
 
 

Federal Reserve Bank of Cleveland Working Paper Series 
 

 
 
 

Business Cycles and Low-Frequency Fluctuations in the US Unemployment Rate 

Kurt G. Lunsford 

Working Paper No. 23-19 

August 2023 
 

Suggested citation: Lunsford, Kurt G. 2023. "Business Cycles and Low-Frequency Fluctuations in the 
US Unemployment Rate." Working Paper No. 23-19. Federal Reserve Bank of Cleveland. 
https://doi.org/10.26509/frbc-wp-202319.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Federal Reserve Bank of Cleveland Working Paper Series 
ISSN: 2573-7953 
 
Working papers of the Federal Reserve Bank of Cleveland are preliminary materials circulated to 
stimulate discussion and critical comment on research in progress. They may not have been subject      to 
the formal editorial review accorded official Federal Reserve Bank of Cleveland publications. 
 
See more working papers at: www.clevelandfed.org/research. Subscribe to email alerts to be notified 
when a new working paper is posted at: https://www.clevelandfed.org/subscriptions. 

https://doi.org/10.26509/frbc-wp-202319
https://www.clevelandfed.org/research
https://www.clevelandfed.org/subscriptions


Business Cycles and Low-Frequency Fluctuations in the US
Unemployment Rate∗

Kurt G. Lunsford†

August 2023

Abstract

I show that business cycles can generate most of the low-frequency movements in the un-

employment rate. First, I provide evidence that the unemployment rate is stationary, while its

flows have unit roots. Then, I model the log unemployment rate as the error correction term

of log labor flows in a vector error correction model (VECM) with intercepts that change over

the business cycle. Feeding historical expansions and recessions into the VECM generates large

low-frequency movements in the unemployment rate. Frequent recessions from the late 1960s to

the early 1980s interrupt labor market recoveries and ratchet the unemployment rate upward.

Long expansions in the 1980s and 1990s undo this upward ratcheting. Finally, the VECM pre-

dicts that the unemployment rate will be near 3.6 percent after a 10-year expansion and that

lower unemployment rates are possible with longer expansions.
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1 Introduction

The US unemployment rate is an important business cycle indicator. It is closely monitored by

policymakers and widely researched. However, the unemployment rate appears to contain a slow-

moving trend. Hence, researchers and policymakers typically adjust the unemployment rate before

assessing its business cycle features. Researchers often remove a Hodrick and Prescott (1997) (HP)

trend before studying the unemployment rate.1 Similarly, policymakers often remove a time-varying

unemployment rate benchmark before assessing the state of the economy (Crump, Nekarda, and

Petrosky-Nadeau, 2020).

In this paper, I study the unemployment rate’s low-frequency movements, defined as HP trend

movements computed with standard or larger HP parameter values or as movements at frequen-

cies lower than business cycle frequencies. I provide evidence that the US unemployment rate is

stationary, implying that it does not have a stochastic trend.2 However, the unemployment rate

does have large low-frequency movements, giving the appearance of a trend. I show that these low-

frequency movements can be attributed to business cycles: the unemployment rate’s rapid increases

in expansions and slow decreases in recessions coupled with the pattern of US business cycles can

generate the low-frequency movements. These findings suggest that researchers and policymakers

may be removing business cycle features instead of a non-business cycle trend when removing an

HP trend or time-varying benchmark from the unemployment rate.

I begin my analysis in Section 2 by testing for unit roots in the unemployment inflow hazard

rate (st), the unemployment outflow hazard rate (ft), and the unemployment churn rate (st + ft).

Collectively, I refer to these rates as “labor flows.” While I find evidence of unit roots in the

levels and logs of these labor flows, I do not find evidence of a unit root in the level or log of

the unemployment rate. As in Hall (2005) and Elsby, Michaels, and Solon (2009), I model the

unemployment rate with ut = st/(st + ft) so that taking logs implies ln(ut) = ln(st)− ln(st + ft).

Hence, a stationary log unemployment rate implies that the log inflow hazard rate and the log

churn rate are cointegrated (Granger, 1981; Engle and Granger, 1987).

This analysis has two implications. First, the log unemployment inflow hazard rate and the

1Ferraro (2018), Lepetit (2020), and Gornemann, Kuester, and Nakajima (2021) are recent examples that I cite
below. As an alternative to HP filtering, Clark (1989), Kim and Nelson (1999), and Sinclair (2009) separate the
unemployment rate’s trend and businesses cycle components with unobserved components models.

2The stochastic trend is a random walk component of a non-stationary variable that is the “the mid-point of the
predictive distribution for the future path” of the variable (Beveridge and Nelson, 1981). This stochastic trend may
also be called a “non-stationary trend” as in Clark (1989), a “permanent component” as in Sinclair (2009), or a
“secular trend” as in Crump et al. (2019).

1



log unemployment churn rate being cointegrated means that they share a common stochastic trend

(Stock and Watson, 1988). Second, the log unemployment rate being stationary means that it does

not have a stochastic trend. The linear combination of the log flows, ln(st)− ln(st+ ft), eliminates

the stochastic trend so that it is not passed to the log unemployment rate.

The rest of the paper imposes this cointegration relationship and then answers two questions.

First, if the unemployment rate is stationary, then what accounts for its low-frequency movements?

Second, if the unemployment rate does not have a stochastic trend, then what should policymakers

use as an unemployment rate benchmark?

I answer these questions with a time-series model that I build in Section 3. I model the log

unemployment inflow hazard rate and the log unemployment churn rate with a vector error correc-

tion model (VECM), yielding the log unemployment rate as the error correction term. Following

Hamilton’s (2005) model for the unemployment rate, intercepts in the VECM vary over the business

cycle, allowing the labor flows and the unemployment rate to display asymmetric business cycle

behavior. In particular, unemployment can rise quickly in recessions and fall slowly in expansions

as documented in Neftçi (1984), Sichel (1993), Hamilton (2005), McKay and Reis (2008), Ferraro

(2018), and Dupraz, Nakamura, and Steinsson (2021).

In Section 4, I show that business cycles generate most of the unemployment rate’s low-frequency

movements in the VECM. I feed the historical business cycle pattern into the VECM but set the

other VECM innovations to zero, producing “business-cycle-only” estimates of the labor flows and

the unemployment rate. While the business-cycle-only estimates of the labor flows match the

business cycle features of those flows, they do not match the low-frequency movements of those

flows. In contrast, the business-cycle-only unemployment rate matches both the business cycle and

low-frequency movements of the actual unemployment rate. In particular, the low-frequency pattern

of the business-cycle-only unemployment rate aligns closely with the low-frequency pattern of the

actual unemployment rate from the late 1960s to the late 1990s. The only material disagreement

between the low-frequency patterns occurs in 2008-09 and some subsequent years.

The interaction of unemployment asymmetries and the pattern of US business cycles generates

large low-frequency movements. As I discussed in Lunsford (2021), the unemployment rate’s rapid

rise in a recession followed by a slow fall in an expansion implies that the unemployment rate may

not fall to its previous low point if a new recession cuts an expansion short, causing the unemploy-

ment rate to begin the new recession at a higher level. Hence, frequent recessions separated by short

expansions, such as from 1969 through 1982, lead to an upward ratcheting of the unemployment
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rate. Conversely, long expansions interrupted by short recessions, such as from 1983 through 1999,

undo this upward ratcheting. The resulting low-frequency movements are large. With standard

low-frequency parameters, the unemployment rate’s low-frequency trends rise about 4 percentage

points from 1969 through 1982 and fall by similar amounts from 1983 through 1999.

Crump, Nekarda, and Petrosky-Nadeau (2020) note that policymakers often use a “longer-run

unemployment rate” benchmark, defined as the rate that is expected to prevail after adjusting

for business cycle shocks, when assessing the economy. Earlier research, such as Tasci (2012) and

Crump et al. (2019), estimates this longer-run rate with the unemployment rate’s stochastic trend.

But if the unemployment rate does not have a stochastic trend, then what should policymakers use

as a longer-run benchmark? In Section 5, I interpret “after adjusting for business cycle shocks”

to mean where the unemployment rate will go as the economy stays in expansion and the VECM

innovations are fixed at zero. That is, I compute a forecast conditional on the economy staying in

expansion. Using the unemployment rate peaks in 1982, 1992, 2003, and 2009 as initial conditions,

the VECM predicts that the unemployment rate will be between 3.3 and 3.9 percent after 10 years

of an uninterrupted expansion, with lower values possible for longer expansions.

I highlight three implications of my findings. First, the unemployment rate is stationary but

business cycles can generate large low-frequency movements. Hence, removing low-frequency trends

from the unemployment rate, such as the HP trend, may remove business cycle features. Second,

the unemployment rate does not have a stochastic trend, so time-varying trends should not be used

as longer-run unemployment rate benchmarks. However, my VECM can estimate a longer-run

unemployment rate benchmark that could be used by policymakers. Third, the benchmark that I

produce is different than what Crump, Nekarda, and Petrosky-Nadeau (2020) call a “stable-price

unemployment rate” and inflation does not appear in my model. However, the longer-run and

stable-price unemployment rate concepts are related, and researchers may estimate a time-varying

longer-run unemployment rate or unemployment rate trend as a step for estimating stable-price

unemployment rates.3 My finding that the unemployment rate is stationary suggests that earlier

research that removes a time-varying unemployment rate trend when estimating a stable-price

unemployment rate may be mis-specified.

Related Literature: I build on Tasci (2012), Barnichon and Mesters (2018), Crump et al.

3Crump et al. (2019) estimate a stable-price unemployment rate in two steps. First, they compute an unem-
ployment rate trend using a time-series model of labor flows. Second, they adjust this trend using Phillips curves.
Staiger, Stock, and Watson (2001) previously used these two steps but with different methods for the unemployment
rate trend and Phillips curve adjustments.
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(2019), and Hornstein and Kudlyak (2020), who model stochastic trends in labor flows and then map

those trends into the unemployment rate. Importantly, these papers model stochastic trends with

independent processes for different labor flows, yielding a stochastic trend in the unemployment

rate. In contrast, I model the log unemployment inflow hazard rate and the log unemployment

churn rate as sharing a common stochastic trend that yields a stationary unemployment rate. With

independent trends, Crump et al. (2019) and Hornstein and Kudlyak (2020) argue that a low trend

inflow rate pushed the unemployment rate trend lower in the late 2010s. However, with a common

stochastic trend, this explanation does not work because the inflow hazard rate trend is offset by

the unemployment churn rate trend. Rather, the unemployment rate was low in the late 2010s

because the economic expansion was very long.

This paper also builds on a time-series literature that models asymmetries in the unemployment

rate, including Hansen (1997), Montgomery et al. (1998), Rothman (1998), Kim and Nelson (1999),

van Dijk, Franses, and Paap (2002), and Hamilton (2005). The important distinction is that I do

not model the unemployment rate directly. Rather, I model the labor flows and then treat the

unemployment rate as a stationary function of the flows. Modeling the flows may better fit the

dynamics of the labor market and has been shown to be useful for real-time forecasting (Barnichon

and Nekarda, 2012; Meyer and Tasci, 2015).

My results are closely related to those in Fatás (2021) and Hall and Kudlyak (2022a,b), who

document and discuss the slow but steady unemployment rate declines in US expansions. Me-

chanically, these slow and steady declines imply that long expansions lead to low unemployment

rates and the perception of a downward trend. However, if expansions are regularly interrupted by

recessions and left incomplete, the perception of an upward trend can emerge. Fatás (2021) writes

that expansions in the US have often been incomplete, implying that the unemployment rate has

rarely been close to its potential low.

While I focus on time-series modeling, features of my VECM are consistent with structural mod-

els of the labor market. The structural models of Andolfatto (1997), Ferraro (2018), and Dupraz,

Nakamura, and Steinsson (2021) generate rapid increases in unemployment with slow decreases.

Importantly, Hairault, Langot, and Osotimehin (2010), Jung and Kuester (2011), Benigno, Ricci,

and Surico (2015), Lepetit (2020), Dupraz, Nakamura, and Steinsson (2021), and Gornemann,

Kuester, and Nakajima (2021) show that the volatility of shocks or the ability of policymakers to

stabilize the economy affects the average level, not just the volatility, of the unemployment rate. As

in my VECM, these papers indicate that where the unemployment rate will go after removing the
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effects of shocks is much lower than its historical average. Further, as shown in Dupraz, Nakamura,

and Steinsson (2021, Figure 4), clusters of recessions and expansions can generate low-frequency

movements in the unemployment rate even when the unemployment rate is stationary.

Finally, my paper is related to a literature that emphasizes demographics as affecting the unem-

ployment rate at low frequencies. Demographics cause all of the movements in the Congressional

Budget Office’s natural rate of unemployment (Shackleton, 2018, Appendix B). Aaronson et al.

(2015), Barnichon and Mesters (2018), Crump et al. (2019), Tüzemen (2019), and Fallick and

Foote (2022) also highlight demographics. In contrast, I highlight that business cycles can account

for most of the low-frequency movements in the unemployment rate, allowing little role for de-

mographics. However, demographics may still drive the low-frequency movements in labor flows

because business cycles account for little of the low-frequency movements in these flows. An impli-

cation of my findings is that the demographic effects on the labor flows should offset and not affect

unemployment.

2 US Labor Market Data and Tests for Unit Roots

2.1 US Labor Market Data

I jointly study the unemployment rate (ut), the unemployment inflow hazard rate (st), and the

unemployment outflow hazard rate (ft). I follow Shimer (2012) and Elsby, Michaels, and Solon

(2009) to compute the inflow and outflow hazard rates, giving details of the source data and

computations in Appendix A. Following Hall (2005) and Elsby, Michaels, and Solon (2009), I

approximate the unemployment rate with ut = st/(st + ft) to provide a tractable relationship

between the hazard rates and the unemployment rate. I then use

ln(ut) = ln(st)− ln(st + ft) (1)

to model the relationship between the unemployment rate and the hazard rates.

Figure 1 shows the unemployment rate, both hazard rates, and the sum of the hazard rates

(the unemployment churn rate) from January 1954 through December 2019. I begin the sample

in 1954 to remove the effects of the Korean War draft.4 I end the sample in 2019 to remove the

4The number of people inducted into military service through the US Selective Service System was about 550,000
in 1951, 440,000 in 1952, and 470,000 in 1953 (Selective Service System, 2022). While military induction continued
after 1953, it was no higher than about 250,000 people until 1966.
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Figure 1: Labor market data from January 1954 through December 2019.
Note: Gray bars show NBER recessions.

unusually large volatility of the COVID-19 pandemic.5 I highlight three features of the data. First,

the inflow hazard rate appears to have a slow-moving trend, drifting up from 1954 until the early

1980s and then drifting back down through 2019. Second, the outflow hazard rate is highly cyclical

but also appears to have a slow-moving trend: the peak values at the end of the long expansions

in the 1960s, the 1990s and the 2010s become subsequently lower. Third, because the outflow rate

is generally between 10 and 30 times larger than the inflow rate, the unemployment churn rate

looks very similar to just the outflow rate. I refer to this third feature of the data for several of the

results that I discuss below.

Figure 2 shows the unemployment rate and its approximation, st/(st + ft). While the unem-

ployment rate approximation introduces some high-frequency noise, it closely matches the unem-

ployment rate’s business cycle and low-frequency movements, making it useful for studying these

unemployment rate movements.

5In Appendix B, I show all figures in this section with data running through May 2023.
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Figure 2: The unemployment rate and its approximation.
Note: Gray bars show NBER recessions.

2.2 Testing for Unit Roots and Cointegration

Earlier papers that model the trend in the unemployment rate assume that the labor flows have unit

root components (Tasci, 2012; Barnichon and Mesters, 2018; Crump et al., 2019). This assumption

is consistent with the visual evidence in Figure 1.6 However, these papers also assume that the unit

root components are independent across each flow, permitting a unit root in the unemployment rate.

In this section, I provide evidence that unit root components are indeed present in the labor flows.

However, I fail to find evidence that ut, ln(ut), and ln(st)− ln(st + ft) have unit root components.

Hence, ln(st) and ln(st + ft) have a cointegrating relationship and a common stochatsic trend,

implying that ln(ut) does not inherit a stochastic trend from the labor flows.

I follow Müller and Watson (2008, 2013) for unit root testing: I extract low-frequency infor-

mation from the data by computing a small number of weighted averages and then form tests

from those weighted averages. Let xt be a 1-dimensional variable and {x1, . . . , xT } be the observed

sample. I compute T−1
∑T

t=1 ψj,txt for j = 1, . . . , q. The weights are slow-cycling cosine waves,

ψj,t =
√
2 cos(πj(t− 1/2)/T ), and so the weighted averages are called “discrete cosine transforms.”

6Tasci (2012) and I use the same hazard rates. Barnichon and Mesters (2018) and Crump et al. (2019) further
decompose the hazard rates into demographic-level hazard rates and impose unit root components at the demographic-
level. In addition, Crump et al. (2019) assume that the demographic level inflow rates are integrated of order 2.
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Table 1: p-Values for the LFST statistics

Variable q = 13 q = 14 q = 15 q = 16

st 0.00 0.00 0.00 0.00
ft 0.03 0.03 0.02 0.02
st + ft 0.02 0.02 0.02 0.01

ln(st) 0.00 0.00 0.00 0.00
ln(ft) 0.03 0.02 0.02 0.02
ln(st + ft) 0.02 0.01 0.01 0.01

∆st 0.52 0.47 0.45 0.52
∆ft 0.96 0.98 0.97 0.96
∆(st + ft) 0.96 0.98 0.97 0.96

∆ ln(st) 0.39 0.36 0.34 0.42
∆ ln(ft) 0.93 0.96 0.94 0.94
∆ ln(st + ft) 0.92 0.96 0.94 0.94

ut 0.38 0.39 0.40 0.35
ln(ut) 0.40 0.39 0.37 0.33
ln(st)− ln(st + ft) 0.40 0.39 0.37 0.32

period of fastest-cycling 10.2 9.4 8.8 8.3
cosine wave in years

Notes: The null hypothesis is that the data are stationary. The al-
ternative hypothesis is that the data have a low-variance unit root
component. p-values less than 0.10, 0.05, and 0.01 indicate rejection of
the null hypothesis at the 10 percent, 5 percent, and 1 percent levels,
respectively. The data sample is January 1954 through December 2019.

The jth cosine wave completes one cycle in 2T/j periods. With 66 years of data (1954 through

2019) and q = 16, the fastest cycling cosine wave completes one cycle in about 8.3 years. Hence, 16

discrete cosine transforms extract information at frequencies corresponding to 8.3 years and longer.

I then compute a low-frequency stationarity test (LFST) statistic. The LFST is a likelihood ratio

statistic computed from the cosine transforms that tests the null hypothesis that xt is stationary

against the alternative hypothesis that xt has a low-variance unit root component.

Table 1 shows the p-values for the LFST statistics for different labor market variables and

different values of q.7 I provide details for computing the LFST statistics and the corresponding

7In the far right column of Table 1, q = 16 picks up frequencies corresponding to more than 8 years, which are the
frequencies used in Müller and Watson (2008, 2013). As discussed in Müller and Watson (2015), a trade-off exists
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p-values in Appendix C. Small values in Table 1 indicate rejection of the null of stationarity in favor

of the alternative that the data have a low-variance unit root component. The sample for Table 1

is January 1954 through December 2019. Results for January 1954 through May 2023 are similar,

and I show them in Appendix B.

The first six rows of Table 1 provide statistical evidence of a unit root component in the levels

and logs of the labor flows. These results support the visual evidence in Figure 1 that stochastic

trends exist in the flows and support earlier papers that model the flows with unit root processes.

The next six rows of Table 1 test for unit roots in the changes of the levels and logs of the labor

flows, using the notation ∆xt = xt − xt−1 for any variable xt. The idea is that if the flows have a

unit root, then differencing the flows should eliminate the unit root and yield a stationary variable.

I find that all of the differenced data fail to reject the null hypothesis of stationarity.

The last three rows of Table 1 test for unit roots in ut, ln(ut), and ln(st)− ln(st + ft) and fail

to reject the null of stationarity. The failure to reject stationarity for ln(st) − ln(st + ft) provides

evidence for a cointergation relationship between ln(st) and ln(st+ft) based on Müller and Watson’s

(2013) low-frequency version of Wright (2000). That is, while ln(st) and ln(st + ft) have unit root

components, the linear combination ln(st)− ln(st + ft) is stationary.

3 A VECM for Labor Flows

Based on Equation (1) and the results in Table 1, I model the log of the unemployment rate as the

error correction term ln(st)− ln(st + ft). In Subsection 3.1, I write down a VECM with intercepts

that vary over the business cycle, modeling the time-variation with dummy variables. In Subsection

3.2, I discuss my choice of business cycle dummy variables. In Subsection 3.3, I show and discuss

some estimated VECM parameters.

when choosing q. A lower value uses lower-frequency information when testing and is less subject to mis-specification,
while a higher value yields more powerful inference. To establish robustness, I show p-values in Table 1 for some
values of q smaller than 16. These p-values are essentially unchanged for different values of q.
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3.1 The VECM with Time-Varying Intercepts

I model the log of the unemployment inflow rate and the log of the unemployment churn rate with ∆ ln(st)

∆ ln(st + ft)

 = νdt−1 + α(ln(st−1)− ln(st−1 + ft−1))

+ Γ1

 ∆ ln(st−1)

∆ ln(st−1 + ft−1)

+ · · ·+ Γp

 ∆ ln(st−p)

∆ ln(st−p + ft−p)

+ vt,

(2)

in which ν, α, and Γ1, . . . ,Γp are matrices that hold the parameters of the model. Based on the

results in Table 1, I assume that ∆ ln(st), ∆ ln(st+ft), and ln(st)− ln(st+ft) are stationary. I also

assume that dt is stationary and discuss this assumption following Equation (4). Finally, I assume

E(vt) = 0, E(vtv′t) = Σvv, and E(vtv′t−j) = 0 for j ̸= 0.

I have written Equation (2) across two rows. The first row includes two important features

of the model, while the second row is just a VAR in differences with p lags. The first important

feature in the first row is the time-varying intercepts, modeled with a vector of dummy variables

dt. This time-variation is intended to capture the business cycle asymmetries in the labor market

that have been previously documented in the literature. In my baseline model, dt is 3-dimensional

and used to model expansions and two types of recessions. The first element of dt is 1 in expansions

and 0 otherwise; the second element is 1 in the first type of recession and 0 otherwise; and the third

element is 1 in the second type of recession and 0 otherwise. The approach follows in the spirit

of Hamilton (2005), who also uses time-varying intercepts to model expansions and two types of

recessions. The main difference here is that I model the unemployment rate indirectly via labor

market flows, while Hamilton (2005) models the unemployment rate directly. Hamilton (2005)

refers to his recessions as “mild” and “severe” recessions, and my two recessions will end up having

the same interpretation. I discuss the recession dummy variables further in the next subsection.

The second important feature in the first row of Equation (2) is the error correction term

ln(st−1)− ln(st−1 + ft−1). I am treating the cointegrating vector β = [1,−1]′ as known and do not

estimate it. I do this for two reasons. First, the results in Table 1 fail to reject β = [1,−1]′ as

a cointegrating vector. Second, this choice aids interpretability because Equation (1) shows that

I can interpret this error correction as ln(ut) and understand the error correction mechanism in

terms of values of the unemployment rate.
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To reduce notation going forward, I use yt = [ln(st), ln(st + ft)]
′ and write Equation (2) as

∆yt = νdt−1 + αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp∆yt−p + vt. (3)

I assume that the business cycle dummy variables follow a Markov chain, which I model with

a VAR(1) as in Hamilton (1994, Chapter 22):

dt = Φdt−1 + wt, (4)

in which Φ is the transition matrix. If Φ has one eigenvalue equal to one with the remaining

eigenvalues inside the unit circle, then dt is covariance stationary (Hamilton, 1994, Chapter 22).

This will be the case, and my assumption that dt is stationary will not be violated. I also assume

that wt is independent of vt, E(wt) = 0, E(wtw
′
t) = Σww, and E(wtw

′
t−j) = 0 for j ̸= 0. Again,

these modeling choices follow in the spirit of Hamilton (2005). The primary difference is that I

treat recessions as observed, while Hamilton (2005) treats them as unobserved. I now turn to my

discussion of recession dates.

3.2 Recessions and Business Cycle Dummy Variables

In my baseline model, I use three dummy variables to model expansions and two types of recessions.

I define an expansion as any period in which one of the recessions does not apply. For my first

type of recession, I follow the NBER’s dates of business cycle peaks and troughs. I define the first

period of a recession as the month following a business cycle peak and the last period of a recession

as the month of the business cycle trough (National Bureau of Economic Research, 2022). I refer

to these recessions as “NBER recessions.”

For my second type of recession, I follow in the spirit of previous macro-labor research. Because

the unemployment rate is not a main variable that the NBER considers when determining recession

dates, peaks and troughs of the unemployment rate do not generally align with NBER recessions

and previous research has not always used NBER recession dates.8 For example, Elsby, Michaels,

and Solon (2009) define the beginning of a recession as the quarter with the lowest unemployment

rate preceding an NBER recession. They define the end of a recession as the quarter with the

highest unemployment rate following an NBER recession.9 Tasci and Zevanove (2019) similarly

8The NBER provides a list of its main variables at https://www.nber.org/research/business-cycle-dating/
business-cycle-dating-procedure-frequently-asked-questions.

9Elsby, Hobijn, and Şahin (2010), Dupraz, Nakamura, and Steinsson (2021), and Hall and Kudlyak (2022a) also
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Figure 3: Recession dates from January 1954 through December 2019.

date expansions and recessions with unemployment rate troughs and peaks but with monthly data,

and I use their recession dates as my second type of recession.10

Figure 3 shows the NBER and Tasci and Zevanove (2019) (TZ) recession dates from 1954

through 2019. I highlight that TZ recessions are all longer than NBER recessions and that every

TZ recession contains at least one NBER recession. This feature yields three states of the world: an

expansion, a TZ recession without an NBER recession, and a TZ recession with an NBER recession.

It is never the case that the economy is in an NBER recession but not a TZ recession.

Using these recession dates, I construct dt as follows. Expansion dummies equal 1 in any month

without an NBER or a TZ recession. NBER dummies equal 1 exactly as in the top panel of Figure

3. TZ dummies equal 1 in months with a TZ recession but no NBER recession. For example,

TZ dummies equal 1 following the 1991 and 2001 NBER recessions when the unemployment rate

continued to rise. Using this TZ dummy rather than the TZ recession series in Figure 3 yields results

deviate from NBER recession dates when studying aggregate labor variables.
10Tasci and Zevanove (2019) define a business cycle peak as a month in which the unemployment rate is lower than

in any of the previous or subsequent 24 months. A business cycle trough is a month in which the unemployment rate
is higher than in any of the previous or subsequent 24 months. I define the first period of a recession as the month
following a business cycle peak and the last period of a recession as the month of the business cycle trough. Dupraz,
Nakamura, and Steinsson (2021) use a different algorithm but end up with very similar peak and trough dates.
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Figure 4: Business cycle dummy variables from January 1954 through December 2019.

similar to Hamilton’s (2005) mild and severe recessions and aids interpretation of the regression

results in the next subsection. Further, this TZ dummy ensures that the dummy variables sum to

1 in each month and that they are consistent with Markov chain interpretation of Equation (4). I

show the dummy variables in Figure 4. In my baseline model, I use dt = [dexpansiont , dNBER
t , dTZ

t ]′

with the individual elements corresponding to each panel in Figure 4.

3.3 VECM Estimation

The unknown VECM parameters are the coefficients ν, α and Γ1, . . . ,Γp. I estimate these param-

eters with ordinary least squares. The estimation sample is January 1954 through December 2019

and I use p = 12. I provide a full description of estimation and inference in Appendix D. I also

13



estimate the transition matrix Φ by ordinary least squares. I show the estimate of Φ, note that dt

is stationary, and give the estimate of E(dt) in Appendix E.

In addition to estimating my baseline model in which dt = [dexpansiont , dNBER
t , dTZ

t ]′ is 3-

dimensional, I estimate two additional models for comparison purposes. In one model, dt is 1-

dimensional and equal to 1 (a constant-only model). In the other model, dt is 2-dimensional with

an expansion dummy and an NBER recession dummy (a one-recession model). Before discussing

the results, I emphasize that expansions in the one-recession model and the baseline model cover

different periods of time. In the one-recession model, dexpansiont = 1 − dNBER
t . In the baseline

model, dexpansiont = 1− dNBER
t − dTZ

t .

Table 2 shows selected VECM estimates. Panel A of Table 2 shows the estimated values of ν and

α for the constant-only, one-recession, and baseline models. Panel B of Table 2 shows differences

between the coefficients on the dummy variables. This panel highlights when the coefficients differ

across the dummy variables. Panel C of Table 2 shows R̄2, the Hannan and Quinn (1979) and

Quinn (1980) criterion (HQ), and the Schwarz (1978) criterion (SC) as measures of fit.11 Overall,

the baseline model has the highest R̄2 and the lowest criterion values, indicating that it fits the

data better the other models.12

Table 2 shows that the coefficients on the constant for the constant-only model are negative for

the ∆ ln(st) row of Equation (2) and positive for the ∆ ln(st + ft) row of Equation (2). Comparing

these coefficients for the constant-only model to the coefficients on the dummy variables for the

one-recession model, we see that the constant-only coefficients are driven by expansionary periods,

which have non-zero coefficients. In contrast, the coefficients on the NBER recession dummy are

not different from zero in either row of Equation (2).13 Panel B of Table 2 shows that the differences

between the coefficients on the NBER recession dummy and the expansion dummy are statistically

significant in the one-recession model. Compared to expansions, NBER recessions are periods of

time with high inflows into unemployment. Recalling from Figure 1 that the unemployment churn

rate is essentially the same as the unemployment outflow rate, NBER recessions are also periods

of time when outflows from unemployment are low compared to expansions.

Turning to the baseline model, Table 2 shows that the coefficient on the TZ dummy in the

11I compute the criterion values following equations in Lütkepohl (2005, Chapter 4). Let v̂t be the residual from
Equation (3) and Σ̂vv = (T − p− 1)−1 ∑T

t=p+2 v̂tv̂
′
t. Then, HQ = ln(|Σ̂vv|) + 2 ln(ln(T − p− 1))Km/(T − p− 1) and

SC = ln(|Σ̂vv|)+ ln(T −p−1)Km/(T −p−1) with Km being the number of estimated parameters in model m. With
p = 12, I have Kconstant = 52, Kone−recession = 54, and Kbaseline = 56.

12In Appendix F, I briefly discuss models in which I interact the dummy variables with some of the right-hand
variables in Equation (3). These less parsimonious models do not improve model fit and I do not discuss them here.

13The joint Wald statistic is 1.44. The associated χ2
2 p-value is 0.487.
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Table 2: Selected VECM Results for Different Models

Constant-only model One-recession model Baseline model

Dependent variable: ∆ ln(st) ∆ ln(st + ft) ∆ ln(st) ∆ ln(st + ft) ∆ ln(st) ∆ ln(st + ft)

Panel A: Coefficient Estimates and Associated t-statistics

constant -0.043** 0.039
(-1.97) (1.40)

dexpansiont−1 -0.052** 0.064** -0.052** 0.052*
(-2.38) (2.34) (-2.33) (1.93)

dNBER
t−1 -0.026 -0.007 -0.024 -0.039

(-1.16) (-0.27) (-1.06) (-1.42)

dTZ
t−1 -0.050** 0.017

(-2.13) (0.59)

ln(st−1)−ln(st−1+ft−1) -0.014* 0.014 -0.016** 0.020** -0.016** 0.013
(-1.84) (1.48) (-2.09) (2.07) (-2.01) (1.34)

Panel B: Differences Between Coefficient Estimates and Associated t-statistics

NBER dummy slope 0.027*** -0.072*** 0.028*** -0.091***
less expansion dummy slope (3.32) (-6.78) (3.24) (-8.03)

NBER dummy slope 0.026*** -0.055***
less TZ dummy slope (3.09) (-5.06)

TZ dummy slope 0.002 -0.036***
less expansion dummy slope (0.33) (-5.13)

Panel C: Measures of Model Fit

R̄2 0.38 0.40 0.39 0.44 0.39 0.45
HQ -11.31 -11.44 -11.47
SC -11.12 -11.24 -11.26

Notes: Coefficients are estimated by ordinary least squares from January 1954 through December 2019. t-statistics
are shown in parentheses and estimated with heteroskedasticity robust standard errors. Stars, ∗, ∗∗ and ∗∗∗, indicate
that parameter estimates are statistically significantly different from zero at the 10, 5, and 1 percent levels. R̄2

is adjusted R2, HQ is the Hannan and Quinn (1979) and Quinn (1980) criterion, and SC is the Schwarz (1978)
criterion.
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∆ ln(st) row of Equation (2) is nearly the same as the coefficient on the expansion dummy. In

contrast, the coefficient on the NBER recession dummy is higher than the coefficients on both the

TZ and the expansion dummies. In other words, NBER recessions are periods of time when inflows

into unemployment are higher than during expansions. However, the TZ dummy picks up periods of

time when inflows into unemployment are not high compared to expansions. In the ∆ ln(st+ft) row

of Equation (2), the TZ dummy has a coefficient that is lower than the coefficient on the expansion

dummy but higher than the coefficient on the NBER recession dummy. Recalling from Figure 1

that the unemployment churn rate is essentially the same as the unemployment outflow rate, the

TZ dummy picks up periods of time when unemployment outflows are lower than in expansions

but higher than in NBER recessions.

Overall, NBER recessions look like severe recessions: periods of time when unemployment

inflows are high compared to expansions and when unemployment outflows are very low compared

to expansions. In contrast, the TZ dummies are picking up periods of time that look like mild

recessions: unemployment inflows are similar to those in expansions, while unemployment outflows

are lower than in expansions but not as low as in NBER recessions.

For all three models, the coefficients on the error correction term are jointly statistically signifi-

cantly different from zero.14 Further, the direction of the slopes is the same across all three models:

negative for the ∆ ln(st) row of Equation (2) and positive for the ∆ ln(st + ft) row. Recall from

Equation (1) that the error correction term, ln(st)− ln(st+ft), can be interpreted as the log unem-

ployment rate, ln(ut). Then, error correction works by decreasing unemployment inflows when the

unemployment rate is high and increasing unemployment outflows when the unemployment rate is

high. These lower inflows and higher outflows then bring the unemployment rate down.

4 Business-Cycle-Only Counterfactuals

In Subsection 4.1, I compute business-cycle-only counterfactuals with the VECM to show that

business cycles can generate the low-frequency movements in the unemployment rate. In Subsection

4.2, I study the important features of VECM by computing business-cycle-only counterfactuals

using a VAR with the labor flows in differences and a VAR with the labor flows in levels.

14For the constant-only model, the Wald statistic is 9.45 with a corresponding χ2
2 p-value of 0.009. For the one-

recession model, the Wald statistic is 15.62 with a corresponding χ2
2 p-value of essentially zero. For the baseline

model, the Wald statistic is 10.59 with a corresponding χ2
2 p-value of 0.005.
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4.1 Counterfactuals with the VECM

I produce business-cycle-only counterfactuals of labor flows and the unemployment rate by feeding

the historical values of dt into the VECM and setting vt = 0 for t = p + 2, . . . , T . I denote the

estimated parameters with hats and the matrix of estimated parameters with Θ̂ = [ν̂, α̂, Γ̂1, . . . , Γ̂p].

Following the notation in Equation (3), I denote the counterfactual flow rate variables with ỹt. I

set the initial values to match the data: ỹt = yt for t = 1, . . . , p + 1. Then, I compute ỹt for

t = p + 2, . . . , T recursively. I collect the right-hand side variables with the actual business cycle

dummies and the counterfactual labor variables: z̃t−1 = [d′t−1, β
′ỹt−1,∆ỹ

′
t−1, . . . ,∆ỹ

′
t−p+1]

′. Then,

I compute ∆ỹt = Θ̂z̃t−1 and ỹt = ∆ỹt + ỹt−1.
15

Figure 5 shows the business-cycle-only counterfactuals along with the actual data. The top

panel shows the inflow hazard rate and the middle panel shows the unemployment churn rate. The

bottom panel shows the business-cycle-only counterfactual unemployment rate in percent, which I

compute from the counterfactual flows with 100× eβ
′ỹt .

Consistent with the estimates in Table 2, Figure 5 shows that the counterfactual unemployment

inflow rate increases in NBER recessions. Similar to the data, the counterfactual increase in the

inflow rate during recessions is relatively short-lived. The business-cycle-only unemployment churn

rate, primarily driven by the outflow rate, falls in NBER recessions. It may also fall in periods

covered by the TZ dummy variable, such as the periods immediately following the 1991 and 2001

NBER recessions. In contrast to the inflow rate, the effects of recessions on the churn rate are

persistent because the churn rate increases slowly throughout an expansion.

While the business-cycle-only labor flows match the business cycle patterns of the data, the top

two panels of Figure 5 show that these business-cycle-only flows do not match the low-frequency

movements in the data. Feeding the historical recession dummies into the VECM while setting

vt = 0 gives a counterfactual inflow rate that misses the persistent rise in the actual inflow rate

beginning in the 1970s. The business-cycle-only inflow rate is below the actual inflow rate from

1970 until the late 2010s. The business-cycle-only counterfactual for the unemployment churn rate

is also persistently different from the actual data. Because the two business-cycle-only rates in

Figure 5 share a common trend, the business-cycle-only churn rate is also below the actual churn

15This counterfactual can also be understood through the joint dynamics of the variables in Equations (3) and
(4). I want to know how the historical innovations in business cycles, wt, affect the data. I denote the estimated
values with ŵt and set the counterfactual values to be w̃t = ŵt for t = p + 2, . . . , T . Because wt is independent of
vt, w̃t has no information for the counterfactual values of vt. Hence, I set counterfactual values of vt equal to their
unconditional mean: ṽt = E(vt) = 0 for t = p + 2, . . . , T . Then, I jointly feed [ṽ′t, w̃

′
t]
′ into Equations (3) and (4),

using ỹt = yt for t = 1, . . . , p+ 1 and d̃p+1 = dp+1 as the initial conditions.
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Figure 5: Labor data and business-cycle-only counterfactuals computed with the VECM.
Note: Gray bars show NBER recessions
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Figure 6: HP trends of the unemployment rate and its business-cycle-only counterfactual.
Note: Gray bars show NBER recessions

rate for most of the sample.

The bottom panel of Figure 5 shows that the business-cycle-only unemployment rate is similar to

the actual unemployment rate in terms of both its business cycle movements and its low-frequency

movements. The only material period of disagreement comes after the 2008-09 recession when

the business-cycle-only counterfactual does not match the slow recovery following the 2008-09

recession. However, this disagreement is confined to one recovery and is much less persistent

than the disagreement between the business-cycle-only labor flows and the actual labor flows.

To further study the low-frequency movements in the unemployment rate and its business-

cycle-only counterfactual, I compute low-frequency trends for these variables. First, I compute HP

trends, shown in Figure 6, with different HP parameters. The top left panel shows the HP trend

with a parameter of 129,600, which scales the standard 1,600 for quarterly data up by 81 to convert

to a monthly frequency (Ravn and Uhlig, 2002). However, following Shimer (2005), researchers

often compute HP trends for labor data with higher parameters and the other panels in Figure 6

scale the 129,600 parameter up by 7, 21, and 63.16

16Shimer (2005) uses an HP parameter of 100,000 for quarterly data, which converts to a monthly parameter of
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Figure 7: MW trends of the unemployment rate and its business-cycle-only counterfactual.
Note: Gray bars show NBER recessions

Second, I compute low-frequency filter trends from Müller and Watson (2015), henceforth MW

trends, with different low-frequency cut-offs.17 I show these MW trends in Figure 7. In the top-left

panel, I show frequencies corresponding to 10.2 years and longer, which are lower than the 10-year

business cycle frequencies put forward in Beaudry, Galizia, and Portier (2020). To parallel the

HP trends in Figure 6 and further study the low-frequency movements in the data, I use three

additional low-frequency cut-offs for the MW trends in Figure 7.

I highlight two results in Figures 6 and 7. First, the actual unemployment rate has large low-

frequency movements. In the top left panels of both figures, which correspond to the conventional

HP parameter and business cycle frequency cut-off, the unemployment rate’s low-frequency trends

rise a little more than 4 percentage points from 1969 through 1982 and then fall a little less than

8,100,000. I choose to scale 129,600 up by 63 to approximately match the monthly parameter of 8,100,000.
17While HP trends are more commonly used than MW trends, previous research has noted some shortcomings of

the HP filter (Cogley and Nason, 1995; Hamilton, 2018). One appeal of the MW trends is that they are interpreted
in terms of frequencies in years. In addition, MW trends allow for low-frequency regression, which I use below. MW
trends are computed from the discrete cosine transforms that I used for hypothesis testing in Section 2.2. For Figure
7, I use 13, 11, 8, and 5 cosine transforms, picking up frequencies equal to and longer than 10.2 years, 12.0 years,
16.5 years, and 26.4 years.
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4 percentage points from 1983 through 1999. These fluctuations are dampened in the other panels

but remain substantial. In the bottom right panel of Figure 6, the HP trend rises and falls by about

2 percentage points from 1969 through 1999. In the bottom right panel of Figure 7, the MW trend

rises a little more than 3 percentage points from 1969 through 1982 and falls a little more than 2

percentage points from 1983 through 1999.

The second result in Figures 6 and 7 is that the unemployment rate’s business-cycle-only coun-

terfactual has essentially the same low-frequency movements as the actual unemployment rate.

That is, the VECM indicates that business cycles can generate the unemployment rate’s large

low-frequency movements, even at very low frequencies. The only period of disagreement between

the actual trends and the business-cycle-only trends begins near the 2008-09 recession. From the

bottom panel of Figure 5, this disagreement occurs because the business-cycle-only counterfactual

does not match the slow recovery following the 2008-09 recession.

To quantify the relationship between the actual unemployment rate and the business-cycle-only

counterfactual, I use the low-frequency regression in Müller and Watson (2015, Section 4.1).18 At

frequencies of 10.2 years and longer (corresponding to the top left panel in Figure 7), regressing

the unemployment rate’s MW trend on the business-cycle-only counterfactual’s MW trend yields

a regression slope of 0.99. That is, the business-cycle-only counterfactual requires essentially no

scaling to best predict fluctuations in the actual unemployment rate at low frequencies. The

associated low-frequency R2 is 0.84, indicating that the business-cycle-only counterfactual explains

84 percent of the low-frequency fluctuation in the actual unemployment rate.19

Intuitively, the unemployment rate’s business cycle asymmetries allow business cycles to gen-

erate large low-frequency movements. Both in the data and in the VECM, the unemployment

rate rises quickly in NBER recessions but falls slowly in expansions. Hence, the unemployment

rate may not fall to its previous low point if an expansion is too short. As shown in the bottom

panel of Figure 5, the repeated short expansions from January 1969 through December 1982 caused

both the actual and the business-cycle-only unemployment rates to start subsequent recessions at

higher levels. This ratcheting up of the unemployment rate over multiple business cycles yields a

low-frequency increase in the unemployment rate. In contrast, a long expansion gives the unem-

ployment rate time to fall below its previous low point in both the data and the VECM. Hence,

18Müller and Watson’s (2015) low-frequency regression is akin to Engle’s (1974) band spectral regression, but
uses discrete cosine transforms instead of discrete Fourier transforms. Yamada (2020) recommends discrete cosine
transforms rather than discrete Fourier transforms for economic time series.

19These quantitative results are essentially the same for the other frequency cut-offs in Figure 7.
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the two long expansions from January 1983 through December 1999 undid the upward ratcheting

of both the actual and business-cycle-only unemployment rates, yielding a low-frequency decrease

in the unemployment rate. The business-cycle-only counterfactual highlights that business cycle

asymmetries and the pattern of US business cycles are sufficient to generate the unemployment

rate’s low-frequency movements – a stochastic trend is not needed.

4.2 The Role of Error Correction

An important difference between my VECM and the models used in previous research is that the

VECM has error correction or a common trend in the labor flows. To understand the role that error

correction plays for the results in the previous subsection, I consider two changes to the VECM.

The first change to the VECM is to set α = [0, 0]′, which eliminates error correction and imposes

independent trends in the flows. With α = [0, 0]′, the VECM in Equation (3) can be written as a

VAR with the flows in differences:

∆yt = νdt−1 + Γ1∆yt−1 + · · ·+ Γp∆yt−p + vt. (5)

I will refer to the model in Equation (5) as a “differences VAR.”

The second change to the VECM is to relax the assumption that β = [1,−1]′. I write the

VECM as a VAR with the flows in levels:

yt = νdt−1 +A1yt−1 +A2yt−2 + · · ·+Ap+1yt−p−1 + vt, (6)

in which A1 = I2 + αβ′ + Γ1, Aj = Γj − Γj−1 for j = 2, . . . , p, and Ap+1 = −Γp. I will not impose

any restrictions on A1 during estimation. Hence, this “levels VAR” permits but does not impose

α = [0, 0]′ and β = [1,−1]′, making it is less restricted than either the VECM or the differences

VAR.20 To be clear, the levels VAR permits a common trend in the flows, but does not require that

the common trend yield a stationary unemployment rate.21 Hence, if one is skeptical of basing a

time-series model on the hypothesis tests in Section 2, as I do with the VECM, the levels VAR

provides results without reliance on pre-testing.

I estimate the differences and levels VARs by ordinary least squares from January 1954 through

20Gospodinov, Herrera, and Pesavento (2013) provide evidence that levels VARs are more robust than VECMs or
differences VARs when there is uncertainty about the magnitude of the largest roots in the data.

21Suppose that the log labor flows are cointegrated with a cointegrating vector given by β = [1, β2]
′ with β2 ̸= −1.

Then, ln(st) + β2 ln(st + ft) is the stationary error correction term instead of ln(ut) = ln(st)− ln(st + ft).
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December 2019. I compute business-cycle-only counterfactual labor flows from these models in

a manner parallel to that in the VECM before then using the counterfactual flows to construct

business-cycle-only unemployment rates.

Figure 8 shows the unemployment rate and the business-cycle-only counterfactual from the

differences VAR in the top panel. Its middle and bottom panels show the corresponding HP and

MW trends, using the conventional HP parameter and business cycle frequency cut-off. Figure

8 shows that the business-cycle-only unemployment rate from the differences VAR has large low-

frequency movements but that those movements do not align with the actual unemployment rate.

The business-cycle-only unemployment rate is too low in the 1970s, with an HP trend that is 1.6

percentage points below the actual HP trend in 1976 and an MW trend that is 1.7 percentage

points below the actual MW trend in 1977. The business-cycle-only unemployment rate is too high

for much of the 1980s and in the 1990s, with an HP trend that is 1.4 percentage points above the

actual HP trend in 1992 and an MW trend that is 1.5 percentage points above the actual MW

trend in 1993.

I make two remarks comparing the results of the counterfactuals from the VECM and the differ-

ences VAR. First, because the TZ recessions are constructed using peak and trough months for the

unemployment rate, the timing of the fluctuations for the business-cycle-only unemployment rates

from both the VECM and the differences VAR aligns with the timing of the actual unemployment

rate fluctuations. Second, matching the timing of the actual unemployment rate fluctuations is not

sufficient to match the low-frequency movements of the unemployment rate. When labor flows are

not allowed to share a common stochastic trend, as in the differences VAR, then the business-cycle-

only counterfactual does not align with the actual low-frequency movements in the unemployment

rate. Hence, the common stochastic trend in the VECM is important for generating the results in

Section 4.1.

Figure 9 shows the same objects as in Figure 8 but from the levels VAR. Comparing Figure 8

to Figure 9 shows that the business-cycle-only unemployment rate from the levels VAR is mate-

rially different than the business-cycle-only unemployment rate from the differences VAR. Hence,

assuming α = [0, 0]′ is not innocuous. This assumption materially changes the joint dynamics of

the labor flows from the models. In particular, ruling out a common stochastic trend in the labor

flows, as Tasci (2012), Barnichon and Mesters (2018), and Crump et al. (2019) do, accentuates the

need for a stochastic trend in the unemployment rate in order to match the unemployment rate’s
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Figure 8: Unemployment rate and business-cycle-only counterfactual from the differences VAR.
Note: Gray bars show NBER recessions
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Figure 9: Unemployment rate and business-cycle-only counterfactual from the levels VAR.
Note: Gray bars show NBER recessions
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low-frequency movements.22

Comparing Figure 9 and the top left panels of Figures 6 and 7 shows that business cycles are

similarly important for generating low-frequency movements in the unemployment rate in both the

VECM and the levels VAR for conventional low-frequency parameters. Using the levels VAR, the

average absolute difference between the actual and business-cycle-only HP trends is 0.36 percentage

points. Using the VECM, this average absolute difference is 0.35 percentage points.23 For the MW

trends, these average absolute differences are 0.37 percentage points using the levels VAR and 0.38

percentage points using the VECM.24 Hence, relaxing the VECM assumption that β = [1,−1] does

not materially change the finding that business cycles can generate the low-frequency movements in

the unemployment rate. On the other hand, using β = [1,−1] does not impose this finding on the

VECM. Rather, the appeal of using the VECM with β = [1,−1]′ is that ln(ut) = β′yt is stationary,

consistent with the results in Section 2, and the error correction mechanism can be interpreted in

terms of the unemployment rate. I use the stationarity feature in the next section to study where

the unemployment rate will go after adjusting for business cycle shocks.

5 Longer-Run Unemployment Rate Estimates

In this section, I estimate a longer-run unemployment rate, defined as the rate expected to prevail

after adjusting for business cycle shocks (Crump, Nekarda, and Petrosky-Nadeau, 2020). I begin by

interpreting “after adjusting for business cycle shocks” to mean where the unemployment rate will

go as the economy stays in expansion. This interpretation follows the spirit of a plucking model

where business cycles are caused by recessions that are downward plucks of the economy away

from potential (Friedman, 1964, 1993). After a pluck, the unemployment rate will move toward its

longer-run benchmark in the absence of further plucks.25

To compute the longer-run unemployment rate in the VECM, I set dexpansiont = 1 and vt = 0

for all t. Next, I use the notation ν = [νexpansion, νNBER, νTZ ], in which νexpansion is the column of

ν that corresponds to dexpansiont , νNBER is the column of ν that corresponds to dNBER
t , and νTZ is

the column of ν that corresponds to dTZ
t . Then, the VECM dynamics after adjusting for business

22Gospodinov, Maynard, and Pesavento (2011) show that ruling out low-frequency relationships can also distort
how technology shocks are estimated to affect the labor market.

23This average absolute difference is 0.62 percentage points for the differences VAR.
24This average absolute difference is 0.65 percentage points for the differences VAR.
25Kim and Nelson (1999), Tasci and Zevanove (2019), and Dupraz, Nakamura, and Steinsson (2021) provide support

for a plucking model of unemployment rate fluctuations.
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Figure 10: Unemployment rate forecasts conditional on the economy staying in expansion.
Note: The legend gives dates of the initial conditions for the forecasts.

cycle shocks are given by

∆yt = νexpansion + αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp∆yt−p. (7)

Given some initial conditions, [y′t−1, . . . , y
′
t−p−1]

′ and estimated VECM parameters, I can then

iterate Equation (7) forward and use 100× ut = 100× eβ
′yt to trace out the unemployment rate in

percent. In short, I compute forecasts of the unemployment rate via the flows conditional on the

economy staying in expansion.

Figure 10 shows these conditional forecasts for four different initial conditions, setting period

t − 1 to correspond to December 1982, June 1992, June 2003, and October 2009. Each of these

months corresponds to an unemployment rate peak. While these initial conditions are different,

the unemployment rate will converge to the same value if an expansion is long enough. At the

10-year horizon, the unemployment rates are in a range between 3.3 and 3.9 percent. At the 15-

year horizon, the unemployment rates are in a range between 2.9 and 3.2 percent. At the 30-year

horizon, all forecasts are 2.6 percent.

Analytically, I can compute where the unemployment rate will go at an infinite horizon. Let
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∆yt → ∆y and β′yt → βy as t→ ∞. Then, Equation (7) can be written as

∆y = (I2 − Γ1 − · · · − Γp)
−1(νexpansion + αβ′y)

for t → ∞. Note that β′∆yt = β′yt − β′yt−1, which then converges to β′y − β′y = 0 as t → ∞.

Then, pre-multiplying Equation (7) by β′ yields

0 = β′νexpansion + β′αβ′y + β′(Γ1 + · · ·+ Γp)∆y

for t→ ∞. Substituting out ∆y and solving for β′y then yields

β′y = −β
′[I2 + (Γ1 + · · ·+ Γp)(I2 − Γ1 − · · · − Γp)

−1]νexpnsion

β′[I2 + (Γ1 + · · ·+ Γp)(I2 − Γ1 − · · · − Γp)−1]α
. (8)

Let β̂′y be the estimated value. Then, I estimate the infinite-horizon unemployment rate to be 2.5

percent, which is given by 100× eβ̂
′y.

Together, the infinite-horizon unemployment rate estimate of 2.5 percent and the forecasts in

Figure 10 show that an expansion of roughly 30 years is needed for the unemployment rate to fall

near its infinite-horizon forecast conditional on the economy saying in expansion. This is a much

longer expansion horizon than what exists in my sample. The longest expansion in my sample is 122

months (10.2 years) from November 2009 through December 2019.26 The next longest expansions

are 94 months (7.8 years) from July 1992 through April 2000 and 93 months (7.8 years) from June

1961 through February 1969. Hence, the 2.5 percent estimate requires the VECM to extrapolate

well beyond what is in the data, and I view the 2.5 percent estimate as speculative.

The VECM does not need to extrapolate expansions well beyond what is in the data to predict

that the unemployment rate will fall to historically low values in the absence of shocks. As I already

noted, Figure 10 shows that the unemployment rate goes to a range 3.3 to 3.9 percent conditional

on a 10-year expansion. These values are consistent with what has been observed at the end of

long expansions. The unemployment rate fell as low as 3.4 percent in 1968 and 1969, as low as 3.9

percent in 2000, and as low as 3.5 percent in 2019. The VECM’s forecasts in Figure 10 indicate

that these low values need not be the result of some stochastic trend. Rather, these low values can

just be the result of long expansions.

If I allow the VECM to extrapolate beyond 10 years, roughly coinciding with the longest

26I am defining expansions here as periods of time without NBER or TZ recessions. See the top panel of Figure 4.
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expansion in my sample, and out to 15 years, then the unemployment rates in Figure 10 range

from 2.9 to 3.2 percent. Unemployment rates this low have not been observed since the early

1950s, coinciding with the Korean War and the associated draft. However, such values of the

unemployment rate are not implausible for sufficiently long expansions. The unemployment rate

generally fell throughout 2019 and reached its lowest value of the expansion (when rounded to two

digits) in February 2020 — the month before the COVID-19 pandemic disrupted the US labor

market. Without this COVID-19 disruption, the unemployment rate falling into the 2.9 to 3.2

percent range is entirely plausible.

I conclude this section by generalizing Equation (8). My purpose is to study how a reduction

in the frequency of recessions, but not necessarily an absence of recessions, will affect the expected

unemployment rate. Because I model ∆yt, β
′yt, and dt as being stationary, E(∆yt), E(β′yt), and

E(dt) are constant for all t. Then, I can derive

E(ln(ut)) = E(β′yt) = −β
′[I2 + (Γ1 + · · ·+ Γp)(I2 − Γ1 − · · · − Γp)

−1]νE(dt)
β′[I2 + (Γ1 + · · ·+ Γp)(I2 − Γ1 − · · · − Γp)−1]α

(9)

in a manner parallel to that for deriving Equation (8). Equation (9) shows that the expected

log of the unemployment rate is a function of E(dt). Because dt = [dexpansiont , dNBER
t , dTZ

t ]′ and

dexpansiont = 1 − dNBER
t − dTZ

t , I can then say that the expected log of the unemployment rate

depends on the expected fraction of months that the economy spends in recession. I estimate E(dt)

from the estimate of the transition matrix Φ. The expected fraction of months in an expansion is

0.71, the expected fraction of months in an NBER recession is 0.13, and the expected number of

months in a TZ recession but not in an NBER recession is 0.16. Then, as a heuristic, I use eE(ln(ut))

to approximate E(ut) and compute an estimated expected unemployment rate of 5.5 percent.

As a thought experiment, I consider what the expected unemployment rate would be with lower

rates of recessions. Suppose E(dexpansiont ) increases to 0.80, E(dNBER
t ) reduces to 0.04, and E(dTZ

t )

is unchanged at 0.16. These values are very similar to the fraction of months spent in recession

from January 1983 through December 1999.27 Then, the expected unemployment rate would be 3.7

percent. That is, reducing the frequency of NBER recessions to rates observed from 1983 through

1999 brings the expected unemployment rate down by almost 2 percentage points. Alternatively, if

E(dexpansiont ) increases to 0.80, E(dNBER
t ) is unchanged at 0.13, and E(dTZ

t ) reduces to 0.07, then

the expected unemployment rate would be 4.9 percent. Both of these exercises show that reducing

27From January 1983 through December 1999, 4 percent of months were in an NBER recession and 19 percent of
months were in a TZ recession, implying that the TZ dummy equaled 1 in 15 percent of months.
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the frequency of recessions reduces the expected level of the unemployment rate, consistent with the

structural models of Hairault, Langot, and Osotimehin (2010), Jung and Kuester (2011), Benigno,

Ricci, and Surico (2015), Lepetit (2020), Dupraz, Nakamura, and Steinsson (2021), and Gornemann,

Kuester, and Nakajima (2021). Further, reducing the frequency of NBER recessions yields a larger

reduction in the expected unemployment rate than the same size reduction in the frequency of TZ

dummies, consistent with the interpretation that NBER recessions correspond to severe recessions

while the TZ dummies correspond to mild recessions.

6 Conclusions

I provide evidence that the unemployment rate is stationary, while its underlying flows have unit

roots. Hence, I model the log unemployment rate as the error correction term of log labor flows in a

VECM. To incorporate the business cycle asymmetries documented in previous research, I permit

the intercepts in the VECM to vary over the business cycle.

I use this VECM with time-varying intercepts to show that business cycles can generate most

of the low-frequency movement in the unemployment rate. The intuition for this result is as

follows. Because the unemployment rate falls slowly in expansions, frequent recessions interrupt

labor market recoveries and ratchet the unemployment rate upward. Long expansions undo this

upward ratcheting by giving the labor market time to fully recover. The historical pattern of US

business cycles then generates low-frequency movements: frequent recessions from the late 1960s

until the early 1980s caused the unemployment rate to ratchet up, while long expansions in the

1980s and 1990s undid this ratcheting. An implication of this result is that removing low-frequency

movements from the unemployment rate may remove business cycle features.

I also use the VECM to estimate a longer-run unemployment rate benchmark by computing

forecasts conditional on the economy staying in expansion. Using the unemployment rate peaks

in 1982, 1992, 2003, and 2009 as initial conditions, the VECM predicts that the unemployment

rate will be between 3.3 and 3.9 percent after a 10-year expansion. Lower unemployment rates

are possible with longer expansions, but require the VECM to extrapolate beyond what is in the

data. Hence, a longer-run unemployment rate between 3.3 and 3.9 percent could be a reasonable

benchmark for policymakers.
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A Computing Unemployment Inflow and Outflow Hazard Rates

In this appendix, I describe how I measure the unemployment inflow and outflow hazard rates, st

and ft. My measurement approach follows Shimer (2012) and Elsby, Michaels, and Solon (2009). I

begin by defining St ∈ [0, 1] as the probability of flowing into unemployment and Ft ∈ [0, 1] as the

probability of flowing out of unemployment. I then compute

Ft = 1− ulevelt − ulevel,st

ulevelt−1

, (A.1)

in which ulevelt is the level of unemployment (Bureau of Labor Statistics, 2022c) and ulevel,st is the

number of people unemployed for less than 5 weeks (Bureau of Labor Statistics, 2022b). I follow

Elsby, Michaels, and Solon (2009) and multiply the Bureau of Labor Statistics’ measure of the

number of people unemployed for less than 5 weeks by 1.1549 from February 1994 through the end

of the sample. Then, the unemployment outflow hazard rate is ft = − ln(1− Ft).

Next, I compute the unemployment inflow hazard rate, defined as st = − ln(1− St). I use

ulevelt =
(1− e−ft−st)st

ft + st
lt−1 + e−ft−stulevelt−1 , (A.2)

in which lt = ulevelt + elevelt is the labor force with elevelt being the level of employment (Bureau of

Labor Statistics, 2022a). I solve Equation (A.2) for st, given u
level
t , ulevelt−1 , lt−1, and the values of

Ft from (A.1) and ft = − ln(1− Ft). I solve for st using the method of bisection. For each month,

my initial lower bound guess for St is 0 and my initial upper bound guess for St is 1.

Because t−1 values of ulevelt−1 and lt−1 are needed to compute st and ft, I use data from December

1953 through May 2023 to compute the hazard rates from January 1954 through May 2023.

B Data and LFST Results Using Data through May 2023

In this appendix, I show the data in Figures 1 and 2 through May 2023. These longer samples are

in Figures B.1 and B.2. I note that the approximation st/(st + ft) takes a value of 0.58 in April

2020 but I truncate the vertical axis of Figure B.2 at 0.22.

I also re-compute the p-values for the LFST statistic using the January 1954 through May 2023

sample. Table B.1 shows the results with this sample. As in the body of the paper, I choose q in

the far right column of the table to pick up frequencies corresponding to 8 years and longer. I also
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Figure B.1: Labor market data from January 1954 through May 2023.
Note: Gray bars show NBER recessions.

show results for some smaller values of q to establish robustness. Overall, the results in Table B.1

are very similar to those in the body of the paper. The general pattern of results are that labor

flows have a unit root, changes in labor flows are stationary, and ut, ln(ut), and ln(st)− ln(st + ft)

are stationary.

C Details for the LFST Statistic

In this appendix, I provide details for computing the LFST statistic and the associated p-values.

Let xt be a 1-dimensional random variable. Given a data sample, {x1, . . . , xT }, the Müller and

Watson (2008) (MW) testing approach begins by computing the discrete cosine transforms X̂T,j =

T−1
∑T

t=1

√
2 cos(πj(t − 1/2)/T )xt for j = 1, . . . , q, in which q is much smaller than T . Write

X̂T,1:q = [X̂T,1, . . . , X̂T,q]
′ as a (q × 1) vector. Then, T 1−κX̂T,1:q ⇒ X ∼ N(0, σ2Σ), in which σ2 is

the long-run variance of the stationary components of xt and κ is a scaling factor that depends on
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Table B.1: p-Values for the LFST statistics

Variable q = 13 q = 14 q = 15 q = 16 q = 17

st 0.00 0.00 0.00 0.00 0.00
ft 0.02 0.03 0.02 0.01 0.01
st + ft 0.01 0.02 0.01 0.01 0.01

ln(st) 0.00 0.00 0.00 0.00 0.00
ln(ft) 0.02 0.02 0.01 0.01 0.01
ln(st + ft) 0.01 0.01 0.01 0.01 0.01

∆st 0.35 0.73 0.70 0.64 0.62
∆ft 0.99 0.99 1.00 1.00 0.99
∆(st + ft) 0.99 0.99 1.00 1.00 0.99

∆ ln(st) 0.20 0.60 0.56 0.50 0.48
∆ ln(ft) 0.96 0.98 1.00 1.00 0.99
∆ ln(st + ft) 0.97 0.97 1.00 1.00 0.99

ut 0.34 0.37 0.33 0.34 0.32
ln(ut) 0.31 0.36 0.31 0.29 0.27
ln(st)− ln(st + ft) 0.31 0.34 0.29 0.28 0.26

period of fastest-cycling 10.7 9.9 9.3 8.7 8.2
cosine wave in years

Notes: The null hypothesis is that the data are stationary. The alternative hy-
pothesis is that the data have a low-variance unit root component. p-values less
than 0.10, 0.05, and 0.01 indicate rejection of the null hypothesis at the 10 per-
cent, 5 percent, and 1 percent levels, respectively. The data sample is January
1954 through May 2023.
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Figure B.2: The unemployment rate and its approximation.
Note: Gray bars show NBER recessions.

the relevant data generating process (DGP) for xt. If xt is an I(0) process, then σ
2 is the long-run

variance of xt and κ = 1/2. If xt is an I(1) process, then σ2 is the long-run variance of xt − xt−1

and κ = 3/2. It will also be the case that Σ depends on the DGP.

MW also consider a DGP that bridges the I(0) and I(1) DGPs, which they call the “local level”

DGP. It is xt = µ + ξ1,t + (g/T )
∑t

τ=1 ξ2,τ with ξ1,t and ξ2,t both being I(0) processes with mean

zero and a joint long-run covariance matrix σ2I2. The parameter g governs the variance of the unit

root component,
∑t

τ=1 ξ2,τ . For this DGP, the scale factor is κ = 1/2. In short, this local level

DGP can be interpreted as a process with a low-variance unit root component. The LFST statistic

then tests the null hypothesis that a variable is stationary against the alternative hypothesis that

the variable follows the local level DGP.

Because σ2 is not known, MW base their tests on the distribution of X̂T,1:q/
√
X̂ ′

T,1:qX̂T,1:q. By

the continuous mapping theorem, X̂T,1:q/
√
X̂ ′

T,1:qX̂T,1:q ⇒ X/
√
X ′X. The density of η = X/

√
X ′X

is

fη = (1/2)Γ(q/2)π−q/2|Σ|−1/2(ηΣ−1η)−q/2, (C.1)

in which Γ(·) is the gamma function. Given this density, MW then form the LFST statistic, which is

a likelihood ratio statistic. The null hypothesis is that xt is an I(0) process. With this null, Σ = Iq.
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The alternative hypothesis is that xt has a local level DGP. With this alternative, Σ = Iq + g2D,

in which D is a diagonal matrix with the jth diagonal element being 1/(jπ)2. Then, the likelihood

ratio statistic rejects the null hypothesis for large values of

LFST =

∑q
j=1 X̂

2
T,j∑q

j=1 X̂
2
T,j/(1 + (g/(jπ))2)

. (C.2)

Following MW, I use a value of g = 10.

After computing the LFST statistic, I compute the p-value with simulation. Using X ∼

N(0, σ2Σ), I simulate values of X from a multivariate normal distribution. Under the null, Σ = Iq.

Further, I set σ2 = 1 because the value of σ2 does not affect the LFST statistic. Hence, I draw

200,000 simulations of X from N(0, Iq), compute the LFST statistic for each draw, and compute

the p-value as the fraction of the simulated LFST statistics that are greater than the value in (C.2)

that I compute from the data.

D VECM Estimation and Inference

Ordinary Least Squares Estimation: I estimate Equations (3) and (4) separately by ordinary

least squares. I collect the parameters, Θ = [ν, α,Γ1, . . . ,Γp], and define

Y = [∆yp+2, . . . ,∆yT ], zt = [d′t, β
′yt,∆y

′
t, . . . ,∆y

′
t−p+1]

′, Z−1 = [zp+1, . . . , zT−1]

D = [dp+2, . . . , dT ], D−1 = [dp+1, . . . , dT−1], V = [vp+2, . . . , vT ], W = [wp+2, . . . , wT ].

The parameter estimates are

Θ̂ = Y Z ′
−1(Z−1Z

′
−1)

−1

Φ̂ = DD′
−1(D−1D

′
−1)

−1.

Inference: Let θ = vec(Θ), θ̂ = vec(Θ̂), ϕ = vec(Φ), and ϕ̂ = vec(Φ̂). For inference, I treat the

ordinary least squares estimates as jointly asymptotically normally distributed so that

√
T − p− 1

(θ̂ − θ)

(ϕ̂− ϕ)

 ∼ N(0,Σ).

I estimate Σ as follows. I define Q̂Z = (T − p − 1)−1Z−1Z
′
−1 and Q̂D = (T − p − 1)−1D−1D

′
−1.
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Then, I have

√
T − p− 1(θ̂ − θ) = (Q̂−1

Z ⊗ I2)vec((T − p− 1)−1/2V Z ′
−1)√

T − p− 1(ϕ̂− ϕ) = (Q̂−1
D ⊗ I3)vec((T − p− 1)−1/2WD′

−1).

Let V̂ = [v̂p+2, . . . , v̂T ] = Y − Θ̂Z−1 and Ŵ = [ŵp+2, . . . , ŵT ] = D − Φ̂D−1 be the ordinary least

squares residuals. I then compute

Ω̂ = (T − p− 1)−1
T∑

t=p+2

ξ̂tξ̂
′
t,

in which

ξ̂t =

 (zt−1 ⊗ I2)v̂t

(dt−1 ⊗ I3)ŵt

 .
Then, the estimate of the joint asymptotic covariance matrix is

Σ̂ =

(Q̂−1
Z ⊗ I2) 08+4p×9

09×8+4p (Q̂−1
D ⊗ I3)

 Ω̂

(Q̂−1
Z ⊗ I2) 08+4p×9

09×8+4p (Q̂−1
D ⊗ I3)

′

.

For inference in Subsection 3.3, I use [ϕ̂′, θ̂′] divided by the square root of the diagonal elements of

Σ̂/(T − p− 1) as my t-statistics. I use submatrices of Σ̂ to compute Wald statistics and t-statistics

for the differences between slope estimates.

E Estimates of the Dummy Markov Chain

Recall that dt = [dexpansiont , dNBER
t , dTZ

t ]′. I estimate Φ in Equation (4) by ordinary least squares

as described in Appendix D. The estimation sample is January 1954 through December 2019, and

the estimate is

Φ̂ =


0.986 0 0.066

0 0.911 0.074

0.014 0.089 0.861

 .
The eigenvalues of this estimated transition matrix are 1, 0.96, and 0.80. Hence, the Markov chain

is ergodic and dt is covariance stationary (Hamilton, 1994, Chapter 22).

Following Hamilton (1994, Chapter 22), I compute the expectation of dt as the eigenvalue of Φ̂
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associated with the unit eigenvalue. This yields

E(dt) =


E(dexpansiont )

E(dNBER
t )

E(dTZ
t )

 =


0.71

0.13

0.16

 .

F Models with Variables Interacted with Dummies

In this appendix, I consider two additional models that interact the business cycle dummies with

some of the variables on the right-hand side of Equation (3). The first model interacts the recession

dummies with the error correction term

∆yt = νdt−1 + αβ′yt−1 + δ1β
′yt−1d

NBER
t−1 + δ2β

′yt−1d
TZ
t−1

+ Γ1∆yt−1 + · · ·+ Γp∆yt−p + vt.
(F.1)

The second model interacts the recession dummies with the first lag of ∆yt

∆yt = νdt−1 + αβ′yt−1 + Γ1∆yt−1 + δ1∆yt−1d
NBER
t−1 + δ2∆yt−1d

TZ
t−1

+ Γ2∆yt−2 + · · ·+ Γp∆yt−p + vt.
(F.2)

I abuse notation and allow δ1 and δ2 to be different coefficients and have different dimensions in

each equation. With that said, δ1 and δ2 are the parameters of interest in this appendix.

I estimate these models with ordinary least squares and do inference in parallel fashion to what

is in Appendix D. The main results are as follows:

• For the baseline model in the body of the paper, the HQ value is -11.47 and SC value is

-11.26.

• In Equation (F.1), the Wald statistic for the elements of δ1 and δ2 being jointly different from

zero is 9.459, with an associated p-value of 0.051 (from a χ2 distribution with 4 degrees of

freedom). The HQ value is -11.46 and SC value is -11.24.

• In Equation (F.2), the Wald statistic for the elements of δ1 and δ2 being jointly different from

zero is 10.276, with an associated p-value of 0.246 (from a χ2 distribution with 8 degrees of

freedom). The HQ value is -11.44 and SC value is -11.21.

Overall, the baseline model in the body of the paper has the best fit according to the HQ and SC
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values. Further, the elements of δ1 and δ2 are not jointly different from zero at a 5 percent level of

statistical significance in either Equation (F.1) or (F.2). I do note that the elements of δ1 and δ2 are

jointly different from zero at the 10 percent level of significance in Equation (F.1). Hence, there is

some evidence that the error correction slopes vary over the business cycle. However, this evidence

is not overwhelming and I prefer my baseline model in the body of the paper in the interest of

parsimony.

Appendix references

Bureau of Labor Statistics. 2022a. “Current Population Survey, Labor Force Statistics: Employ-

ment Level, Seasonally Adjusted - LNS12000000.” Retrieved from FRED, Federal Reserve Bank

of St. Louis. URL https://fred.stlouisfed.org/series/CE16OV (accessed on June 16, 2023).

———. 2022b. “Current Population Survey, Labor Force Statistics: Number Unemployed for Less

than 5 Weeks, Seasonally Adjusted - LNS13008396.” Retrieved from FRED, Federal Reserve

Bank of St. Louis. URL https://fred.stlouisfed.org/series/UEMPLT5 (accessed on June

16, 2023).

———. 2022c. “Current Population Survey, Labor Force Statistics: Unemployment Level, Season-

ally Adjusted - LNS13000000.” Retrieved from FRED, Federal Reserve Bank of St. Louis. URL

https://fred.stlouisfed.org/series/UNEMPLOY (accessed on June 16, 2023).

Elsby, Michael W. L., Ryan Michaels, and Gary Solon. 2009. “The Ins and Outs of Cyclical

Unemployment.” American Economic Journal: Macroeconomics 1 (1):84–110. URL https:

//doi.org/10.1257/mac.1.1.84.

Hamilton, James D. 1994. Time Series Analysis. Princeton University Press.

Müller, Ulrich K. and Mark W. Watson. 2008. “Testing Models of Low-Frequency Variability.”

Econometrica 76 (5):979–1016. URL https://doi.org/10.3982/ECTA6814.

Shimer, Robert. 2012. “Reassessing the Ins and Outs of Unemployment.” Review of Economic

Dynamics 12 (2):127–148. URL https://doi.org/10.1016/j.red.2012.02.001.

43

https://fred.stlouisfed.org/series/CE16OV
https://fred.stlouisfed.org/series/UEMPLT5
https://fred.stlouisfed.org/series/UNEMPLOY
https://doi.org/10.1257/mac.1.1.84
https://doi.org/10.1257/mac.1.1.84
https://doi.org/10.3982/ECTA6814
https://doi.org/10.1016/j.red.2012.02.001

	Federal Reserve Bank of Cleveland Working Paper Series
	Business Cycles and Low-Frequency Fluctuations in the US Unemployment Rate
	Introduction
	US Labor Market Data and Tests for Unit Roots
	US Labor Market Data
	Testing for Unit Roots and Cointegration

	A VECM for Labor Flows
	The VECM with Time-Varying Intercepts
	Recessions and Business Cycle Dummy Variables
	VECM Estimation

	Business-Cycle-Only Counterfactuals
	Counterfactuals with the VECM
	The Role of Error Correction

	Longer-Run Unemployment Rate Estimates
	Conclusions
	References
	Computing Unemployment Inflow and Outflow Hazard Rates
	Data and LFST Results Using Data through May 2023
	Details for the LFST Statistic
	VECM Estimation and Inference
	Estimates of the Dummy Markov Chain
	Models with Variables Interacted with Dummies
	Appendix references




