data following

the COVID-19 outbreak, we extend the model by including in the volatility piece the multiplicative

volatility outlier specification of Carriero, et al. (2022b), originally developed by Stock and Watson

5We order our variables so that wage growth is first, followed by supercore, housing, core goods, and aggregate
core inflation. We exclude aggregate core inflation from yt when we consider the “bottom-up” approach to forecasting
aggregate core inflation.
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(2016) for modeling inflation. Adding a second volatility factor that is independent over time serves

to reduce the persistence of changes in volatility that affect forecasts over unusual periods such as

the pandemic.

Of course, Bayesian estimation entails priors on the parameters of models. In specifying the

prior variance matrix for the BVAR coefficients Π, we consider three options: a standard Minnesota-

type Gaussian prior that shrinks all coefficients to zero but allows differing degrees of shrinkage for

coefficients on own lagged variables as opposed to lags of other variables; a similarly formed but

adaptive Minnesota-type prior developed by Chan (2021), where the shrinkage is estimated from

the data; and Chan’s new adaptive Minnesota-type Normal-Gamma prior that combines features

of the Minnesota and hierarchical priors. Details are omitted in the interest of brevity, but follow

the aforementioned citations. We apply these priors to the baseline BVAR-SV model as well as the

versions extended to allow time-varying intercepts and volatility outliers.

Our second considered model family, which we call the SVD-WN specification, uses one of the

new, novel approaches to the specification and estimation of large TVP regressions (single regres-

sion, not a vector autoregression) developed in Hauzenberger, et al. (2022). Hauzenberger, et al.

(2022) develop a computationally efficient estimation algorithm based on singular value decompo-

sition (SVD) that permits application to large regressions and focuses on models that replace the

usual assumption of random walk variation in parameters with a hierarchical mixture model on the

time-varying parameters. In particular, we use their specification that features a white-noise state

equation and the g-prior of Zellner (1986), without any clustering of the parameters.6 Note that

this model is applied to one inflation measure at a time rather than a vector of measures as in the

VAR specifications. Our SVD-WN model takes the same dynamic regression form as Hauzenberger,

6In unreported results, we also considered a specification grouping the time-varying parameters into a smaller
number of regimes/clusters, which Hauzenberger, et al. (2022) found to be helpful for forecasting inflation with a large
number of predictors. However, we found that the clustering approach produced forecasts that performed essentially
as well as forecasts without clustering, and in the interest of brevity we omit these results.
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et al. (2022):

πt = x′tβt + σtηt, ηt ∼ N(0, 1)

βt = γ + β̃t (2)

β̃t ∼ N(0, σ2
t ·Ψ)

log(σ2
t ) = µσ + ρσ(log(σ

2
t−1)− µσ) + σσνt, νt ∼ N(0, 1),

where πt is our scalar inflation measure, xt is a vector of regressors consisting of lags of the data,

βt is a set of time-varying regression coefficients composed of a time-invariant component (γ) and

a white-noise time-varying component (β̃t), σ2
t is the time-varying error variance where its log

volatilities follow an AR(1) process, and Ψ is a diagonal matrix of shrinkage parameters. In our

application, xt consists of four lags of ECI, disaggregate inflation, and aggregate inflation.7

Finally, we consider the univariate unobserved components-stochastic volatility (UC-SV) model

that Stock and Watson (2007) established as a good model for forecasting aggregate inflation. We

apply this model to aggregate core inflation as well as core inflation’s three components. Letting

πt denote a given measure of inflation, this model treats inflation as the sum of a random walk and

a serially uncorrelated noise term, both featuring stochastic volatility:

πt = π∗
t + vt, π∗

t = π∗
t−1 + nt

vt = λ0.5
v,t ϵv,t, ϵv,t ∼ N(0, 1)

nt = λ0.5
n,tϵn,t, ϵn,t ∼ N(0, 1) (3)

log(λv,t) = log(λv,t−1) + νv,t, νv,t ∼ N(0, ϕv)

log(λn,t) = log(λn,t−1) + νn,t, νn,t ∼ N(0, ϕn).

As a note, in our VAR models the combination of inflation variables introduces a near-singularity

in the variance-covariance matrix. This is because the inflation aggregate in the model is closely

approximated by a time-varying linear combination of the three disaggregates of inflation that

7We order our regressors so that wage growth is first, followed by supercore, housing, core goods, and aggregate
core inflation. We exclude aggregate inflation from the regressors when we consider the “bottom-up” approach to
forecasting aggregate inflation.

7



are also included in the model, leading to strong collinearity.8 In empirical work, this collinearity

can result in a near-singular variance-covariance matrix that can, in turn, lead to explosive model

estimates and numerical issues. We have found that this issue is less pronounced for the constant-

coefficient models we use (as well as the versions with time-varying intercepts), but it is increasingly

prevalent when a richer degree of time variation in regression parameters is allowed, such as the

hybrid time-varying parameters (TVP) specification and estimation approach of Chan (2023) that

has TVP in some equations but constant coefficients in others, optimized for model fit. (As a result,

we omit the hybrid TVP models of Chan (2023) from our paper.)

3.2 Estimation and forecasting

We estimate all our models with Bayesian methods. For estimation of the BVAR-SV specification,

we employ Gibbs sampling and use replication code from Carriero, et al. (2022b) to estimate these

models following Carriero, Clark, and Marcellino (2019) and Carriero, et al. (2022a). For clarity,

we estimate stochastic volatility following the methods in Kim, Shephard, and Chib (1998). See

sources such as Clark and Ravazzolo (2015) and Karlsson (2013) for further details on estimating

this family of models. Furthermore, we follow Carriero, et al. (2022b) for the estimation of our

outlier adjustment. We follow Chan and Eisenstat (2018) for the estimation of our time-varying

intercept but continue to use the methods of Carriero, Clark, and Marcellino (2019) and Carriero,

et al. (2022a) for the rest of the model (particularly for the estimation of time-invariant coefficients).

Finally, for the estimation of our different considered Minnesota-like priors we follow the estimation

procedure of Chan (2021).

In our implementation of BVAR priors, in the baseline case, we follow the prior specifications

of Carriero, et al. (2022b), which includes a standard Minnesota prior on the matrix of coefficients

Πi for i = 0, . . . , p. However, since our application uses a quarterly frequency instead of the

monthly frequency considered in Carriero, et al. (2022b), we make a modification and use an

inverse Wishart prior for Φ, the variance matrix of innovations to log volatility, with a scale matrix

of 0.05× (n+ 3)× In and n+ 3 degrees of freedom. Furthermore, for simplicity, we assume prior

8Under the chain weighting used to construct the published core PCE price index, the core PCE inflation rate is
approximated very well but not perfectly by a weighted average of the components, where the weights for inflation
in quarter t are averages of spending shares in t− 1 and t. Because of that approximation and time variation in the
spending shares, the collinearity of the components with aggregate inflation is high but not perfect.
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means of 0 for all variables. The priors on our time-varying intercepts follow Chan and Eisenstat

(2018). Finally, our adaptive Minnesota-like priors follow those of the baseline model in Chan

(2021) with the exception of the prior means on hyperparameters κ1 and κ2, which we set so as to

imply prior means of .1 and .005, respectively.

For the estimation of our SVD-WN models we use replication code from Hauzenberger, et al.

(2022) to implement the SVD algorithm and to estimate a time-varying parameters model with a

white-noise state equation, g-prior, but no clustering. Our priors also follow the specification of

the original paper, and for the prior hyperparameter κ, which determines the upper bound of our

innovation variance for the time-varying coefficients, we choose a value of .005.

At each forecast origin, we obtain forecasts from the posterior predictive distribution as follows

(in the case of BVAR-SV models, with some adjustments for other models).9 Over the forecast

horizon, we draw time series vectors of the VAR’s shocks ϵ
(m)
T+h ∼ N(0, IN ) and volatility shocks

ν
(m)
T+h ∼ N(0,Φ(m)), feed in the volatility shocks and iterate forward to obtain the draw of the time

series of (log-)variances over the forecast horizon, compute the draw of the VAR’s reduced-form

shocks, and use the autoregressive structure of the VAR to iterate forward to obtain a draw of

the time series of forecasts as y
(m)
T+h = Π

(m)
0 +

∑p
i=1Π

(m)
i y

(m)
T+h−i + v

(m)
T+h. As noted by Waggoner

and Zha (1999), for a given MCMC node m, the computational costs of simulating forward a path

of stochastic volatilities lnλ
(m)
T+h, innovations v

(m)
T+h, and outcomes y

(m)
T+h can be substantially lower

than generating an additional MCMC draw m′. To better balance computational costs against a

high degree of accuracy in the Monte Carlo approximation of the predictive density, it might thus

be advantageous to draw multiple trajectories lnλ
(m,j)
T+h , innovations v

(m,j)
T+h , and outcomes y

(m,j)
T+h ,

indexed by j = 1, 2, . . . , J , for every m.10 The posterior predictive density is then approximated

by the ensemble of draws for all m and j. We follow this approximation for our BVAR-SV models,

while directly simulating from the posterior predictive density for our SVD-WN and UC-SV models.

Estimates and forecasts from the BVAR-SV models are based on 10,000 retained MCMC draws

with a burn-in of 2,000 draws. For each MCMC draw, we approximate the posterior predictive

9Particularly, for the SVD-WN models, we follow Hauzenberger, et al. (2022) and use the direct forecasting
approach of Stock and Watson (2002) Thus, for a given forecasting horizon, h, we estimate the SVD-WN model of
the form πt = x′

t−hβt + σtηt and produce forecasts for πt+h = x′
tβt+h + σt+hηt+h. Values for βt+h and σt+h are

obtained by simulating paths of these variables following their respective laws of motion.
10In the context of simulating conditional forecasts with only occasionally binding conditions, Waggoner and

Zha (1999) provide a formal discussion of the optimal tradeoff in choosing J , which also extends to the case of
unconditional forecasts (i.e., density forecasts without binding conditions imposed on the forecasts).
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density using 25 trajectories, for a total of 250,000 simulated posterior predictive density draws.

Estimates and forecasts from the SVD-WN models are based on 30,000 retained MCMC draws with

a burn-in of 10,000 draws. For the estimation of our UC-SV model we use the precision sampler of

Chan and Jeliazkov (2009) and follow both the prior specification and estimation routine of Section

7.2 in Chan (2017). Estimates and forecasts from the UC-SV model are based on 50,000 retained

MCMC draws with a burn-in of 5,000 draws.

We produce out-of-sample forecasts using a recursive scheme, expanding the model estimation

sample as forecasting moves forward in time. Forecasting begins with an origin, t, of 1985:Q1,

estimating models with a data sample of 1959:Q2 through 1985:Q1. Forecasts are then produced

for t+h, where h is the forecast horizon. We then move forward a quarter to the origin of 1985:Q2,

re-estimate models with data through 1985:Q2, and continue from there. We examine forecast

accuracy for three periods: a full-sample period from 1985:Q1 through 2022:Q4, a pre-pandemic

period of 1985:Q1 through 2017:Q4 (with 2017:Q4 as the last forecast origin, the last forecast

outcome date considered is 2019:Q4 for h = 8), and a period of 2018:Q1 through 2022:Q4 that

includes the unusual volatility of the pandemic period. Over this sub-sample, core inflation swung

from 1.7 percent in 2020:Q1 to -0.8 percent in 2020:Q2 and up to 3.1 percent in 2020:Q3. It then

rose about 4 percentage points in the first half of 2021. We report results for forecast horizons of

h = 1, 2, 4, and 8 quarters ahead.

We evaluate point and density forecasts (computed from posterior predictive densities of infla-

tion, with point forecasts being the means of these densities) based on root-mean-squared errors

(RMSE) and continuous ranked probability scores (CRPS), respectively, as described in, among

others, Clark and Ravazzolo (2015) and Krüger, et al. (2021). To roughly gauge the significance of

differences with respect to the baseline forecast described below, we use t-tests as in Diebold and

Mariano (1995) and West (1996), computed with Newey-West standard errors and h+ 1 lags.

We consider a multitude of models, forecast evaluation measures, forecast horizons, evaluation

windows, and variables of interest. As a result, it can be difficult to interpret broad patterns

from our results. We use diffusion indexes to help address this problem, inspired by Knotek and

Zaman (2019). For each model i, each forecast evaluation measure m, each forecast horizon h, each

evaluation window w, and each variable of interest v, let µi,m,h,w,v be the ratio of the realization of

this evaluation measure (that is, RMSE or CRPS) to some realized evaluation measure produced by

10



a benchmark model, where values under 1 suggest improvement in the measure over the benchmark.

For a given evaluation measure m and for each i, h, w, and v, let

fi,m,h,w,v =


1, if µi,m,h,w,v ≥ 1

−1 if µi,m,h,w,v < 1.

(4)

Then, analogous to Knotek and Zaman (2019), for a given evaluation measure m, the diffusion

index at forecast horizon h, with evaluation window w, and for variable of interest v is

(Diffusion Index)m,h,w,v =
r∑

i=1

fi,m,h,w,v (5)

where r is the number of models we consider.

For scenario analysis, we adopt entropic tilting, which can be seen as a non-parametric approach

to conditional forecasting, used in studies such as Cogley, Morozov, and Sargent (2005), Krüger,

Clark, and Ravazzolo (2017), Robertson, Tallman, and Whiteman (2005), and Tallman and Zaman

(2020). Tilting consists of re-weighting the draws from the model’s predictive distribution so as to

obtain a new distribution that satisfies the conditions of interest but remains as close as possible to

the original distribution, where closeness is measured by the Kullback-Leibler divergence. In our

applications, the conditions of interest are either the path of wage growth or the path of aggregate

core inflation over the forecast horizon (the paths are detailed in Section 5). We tilt the first

moments of our predictive distribution toward these paths.

4 Historical Forecast Evaluation

This section reports a historical evaluation of the performance of our models in unconditional

forecasting. In these comparisons, we use the BVAR-SV model with the adaptive Minnesota prior

(AM-BVAR-SV) as the baseline, for a few reasons. First, we are interested in being able to use

multivariate models (BVARs) to capture joint dynamics and predictive distribution questions.

Second, as will become clear, this model and prior choice works relatively well, and using it as the

baseline facilitates comparisons and punchlines in our presentation. Third, a prior of the Minnesota

form has a long, successful track record in macroeconomic forecasting, and the adaptive formulation
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of Chan (2021) is appealing for making the prior’s tightness depend on the data.

We present our forecasting results for core PCE inflation and its components using ratios of

RMSE and CRPS to the corresponding measure for the AM-BVAR-SV baseline forecast. In this

case, values below (above) 1 indicate improvement (deterioration) relative to the AM-BVAR-SV

model. Forecasts for inflation variables are taken directly from the posterior predictive density

implied by our models. That is, since our models include core inflation and its disaggregates,

in our main results we directly use the recursive forecasts (of either core inflation or one of its

components) from these models for our forecast evaluation. We separately consider the efficacy of

obtaining forecasts of aggregate core inflation by aggregating forecasts of the disaggregate compo-

nents. Throughout, we first consider results for the relatively long sub-sample of 1985-2017 that

ends before the pandemic-induced additional volatility, and then we consider results for the shorter

2018-2022 sub-sample and the full 1985-2022 sample.

To first provide a broad, visual summary of how alternative forecast models compare to the

AM-BVAR-SV baseline, Figure 1 presents diffusion indexes for the aggregate and disaggregate

point forecasts across evaluation samples and forecasting horizons, and Figure 2 presents analogous

findings for density forecasts. These visual summaries abstract from the magnitudes of differences

in accuracy and their statistical significance. In these displays, results for CRPS are very similar to

those for RMSE. For the 1985-2017 sample, the gray bars indicate that the baseline AM-BVAR-SV

model generally performs best (yielding high index readings), although with reduced advantage for

core goods inflation at horizons of h=2 and longer. For the 2018-2022 sample, the dominance of the

baseline model is reduced for core PCE, supercore, and housing inflation, but increases some for

goods inflation. On balance, for most measures, samples, and horizons, the AM-BVAR-SV baseline

beats most models, whereas it is not normally beaten by most models.

Starting from that broad perspective, we turn to more detailed, quantitative comparisons of

accuracy across model specifications. Tables 2–5 present our forecasting results for core PCE

inflation and its components, expressed in ratios of RMSE and CRPS to the corresponding measure

for the AM-BVAR-SV baseline forecast. Results for the relatively long sub-sample of 1985-2017

that ends before the pandemic-induced additional volatility appear in the middle panels of Table 2

for core inflation and Tables 3-5 for the three disaggregate components.

Consider first the choice of prior for the BVAR-SV model. Across measures of inflation, the
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baseline adaptive Minnesota prior (i.e., the AM-BVAR-SV forecast) is consistently at least as

good as the simple Minnesota (NM-BVAR-SV) and adaptive Minnesota-Normal Gamma priors

(NGM-BVAR-SV). For aggregate inflation, the NM and NGM priors yield forecasts (both point

and density) slightly less accurate than the AM baseline. For the three disaggregates, forecasts

with the NM and NGM priors are sometimes slightly better than the baeline, but by small margins

and without statistical significance. More frequently, these other priors are slightly to modestly

less accurate than the baseline.

Now consider the additional model features allowed, which are time-varying means (TVM) and

volatility outliers (SVO). Over the 1985-2017 sample, for a given choice of prior, across measures of

inflation, neither of these additional model features offers any consistent improvement over the cor-

responding BVAR-SV specification. But there can be occasional (across the choice of measure and

horizon) gains with time-varying means and volatility outliers. More specifically, TVM improves

forecast accuracy gains in some cases, more typically at longer horizons (as might be expected,

because as the horizon lengthens, the model-implied mean plays a larger role than recent dynamics

as the forecast gradually converges to the unconditional mean), but not consistently. Under the

baseline AM prior, in forecasting aggregate core inflation, adding TVM slightly reduces forecast

accuracy, but not statistically significantly. Among disaggregate components, TVM offers gains for

supercore and core goods inflation at long horizons, but harms accuracy for housing. These same

patterns with the addition of TVM apply under other BVAR priors. Our finding on the mixed

benefits of allowing time variation in means has precedent in studies such as Chan (2023), in which

inclusion of time variation does not necessarily improve forecasting performance.

The addition of volatility outliers to the baseline BVAR-SV specification has essentially no

benefit in the 1985-2017 sample of forecasts. For aggregate inflation, under the baseline AM prior,

SVO typically harms accuracy a little, more sharply for density forecasts than point (as might be

expected, as volatility outlier modeling will impact the spreads of densities more than the means

or medians of predictive distributions), at longer horizons more than shorter. For example, at the

horizon h=8, the AM-BVAR-SVO forecast is less accurate than baseline by 15 percent for CRPS

and 1 percent for RMSE. The same broad pattern also applies with inflation disaggregates. It also

applies under the NM and NGM priors with SVO as compared to the SV specification.

The performance of the AM-BVAR-SV baseline as compared to univariate models is more mixed.
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While adding time-varying means to the BVAR models at least occasionally yields some gains in

the accuracy of 1985-2017 forecasts, adding richer time variation in parameters in the form of the

SVD-GP-NC specification is generally unsuccessful. Across inflation measures, forecasts from this

model are consistently less accurate than the BVAR baseline, often significantly (more sharply for

housing inflation than other measures).

On the other hand, stripping the model down to the UC-SV specification in which inflation is

the sum of a time-varying trend and noise can help forecast accuracy for some inflation measures.

Consistent with the literature, for forecasting aggregate core inflation, the UC-SV model consis-

tently and modestly (statistically significantly in a majority of cases) improves on the accuracy of

the AM-BVAR-SV baseline, by roughly 1 to 4 percent in RMSE and 2 to 7 percent in CRPS. The

same applies to forecasts of core goods inflation, with comparable UC-SV gains but without any

statistical significance. However, for both point and density forecasts of core services ex housing

and housing inflation, the UC-SV model is less accurate than the AM-BVAR-SV baseline. For

these measures, the BVAR’s advantage tends to increase with the horizon, peaking at about 10

percent for supercore and 20 percent for housing.

In the shorter sub-sample of 2018-2022 that includes the volatility of the pandemic period, the

patterns in forecast accuracy — reported in the bottom panel of each table — broadly resemble

those for the longer sub-sample, but with some differences. Considering the choice of prior for

the BVAR-SV model, it continues to be the case that the AM prior is as good as or better than

the NM and NGM priors, although not without some exceptions. In this shorter sample, for both

point and density forecast accuracy, the NM and NGM priors perform very similarly to the AM

baseline for aggregate inflation, and sometimes slightly better but other times slightly worse for

the disaggregate inflation measures (rarely with statistical significance, except at the horizon h=8

for which the sample includes very few independent observations).

As to the additional model features of time-varying means and outlier volatility, in this shorter

sub-sample these features have modestly more benefit than in the longer sub-sample, but not on

a consistent basis. In the shorter sub-sample, the addition of time-varying means to the baseline

AM-BVAR-SV specification slightly reduces the accuracy of forecasts of aggregate and core goods

inflation, whereas adding TVM slightly improves accuracy for supercore inflation (around 2-3 per-

cent) and notably (up to 15 percent) at horizons up to h=4 for housing. These same patterns
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obtained with the baseline AM prior also apply under the NM and NGM priors.

In the case of volatility outliers (SVO), the addition of this feature to the baseline AM-BVAR-

SV model has little impact on the accuracy of point forecasts but offers small improvements to the

accuracy of density forecasts at longer horizons. At the horizon h=8, the SVO specification improves

on the baseline CRPS accuracy by roughly 2 to 4 percent. The finding that the outlier modeling

improves forecasts in samples including the pandemic but not generally before is consistent with

the macroeconomic forecast results of Carriero, et al. (2022b).

As to the accuracy of BVAR models compared to univariate specifications, the SVD-GP-NC

model that allows rich time variation in parameters has a little more success in improving forecast

accuracy in the shorter sub-sample — yielding gains for core services ex housing and housing at

some horizons — than in the longer sub-sample. But it remains the case that this model fails to

offer consistent gains across measures (e.g., compared to the AM-BVAR-SV baseline, this model’s

forecasts are relatively good for supercore inflation and relatively poor for housing and goods

inflation).

Perhaps more notably, our baseline AM-BVAR-SV model performs better compared to the UC-

SV model in the shorter sub-sample than the longer sub-sample. Across measures and horizons,

forecasts from the AM-BVAR-SV model are generally more accurate than forecasts from the UC-

SV model. For most inflation measures and horizons, point and density forecasts from the UC-SV

model are less accurate than forecasts from the AM-BVAR-SV baseline, by notable degrees (e.g.,

by more than 20 percent in CRPS at h=2 for aggregate core and goods). In this sub-sample, the

UC-SV model only offers gains for shorter horizon forecasts of housing inflation and otherwise falls

short of the baseline forecasts. As we will show below, the better performance of the BVAR baseline

in the more recent sample reflects some tendency for its forecasts to more quickly pick up the surge

of inflation that began in 2021.

As might be expected, forecast accuracy results for the full sample of 1985-2022 (provided in

the top panel of the tables) contain elements of the patterns in the sub-sample results. In the full-

sample results on point and density forecast accuracy, as in the sub-samples, among the priors for

the BVAR-SV model, the AM prior is in most cases slightly better than the NM and NGM priors,

but occasionally slightly worse (with very few instances of statistical significance). Given the AM

prior, extending the BVAR-SV model to include time-varying means (TVM) most commonly makes
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forecasts slightly less accurate but occasionally makes them more accurate (e.g., housing inflation

for some horizons, and with gains peaking at 5 percent for core goods at h=8), not by enough to

be statistically significant. Similarly, extending the BVAR-SV model to include volatility outliers

(SVO) has no consistent benefit; SVO’s negative impacts are worse for density forecasts at h=8

than shorter horizons and point forecasts at all horizons.

As to univarate models compared to the AM-BVAR-SV specification, over the full sample the

accuracy of forecasts from the SVD-GP-NC model are nearly always worse than baseline, for all

inflation measures and horizons and both point and density forecasts (with one exception, for

the CRPS of supercore inflation at h=8). In the case of the UC-SV specification, for both point

and density forecasts of core PCE inflation, this univariate trend plus noise model is sometimes

better but sometimes worse in accuracy, without any differences that are statistically significant.

In contrast, for the inflation disaggregates, the baseline AM-BVAR-SV yields better accuracy for

horizons from h=2 through 8 quarters ahead, sometimes (not always) with statistical significance.

In order to shed some light on time-varying forecast performance, Figure 3 presents time series of

aggregate core PCE inflation forecasts from the UC-SV, AM-BVAR-SV, and SVD-GP-NC models.11

Dates in this figure represent the date of each forecast origin, t. As the figure shows, in broad terms

these forecasts generally track together for much of the sample. UC-SV and AM-BVAR-SV forecasts

move together relatively closely. While often tracking with these projections, the forecast from the

SVD-GP-NC model shows more volatility over much of the sample. Near the end of the sample,

the AM-BVAR-SV forecast appears to react more quickly to increases in past inflation, rising more

quickly than the UC-SV forecast. That reaction likely helps account for the better performance –

for aggregate inflation – of the BVAR-SV model compared to UC-SV in the 2018-2022 sub-sample

relative to the 1985-2017 sub-sample. Future research will be needed to determine how quickly

these models pick up upon the decline in inflation and whether post-pandemic forecast accuracy

for these models returns to pre-pandemic patterns.

Overall, we view these results as indicating the BVAR-SV model with an adaptive Minnesota-

style prior to be an effective tool for forecasting inflation in the core services ex housing, housing,

and core goods components of core PCE inflation.

11In the interest of readability we only present forecasts for this specific BVAR-SV model. However, other BVAR-
SV models exhibit largely the same dynamics and patterns as this particular BVAR-SV model.
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4.1 “Bottom-up” approach to aggregate inflation forecasting

A natural question for research is whether aggregate inflation is best forecast directly or by ag-

gregating forecasts of the three components that we consider. In the results above, the aggregate

inflation forecast is directly taken from the models that include aggregate inflation. But it is possi-

ble that near-singularity arising from collinearity of inflation components with aggregate inflation

could adversely impact forecast accuracy due to issues with numerical precision and with distortion

in stochastic volatility computations. In our experience, we have found that some models (but less

so with the baseline BVAR-SV specifications) that feature this collinearity tend to be vulnerable

to explosive forecasts, especially as the model size grows and complexity is added. As a result, an

alternative method to forecasting aggregate inflation is to instead drop aggregate inflation from the

estimated model, forecast the disaggregate components, and then create an aggregate forecast by

using the inflation weights of each component. This approach is commonly known as the ”bottom-

up” approach and has been widely applied to inflation forecasting (e.g., Hubrich (2005)), although

not widely with success (e.g., Faust and Wright (2013)).

Accordingly, we consider forecasts of aggregate inflation in which we drop core inflation from

each model and instead forecast the disaggregates and aggregate inflation as a weighted average of

the component forecasts. We approximate the chain-weighted inflation weights by taking, for each

pseudo-real-time period, the latest expenditure shares of each component. We then use forecasts of

the disaggregates and the approximated weights to produce aggregate forecasts for core inflation. In

our application we take just the latest expenditure shares and use them for all forecasting horizons,

but alternatively one could forecast expenditure shares.12 However, this would come at the cost

of introducing extra parameters with their associated estimation uncertainty. So we abstain from

this procedure, since we find that expenditure shares tend to move little over our forecast horizons.

In practice, we produce aggregate UC-SV forecasts by producing univariate UC-SV forecasts for

each component of inflation and then aggregating those forecasts. For the BVAR-SV aggregate

forecast, we can simply take the component forecasts from the vector yt+h. Finally, for the SVD-

WN model we estimate three separate models, one for each component of inflation, and aggregate

12An alternative approach to approximating chain-weights is to follow the approach used in the replication files
of Stock and Watson (2016), which calculates an average expenditure share weight for component i at time t as

wi
t =

eit+eit−1∑
i eit+

∑
i eit−1

, where eit represents the total expenditure on component i at time t.
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their respective component forecasts to create an aggregate forecast.

Table 6 compares the bottom-up approach to the direct approach to forecasting aggregate infla-

tion used in earlier tables of results and summarized above. For each model and prior specification,

we report the ratio of the RMSE or CRPS from the bottom-up approach to the RMSE or CRPS

from the direct approach; entries below (above) 1 mean that the bottom-up approach beats (falls

short of) the direct approach. These results fairly consistently show little advantage to a bottom-up

approach to forecasting aggregate inflation. For the UC-SV and baseline AM-BVAR-SV specifi-

cations, the bottom-up forecasts are less accurate than the direct forecasts, most noticeably for

UC-SV density forecasts (less so for UC-SV point forecasts). For other Bayesian prior and model

feature choices, the bottom-up approach is sometimes slightly better than the direct, and sometimes

slightly worse. For these models, there are no consistent gains to a bottom-up approach. However,

at shorter horizons (not longer horizons), the bottom-up approach does slightly improve forecasts

from the SVD-GP-NC model. In the 2018-2022 sub-sample, as in the longer sub-sample, there is

no consistent benefit to the bottom-up approach. For example, as regards forecast accuracy from

the UC-SV and baseline models, the bottom-up approach is relatively not as poor in the short

sub-sample than in the long sub-sample, but it is not better, either. On balance, there seems to be

little reason to use a bottom-up approach, although in some settings, doing so has small positive

impacts on forecast accuracy.

5 Looking Ahead: 2023:Q4-2026:Q4

The last section’s results on historical forecast accuracy establish that the BVAR-SV model with

an adaptive Minnesota-style prior is an effective tool for forecasting inflation in the core services

ex housing, housing, and core goods components of core PCE inflation, as well as aggregate core

inflation. Accordingly, we use the AM-BVAR-SV model to assess the inflation outlook going for-

ward.13 This BVAR specification is useful for capturing the historical comovement of inflation, its

components, and wage growth and the resulting implications for the inflation outlook over the next

few years. We estimate the model using the latest available data, i.e., 1959:Q2 through 2023:Q3,

and use the estimated model to forecast inflation, its components, and ECI growth from 2023:Q4

13The BVAR-SV model with time-varying means (i.e., AM-BVAR-SV-TVM) generates similar forecasts for the
period ahead; therefore, for the sake of brevity, we do not report them.
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through 2026:Q4.

This section begins by presenting baseline unconditional forecasts and then examines the infla-

tion outlook under some alternative scenarios, one conditioning on a path of wage growth returning

to 3 percent and the other conditioning on a path of aggregate core inflation returning to 2 percent.

5.1 Baseline forecasts

Following standard practice in the literature to incorporate high-frequency intra-quarterly infor-

mation, we entropically tilt (condition) the current quarter, i.e., 2023:Q4, unconditional forecast of

core PCE inflation toward the Q4 nowcast estimate (of core PCE inflation, not the other variables

in the model) taken from the Cleveland Fed’s website.14 We refer to the resulting conditional

forecasts as the baseline forecasts and characterize them as unconditional forecasts because the

only condition is one that simply accounts for the most recent information on aggregate core PCE

inflation. Table 7 reports these forecasts (point forecasts computed as posterior means) under the

column heading labeled “Base.” The top panel in the table reports quarterly annualized growth

rates, and the bottom panel reports the corresponding forecasts expressed in four-quarter growth

rates (i.e., averages of annualized quarterly log growth rates over four quarters, which in the fourth

quarter of each year represent Q4/Q4 inflation rates for the year).

The table shows that the baseline forecast has core PCE inflation slowly decelerating to a

quarterly annualized rate of 2.6 percent by the end of 2026. The slow decline of Q4/Q4 core

inflation from 3.5 percent in 2023 to 2.6 percent in 2026 is associated with a projected gradual

moderation in the growth rate of nominal wages, from the current annualized quarterly rate of 3.8

percent in 2023:Q4 to 3.4 percent in 2026:Q1 (and, on Q4/Q4 basis, from 4.1 percent in 2023 to

3.4 percent in 2026).

The baseline forecast projects moderation in both supercore and housing components of in-

flation, but at a differing pace. Supercore inflation is projected to decline from an annualized

quarterly rate of 3.7 percent in 2023:Q4 to 3.1 percent in 2026:Q4, and housing inflation slows

from 5.6 percent to 4.0 percent. In contrast, core goods inflation is projected to increase slightly

14As of November 15, 2023, the Q4 nowcast of core PCE inflation is estimated to be 3.1 percent (quarterly
annualized rate). Cleveland Fed inflation nowcasts are based on the model developed in Knotek and Zaman (2017).
Knotek and Zaman (2023) document the competitive accuracy of Cleveland Fed nowcasts compared to nowcasts from
professional forecasters and other competing approaches.
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from a flat 0.0 percent to an annualized rate of 0.4 percent at the end of 2026. On a Q4/Q4 basis,

smoothing through quarterly fluctuations, all three components are forecast to decline from 2023

to 2026, most sharply in the case of housing inflation (from 6.5 to 4.1 percent) and significantly in

the case of supercore inflation (from 3.9 to 3.2 percent), but barely in the case of goods inflation

(from 0.5 to 0.4 percent).

The forecasted Q4/Q4 inflation rates in 2026 are somewhat higher than their pre-COVID (2017-

19) averages of 3.3 percent (housing), 2.1 percent (supercore), and -0.6 percent (core goods). Hence,

not surprisingly, in 2026 aggregate core PCE inflation is 60 basis points above the Federal Reserve’s

longer-run inflation target of 2 percent and 90 basis points above its 2017-19 average rate. Note

that the solidly negative pre-pandemic rate of goods inflation reflects a pattern that emerged in

1996. In an accounting sense, sustained modest deflation in goods prices contributed to keeping

aggregate core inflation low from the mid-1990s up until the COVID-19 pandemic. However, in

recent years, some public commentary has raised some concern that increased global fragmentation

in trade and de-globalization could contribute to higher goods inflation and in turn slow progress

toward returning aggregate inflation to the Federal Reserve’s 2 percent goal. Results below will

shed some additional light on the possible importance of returning to below-zero goods inflation.

While the baseline forecast just described refers to the means of predictive distributions, there is

of course considerable uncertainty around the outlook captured in the model’s (posterior) forecast

distributions. We turn now to considering some probabilistic assessments of the outlook using these

distributions. Some estimates consider particular cutoff values for inflation, its components, and

wage growth. We use cutoffs based on pre-pandemic (2017-19 average) rates of inflation and wage

growth, with some adjustment to reflect the fact that, on average from 2017 through 2019, core

PCE inflation was 30 basis points below the FOMC’s longer-run inflation target of 2 percent. For

cutoffs used in probabilistic assessments, we take a simple approach of using conditions or scenarios

that mark up each component and wage growth by a bit more or a bit less than 30 basis points,

consistent with the shortfall in average core PCE inflation for 2017-19. The bit more or bit less

is chosen to make for nice round numbers in the conditions. (Weighted by spending shares, the

component cutoffs correspond to aggregate core inflation of 2 percent.) For simplicity, below we

will refer to “pre-pandemic averages” of inflation, its components, and wage growth even though

the values used in these calculations are by design a little higher than the actual 2017-19 average

20



values.

Panel (a) of Figure 4 plots the marginal probability of core PCE inflation (the four-quarter

average rate) being less than or equal to 2 percent over the forecast horizon. Panels (b), (c),

and (d) provide the marginal probabilities of the components’ inflation rates being less than their

respective pre-pandemic averages (adjusted as noted above). Based on the baseline forecast density,

the probability that core PCE inflation averages 2 percent or less is below 40 percent through

2026:Q4. So while the baseline forecast has a mean core inflation rate well above 2 percent in

2026, the (40 percent) probability of reaching 2 percent is not small. As can be seen, contributing

factors to this moderate probability are comparable probabilities of negative core goods inflation

(probability below 50 percent in most quarters), supercore inflation below 2.5 percent (probability

less than 40 percent), and housing inflation below 3.5 percent (probability less than 40 percent).

Figure 5 plots joint probabilities of observing both core PCE inflation ≤ 2 percent and compo-

nent inflation rates above or below the cutoff values specified as adjustments of 2017-19 averages.

The left panels plot the joint probabilities that are based on the components’ inflation rates below

the respective thresholds, and the right panels at or above the thresholds (note that the right panels

use an axis scaling different from the left panels). For both the core goods and supercore compo-

nents, the joint probability of seeing core PCE inflation ≤ 2 percent and the component’s inflation

rate below the respective threshold is significantly higher (by more than 20 percentage points) than

the joint probability of core inflation at or below 2 percent and the component’s inflation rate above

its respective threshold. In the case of housing, the differences in the joint probabilities of housing

above or below the threshold and seeing core inflation at or below 2 percent are relatively modest.

For example, in 2026:Q4, the joint probability of PCE inflation at or below 2 percent and housing

inflation below 3.5 percent is a little above 20 percent, whereas the corresponding probability with

housing inflation at or above 3.5 percent is nearly 16 percent, little different.

Figure 6 reports conditional probabilities of core PCE inflation at or below 2 percent, given

component inflation rates either below or above the cutoffs representing rough measures of pre-

pandemic levels. The left panels plot the conditional probabilities of core PCE given inflation in

the components below the indicated threshold, and the right panels (with axes scaled differently

than the left panels) provide results for component inflation rates at or above the threshold. The

results in the left panels indicate that, conditional on seeing inflation in the components at levels
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below their adjusted pre-pandemic levels, the probabilities of core PCE inflation at or below 2

percent are significantly higher than 50 percent, especially for the goods and supercore components.

For example, in 2026:Q4, conditional on core goods inflation below zero, the probability of core

PCE inflation at or below 2 percent is 73 percent, and conditional on supercore inflation below 3.5

percent, the probability of core PCE inflation at or below 2 percent is 83 percent. The probability

of PCE inflation of 2 percent or less is still high conditioning on housing inflation returning to its

pre-pandemic level, but at 60 percent in 2026:Q4 it is not as high as when conditioning on pre-

pandemic levels of other components. Conversely, conditional probabilities of core PCE inflation at

or below 2 percent in 2026 are low if goods inflation is persistently positive, housing inflation stays

above 3.5 percent, or supercore inflation is above 2.5 percent, respectively. These probabilities are

especially low — between 8 and 12 percent — in the cases of goods inflation remaining positive

and supercore inflation remaining at or above 2.5 percent, compared to a probability of 25 percent

with housing inflation remaining at or above 3.5 percent.

The fact that housing inflation getting back to a pre-pandemic level is projected to matter

for returning inflation to 2 percent but somewhat less sharply than estimated for the other two

inflation components is likely tied to the respective weights of the components in aggregate core

PCE inflation. At present, supercore spending is by far the largest component (of these three

components) of consumption, with a nominal spending share of 57 percent. Goods are second in

importance, with a spending share of 26 percent, and housing is third, at a spending share of 17

percent.

5.2 Conditional forecast: Wage scenario

The baseline forecast has nominal wage growth moderating to an annualized rate of 3.5 percent in

2025 and 3.4 percent on a Q4/Q4 basis in 2026. This pace of wage growth is about 0.5 percentage

points higher than 3 percent, the pace we have taken — in view of pre-pandemic averages — to

be roughly consistent with core PCE inflation of 2 percent. There are reasons to believe that the

projected slowing in the economy in response to restrictive monetary policy may lead to quicker

wage moderation than indicated in the baseline forecast. DeLuca and van Zandweghe (2023),

among others, project nominal wage growth to decline to 3 percent by 2025. If that were to occur,

would the slower wage growth be associated with a faster moderation in core inflation than implied
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in the baseline? To answer this question, we build a scenario using our model, assuming that by

the start of 2026 and beyond, nominal wage growth averages 3 percent. The resulting conditional

forecasts are shown in Table 7 under the column labeled “Wage Sc.”

Conditioning the model with a nominal wage path that calls for wage growth to decline to 3

percent by early 2026 is associated with a quicker decline in core PCE inflation than implied by

the baseline. The forecast has core PCE inflation moving down to 2.2 percent in 2026 (which is

identical to the inflation forecast reported in the Federal Reserve’s Summary of Economic Projec-

tions released following the September 2023 FOMC meeting). The forecasts of the components

reveal that the steeper fall in aggregate core PCE inflation in the scenario as compared to the

baseline projection is associated with declines in the inflation rates of all three components that

are also steeper in the scenario than in the baseline. This scenario also reveals that of the three

components, supercore and core goods are relatively more sensitive to wage developments than is

housing inflation: In 2026, the Q4/Q4 inflation rates for supercore and goods are 50-60 basis points

lower in the wage scenario than in the baseline forecast, whereas the inflation rate for housing is

just 20 basis points lower in the scenario than in the baseline.

5.3 Conditional forecast: Core PCE 2 percent scenario

The previous scenario illustrated that, according to our benchmark AM-BVAR-SV model, a mod-

eration in nominal wage growth to 3 percent is consistent with returning core inflation closer to 2

percent, but not quite with getting core inflation there. Alternatively, we can assess what paths of

inflation components and wage growth will be consistent with core inflation reaching 2 percent in

2026 by explicitly conditioning on such a lower path of core PCE inflation. The resulting conditional

forecasts are reported in Table 7 under the column labeled “Core Sc.”

Under this scenario, our baseline BVAR projects that moderation of core PCE inflation to 2

percent in 2026 would be associated with more slowing of inflation in the supercore and goods

components than is projected under the baseline case and the wage growth scenario, more so

when compared to the baseline forecast than the wage growth scenario. On a Q4/Q4 basis, goods

(supercore) inflation is projected to slow to -0.6 (2.6) percent in the 2 percent inflation scenario,

compared to -0.2 (2.7) percent in the wage scenario and 0.4 (3.2) percent in the baseline. Housing

inflation and wage growth show relatively less change in this scenario as compared to the wage
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scenario and baseline forecast. The Q4/Q4 housing inflation forecast for 2026 is 3.9 percent in the

2 percent inflation scenario, the same as in the wage scenario in which core PCE inflation remains a

little above 2 percent, and 20 basis points below the baseline forecast of wage growth. The Q4/Q4

forecast of wage growth in this scenario is very close to the 3 percent pace considered in the wage

scenario.

Together, the results of the slower wage growth and 2 percent core PCE inflation scenarios may

be seen as pointing to the likelihood that, for core PCE inflation to near or reach the FOMC’s

longer-run target of 2 percent over the next few years, the three components of core inflation and

wage growth will need to slow to rates close to, although a little above, their pre-pandemic averages.

6 Conclusions

Motivated by the recent emphasis that some economic commentators and policymakers have placed

on a three-component breakdown of core inflation into goods excluding food and energy, services

excluding energy and housing, and housing, this paper examines the efficacy and implications of

forecasts of the three-component breakdown of core inflation in the US.

We first examine a range of models and establish the historical efficacy of a BVAR with stochas-

tic volatility in five variables, consisting of core PCE inflation, its three components, and wage

growth. An examination of the historical accuracy of point and density forecasts indicate that this

model estimated with an adaptive Minnesota-style prior is an effective tool for forecasting inflation

in the core services ex housing, housing, and core goods components of core PCE inflation, as well

as aggregate core inflation (although less so for aggregate inflation than its components). Adding

features such as time-varying parameters or more variables either fails to improve or harms forecast

accuracy. Our historical results also indicate that aggregate inflation is best forecast directly; no

consistent benefit can be achieved by aggregating disaggregate components.

We also examine medium-term forecasts for the period ahead, 2023 through 2026. In particular,

we consider the likelihood of inflation returning to the Federal Reserve’s 2 percent target under our

model’s baseline forecast distribution. Our model’s baseline (mean) projection puts core inflation

at 2.6 percent in 2026, well below its level in 2023 but still elevated relative to the Federal Reserve’s

longer-run target of 2 percent. But the model’s forecast puts a 40 percent probability on hitting
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2 percent core inflation in 2026. In these baseline predictive distributions, a return of core PCE

inflation to 2 percent or less over the next few years is much higher when conditioning on goods or

supercore inflation slowing to near-pre-pandemic levels than when conditioning on these components

remaining above the same thresholds.

We also analyze alternative scenarios. One features a gradual decline of wage growth to near

its pre-pandemic level to assess the likelihood that such a development may be key to continued

disinflation. The second scenario conditions on a decline of aggregate core inflation to 2 percent to

provide a joint assessment of the paths of component inflation rates and wage growth most likely

associated with a return of aggregate inflation to target. These scenario analyses indicate that

slower wage growth will likely be associated with reduced inflation in all three components, not

just supercore, but housing less so than goods and supercore inflation. In addition, based on the

historical dynamics of inflation and its components as captured by the BVAR, it is most likely the

case that a return of core inflation to the Federal Reserve’s 2 percent target will be associated with

all three components returning to near pre-pandemic levels.
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Table 1: List of models

Identifier Model Type Prior Time-varying Parameters Outlier Adjustment

UC-SV UC-SV N/A N/A None
NM-BVAR-SV BVAR-SV Minnesota None None
NM-BVAR-SVO BVAR-SV Minnesota None CCMM2022
NM-BVAR-SV-TVM BVAR-SV Minnesota Intercept None
NM-BVAR-SVO-TVM BVAR-SV Minnesota Intercept CCMM2022
AM-BVAR-SV BVAR-SV Adaptive Minnesota None None
AM-BVAR-SVO BVAR-SV Adaptive Minnesota None CCMM2022
AM-BVAR-SV-TVM BVAR-SV Adaptive Minnesota Intercept None
AM-BVAR-SVO-TVM BVAR-SV Adaptive Minnesota Intercept CCMM2022
NGM-BVAR-SV BVAR-SV Minnesota Normal-Gamma None None
NGM-BVAR-SVO BVAR-SV Minnesota Normal-Gamma None CCMM2022
NGM-BVAR-SV-TVM BVAR-SV Minnesota Normal-Gamma Intercept None
NGM-BVAR-SVO-TVM BVAR-SV Minnesota Normal-Gamma Intercept CCMM2022
SVD-GP-NC SVD-WN G-prior, no clustering Coefficients None

Note: All models feature stochastic volatility in their innovations. Models with time variation in
their intercepts assume a random walk state evolution. SVD models with time variation in its
coefficients assume a white-noise state evolution.
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Table 2: Forecast ratios for RMSEs and CRPSs, core PCE inflation

Model / Horizon
h=1 h=2 h=4 h=8

RMSE CRPS RMSE CRPS RMSE CRPS RMSE CRPS

1985:Q1 - 2022:Q4
UC-SV 1.058 1.006 1.073 1.011 1.016 0.993 1.031 0.990
NM-BVAR-SV 1.005 1.009 1.026 1.030* 1.031 1.033 1.035 1.024
NM-BVAR-SVO 1.012 1.025** 1.026 1.058*** 1.028 1.095*** 1.031 1.133***
NM-BVAR-SV-TVM 1.009 1.018 1.037** 1.040** 1.054** 1.055*** 1.054 1.035
NM-BVAR-SVO-TVM 1.007 1.022** 1.033* 1.063*** 1.047* 1.099*** 1.052 1.110***
AM-BVAR-SVO 1.002 1.012*** 0.998 1.029*** 0.995 1.059*** 1.002 1.103***
AM-BVAR-SV-TVM 1.010 1.012 1.024 1.021 1.031 1.027 1.027 1.010
AM-BVAR-SVO-TVM 1.010 1.020*** 1.032* 1.050*** 1.034 1.076*** 1.034* 1.083***
NGM-BVAR-SV 1.012** 1.011*** 1.003 1.009*** 1.003 1.012*** 1.004 1.016***
NGM-BVAR-SVO 1.013** 1.021*** 1.004 1.040*** 1.001 1.075*** 1.006 1.122***
NGM-BVAR-SV-TVM 1.016 1.023 1.027 1.018 1.037 1.036* 1.039* 1.021
NGM-BVAR-SVO-TVM 1.029 1.041** 1.040* 1.053*** 1.040 1.082*** 1.059*** 1.096***
SVD-GP-NC 1.076 1.086 1.129** 1.074 1.086 1.056 1.052 1.019

1985:Q1 - 2017:Q4
UC-SV 0.988 0.976 0.969* 0.946*** 0.958* 0.932*** 1.034 0.950*
NM-BVAR-SV 1.011 1.012 1.046 1.039** 1.058 1.041 1.022 1.013
NM-BVAR-SVO 1.021 1.031** 1.047 1.075*** 1.053 1.125*** 1.025 1.177***
NM-BVAR-SV-TVM 1.021 1.023* 1.057** 1.047** 1.096** 1.063*** 1.102 1.041
NM-BVAR-SVO-TVM 1.019 1.029** 1.058** 1.080*** 1.091* 1.129*** 1.103 1.156***
AM-BVAR-SVO 1.003 1.014*** 1.000 1.037*** 0.995 1.080*** 1.011* 1.153***
AM-BVAR-SV-TVM 1.012 1.011 1.017 1.016 1.033 1.018 1.036 1.002
AM-BVAR-SVO-TVM 1.012 1.022*** 1.025 1.051*** 1.032 1.085*** 1.051 1.112***
NGM-BVAR-SV 1.016** 1.012*** 1.006 1.011*** 1.008 1.017*** 1.012* 1.024***
NGM-BVAR-SVO 1.015** 1.024*** 1.008* 1.051*** 1.006 1.103*** 1.023*** 1.182***
NGM-BVAR-SV-TVM 1.029 1.026 1.009 1.008 1.050 1.027 1.062 1.013
NGM-BVAR-SVO-TVM 1.047* 1.049*** 1.035* 1.057*** 1.048 1.091*** 1.094** 1.121***
SVD-GP-NC 1.121* 1.115** 1.090* 1.029 1.064 0.995 1.106 1.000

2018:Q1 - 2022:Q4
UC-SV 1.147 1.105 1.216 1.246 1.068 1.176 1.029 1.106**
NM-BVAR-SV 0.996 1.001 0.995 0.994 1.006 1.009 1.045** 1.055**
NM-BVAR-SVO 0.999 1.004 0.992 0.994 1.004 1.004 1.037** 1.010
NM-BVAR-SV-TVM 0.992 0.999 1.005 1.014 1.011 1.031 1.011** 1.019***
NM-BVAR-SVO-TVM 0.991 0.998 0.993 1.001 1.005 1.009 1.006* 0.978**
AM-BVAR-SVO 0.999 1.003 0.995 0.999 0.996 0.994 0.994 0.960***
AM-BVAR-SV-TVM 1.007 1.014 1.034 1.037 1.030 1.055 1.019 1.035**
AM-BVAR-SVO-TVM 1.007 1.014 1.043 1.046 1.035 1.050 1.019** 1.000
NGM-BVAR-SV 1.005 1.008 0.998 0.999 0.998 0.998 0.997 0.993*
NGM-BVAR-SVO 1.009 1.011 0.999 0.999 0.996 0.988 0.991 0.952***
NGM-BVAR-SV-TVM 0.997 1.013 1.054 1.054 1.025 1.064 1.018 1.045**
NGM-BVAR-SVO-TVM 1.002 1.015 1.049 1.037 1.032 1.055 1.028* 1.025
SVD-GP-NC 1.011 0.993 1.188 1.237 1.106 1.241 1.003 1.076

Note: Values below 1 indicate improvement over the AM-BVAR-SV model. Significance assessed
by Diebold-Mariano-West test using Newey-West standard errors with h + 1 lags. *, **, and ***
represent the .10, .05, and .01 significance levels, respectively. Significance was not assessed for the
2020:Q1 - 2022:Q4 sub-sample due to the short sub-sample size. Entries in bold denote the lowest
ratio for a given forecasting horizon and measure.
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Table 3: Forecast ratios for RMSEs and CRPSs, core PCE services excl. housing inflation

Model / Horizon
h=1 h=2 h=4 h=8

RMSE CRPS RMSE CRPS RMSE CRPS RMSE CRPS

1985:Q1 - 2022:Q4
UC-SV 1.033 1.028 1.078** 1.059* 1.075** 1.071** 1.091** 1.085**
NM-BVAR-SV 0.993 1.002 1.009 1.016 1.001 1.004 1.002 0.997
NM-BVAR-SVO 1.000 1.015 1.009 1.031 0.999 1.042** 1.003 1.088**
NM-BVAR-SV-TVM 0.999 1.009 1.015 1.019 1.019 1.012 1.009 0.989
NM-BVAR-SVO-TVM 1.000 1.016 1.014 1.029 1.010 1.037** 1.008 1.054*
AM-BVAR-SVO 1.001 1.006** 0.999 1.015*** 0.997 1.035*** 1.004 1.082***
AM-BVAR-SV-TVM 1.001 1.004 1.007 1.007 1.005 0.994 0.999 0.981
AM-BVAR-SVO-TVM 1.002 1.013 1.012 1.022 1.003 1.025* 1.005 1.041**
NGM-BVAR-SV 1.011* 1.009** 1.001 1.006** 1.002 1.008*** 1.004 1.014***
NGM-BVAR-SVO 1.013* 1.015*** 1.002 1.023*** 1.001 1.047*** 1.010 1.100***
NGM-BVAR-SV-TVM 1.018 1.023 1.007 1.006 1.013 1.004 1.020 0.997
NGM-BVAR-SVO-TVM 1.006 1.018 1.004 1.019 1.007 1.029** 1.034* 1.057***
SVD-GP-NC 1.041 1.047 1.089** 1.067* 1.004 1.003 1.014 0.984

1985:Q1 - 2017:Q4
UC-SV 1.033 1.032 1.079* 1.057* 1.092** 1.072** 1.105** 1.082**
NM-BVAR-SV 0.993 1.004 1.012 1.020 1.008 1.010 0.988 0.986
NM-BVAR-SVO 1.003 1.018 1.014 1.038* 1.006 1.054** 0.993 1.102**
NM-BVAR-SV-TVM 1.007 1.016 1.025 1.026 1.032 1.017 1.005 0.980
NM-BVAR-SVO-TVM 1.006 1.021 1.022 1.037* 1.020 1.047** 1.006 1.064*
AM-BVAR-SVO 1.001 1.006** 0.999 1.016*** 0.997 1.041*** 1.009 1.104***
AM-BVAR-SV-TVM 1.007 1.009 1.013 1.011 1.011 0.995 0.988 0.966***
AM-BVAR-SVO-TVM 1.011 1.020 1.020 1.029* 1.010 1.031* 0.996 1.044**
NGM-BVAR-SV 1.011 1.008* 1.001 1.006* 1.003 1.010*** 1.007 1.018***
NGM-BVAR-SVO 1.012 1.014*** 1.003 1.027*** 1.004 1.057*** 1.017** 1.127***
NGM-BVAR-SV-TVM 1.026 1.028 1.006 1.007 1.027 1.007 1.019 0.987
NGM-BVAR-SVO-TVM 1.022 1.029 1.014 1.029 1.015 1.035** 1.030 1.057**
SVD-GP-NC 1.061 1.067 1.070* 1.052 1.020 1.001 1.046 0.989

2018:Q1 - 2022:Q4
UC-SV 1.033 1.010 1.074 1.072 1.026 1.065 1.055 1.098
NM-BVAR-SV 0.993 0.995 0.997 0.990 0.980 0.973* 1.039* 1.054**
NM-BVAR-SVO 0.989 1.000 0.990 0.994 0.979 0.985 1.028* 1.023
NM-BVAR-SV-TVM 0.973 0.980 0.977 0.981 0.981 0.990 1.020** 1.030***
NM-BVAR-SVO-TVM 0.981 0.991 0.981 0.988 0.979 0.987 1.013 1.002
AM-BVAR-SVO 0.997 1.005 0.998 1.007 0.995 1.004 0.992 0.975***
AM-BVAR-SV-TVM 0.981 0.984 0.982 0.983 0.986 0.993 1.028 1.049**
AM-BVAR-SVO-TVM 0.972 0.982 0.980* 0.988 0.982 0.995 1.029** 1.027
NGM-BVAR-SV 1.010 1.011* 1.000 1.004 0.998 0.999 0.998 0.994
NGM-BVAR-SVO 1.016 1.020 1.000 1.005 0.993 1.000 0.990 0.968***
NGM-BVAR-SV-TVM 0.988 0.997 1.011 1.001 0.972 0.989 1.021 1.049*
NGM-BVAR-SVO-TVM 0.952* 0.965* 0.966* 0.967 0.985 1.002 1.042* 1.057*
SVD-GP-NC 0.972 0.953 1.159 1.144 0.956 1.014 0.925*** 0.956

Note: Values below 1 indicate improvement over the AM-BVAR-SV model. Significance assessed
by Diebold-Mariano-West test using Newey-West standard errors with h + 1 lags. *, **, and ***
represent the .10, .05, and .01 significance levels, respectively. Significance was not assessed for the
2020:Q1 - 2022:Q4 sub-sample due to the short sub-sample size. Entries in bold denote the lowest
ratio for a given forecasting horizon and measure.
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Table 4: Forecast ratios for RMSEs and CRPSs, PCE housing inflation

Model / Horizon
h=1 h=2 h=4 h=8

RMSE CRPS RMSE CRPS RMSE CRPS RMSE CRPS

1985:Q1 - 2022:Q4
UC-SV 0.992 0.991 1.022 1.030 1.109** 1.106** 1.166** 1.149**
NM-BVAR-SV 1.017 1.018 1.007 1.009 1.013 1.013 1.031* 1.045*
NM-BVAR-SVO 1.018 1.021* 1.009 1.012 1.015 1.022 1.029* 1.075**
NM-BVAR-SV-TVM 0.993 0.987 0.976 0.977 0.991 0.999 1.047 1.047
NM-BVAR-SVO-TVM 0.990 0.989 0.971 0.975 0.990 1.004 1.046 1.070
AM-BVAR-SVO 1.000 1.002 1.002 1.004 1.001 1.007 0.998 1.033*
AM-BVAR-SV-TVM 0.993 0.985 0.985 0.986 1.013 1.019 1.062 1.056
AM-BVAR-SVO-TVM 0.993 0.988 0.983 0.986 1.010 1.019 1.061 1.073
NGM-BVAR-SV 0.997 0.996* 0.997** 0.998 0.999 1.000 0.999 1.001
NGM-BVAR-SVO 0.997 0.997 0.999 1.002 1.000 1.008 0.996 1.034
NGM-BVAR-SV-TVM 1.010 1.000 0.986 0.987 1.017 1.018 1.064 1.059
NGM-BVAR-SVO-TVM 1.030 1.015 0.986 0.984 1.016 1.024 1.069* 1.079
SVD-GP-NC 1.290*** 1.313*** 1.173** 1.158*** 1.115* 1.111** 1.052* 1.077*

1985:Q1 - 2017:Q4
UC-SV 1.017 1.005 1.043 1.039 1.109* 1.101* 1.209** 1.170**
NM-BVAR-SV 1.017 1.020* 1.004 1.010 1.004 1.013 1.042 1.055*
NM-BVAR-SVO 1.018 1.023** 1.007 1.018 1.008 1.031 1.039 1.105***
NM-BVAR-SV-TVM 1.017 1.003 1.020 1.003 1.028 1.018 1.075 1.057
NM-BVAR-SVO-TVM 1.016 1.006 1.017 1.005 1.031 1.033 1.076 1.097
AM-BVAR-SVO 1.001 1.003** 1.004* 1.009** 1.002 1.017* 0.999 1.051**
AM-BVAR-SV-TVM 1.017 1.001 1.033 1.014 1.054 1.039 1.095 1.066
AM-BVAR-SVO-TVM 1.018 1.006 1.031 1.016 1.052 1.047 1.095 1.097
NGM-BVAR-SV 0.997 0.997 0.998 0.998 0.998 1.000 0.999 1.001
NGM-BVAR-SVO 0.999 0.999 1.001 1.007 1.000 1.017 0.996 1.053**
NGM-BVAR-SV-TVM 1.026 1.008 1.031 1.012 1.056 1.037 1.107* 1.073
NGM-BVAR-SVO-TVM 1.056 1.031 1.026 1.009 1.058 1.051 1.106 1.103*
SVD-GP-NC 1.213*** 1.234*** 1.125*** 1.127*** 1.081 1.098** 1.095** 1.105*

2018:Q1 - 2022:Q4
UC-SV 0.871 0.910 0.966 0.996 1.108 1.124 1.097 1.070
NM-BVAR-SV 1.019 1.006 1.015 1.002 1.027 1.016 1.015 1.004
NM-BVAR-SVO 1.018 1.006 1.015 0.991 1.026 0.987 1.013 0.963**
NM-BVAR-SV-TVM 0.883 0.896 0.853 0.866 0.920 0.932 1.002 1.011
NM-BVAR-SVO-TVM 0.870 0.888 0.845 0.849 0.913 0.896 0.999 0.965
AM-BVAR-SVO 0.995 0.993 0.997 0.985 0.999 0.972* 0.997 0.963*
AM-BVAR-SV-TVM 0.884 0.894 0.852 0.864 0.936 0.947 1.008 1.018
AM-BVAR-SVO-TVM 0.876 0.888 0.851 0.855 0.931 0.918 1.007 0.982
NGM-BVAR-SV 0.995** 0.994** 0.997 0.997 1.001 1.000 1.000 1.001
NGM-BVAR-SVO 0.989 0.987* 0.993 0.984 1.001 0.974* 0.998 0.961*
NGM-BVAR-SV-TVM 0.940 0.955 0.862 0.877 0.944 0.947 0.994 1.007
NGM-BVAR-SVO-TVM 0.909 0.921 0.880 0.880 0.938 0.928 1.011* 0.986
SVD-GP-NC 1.583* 1.760** 1.287 1.292* 1.174 1.157 0.983 0.969

Note: Values below 1 indicate improvement over the AM-BVAR-SV model. Significance assessed
by Diebold-Mariano-West test using Newey-West standard errors with h + 1 lags. *, **, and ***
represent the .10, .05, and .01 significance levels, respectively. Significance was not assessed for the
2020:Q1 - 2022:Q4 sub-sample due to the short sub-sample size. Entries in bold denote the lowest
ratio for a given forecasting horizon and measure.
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Table 5: Forecast ratios for RMSEs and CRPSs, core PCE goods inflation

Model / Horizon
h=1 h=2 h=4 h=8

RMSE CRPS RMSE CRPS RMSE CRPS RMSE CRPS

1985:Q1 - 2022:Q4
UC-SV 1.048 1.006 1.066 1.018 1.038 1.025 1.002 0.982
NM-BVAR-SV 1.028** 1.027** 1.032* 1.025 1.007 1.001 1.012 0.994
NM-BVAR-SVO 1.028** 1.026** 1.032 1.032* 1.003 1.022 1.009 1.039
NM-BVAR-SV-TVM 1.036 1.019 1.050 1.020 1.012 0.993 1.016 0.978
NM-BVAR-SVO-TVM 1.035 1.021 1.053 1.031 1.013 1.013 1.015 1.004
AM-BVAR-SVO 0.998 1.001 0.997** 1.005 0.995** 1.016*** 1.000 1.035**
AM-BVAR-SV-TVM 1.020 1.002 1.025 0.994 1.002 0.977 0.994 0.953
AM-BVAR-SVO-TVM 1.019 1.003 1.034 1.006 1.006 0.993 0.996 0.975
NGM-BVAR-SV 1.007** 1.008*** 1.004 1.004 1.002 1.007*** 1.004 1.011***
NGM-BVAR-SVO 1.003 1.006** 1.002 1.011*** 0.999 1.025*** 1.004 1.047***
NGM-BVAR-SV-TVM 1.011 0.997 1.026 0.985 1.002 0.976 0.993 0.954
NGM-BVAR-SVO-TVM 1.025 1.013 1.044 1.013 1.005 0.996 1.001 0.977
SVD-GP-NC 1.077 1.080 1.107 1.085 1.059 1.082 1.070*** 1.079**

1985:Q1 - 2017:Q4
UC-SV 0.966 0.965 0.952 0.953 0.997 0.966 0.953 0.940
NM-BVAR-SV 1.044** 1.033** 1.045 1.031 1.001 0.995 0.976 0.973
NM-BVAR-SVO 1.041** 1.031** 1.045 1.042* 0.994 1.026 0.976 1.046
NM-BVAR-SV-TVM 1.039 1.014 1.035 1.009 0.997 0.975 1.006 0.954
NM-BVAR-SVO-TVM 1.040 1.020 1.049 1.026 1.005 1.008 1.006 0.998
AM-BVAR-SVO 0.998 1.001 0.997 1.008** 0.993** 1.025*** 1.005* 1.058***
AM-BVAR-SV-TVM 1.009 0.992 0.984 0.972 0.966 0.950 0.953 0.918*
AM-BVAR-SVO-TVM 1.005 0.993 0.993 0.985 0.965 0.972 0.956 0.955
NGM-BVAR-SV 1.009** 1.009*** 1.008 1.007** 1.007 1.011*** 1.013*** 1.017***
NGM-BVAR-SVO 1.004 1.008*** 1.005 1.017*** 1.002 1.039*** 1.016*** 1.076***
NGM-BVAR-SV-TVM 1.005 0.989 0.978 0.958 0.964 0.943* 0.945 0.914*
NGM-BVAR-SVO-TVM 1.028 1.011 0.997 0.993 0.971 0.974 0.965 0.952
SVD-GP-NC 1.086** 1.075* 1.055 1.045 1.059 1.046 1.111*** 1.076**

2018:Q1 - 2022:Q4
UC-SV 1.131 1.119 1.183 1.210 1.069 1.187 1.042** 1.097***
NM-BVAR-SV 1.012 1.012 1.017 1.008 1.012 1.019 1.041*** 1.050***
NM-BVAR-SVO 1.013 1.011 1.016 1.004 1.011 1.010 1.036*** 1.020*
NM-BVAR-SV-TVM 1.033 1.032 1.066 1.055 1.024 1.043 1.024** 1.042***
NM-BVAR-SVO-TVM 1.029 1.026 1.057 1.045 1.021 1.029 1.022** 1.018*
AM-BVAR-SVO 0.999 1.000 0.997** 0.995 0.997 0.994 0.996** 0.974***
AM-BVAR-SV-TVM 1.032 1.030 1.070 1.059 1.031 1.053 1.028** 1.048***
AM-BVAR-SVO-TVM 1.035 1.030 1.080 1.066 1.037 1.050 1.028** 1.028**
NGM-BVAR-SV 1.004 1.006 0.998 0.996* 0.997 0.997 0.996** 0.995**
NGM-BVAR-SVO 1.001 1.001 0.999 0.995 0.996* 0.986 0.994** 0.969***
NGM-BVAR-SV-TVM 1.017 1.020 1.078 1.067 1.032 1.065 1.032** 1.064***
NGM-BVAR-SVO-TVM 1.022 1.020 1.094 1.073 1.032 1.058 1.031** 1.042**
SVD-GP-NC 1.067 1.095 1.163 1.204 1.060 1.181 1.034 1.086*

Note: Values below 1 indicate improvement over the AM-BVAR-SV model. Significance assessed
by Diebold-Mariano-West test using Newey-West standard errors with h + 1 lags. *, **, and ***
represent the .10, .05, and .01 significance levels, respectively. Significance was not assessed for the
2020:Q1 - 2022:Q4 sub-sample due to the short sub-sample size. Entries in bold denote the lowest
ratio for a given forecasting horizon and measure.
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Table 6: Forecast ratios for RMSEs and CRPSs when using bottom-up approach, core PCE inflation

Model / Horizon
h=1 h=2 h=4 h=8

RMSE CRPS RMSE CRPS RMSE CRPS RMSE CRPS

1985:Q1 - 2022:Q4
UC-SV 1.006 1.065*** 1.022 1.081*** 1.021 1.098*** 1.014 1.116***
NM-BVAR-SV 1.004 1.005 1.002 1.004 1.005 1.005 1.002 1.001
NM-BVAR-SVO 0.999 0.998 1.001 0.999 1.007 1.000 1.000 0.994
NM-BVAR-SV-TVM 1.000 1.002 1.002 1.000 1.002 0.999 1.000 0.992
NM-BVAR-SVO-TVM 1.004 1.007 1.007 0.997 1.006 0.996 0.998 0.978
AM-BVAR-SV 1.002 1.007 1.016 1.025** 1.021 1.027** 1.017 1.015
AM-BVAR-SVO 1.002 1.004 1.016 1.017 1.023 1.023* 1.010 1.006
AM-BVAR-SV-TVM 1.001 1.007 1.018 1.018 1.021 1.018 1.017 1.006
AM-BVAR-SVO-TVM 1.002 1.006 1.007 1.005 1.017 1.009 1.003 0.987
NGM-BVAR-SV 0.995 0.999 1.013 1.016 1.018 1.015 1.016 1.001
NGM-BVAR-SVO 0.995 0.999 1.010 1.007 1.018 1.007 1.008 0.989
NGM-BVAR-SV-TVM 0.998 1.001 1.023 1.017 1.006 0.999 1.000 0.987
NGM-BVAR-SVO-TVM 1.007 1.003 1.017 1.011 1.018 1.000 0.979 0.961***
SVD-GP-NC 0.999 0.991 0.994 0.991 0.997 1.009 1.008 1.016

1985:Q1 - 2017:Q4
UC-SV 1.010 1.086*** 1.027* 1.110*** 1.018 1.141*** 1.010 1.176***
NM-BVAR-SV 1.007 1.005 1.008 1.006 1.017 1.008 1.020 1.005
NM-BVAR-SVO 1.000 0.997 1.007 0.999 1.020 1.002 1.012 0.994
NM-BVAR-SV-TVM 0.992 1.000 0.985 0.993 0.978 0.984 0.971 0.972
NM-BVAR-SVO-TVM 0.997 1.005 0.985 0.986 0.980 0.978 0.967 0.953**
AM-BVAR-SV 1.007 1.009 1.035* 1.033** 1.052* 1.038** 1.030 1.015
AM-BVAR-SVO 1.007 1.005 1.033 1.023* 1.054* 1.031** 1.016 1.004
AM-BVAR-SV-TVM 0.999 1.008 1.015 1.016 1.015 1.010 1.009 0.993
AM-BVAR-SVO-TVM 1.000 1.006 1.003 1.002 1.012 1.000 0.986 0.968***
NGM-BVAR-SV 0.994 0.998 1.028 1.021 1.044 1.020 1.026 0.994
NGM-BVAR-SVO 0.999 0.999 1.025 1.010 1.045 1.010 1.011 0.981
NGM-BVAR-SV-TVM 0.992 0.999 1.023 1.019 0.988 0.989 0.976 0.970*
NGM-BVAR-SVO-TVM 0.987 0.994 1.003 0.995 0.992 0.978 0.945** 0.937***
SVD-GP-NC 0.983 0.981 0.989 0.981 1.048 1.029 1.046 1.032

2018:Q1 - 2022:Q4
UC-SV 1.002 1.004 1.018 1.001 1.024 0.995 1.017 0.970**
NM-BVAR-SV 1.000 1.003 0.990 0.997 0.992 0.995 0.987** 0.993
NM-BVAR-SVO 0.997 1.002 0.992 0.997 0.993 0.993 0.989* 0.994
NM-BVAR-SV-TVM 1.012 1.012 1.029 1.028 1.028 1.044 1.028** 1.051***
NM-BVAR-SVO-TVM 1.013 1.014 1.044 1.039 1.035 1.056 1.029** 1.060***
AM-BVAR-SV 0.995 1.003 0.985 0.994 0.991 0.996 1.005*** 1.015***
AM-BVAR-SVO 0.996 1.001 0.989 0.994 0.993 0.994 1.005* 1.012***
AM-BVAR-SV-TVM 1.003 1.003 1.021 1.023 1.026 1.040 1.023** 1.043***
AM-BVAR-SVO-TVM 1.005 1.006 1.014 1.014 1.022 1.037 1.019** 1.047***
NGM-BVAR-SV 0.996 1.003 0.988 0.996 0.993 0.999 1.008** 1.021***
NGM-BVAR-SVO 0.991 0.998 0.985 0.995 0.992 0.999 1.006 1.017***
NGM-BVAR-SV-TVM 1.006 1.007 1.023 1.013 1.024 1.029 1.022* 1.035*
NGM-BVAR-SVO-TVM 1.035* 1.034* 1.037* 1.071*** 1.042* 1.067* 1.011 1.036**
SVD-GP-NC 1.025 1.029 0.999 1.024 0.950 0.961 0.968* 0.972

Note: Values below 1 indicate improvement over the corresponding core PCE inflation forecast that is taken directly
from the model that includes aggregate inflation. The UC-SV model in the table represents the aggregate forecast
from three separate disaggregate UC-SV models. *, **, and *** represent the .10, .05, and .01 significance levels,
respectively. Significance was not assessed for the 2020:Q1 - 2022:Q4 sub-sample due to the short sub-sample size.
Entries in bold denote the lowest ratio for a given forecasting horizon and measure.
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Figure 4: Marginal probabilities based on baseline forecasts

Note: The plots are marginal probabilities of core PCE inflation and its components constructed from their baseline

density forecasts (four-quarter growth rates). Panel (a) plots the probability of core PCE inflation at or below 2%,

panel (b) probability that goods inflation is negative, panel (c) probability of housing inflation below 3.5%, and panel

(d) probability of supercore inflation less than 2.5%.
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Figure 5: Joint probabilities based on baseline forecasts

Note: The plots are joint probabilities of core PCE inflation and its components constructed from their baseline

density forecasts (four-quarter growth rates).
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Figure 6: Conditional probabilities based on baseline forecasts

Note: The plots are conditional probabilities of core PCE inflation, conditional on the components’ inflation rates

above or below certain thresholds. The probabilities are constructed from the baseline density forecasts (four-quarter

growth rates).

43


	Federal Reserve Bank of Cleveland Working Paper Series
	Forecasting Core Inflation and Its Goods, Housing, and

Supercore Components
	Introduction
	Data
	Models, Estimation, and Forecasting
	Models
	Estimation and forecasting

	Historical Forecast Evaluation
	"Bottom-up'' approach to aggregate inflation forecasting

	Looking Ahead: 2023:Q4-2026:Q4
	Baseline forecasts
	Conditional forecast: Wage scenario
	Conditional forecast: Core PCE 2 percent scenario

	Conclusions
	References




