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Abstract

A recent literature within quantitative macroeconomics has advocated the use of

continuous-time methods for dynamic programming problems. In this paper we explore

the relative merits of continuous-time and discrete-time methods within the context

of stationary and nonstationary income fluctuation problems. For stationary problems

in two dimensions, the continuous-time approach is both more stable and typically

faster than the discrete-time approach for any given level of accuracy. In contrast,

for convex lifecycle problems (in which age or time enters explicitly), simply iterating

backwards from the terminal date in discrete time is superior to any continuous-time

algorithm. However, we also show that the continuous-time framework can easily in-

corporate nonconvexities and multiple controls—complications that often require either

problem-specific ingenuity or nonlinear root-finding in the discrete-time context. In

general, neither approach unequivocally dominates the other, making the choice of one

over the other an art, rather than an exact science.
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1 Introduction

A vast literature within both applied mathematics and economics has developed tools for the

numerical solution to optimal control problems in both continuous-time and discrete-time

settings. In a recent contribution, Achdou et al. (2022) have illustrated the potential for

substantial speed gains when applying continuous-time techniques (specifically, the method

of finite-differences) to standard macroeconomic problems.1 Given this work, when the most

urgent concern is the computational intensity of the numerical solution to the problem

at hand (and not a conceptual feature of the model that necessitates the choice of one

environment), should the researcher ever use discrete-time methods, or do continuous-time

methods always dominate? The purpose of this paper is to provide some guidance on the

costs and benefits of each approach using examples from the quantitative macroeconomics

literature.

We follow Achdou et al. (2022) and focus on income fluctuation problems (IFPs), in

which an agent self-insures against idiosyncratic income risk by saving in a risk-free bond.

Variations of such problems form the backbone of many incomplete-market models, and

hence of much of modern macroeconomics. For the continuous-time problems, we discretize

using the Markov chain approximation (MCA) method of Kushner and Dupuis (2001) in

such a way that the policy function may be updated in closed form, and for the discrete-

time problems, we update the policy function using the endogenous grid method (EGM)

of Carroll (2006). In both cases, we then compare the performance of value function itera-

tion (VFI), policy function iteration (PFI), and modified policy function iteration (MPFI)

to update the value function.2 Although these techniques are not specific to IFPs, it is

within this class of problems that we aim to provide practical guidance. For stationary

problems, the continuous-time approach is superior, as it is typically faster than the fastest

implementation of EGM and is guaranteed to converge. In contrast, for nonstationary (or

lifecycle) problems, the situation is more complicated. For a concave lifecycle model, sim-

ply iterating backwards from the terminal date in discrete time using the EGM is much

faster than any continuous-time algorithm. However, we illustrate with an example that the

continuous-time framework is more flexible and requires no problem-specific ingenuity in

more complicated settings with nonconvexities and multiple controls. We therefore believe

that one cannot assert the general superiority of one method over the other.

In some sense, continuous-time and discrete-time formulations describe fundamentally

different environments, and so we wish to emphasize upfront precisely how we compare the

1See also Candler (2001) for an earlier application of finite-difference methods to economics.
2Kushner and Dupuis (2001) show that finite-difference approximations can be used to construct approx-

imating chains, while Phelan and Eslami (2022) show that the implicit finite-difference method favored by
Achdou et al. (2022) is equivalent to using a limiting case of PFI for a particular chain. We therefore believe
that MCA methods encompass the algorithms available in the continuous-time framework.
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accuracy of various algorithms. In both the continuous-time and discrete-time frameworks,

we discretize the asset space and thereby reduce the agent’s problem to a finite-space de-

cision problem. For each framework, we then fix the processes governing income (and age,

if relevant) and regard the policy and value functions computed on a fine grid for assets as

the “true” values. All references to accuracy are made in comparison to these values.3

We deliberately do not explore the accuracy of various discretization methods for in-

come, as such comparisons already exist in the literature and the pros and cons of different

discretizations seem to be orthogonal to our purposes.4 We instead fix the income pro-

cess used in each framework as we vary the fineness of the asset grid and suppose that

the income process in the discrete-time case is consistent with the continuous-time process

in the following sense. In the continuous-time case, the agent’s income follows a Markov

chain constructed with the MCA approach with a small timestep, and the income process in

discrete-time is chosen to be consistent with this same chain sampled at a lower frequency.5

We wish to provide intuition on the source of the differences across the frameworks,

hoping that this may guide researchers in other settings. To this end, we emphasize that

all of the algorithms employed in this paper consist of two distinct steps:

(i) updating the policy function given a guess of the value function; and,

(ii) updating the value function given a guess of the policy function, and (possibly) a

guess of the value function.

We will refer to step (i) as policy updating, and step (ii) as value updating. The continuous-

time framework can potentially aid in both steps: the local nature of the transitions implies

that policy updating can often be performed in closed form, and the sparse nature of the

transitions often renders policy function iteration rapid in the value updating step.

We first consider stationary problems, in which the agent is infinitely lived and the state

variables are simply income and wealth. For such problems, Achdou et al. (2022) show that

the implicit finite-difference method is faster (for a given level of accuracy) than the method

of Carroll (2006), in which at each step one updates the policy function using the EGM

and iterates once on the Bellman operator. The rapid convergence of the implicit method is

unsurprising given its close connection with PFI, since Puterman and Brumelle (1979) show

that PFI converges quadratically near the solution and typically requires a small number

of iterations. Further, in two dimensions, the local nature of the transitions in continuous

3This is similar to the exercise conducted in Section 5.6 and Appendix F.1 of Achdou et al. (2022), except
that we also allow for modified policy function iteration and policy function iteration in the comparison and
also consider lifecycle models.

4For an analysis of such discretizations, see, e.g., Kopecky and Suen (2010), Gospodinov and Lkhagva-
suren (2014) and Farmer and Toda (2017).

5We consider the more familiar Tauchen (1986) discretization in the appendix and show that our main
findings do not change.
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time ensures that sparse solvers can be used to efficiently solve the linear system defining

the updated value function.

Rendahl (2022) recognizes that this sparsity can also be exploited in discrete time, and

that for a two-state income process, combining ideas from Young (2010) with PFI can

dramatically close the gap in run times between the continuous-time and discrete-time ap-

proaches. We extend Rendahl (2022) in two respects. First, we systematically compare the

performance of VFI and PFI with MPFI. This is a simple but useful extension, because

in discrete time the potentially nonlocal nature of income transitions implies that sparse

solvers become less attractive as the income grid becomes finer.6 Second, we document the

speed versus accuracy tradeoff in each framework by combining these run times with two

measures of accuracy: mean and maximum percentage error in the policy function. This

is distinct from documenting run times by grid sizes because the discrete-time framework

is more accurate than the continuous-time framework for every grid considered.7 In this

setting, we find that it is not the case that one framework always dominates the other for

all levels (and measures) of accuracy. However, for most of the grids we consider, we find

that the continuous-time analysis is typically faster for a given level of accuracy. Further,

we emphasize that the continuous-time analysis is more stable than the (fastest implemen-

tation of) the discrete-time framework. The reason for this is that although Puterman and

Brumelle (1979) and Santos and Rust (2004) show that PFI is globally convergent, it does

not preserve concavity of the value function even when the true value function is concave,

which leads to instability in any algorithm (such as the EGM) that relies on first-order

conditions. Consequently, we believe that the continuous-time approach is superior in a

two-dimensional setting, although for the algorithms considered here the gains in speed are

smaller than those documented in Achdou et al. (2022).

This discussion of the role of sparsity hints at why the relevant tradeoffs can potentially

be very different in nonstationary problems. When the agent’s problem depends explicitly

on age, the transition matrix appearing in the problem remains sparse. However, as we noted

in a different context in Phelan and Eslami (2022), sparse solvers slow down dramatically

as the dimension of the problem increases, which renders a (naive) application of PFI much

less attractive for age-dependent problems. Further, employing PFI ignores two trivial (but

important) aspects of lifecycle problems that ought to be exploited wherever possible: age

increases monotonically, and the value at death is known a priori. These two observations

are naturally exploited in the discrete-time setting when we begin at the terminal value and

iterate backwards using the EGM, a procedure that we show is much faster than employing

PFI or VFI within the MCA framework for the timesteps that ensure convergence.

6PFI and MPFI also have essentially identical coding difficulty, because the latter just replaces an inver-
sion step with a finite sum, leaving all other implementation details unchanged.

7This is not a new observation and is consistent with Appendix F.1 of Achdou et al. (2022).
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We then show that it is possible to jointly exploit the monotonicity of age and the

sparseness of the transition matrices within the continuous-time framework using an algo-

rithm that we term sequential policy function iteration (SPFI).8 The basic idea here is to

assume that age increases stochastically in a finite grid, and for each value of age, to solve a

control problem in which the values for higher ages are viewed as exogenous. This amounts

to applying PFI in sequence (hence our name) to each age group separately, and so makes

use of the rapid convergence properties of PFI on a series of simpler (two-dimensional)

problems instead of ever attempting to invert a large (three-dimensional) system.

Equipped with this algorithm, we then arrive at interesting tradeoffs between continuous

time and discrete time in the nonstationary setting. Although literally applying PFI or

VFI to a continuous-time MCA problem is never better than iterating backwards using

EGM, the comparison with SPFI is more subtle. On the one hand, for a concave income

fluctuation problem with a finite life-span, employing the method of Carroll (2006) and

iterating backwards from the terminal date is typically faster than any continuous-time

method. However, because it relies on the ability to eliminate a root-finding step, it is

also less generally applicable. We illustrate this point by enriching the lifecycle problem

in the spirit of Hall and Jones (2007) to allow the agent to affect her life-span through

expenditures on healthcare and to make a binary labor-leisure choice. In this setting, the

problem of the agent at each date is not necessarily jointly concave in consumption and

healthcare expenditures, even if the continuation value is concave in wealth (which also

is not guaranteed). Consequently, the first-order conditions in the discrete-time problem

may fail to characterize the optimal control. In contrast, no such subtleties arise in the

continuous-time approach, because the state only transitions to adjacent points and the

concavity and regularity of the value function are irrelevant. It is here that the flexibility of

the MCA approach becomes particularly useful. We show that among the (infinitely) many

Markov chains that may be used to approximate the continuous-time value function, we

can choose one that ensures additive separability of the agent’s objective in consumption

and healthcare. Further, this procedure does not require delicate choices of grids (which

are unchanged relative to the simpler problem) or any interpolation step. For lifecycle

problems, we therefore conclude that discrete-time methods are faster for (simple) concave

problems but also less general for more complicated extensions.

Related literature The general theory of discrete-time dynamic programming and the

solution methods that we use in this paper are outlined in the seminal contributions of

Bellman (1954), Howard (1960), Puterman and Brumelle (1979), and Puterman and Shin

(1978). For textbook treatments with a particular focus on economic applications, we refer

8This is a particular case of what Kushner and Dupuis (2001) refer to as an implicit method, and to the
best of our knowledge has not been exploited within the economics literature.
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the reader to Stokey et al. (1989) and Stachurski (2009). Within applied mathematics, a vast

literature has studied numerical methods for the solution of partial differential equations,

such as the Hamilton-Jacobi-Bellman (HJB) equations that characterize the solutions to

optimal control problems. In a general and abstract setting, Barles and Souganidis (1991)

provide sufficient conditions for the convergence of finite-difference schemes to solutions of

Hamilton-Jacobi-Bellman equations. Candler (2001) is perhaps the earliest application of

finite-difference methods to economic models. More recently, Achdou et al. (2022) apply

finite-difference schemes to a canonical macroeconomic model with incomplete markets in

the spirit of Huggett (1993) and Aiyagari (1994).

Turning to discrete-time solution methods, Carroll (2006) introduces the endogenous

grid method (EGM) and applies it to a neoclassical growth model. The EGM eliminates the

need to solve a nonlinear equation when updating the policy function and so is substantially

faster than brute force VFI. For this reason, when comparing frameworks, we will use the

EGM as a benchmark for discrete-time methods. Many papers have extended Carroll (2006)

to more complicated settings. Barillas and Fernández-Villaverde (2007) incorporate labor-

leisure choice, Hintermaier and Koeniger (2010) allow for occasionally binding constraints,

Fella (2014) considers a problem with durable consumption, while White (2015), Druedahl

and Jørgensen (2017), and Iskhakov et al. (2017) consider multi-dimensional problems.

Phelan and Eslami (2022) show that the implicit finite-difference scheme may be viewed

as a limiting form of PFI applied to a particular Markov chain in the MCA approach. In Phe-

lan and Eslami (2022) we fix a discretization and compare the performance of PFI, MPFI,

and a novel generalization of the latter, and do not explore the costs and benefits of different

Markov chains or compare with discrete-time methods. Despite the extensive literature on

both approaches, relatively few papers attempt to explicitly compare continuous-time and

discrete-time approaches or provide guidance to the quantitative researcher in economics.

One recent exception is the aforementioned Rendahl (2022). We build on the insights of

Rendahl (2022) and highlight the role of nonstationarity, because this (natural) extension

can substantially change the speed versus accuracy tradeoff facing the modeler.

Specification note. All computations in this paper were performed using a Intel Core

i7-8650U processor with no parallelization, using the standard libraries in Python.9 Since

absolute running times are potentially subject to substantial idiosyncratic variation, we will

focus primarily on relative run times as we vary the algorithms used.

Outline of paper Section 2 considers a stationary income fluctuation problem in both

discrete and continuous time; Section 3 considers a nonstationary (lifecycle) problem, com-

9Further details on the implementation may be found with the replication files located at
https://github.com/tphelanECON/The Art of Temporal Approximation WP.
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paring the continuous- and discrete-time approaches, and provides an example with endoge-

nous mortality and health expenditures. Section 4 concludes.

2 Stationary problems

In this section, we consider stationary income fluctuation problems, in which an infinitely

lived agent discounts at a constant rate and makes consumption-savings decisions facing a

stationary income process. Section 2.1 considers a discrete-time setting, and Section 2.2

considers the continuous-time counterpart. Section 2.3 computes examples and records the

speed and accuracy of various numerical methods.

2.1 Discrete time

We first suppose that time is discrete and assumes values in the set {0,∆t, 2∆t, . . .} for some

fixed ∆t > 0. We explicitly allow the timestep ∆t to be a parameter in order to facilitate

comparison with the continuous-time environment considered in Section 2.2.10 An infinitely

lived agent has preferences over sequences of consumption c := (cn)
∞
n=0 given by

U(c) = E

[ ∞∑
n=0

e−ρn∆t∆tu(cn)

]
. (2.1)

In the objective function in (2.1), the flow utility function u is assumed to take a constant

relative risk aversion (CRRA) form, so that u(c) = c1−γ/(1 − γ) for some γ > 0. Each

period’s subjective discount factor is e−ρ, so that the agent discounts by e−ρ∆t between

successive periods.

The agent’s income during period n is y(z) = yezn for some y > 0, where (zn)
∞
n=1 is

a Markov chain assuming values in a compact set Z. We denote the transition kernel of

this chain by Γ, so that for any z ∈ Z, the future value z′ is distributed according to the

measure Γ(z, dz′).

The agent can either consume her income or save it in a risk-free asset, which cannot

fall below an ad hoc exogenous level b, and evolve according to

bn+1 = (1 +∆tr)[bn +∆t(ye
zn − cn)],

provided that consumption is chosen such that bn+1 ≥ b for all n ≥ 1 almost surely.11

10This also allows us to use the same timestep in our lifecycle problems, ensuring that the choice of the
temporal grid is not driving the results on relative performance.

11We therefore interpret bn as the level of assets at the beginning of period n, prior to the realization of
income. Consumption is chosen after zn is realized and uniquely determines future assets bn+1.
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The problem of an agent with assets b and log income z is, then

V (b, z) = max
(cn,bn)∞n=0

E

[ ∞∑
n=0

e−ρn∆t∆tu(cn)

]
s.t. bn+1 = (1 +∆tr) [bn +∆t(ye

zn − cn)] ,

bn+1 ≥ b, zn+1 ∼ Γ(· | zn),

(b0, z0) = (b, z).

(2.2)

In what follows we will refer to V as the value function of the agent.

We will assume that r < ρ, which ensures that for some b > b we have dissaving for all

b > b, and so there is no loss in assuming that the state space for the agent is the compact set

G := B×Z where B := [b, b].12 If we denote by C := C(G) the set of real-valued continuous

functions on G, then an application of the Principle of Optimality to problem (2.2) implies

that V is the unique function in C that solves the Bellman functional equation (BFE):

V (b, z) = max
c≥0,b′∈B

{
∆tu(c) + e−ρ∆tEz

[
V (b′, z′)

]}
s.t. b′ = (1 +∆tr) [b+∆t(ye

z − c)] ,
(2.3)

where Ez[V (b′, z′)] =
∫
Z V (b′, z′)Γ(z, dz′) denotes the conditional expectation operator.

We can write the functional equation in equation (2.3) as

V (b, z) = B[V ](b, z) (2.4)

where the Bellman operator B is defined according to

B[V ](b, z) = max
c≥0,b′∈B

{
∆tu(c) + e−ρ∆tEz

[
V (b′, z′)

]}
s.t. b′ = (1 +∆tr) [b+∆t(ye

z − c)] .
(2.5)

The operator B is a contraction with modulus e−ρ∆t on C by Blackwell’s conditions (see

Blackwell (1965)), and so by the contraction mapping theorem, there exists a unique solution

to the functional equation (2.4), that coincides with the value function of the agent.

The fact that the state space is continuous implies that we must somehow discretize it

in order to approximate a solution. To this end, we construct finite grids for the state space

and, if necessary, replace the Markov process for log income with a finite-state Markov chain.

In order to facilitate comparison with the continuous-time approach, we index all quantities

in this approximation by a parameter h > 0 indicating the fineness of the approximation.

12Since the utility function is of the CRRA form, this dissaving for sufficiently high asset values follows
from Proposition 4 in the working paper version of Aiyagari (1994).
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For a pair of integers N = (Nh
b , N

h
z ), we define the increments in assets ∆h

b := (b − b)/Nh
b

and log income ∆h
z := (z − z)/Nh

z , and use these to define equispaced grids for assets and

log income,

Bh :=
{
b+ i∆h

b

∣∣∣ i = 0, 1, . . . , Nh
b

}
Zh :=

{
z + j∆h

z

∣∣∣ j = 0, 1, . . . , Nh
z

} (2.6)

and replace the continuous-state process for log income with a finite-state process on Zh

with transition kernel Γh. Note that because we include the endpoints in (2.6) of the state

space in assets and income, we haveNh
b +1 andNh

z +1 points in each dimension, respectively.

We write Gh := Bh ×Zh and denote the approximate value function defined on Gh by V h.

We are then searching for a solution to the finite-state BFE

V h(b, z) = Bh[V ](b, z), (2.7)

where Bh now represents the discrete Bellman operator

Bh[V ](b, z) = max
c≥0,b′∈B

{
∆tu(c) + e−ρ∆tEh[Ṽ h(b′, z′)]

}
s.t. b′ = (1 +∆tr) [b+∆t(ye

z − c)] ,

(2.8)

and Ṽ h is the linear interpolant of V h and Eh[Ṽ h(b′, z′)] =
∑

z′∈Z Γh(z, z′)Ṽ h(b′, z′) is

the relevant expectation operator. The Bellman equations for the discrete-time income

fluctuation problems that we solve are all of the form given in equations (2.7) and (2.8). In

our applications, we will either use VFI, MPFI or PFI to update the value function, and

the endogenous grid method of Carroll (2006) to update the policy function.13

2.2 Continuous time

We now turn to a continuous-time formulation of the income fluctuation problem. The

agent’s preferences over a consumption process (ct)t≥0 are now represented by

U(c) = E
[∫ ∞

0
e−ρtu(ct)dt

]
, (2.9)

for the same discount rate ρ and flow utility function u as in equation (2.1).

As before, we assume that income is given by y(zt) = yezt for some constant y > 0 and

Markov process (zt)t≥0, but, now, we assume that the latter is a diffusion process restricted

13These algorithms are well-known and so formal statements are relegated to Appendix A.1.
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to some compact interval [z, z] evolving according to

dzt = µ(zt)dt+ σdωt, (2.10)

where (ωt)t≥0 is a standard Brownian motion, µ is a real-valued function representing the

drift of the process, and σ ≥ 0 is a constant capturing the diffusion.

Given assets b and log income z, the problem of the agent can be written as

V (b, z) = max
(ct)t≥0

E
[∫ ∞

0
e−ρtu(ct)dt

]
s.t. dbt = [rbt + y(zt)− ct]dt,

dzt = µ(zt)dt+ σdωt,

bt ≥ b.

(2.11)

As with the discrete-time framework, we will refer to V as the value function of the agent.

Assuming, as before, that r < ρ, the agent dissaves for assets exceeding some b > b.

Therefore, there is again no loss in restricting attention to the compact interval [b, b].14

This ensures that the above problem is finite valued and that there are no subtleties in the

application of the Principle of Optimality.

It can be shown (see, e.g., Achdou et al. (2022)) that the individual’s value function is

the unique (viscosity) solution to the following partial differential equation (PDE) known

as the Hamilton-Jacobi-Bellman equation (HJB):

ρV (b, z) = max
c≥0

{
u(c) + [rb+ y(z)− c]Vb(b, z) + µ(z)Vz(b, z) +

σ2

2
Vzz(b, z)

}
, (2.12)

where Vb, Vz and Vzz denote partial derivatives of function V with respect to its first and

second arguments, respectively. A common approach in the numerical analysis literature

is to discretize the state space and to replace the derivatives in (2.12) by their one-sided

or two-sided finite-difference approximations over this discrete grid. Kushner and Dupuis

(2001) show that this approach is a special case of approximating the stochastic process

governing the states with a locally consistent discrete-time Markov chain and then solving

a control problem in which the states are governed by this approximating Markov chain.

To construct this approximating chain, one has to discretize the temporal state-space—

i.e., time—and construct a Markov chain that locally resembles the original continuous

process. We will only outline the approximation procedure here and will refer the reader to

Kushner and Dupuis (2001) for details. In this section, we outline one possible construction

14The fact that the agent dissaves for sufficiently large assets is part 1. of Proposition A.2 in Appendix
G.1 of Achdou et al. (2022).
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for the above income fluctuation problem. We first describe the requirements of “local

consistency” in a general framework before specializing to the current setting.

To this end, we write the law of motion of the state as

dxt := µ(xt, ct)dt+Σdωt, (2.13)

where xt is the individual’s state vector, ct is consumption, µ and Σ are the drift and

diffusion of the state vector, respectively, and ω is standard two-dimensional Brownian

motion. The state vector x takes values in the set G = B × Z and the control can take

values in some subset U ⊆ R. An approximation of a continuous-path stochastic process

with a discrete process requires a discretization of the state-space. In order to facilitate

comparison, we choose the same discretization as in the discrete-time setting of Section 2.1,

and again index all quantities by h > 0. The increments in assets and log income are again

denoted by ∆h
b and ∆h

z , respectively, and the associated grids are defined as in (2.6).

Our next goal is to approximate, for each process (ct)t≥0, the state variable xt = (bt, zt)
′

by a controlled, discrete-time Markov chain, (ξhn)
∞
n=1 = (ξhb,n, ξ

h
z,n)

∞
n=1, assuming values in

the set Gh under an admissible control process denoted by χh
n. In this representation, χh

n

is a random variable that determines the control, c, at any discrete time n, and is once

again assumed to lie in the set U . We will assume that the approximating chain and control

process change values at discrete times indexed by n. The length of each time interval can

be a function of the state and control, and will be denoted ∆th : Gh × U 7→ R++.

Intuitively, one can think of this exercise as an attempt to “mimic” the sample paths of

the original process in (2.13) probabilistically. Two cross-sections are separated by a time

interval of length ∆th(x, c)—which we will refer to as the interpolation interval. For this to

be the case, the approximating Markov chain must have the same “local behavior” as the

diffusion process, in the following sense,

Eh,c
x,n

[
∆ξhn

]
= µ(x, c)∆th(x, c) + o

(
∆th(x, c)

)
, (2.14a)

Eh,c
x,n

[
∆̂ξhn∆̂ξhn

′]
= ΣΣ′∆th(x, c) + o

(
∆th(x, c)

)
, (2.14b)

where ∆ξhn := ξhn+1 − ξhn and ∆̂ξhn = ∆ξhn − Eh,c
x,n

[
∆ξhn

]
are the original and demeaned

increments, respectively, and Eh,c
x,n denotes expectations conditional on (ξhn, χ

h
n) = (x, c).

Kushner and Dupuis (2001) refer to equations (2.14a) and (2.14b) as local consistency

conditions, and show that the value function for the discrete problem, V h, converges to the

value function for the original problem, V , as h → 0, provided that the local consistency

conditions are satisfied for the associated sequence of chains.

As emphasized above, there are many ways in which one can construct a finite-state
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Markov chain satisfying these local consistency conditions. One possibility is to define, at

time n, for any current value of ξhn = x ∈ Gh and control c, the transition probabilities

ph
(
b±∆h

b , z
∣∣∣ c) =

[
∆th(x, c)

∆h
b

]
[rb+ y(z)− c]±,

ph
(
b, z ±∆h

z

∣∣∣ c) =

[
∆th(x, c)

(∆h
z )

2

] [
σ2/2 + ∆h

z [µ(z)]
±
]
,

(2.15)

where for any scalar x we write [x]± := max {±x, 0}. The probability of no transition is

then defined in such a way that the transition probabilities sum to unity at every point:

ph(b, z | c) = 1−
∑

(b′,z′)∈Gh\(b,z)

ph
(
b′, z′ | c

)
.

(2.16)

The interpolation interval can be any positive function, as long as the transition probabilities

remain nonnegative.15 In view of the expressions in (2.15), the requirement that the tran-

sition probabilities be nonnegative evidently places an upper bound on the possible values

of the interpolation interval. This restriction is reminiscent of the Courant-Friedrichs-Lewy

(CFL) condition that plays an important role in the finite-difference literature.16

If the agent’s state vector is governed by the Markov chain defined by (2.15) and her

control action remains constant over discrete time intervals, her value function must solve

V h(x) = Bh[V h](x), (2.17)

for all x ∈ Gh, where the operator Bh is defined by

Bh[V h](x) = max
c≥0

∆th(x, c)u(c) + e−ρ∆th(x,c)
∑
x′∈Gh

ph
(
x, x′ | c

)
V h

(
x′
) , (2.18)

The algorithms we employ to solve Bellman equations of the form (2.18) are standard and

so are relegated to Appendix A.2.

The above procedure replaces the original continuous-time control problem with a

discrete-time control problem. Researchers unfamiliar with this method may then wonder

why this is useful, given that we could have simply started with the discrete-time problem in

Section 2.1 and the more familiar Bellman operator in equation (2.8). The key point here is

that the global “shape” or “regularity” of the value function is entirely irrelevant to the op-

timal choice of consumption on the right-hand side of (2.18), because only the current and

15In our applications, we will set the interpolation interval to a constant.
16See, e.g., Candler (2001) for further discussion. We do not draw upon finite-difference (FD) arguments

in this paper but we do wish to emphasize that both the FD and MCA approaches require similar restrictions
on the relative sizes of the increments in time and the state.
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adjacent values V h
(
b−∆h

b , z
)
, V h(b, z) and V h

(
b+∆h

b , z
)
enter into the calculation. As

the agent considers various choices of consumption, the possible future asset values remain

fixed and the transition probabilities vary. Consequently, it is the shape of the exogenously

known transition functions (and not the unknown value function) that determines the ease

of solving the first-order conditions. However, in contrast with the discrete-time setting,

some restrictions are necessary on the size of the timestep in order to ensure that this is

a well-defined control problem. This last point will become particularly relevant in our

analysis of lifecycle problems.

2.3 Numerical results

In this section, we illustrate the performance of the discrete-time and continuous-time al-

gorithms. We first plot an example, before considering accuracy and run times as we vary

grid sizes and the timestep, holding all other parameters fixed.

The parameters for this example are taken from Achdou et al. (2022) wherever possible.

For the utility function, u(c) = c1−γ/(1−γ), we choose a coefficient of relative risk aversion

of γ = 2. For income, y(z) = yez, we set y = 1, and follow Achdou et al. (2022) in assuming

that log income evolves according to a continuous-time AR(1) (Ornstein-Uhlenbeck) process

satisfying dzt = −µztdt + σdωt for some Brownian motion ωt. In this case the stationary

distribution of zt is Gaussian with mean zero and variance ν2 = σ2/(2µ). The parameters

we choose are given in Table 1.

Table 1: Parameters used in numerical example

Parameter Description Value

γ CRRA parameter 2
µ coeff. of income drift − ln(0.95)
ν s.d. of log income 0.2
ρ subjective discount rate 1/0.95− 1
r risk-free rate 0.03
b borrowing constraint 0.0

b upper bound on assets 50
ϵ tolerance 10−8

z, z log income bounds ±3ν
∆t timestep in MCA 10−6

We use ∆t = 10−6 and ∆t = 1 for the “true” solutions in the continuous-time and

discrete-time cases, respectively, and experiment with other timesteps below. We choose

the income process in the discrete-time setting to be that implied by the continuous-time

13



choice sampled at unit intervals (representing an annual frequency in our examples).17

Figure 1 depicts the policy functions and drifts computed using PFI in the continuous-time

framework with grid size (Nb, Nz) = (100, 15).

Figure 1: Example policy function and drift

0 10 20 30 40 50
Assets b

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Policy functions (continuous-time)
Income 0.55
Income 1.82

0 10 20 30 40 50
Assets b

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Drift (continuous-time)
Income 0.55
Income 1.82

Note that there is a slight “kink” in the policy functions at points at which the associ-

ated drift is zero. This is to be expected, because the transition probabilities are nonsmooth

in consumption when the drift is zero (due to the maximum operators in (2.15)). The drift

is negative for all income levels at the upper bound, and so there is no loss in restricting

attention to the interval [0,50]. Further, the borrowing constraint is binding for the lowest

income level and the derivative of the drift appears to diverge at this point, which is con-

sistent with Proposition A.1 in Appendix G.1 in Achdou et al. (2022). We now pursue a

more systematic analysis of the accuracy and run times of various algorithms.

We first compare the accuracy of the discrete-time and continuous-time algorithms as

we vary the timestep and the size of the grid. In order to assess accuracy, we follow Achdou

et al. (2022), solve each problem on a fine grid for assets (here Nb = 5000) and regard the

computed policy and value functions as the “true” values. For the discrete-time problem,

we use brute force with Nc = 5000 consumption points between 10−6 and 2×maxGh {cNS},
where cNS denotes the level of consumption consistent with no saving. In both cases we

use PFI to update the value function, which, by the results of Santos and Rust (2004), is

guaranteed to converge in this setting. We then compare the policy functions computed on

coarser grids to these “true” quantities and document the percentage differences in both

the l1 and l∞ norms (mean and maximum differences).

For the discrete-time framework this requires only varying the asset grid, because the

timestep grid is interpreted as a parameter of the model and not a choice made by the

17That is, the transition matrix in the discrete-time setting is obtained by iterating the transpose of the
continuous-time transition matrix 1/10−6 times and taking the transpose again.
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modeler. Table 2 performs this exercise for the discrete-time approach. As expected, the

policy functions appear to converge monotonically to their respective “true” values as the

asset grid becomes finer.

||∆c||1 ||∆c||∞ ||∆c(%)||1 ||∆c(%)||∞
Grid size

(25, 15) 0.0215 0.0931 1.0022 9.0893
(50, 15) 0.0099 0.0580 0.4720 6.2129
(100, 15) 0.0032 0.0380 0.1711 4.0583
(250, 15) 0.0007 0.0168 0.0394 2.6622
(500, 15) 0.0004 0.0132 0.0192 2.0689

Table 2: Accuracy of discrete-time EGM (∆t = 1)

||∆c||1 ||∆c||∞ ||∆c(%)||1 ||∆c(%)||∞
Grid size

(25, 15) 0.0633 0.0942 2.9569 12.8105
(50, 15) 0.0327 0.0619 1.5401 9.2201
(100, 15) 0.0165 0.0415 0.7845 6.5738
(250, 15) 0.0065 0.0249 0.3109 4.1525
(500, 15) 0.0031 0.0170 0.1487 2.9153

Table 3: Accuracy of continuous-time approach (∆t = 10−6)

In the continuous-time approach we also face the additional choice of the time increment.

Table 3 repeats the exercise conducted in Table 2 for the continuous-time framework with

∆t = 10−6, the same value as in the “true” solution, and reveals that the discrete-time

approach with EGM is more accurate in both the l1 and l∞ norms for a given grid.

We now turn to an analysis of the speed of convergence. For both the discrete-time and

continuous-time frameworks, we consider VFI, MPFI, and PFI with a direct sparse solver,

and record the average of 10 runs.18 In all cases, we assume the initial guess of the policy

function or value function is that corresponding to zero net savings. It is well-known that

the speed of convergence in PFI remains bounded as the time-step vanishes. However, the

same is not true for VFI and MPFI, the convergence of which becomes arbitrarily slow as

the discount rate vanishes. Because we wish to compare the relative merits of VFI, MPFI,

and PFI, we will also consider larger timesteps than the above value of ∆t = 10−6. In order

18We use the standard sparse solver from the Scipy library (scipy.sparse.linalg.spsolve) for all of our sparse
calculations.
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for the expressions in (2.16) and (2.15) to define a transition kernel, the timestep must be

sufficiently small that all probabilities lie within the unit interval, and because the optimal

consumption policy is a priori unknown, so too is the maximum level of the timestep. For

the parameters given in Figure 1, probabilities fail to remain in the unit interval for the

finest grid above when ∆t ≈ 0.09. In order to explore the (possible) benefits of MPFI in

the continuous-time setting we will consider the slightly smaller value ∆t = 0.05.19

Table 4 documents the speed of convergence in the continuous-time model for this larger

timestep. In this case, the Bellman operator is a contraction with modulus e−ρ∆t ≈ 1, and

so VFI converges slowly.20 In contrast, convergence is rapid with PFI, and the speed of

convergence is not particularly sensitive to the timestep when the latter is small. For every

grid in Table 4, the most rapid convergence occurs using PFI with a direct sparse solver, and

so the above discussion of the bounds on the timestep that ensure convergence is therefore

moot in this context, because it is best to choose a minuscule timestep and employ a direct

sparse solver with PFI.

VFI MPFI(10) MPFI(50) MPFI(100) MPFI(200) PFI
Grid size

(25, 15) 10.656 1.154 0.304 0.180 0.119 0.021
(50, 15) 11.329 1.251 0.339 0.210 0.139 0.032
(100, 15) 13.017 1.473 0.421 0.262 0.186 0.042
(250, 15) 18.208 2.140 0.640 0.419 0.317 0.085
(500, 15) 29.400 3.512 1.066 0.725 0.546 0.166

Table 4: Speed of convergence (continuous-time, ∆t = 0.05)

Table 5 documents the time until convergence for the discrete-time problem on various

different grids. In each case, the policy function is updated using the EGM, while the

columns indicate different algorithms for updating the value function. Note that for every

grid considered, PFI is more than an order of magnitude faster than VFI, and that there

are some implementations of MPFI that outperform PFI.

19Table 10 and Table 11 in Appendix B.1.1 show that the accuracy of the continuous-time approach is
not particularly sensitive to variation in the timestep.

20This is related to the observation of Achdou et al. (2022) that the explicit method is typically slow to
converge. See Rendahl (2022) for further discussion relating the explicit method with VFI.
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VFI MPFI(10) MPFI(50) MPFI(100) MPFI(200) PFI
Grid size

(25, 15) 2.641 0.304 0.121 0.130 0.148 0.129
(50, 15) 2.843 0.333 0.136 0.150 0.177 0.143
(100, 15) 3.360 0.403 0.162 0.186 0.229 0.177
(250, 15) 4.642 0.587 0.240 0.288 0.385 0.287
(500, 15) 9.644 1.216 0.495 0.523 0.678 0.574

Table 5: Speed of convergence (discrete-time, ∆t = 1, EGM)

Speed versus accuracy The above tables document the time until convergence and

accuracy attained on various grids. However, the relevant tradeoff to the practitioner is not

speed versus grid size, but speed versus accuracy. This is an important distinction, because,

as the above shows, the accuracy attained on a given grid differs across the two frameworks.

Figure 2 depicts the accuracy attained within a particular time in each framework, for both

mean and maximum percentage differences (i.e. the l1 and l∞ norms), using the “true”

timestep ∆t = 10−6 for the continuous-time case.
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Figure 2: Time versus accuracy (15 income points)

It is important to emphasize some countervailing effects here. On the one hand, the

continuous-time approach converges in a shorter time for any fixed grid. This seems intuitive

to us, because the discrete-time approach requires an interpolation step that is unnecessary

in the continuous-time case, and the transitions in assets and income are nonlocal, which

slows down the application of the sparse solver. However, the discrete-time approach is more

accurate for any fixed grid. Figure 2 shows that the continuous-time approach is faster for

any given level of accuracy in this example (the light blue dots are typically below the dark
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blue dots), but this does not appear to be true for all parameters.21 Since the continuous-

time approach is slightly faster and guaranteed to converge while the discrete-time approach

is not, we believe that the former is superior in this context.

Discussion As we noted in the introduction, all of the algorithms we consider in this paper

consist of two distinct steps: updating the policy function and updating the value function.

In the above continuous-time problems, the drift in wealth was linear in consumption, which

meant that we could find transition probabilities that were also linear in consumption, and

that led to simple first-order conditions to update the policy function. Further, for the

above grids the direct sparse solver converged rapidly in the value updating step.

However, in the discrete-time setting the EGM allows us to update the policy function

without solving a nonlinear equation, and Rendahl (2022) shows how one can use the ob-

servation of Young (2010) to represent the discrete-time BFE in terms of sparse matrices.

Consequently, two of the benefits often cited for the continuous-time framework are some-

times shared by the discrete-time framework. While this is true, we emphasize that in the

far right column of Table 5 we employed Algorithm 3, which combines PFI with the EGM.

Although for the above parameters this algorithm converged, this is not guaranteed.22 In-

deed, we have observed a failure of convergence for lower γ, which appears intuitive to

us because this reduces the curvature in the utility function. We therefore believe that

for a stationary problem, the continuous-time framework is superior to the discrete-time

framework, as it is (usually) faster and is guaranteed to converge.

However, a key point of this paper is that this intuition does not extend to all environ-

ments that often arise in quantitative macroeconomics. Indeed, we show in Section 3 that

the discrete-time approach is often superior in settings in which age enters explicitly. We

now provide a preview as to why this is the case. First, as we note in a different context in

Phelan and Eslami (2022), standard sparse solvers’ performance declines rapidly when the

transition matrix grows larger or becomes less sparse. In Phelan and Eslami (2022), this

occurred when we allowed for durable consumption or a richer (two-dimensional) process

for log income, in which case the MPFI dominates PFI and VFI in terms of the speed of

convergence. This lack of sparsity also occurs naturally when age enters separately as a

state variable, as in Section 3. Consequently, treating age like any other state variable in

the MCA construction and applying PFI is very time-consuming.

Second, there are two trivial (but important) features of lifecycle models that ought

21Appendix B.1.3 depicts the speed versus accuracy tradeoff for the cases of 5 and 25 income points,
respectively, and finds that although the continuous-time approach is typically faster for a given level of
accuracy, this is not true for all parameters and grids.

22Puterman and Brumelle (1979) show that PFI converges monotonically to the solution of the Bellman
equation, but this does not mean that Algorithm 3 converges, because it updates the policy function by
seeking the solution to first-order conditions, and the iterates generated by PFI need not be concave.
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to be exploited in the numerical method, namely, that age always increases and that the

value function at death is known. Both of these observations suggest that simply iterating

backwards in discrete time from the terminal date may be superior, regardless of the sparsity

structure of the system.

Third, we noted above that the iterates in PFI need not be concave, and that this causes

a problem when combined with EGM. However, this not a problem in the lifecycle model,

because we never use PFI in the discrete-time setting and instead iterate backwards. Two

of the benefits of the continuous-time approach in the stationary setting therefore do not

appear to carry over to the nonstationary setting.

3 Nonstationary problems

The foregoing examples show that the continuous-time framework is typically superior,

from a computational intensity viewpoint, when dealing with stationary income fluctuation

problems. The reason for this boils down to the fact that policy function iteration may be

employed more easily in this setting. This may give one the impression that continuous-

time formulations are always superior. In this section, we show that this intuition does not

extend to nonstationary problems, in which time enters the problem explicitly.

There are several ways in which this could occur. For instance, the income process could

depend on an individual’s age.23 To illustrate the role of nonstationarity in affecting the

relative costs and benefits of continuous- and discrete-time problems in as simple a way as

possible, we consider the problem of an agent with a deterministic finite life-span, running

from A = 0 to A = A, who has no descendants. We consider this class of problems for two

reasons. First, lifecycle problems often arise in quantitative macroeconomics. Second, and

more directly related to this paper, some of the superiority of the continuous-time approach

does not obviously apply to this situation, and we wish to explain why and to provide some

practical guidance for the choice of a solution method.

We emphasize that nonstationarity does not pose a problem for the general theory of

Kushner and Dupuis (2001). The problem still admits a recursive structure, and we can

always treat age as if it were just another state variable (like assets or income) and apply

the methodology described in Section 2. However, the addition of age can greatly affect

the relative speeds of various algorithms. As Phelan and Eslami (2022) note, the appeal

of sparse solvers rapidly decreases in three dimensions, suggesting that we might wish to

avoid solving linear systems when age enters explicitly. Further, treating age just like any

other state and employing PFI does not exploit the (trivial, but important) fact that age

23Many such examples recur throughout the quantitative macroeconomics literature. See, e.g., Fella et al.
(2019) for a recent example.
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only increases. This is useful because the value function at death is known exogenously

(and here is zero), and it seems natural to choose an algorithm that exploits this fact.

This section explores the above intuition and documents the speed and accuracy of

various solution algorithms. Section 3.1 considers the discrete-time formulation; Section 3.2

considers the continuous-time counterpart and introduces an algorithm termed sequential

PFI that exploits both the sparse nature of transitions and the monotonicty of age; and

Section 3.3 records results for speed and accuracy.

Note that the explicit dependence on age in this environment now makes the comparison

of discrete-time and continuous-time environments more delicate. The set of ages attained

in the discrete-time environment is a primitive of the problem, but in the continuous-time

setting, it is a choice made by the modeler. Thus, to make the two frameworks more

comparable, we define the age increment by ∆A = (A− 0)/NA, for a given integer NA ≥ 1,

and use the same age grid,

Ah = {0 + k∆A | k = 0, . . . , NA}, (3.1)

in both settings, in what follows.

3.1 Discrete time

We first consider the analogue of Section 2.1 in which the agent lives for a finite time.

Preferences of the agent over sequences of consumption (cn)
NA−1
n=0 are given by

U(c) = E

[
NA−1∑
n=0

e−ρn∆A∆Au(cn)

]
. (3.2)

Note that we might not have A = NA because we need not necessarily have ∆A = 1. In

this setting, the timestep and the age step necessarily coincide.24

Following the stationary settings, we assume that the agent earns income according to a

stochastic process, governed by Γ, while alive, and can save her income in a risk-free asset,

denoted by b. We normalize utility upon death to zero.

24Note that the preferences in (3.2) indicate that we assume death occurs at A not A+∆A.
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The problem of an agent at age A = N∆A with assets b and log income z is then

V (b, z, A) = max
{cn,bn+1}

NA−1

n=N

E

[
NA−1∑
n=N

e−ρn∆A∆Au(cn)

]
s.t. bn+1 = (1 +∆Ar) [bn +∆A(ye

zn − cn)] ,

bn+1 ≥ b, zn ∼ Γ(· | zn−1),

(bN , zN ) = (b, z).

(3.3)

The analysis of the discrete-time nonstationary problem requires little discussion. There

is now no need to appeal to the Principle of Optimality: Instead we can use the terminal

condition, V (·, ·, A) ≡ 0, and iterate backwards in age using the relationship

V (b, z, A) = B[V ](b, z, A), (3.4)

for A ∈ A with A ̸= A, where the Bellman operator B is defined as

B[V ](b, z, A) = max
c≥0,b′≥b

{
∆Au(c) + e−ρ∆A

∫
Z
V
(
b′, z′, A+∆A

)
Γ
(
z, dz′

)}
s.t. b′ = (1 +∆Ar) [b+∆A(ye

z − c)] .

(3.5)

When approximating the value function of the agent, we will iterate backwards from the

terminal date, using the endogenous grid method to obtain the optimal policy function at

each age.

To illustrate the qualitative features of the problem, before turning to the continuous-

time environment and a comparison of the solution methods, we first calculate an example.

The parameters are all fixed at the values given in Table 1 in Section 2.3, with the sole

additional choice of A = 60. One may think of this choice as assuming that the agent makes

her first consumption-savings decisions at age 20 and dies at age 80.

Figure 3 depicts the difference in assets implied by the optimal consumption function

for the discrete-time model, in both the initial period of the nonstationary problem and

for the stationary problem. The drift in assets for young agents is qualitatively similar to

the analogous figure for the stationary problem given in Section 2. However, the situation

is different for older agents, who wish to reduce their wealth to zero immediately prior

to death, and so the change in assets is sometimes an order of magnitude larger than that

depicted in Figure 3. These large changes in the drift in assets throughout the lifetime of the

agent are irrelevant for the discrete-time approach, in which attention need not be confined

to local transitions. However, as we shall see in the following sections, this complicates the

analysis of the continuous-time problem.
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Figure 3: Evolution of assets when young and in a stationary environment

3.2 Continuous time

It is straightforward to extend the environment of the previous section (and that in Sec-

tion 2.2) to a continuous-time setting. Given assets b and log income z at age A, the agent’s

problem, in this alternative environment, will be

V (b, z, A) = max
(ct)t∈[A,A]

E

[∫ A

A
e−ρsu(cs)ds

]
s.t. dbs = [rbs + y(zs)− cs]ds,

dzs = µ(zs)ds+ σdωs,

bs ≥ b.

(3.6)

Relative to the stationary problem in Section 2.2, we now face an additional choice as

to how to treat age when reducing the above to a finite-state problem. We consider two

different approaches. In the first, we assume that age increases with certainty at each step,

while in the second, we treat age just as we treat the other state variables, and assume that

it only changes values probabilistically.25

3.2.1 Deterministic age

We first consider an approach in which age is treated like time and increases deterministically

by ∆A = ∆t at each step of the chain. The remainder of the construction (i.e., the transition

probabilities in assets and income) is identical to that given in Section 2.2, so that the

transition kernel over assets and income is defined by equations (2.15) and (2.16) with

25These two approaches are termed, respectively, “explicit” and “implicit” Markov chain approximation
methods by Kushner and Dupuis (2001), following their close relationship with the explicit and implicit
finite-difference methods in classical numerical analysis.
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Figure 4: Optimal transition for large b, for t near T
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∆t = ∆A. It is straightforward to check that the resulting Markov chain satisfies the local

consistency conditions of Kushner and Dupuis (2001).

The associated value function V h
da—where the superscript indicates the dependence on

the approximation parameter h and the subscript indicates the deterministic treatment of

age—for this discrete-state problem then solves the BFE,

V h
da(b, z, A) = max

c≥0

{
∆Au(c) + e−ρ∆AEh

b′,z′

[
V h
da(b

′, z′, A+∆A)
]}

, (3.7)

together with the terminal condition V h
da

(
·, ·, A

)
≡ 0. The subscripts on the right-hand side

of equation (3.7) indicate that the expectation is taken over assets and income but not age.

Although this construction is a natural approach to incorporating the monotonicity of

age, it suffers from a serious drawback. As we emphasized in Section 2.2, in order for the

MCA approach to lead to a well-defined finite-state problem, the transition probabilities

must always lie within the unit interval for any control, which places an upper bound on

the size of the timestep. This restriction to adjacent points can cause a problem when the

agent wishes to rapidly decumulate assets late in life. In the continuous-time environment,

the transition probabilities for assets are proportional to the drift in wealth and the agent

decumulates wealth rapidly when old. Figure 4 illustrates why this rapid decumulation

causes a problem for the continuous-time approach: the optimal transition is often very far

from the current point. This means that either the asset grid must be very coarse (leading

to low accuracy) or the timestep must be very small (leading to slow convergence).

For these reasons, iterating backwards from the terminal condition in the above manner

is typically a bad idea, as convergence is likely to be slow.
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3.2.2 Treating age like any other state variable

An alternative to the approach in Section 3.2.1 is to treat age like any other state variable

and assume it transitions stochastically. We choose our transition probabilities such that,

if the chain is at point (b, z, A) ∈ Bh ×Zh ×Ah at time t, then the possible values at time

t+∆t lie in the set

{(b, z, A), (b±∆b, z, A), (b, z ±∆z, A), (b, z, A+∆A)} .

For any control c, we choose the following analogue of (2.15),

ph(b±∆b, z, A) =

(
∆t

∆b

)
[rb− c+ yez]±,

ph(b, z ±∆z, A) =

(
∆t

∆2
z

)[
σ2

2
χ(z) + ∆z[−µz]±

]
,

ph(b, z, A+∆A) =
∆t

∆A
,

(3.8)

where χ(z) := 1z /∈{z,z}, provided that all of the transition probabilities lie in the unit inter-

val. Note that this Markov chain satisfies the local consistency conditions by construction.

The state constraints are imposed by restricting the possible consumption choices at the

boundary points, just as in the stationary case.

The BFE for this discrete problem is then

V h(b, z, A) = max
c≥0

{
∆tu(c) + e−ρ∆tEh

b′,z′,A′

[
V h(b′, z′, A′)

]}
, (3.9)

for all (b, z, A) ∈ Bh × Zh × Ah, where the subscripts in the expectation operator on the

right-hand side of equation (3.9) make explicit the fact that the expectation is now taken

over b′, z′ and A′, in contrast to the BFE given in equation (3.7).

As we noted above, the agent decumulates assets rapidly near the end of her life, and so

we may need to choose ∆t very small to ensure that transition probabilities lie within the

unit interval. However, in contrast to Section 3.2.1, there is now no need for the timestep

∆t to coincide with the age step ∆A, and we can always make the timestep sufficiently small

that the transition probabilities in (3.8) remain within the unit interval.

There remains the question as to how to solve the BFE in (3.9). There are several choices

available to us. We can always use VFI and iterate backwards from the terminal payoff,

just as in the discrete-time case. However, because of the rapid decumulation of assets in

the final period, the timestep necessary to ensure that the transition probabilities remain

in the unit interval might need to be minuscule, leading to slow convergence. In light of the

analysis of stationary problems considered in Section 2, one alternative approach would be
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to apply PFI. However, as we alluded to earlier, for the current problem this is probably

a bad idea (as we verify below), as it requires solving a three-dimensional linear system at

each stage of the algorithm. In what follows, we will call this approach “naive PFI” for

clarity, because it applies PFI without any regard for the structure of the problem.

We now describe an algorithm that exploits the monotonicity of age and successively

solves a series of two-dimensional control problems by iterating backwards in age. We will

refer to this as “sequential PFI” and state it in the main text because to the best of our

knowledge, it does not appear to have been used in the economics literature.

Algorithm 1 (Sequential policy function iteration). For a given tolerance level ϵ > 0,

sequential policy function iteration is defined as follows:

(i) Given the terminal condition V h(·, ·, A) ≡ 0, find the function V h(·, ·, A − ∆A) by

applying Algorithm 5 with tolerance ϵ to a control problem with state space Bh×Zh,

flow utility function ũ, transition probabilities p̃h and discount rate ρ̃ defined by

∆tũ(b, z, c) : = ∆tu(c) + e−ρ∆tph(b, z, A)V h(b, z, A),

p̃h(b′, z′) : = ph(b′, z′)/p,

e−ρ̃∆t : = e−ρ∆tp,

(3.10)

for (b, z), (b′, z′) ∈ Bh × Zh, where p :=
∑

(b′,z′)∈Bh×Zh ph(b′, z′, A) and the transition

probabilities ph are given by (3.8).

(ii) Return to Step (i) with V h(·, ·, A−∆A) in place of V h(·, ·, A) and repeat until A = 0

is reached.

We have chosen the name “sequential policy function iteration” for Algorithm 1 because

the algorithm proceeds by solving for each slice V h(·, ·, A) sequentially, using the values at

the higher age together with Algorithm 5. Note that it follows immediately from the original

analysis of Puterman and Brumelle (1979) that this algorithm is convergent at each age level.

Also recall that Algorithm 5 (PFI) takes as given an initial guess for the policy function

upon which it successively iterates. One obvious choice for the initial guess of the policy

function when age equals A in Algorithm 1 is to choose the optimal policy associated with

A+∆A. We adopt this choice in our implementation.

3.3 Numerical results

We now turn to our numerical results for the nonstationary setting. The structure of this

setting will parallel that given in Section 2.3. We first document the accuracy of continuous-

time and discrete-time methods on various different grids, before turning to an analysis of
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the speed of convergence. The parameters coincide with those given in Section 2.3, together

with the assumption that age runs from A = 0 to A = A = 60. Note that throughout, the

timestep (or, equivalently, the age step) in the discrete-time problem is a parameter of the

problem, and not a quantity chosen by the modeler.

Recall that in Section 2.3, we assessed accuracy by computing the policy and value

functions on a fine grid in assets and viewing this as the “true” solution for each environment.

Quantities computed on coarser asset grids were then compared to these “true” quantities.

The notion of accuracy is more delicate in this nonstationary setting, because the analogue

of the “true” continuous-time solution in this nonstationary setting must also use many

values for age. The true discrete-time and continuous-time quantities are therefore no longer

defined on the same grids, and when holding fixed the income process (as we do throughout),

there are now two ways in which we can increase the accuracy of the continuous-time

quantities: increase the size of the asset grid (as in Section 2.3), or increase the size of

the age grid. When documenting the accuracy of the discrete-time and continuous-time

approaches on coarser grids, we simply suppose that Nh
A = 60 in both the discrete-time and

continuous-time analysis in order to ease the comparison.

In this setting, the policy functions can potentially differ substantially between the

discrete-time and the continuous-time settings, especially toward the end of the agent’s

life. This should not be surprising, because in contrast to the discrete-time problem, in the

continuous-time problem the agent does not wish to completely exhaust her entire wealth at

the penultimate age A−∆A. We do not view this discrepancy as a strength or weakness of

either analysis, as the two approaches are simply describing different environments. In each

case we continue to compare quantities computed on coarse grids with their corresponding

“true” values computed on a fine asset grid.

With these considerations in mind, Table 6 reports the accuracy of the discrete-time

approach when ∆t = 1, and Table 7 repeats the exercise for the continuous-time approach

with ∆t = 10−6 using the sequential PFI algorithm given in Algorithm 1.26

26Note that the (naive) PFI algorithm and Algorithm 1 literally solve the same finite system of equations.
Verification that they return near-identical values is only a check on the code (and not on the accuracy of
different discretizations) and so is relegated to Appendix B.3.
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||∆c||1 ||∆c||∞ ||∆c(%)||1 ||∆c(%)||∞
Grid size

(25, 15) 0.0529 0.4215 1.8220 17.2187
(50, 15) 0.0184 0.1676 0.7266 10.5580
(100, 15) 0.0059 0.0835 0.2596 5.7510
(250, 15) 0.0019 0.0441 0.0760 4.2350
(500, 15) 0.0014 0.0221 0.0484 3.0425

Table 6: Accuracy of discrete-time EGM (∆t = 1)

||∆c||1 ||∆c||∞ ||∆c(%)||1 ||∆c(%)||∞
Grid size

(25, 15) 0.2128 3.1176 4.8730 36.4760
(50, 15) 0.1162 1.6650 2.6608 27.8550
(100, 15) 0.0613 0.8654 1.4063 20.7426
(250, 15) 0.0251 0.3500 0.5773 13.6159
(500, 15) 0.0122 0.1692 0.2812 9.7168

Table 7: Accuracy of continuous-time approach (∆t = 10−6)

Table 6 and Table 7 show that both frameworks are substantially less accurate in the

nonstationary setting than in the stationary setting. Most of this loss of accuracy appears to

occur near the end of the agent’s life, where the consumption function changes substantially

from the stationary setting and the agent rapidly decumulates assets.

Table 8 gives the time until convergence for the sequential PFI, naive PFI, and the

EGM. In contrast to the stationary setting in Section 2, the EGM converges more quickly

on every grid. Further, both the EGM and the sequential PFI are much faster than (naive)

PFI. We omit the run time for naive PFI on larger grids as the sparse solver becomes very

slow and clearly should never be used.
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EGM Seq. PFI Naive PFI
Grid size

(25, 5) 0.064 0.683 0.482
(50, 5) 0.078 0.740 1.721
(100, 5) 0.108 0.877 5.050
(250, 5) 0.174 1.170 -
(500, 5) 0.273 1.652 -

EGM Seq. PFI Naive PFI
Grid size

(25, 15) 0.139 0.835 6.901
(50, 15) 0.172 1.036 31.203
(100, 15) 0.223 1.356 118.109
(250, 15) 0.386 2.476 -
(500, 15) 0.687 5.099 -

Table 8: Speed of convergence for nonstationary problem

Speed versus accuracy As in Section 2.3, we emphasize that the relevant tradeoff is

speed versus accuracy, and not speed versus grid-size. For this reason, we now combine in

Figure 5 the above results in a scatterplot that depicts the degree of accuracy attained within

a particular time in each framework (discrete time versus continuous time). Appendix B.2

documents the speed versus accuracy tradeoff with Tauchen (1986) transition probabilities

and finds that the discrete-time framework continues to outperform the continuous-time

framework. For both discretizations, we find that the discrete-time approach converges

much more rapidly than the continuous-time approach for a given level of accuracy, and

that sequential PFI is far superior to naive PFI. The incorporation of age as a state variable

can therefore effectively reverse the relative speed of the discrete-time and continuous-time

approaches.
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Figure 5: Time versus accuracy (15 income points)

3.4 Extension: Health expenditures and labor choice

The foregoing has shown that, for an income fluctuation problem with concave preferences,

the continuous-time approach is superior for a stationary problem, while the discrete-time
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approach is superior for a lifecycle problem. We believe that this is a simple but useful

point to emphasize because such problems recur throughout the macroeconomics literature.

However, we do not argue that the continuous-time approach should never be used in any

lifecycle model, because the above superiority of the discrete-time approach relied on the use

of the EGM to eliminate nonlinear root-finding. Although the EGM proved stable for the

problem in Section 3.1, the appropriate implementation of the EGM in richer environments

often requires problem-specific ingenuity in order to produce reliable results.

We therefore conclude this paper with an example that illustrates the flexibility and sim-

plicity of the continuous-time approach, which extends easily to more complicated settings

with essentially no changes. We consider a problem similar in form to those studied in Hall

and Jones (2007), Ales et al. (2012) and Eslami and Karimi (2019) in which an agent may

affect her life-span through medical expenditures m and makes an extensive labor-leisure

choice, in addition to the usual consumption-savings choice.

If the agent purchases m units of health services at age A, she dies at rate λ(A,m) for

some function λ that is convex in m for each age. For simplicity we restrict m to lie in [0,m]

for some m ≥ 0. The utility upon death is denoted D and the (stochastic) age of death

is denoted AD. In addition, we assume that the agent makes a binary choice lt ∈ {0, 1}
whether to work or not, where lt = 0 denotes no work.

Flow utility at age A is now assumed to be u(c, 1, A) = (cη(A))1−γ/(1−γ) and u(c, 0) =

c1−γ/(1− γ) for some η(A) ≤ 1 (so that η = 1 corresponds to inelastic labor supply).

The agent’s problem, in continuous time, can be written as

V (b, z, A) = max
(ct,mt,lt)t∈[A,A]

E

[∫ A

A
e−

∫ s
A [ρ+λ(τ,mτ )]dτu(cs, ls, As)ds+ e−ρADD

]
s.t. dbs = [rbs + yezs ls − cs −ms]ds,

dzs = µ(zs)ds+ σdωs,

bs ≥ b.

(3.11)

To construct a locally consistent chain, it is useful to imagine that at age A the agent

faces the probability of death ph(death) = ∆tλ(A,m) and that conditional on survival, we

construct a locally consistent chain for assets and income. For the latter, we could use the

analogue of (3.8) with the drift now rb− c−m+ yezl. However, this leads to complicated

first-order conditions due to the presence of the 1−λ(A,m)∆t term and to the appearance

of medical expenditures in the maximum operators.

It is here that the flexibility of the continuous-time approach can prove useful: with a
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slight modification of the transition probabilities in (3.8), one can choose

phD(b+∆b, z, A) =
∆t[rb− c+ yezl]+

∆b[1− λ(A,m)∆t]
,

phD(b−∆b, z, A) =
∆t

(
[rb− c+ yezl]− +m

)
∆b[1− λ(A,m)∆t]

,

phD(b, z ±∆z, A) =
∆t

[
σ2χ(z)/2 + ∆z[−µz]±

]
∆2

z[1− λ(A,m)∆t]
,

phD(b, z, A+∆A) =
∆t/∆A

1− λ(A,m)∆t
,

(3.12)

and then define phD(b.z, A) so that probabilities sum to unity. It is easy to show that the

system (3.12) defines a locally consistent Markov chain for the true law of motion, because

the denominator 1− λ(A,m)∆t tends to unity with ∆t.

Thus, the optimization step in the resulting Bellman functional equation for the continuous-

time formulation, now, involves solving

max
c,m≥0
l∈{0,1}

{
∆tu(c, l, A) + e−ρ∆t

[
[1−∆tλ(A,m)]Eh

b′,z′,A′

[
V h(b′, z′, A′)

]
+∆tλ(A,m)D

]}
,

(3.13)

where the expectation is taken with respect to the probabilities in (3.12) over assets, log

income, and age, conditional on survival.

Now the choice in (3.12) becomes clearer: by omitting terms on the right-hand side of

(3.13) that are independent of the controls and dividing by ∆te
−ρ∆t , the consumption and

labor choices must maximize

eρ∆tu(c, l)+λ(A,m)
[
D − V h

]
+[rb− c+ yezl]+V h

bF −
[
[rb− c+ yezl]− +m

]
V h
bB. (3.14)

This reveals the simplicity of the continuous-time approach. Despite the two additional

controls and the discrete choice in flow utility, the policy updating step can be obtained in

closed form. For consumption we simply maximize (3.14) for each choice of labor and then

perform an additional pointwise maximization. Because we assume that λ(A,m) is convex

in m for every age A, if V h
bB > 0, the optimal m is zero if D > V h, and otherwise is the

maximum of zero and the solution to V h
bB = λm(A,m)

[
D − V h

]
.

Example We assume that λ(A,m) = Λ0(A)e−Λ1(A)·m for some Λ0(A) and Λ1(A), so that

λm(A,m) = −Λ1Λ0e
−Λ1m. The first-order condition, thus, reduces tom = Λ−1

1 ln(Λ1Λ0[V
h−

D]/V h
bB). Note that Λ0 may be interpreted as the chance of dying in the absence of any
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medical expenditures. We assume that this varies from 0.1 percent to 6 percent between

the youngest and oldest agents and is cubic in age, so that Λ0(A) = Λ0 + (Λ0 −Λ0)(A/A)3

for (Λ0,Λ0) = (0.001, 0.06).27

The remaining parameters are simply chosen such that health expenditures are non-

negligible but small relative to consumption. We assume that Λ1 and η are linear in A,

so that there exist constants Λ1,Λ1, η and η such that Λ1(A) ≡ Λ1 + (Λ0 − Λ1)A/A and

η(A) ≡ η+(η−η)A/A. The complete set of parameters is specified in Table 1 and Table 9.

Table 9: Parameters used in medical example

Parameter Value

Λ0,Λ0 0.001, 0.06

Λ1,Λ1 3, 0
η, η 0.9, 0.6

D,m −100, 1.0
(Nb, Nz) (100, 15)

Figure 6 plots the policy functions for consumption and medical expenditures for the

youngest age group. For these agents, the probability of death is low and the upper bound

on medical expenditures is never attained. Labor supply is identically l = 1 for the youngest

age group and is therefore omitted.

Figure 6: Policy functions in initial period
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Figure 7 plots the policy functions for consumption and medical expenditures for older

agents. In this case the risk of death is higher and the upper bound on medical care is binding

27This range is approximately consistent with death probabilities for individuals age 20 and 80 as reported
by the Social Security Administration. See https://www.ssa.gov/oact/STATS/table4c6.html.
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for high asset values. Further, the consumption function now has several discontinuities,

which, as Figure 8 shows, occur at the points at which the agent chooses to stop working.

This abruptly alters the marginal utility of consumption, leading to abrupt changes in the

optimal consumption.

Figure 7: Policy functions in middle age
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Figure 8: Labor supply at various ages
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As we noted in the introduction, there are many extensions of the EGM in the literature

designed to deal with nonconvexities, and it is possible that such techniques could be applied

to our medical example. The point of this final example is that no additional ingenuity or

coding is necessary in the continuous-time framework when we add both an additional

continuous choice (medical expenditures) and a discrete choice (labor). Although it is hard

to quantify programming difficulty, we believe that it is an important consideration to the

researcher and that this section therefore provides some practical guidance. Specifically, we

recommend that the researcher use discrete-time techniques in a lifecycle problem if there
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exists a simple way to implement the EGM, but that if such an extension is complicated

or not covered by the existing literature, then they may wish to consider the continuous-

time approach. However, in the latter case, we emphasize that the sequential PFI given in

Algorithm 1 is much faster than a naive application of PFI, and produces the same solution

(within numerical tolerance).

4 Conclusion

We do not believe it is possible or desirable to attempt to give an exhaustive set of recipes

for when the continuous-time approach dominates the discrete-time approach. Our goal in

this paper has been to focus on a series of problems that commonly arise in macroeconomics

(stationary and nonstationary income fluctuation problems) and to provide guidance within

this setting. We have shown that, for stationary problems, continuous-time methods ap-

pear superior to discrete-time methods, as they are both (typically) faster and have more

stable convergence properties. In contrast, for nonstationary problems, such as an income

fluctuation problem with a finite lifetime, discrete-time methods are superior for concave

problems. However, the continuous-time approach is more flexible and easily adaptable to

more complex environments in which nonlinear root-finding is more difficult to eliminate.
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A Review of solution methods

In this appendix, we review the solution methods adopted in the main text. All of the

following are standard, but are included here in order to remove any ambiguity in the

algorithms used. Appendix A.1 covers the discrete-time analysis, and Appendix A.2 covers

the continuous-time analysis.

A.1 Discrete-time framework

In this appendix we review and formally state the algorithms that we use to solve the

discrete-time Bellman equations considered in Section 2.1. Recall that in the stationary

setting, whenever the Principle of Optimality is applicable, the value function of the agent

is the unique solution to the functional equation V ≡ B[V ], where the Bellman operator B

was defined by declaring

B[V ](b, z) = max
c≥0,b′≥b

∆tu(c) + e−ρ∆t

∫
Z
Γ(z, dz′)V (b′, z′)

s.t. b′ = (1 +∆tr)(b+∆t(ye
z − c))

(A.1)

for any (b, z) ∈ [b, b]×Z. Since we cannot evaluate the value function at every point in the

continuum state space G := B×Z, we must discretize the state space. As in the main text,

we suppose that Bh and Zh are finite grids for assets and log income, respectively, define

Gh := Bh×Zh for the state space for the discrete problem, and assume that log income now

evolves according to a finite-state chain on Zh with transition kernel Γh. We then consider

the discrete-state Bellman equation

V h = Bh[V h] (A.2)
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where Bh is the discrete Bellman operator given by

Bh[V h](b, z) = max
c≥0,b′≥b

∆tu(c) + e−ρ∆t
∑
z′∈Z

Γh(z, z′)Ṽ h(b′, z′)

b′ = (1 +∆tr)(b+∆t(ye
z − c))

(A.3)

and Ṽ h is the linear interpolant of V h. We can subtract the identity from both sides of the

Bellman equation and obtain the functional equation

0 = max
c≥0

∆tu(c) + T h(c)
[
V h

]
(x). (A.4)

Our purpose in this paper has been to compare the performance of discrete- and continuous-

time approaches to solving optimal control problems. In order to make this comparison

“fair,” it is natural to consider the approaches most commonly used in each paradigm. For

instance, it would not be informative to illustrate that finite-difference methods dominate a

brute force approach to a discrete-time problem, because the latter is slow and can often be

avoided. For this reason, when updating the guess for the policy function in discrete-time

problems, we avoid nonlinear root-finding by employing the endogenous grid method (EGM)

of Carroll (2006).28 We now briefly review this method.

First suppose that one wished to evaluate the maximization on the right-hand side of

(A.3) for an arbitrary guess of the value function V h on the grid Gh := Bh × Zh. One

approach would be to choose the consumption level that solves the first-order condition,

which rearranges to

u′(c) = (1 + ∆tr)e
−ρ∆t

∑
z′∈Z

Γh(z, z′)
∂Ṽ h

∂b
((1 + ∆tr)(b+∆t(ye

z − c)), z′) (A.5)

For an arbitrary guess for V h, the equation (A.5) is nonlinear and does not admit a closed

form solution. Solving the nonlinear equation (A.5) is often a major bottleneck in discrete-

time dynamic programming.

The insight of Carroll (2006) was that one could eliminate the need to solve a nonlinear

equation when updating the value function by judiciously varying the grid at each step.

Instead of fixing the current asset value and finding the optimal future level of assets, we

fix future assets and find the current asset level at which (A.5) is satisfied. To describe

this formally, denote the current guess for the value function by V h, and for any future

level of assets b′ ∈ Bh and log income z ∈ Zh, we find the current asset value b for which

28See also Barillas and Fernández-Villaverde (2007) for a generalization.
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condition (A.5) holds. If we denote this by bh(b′, z), then the associated consumption is

c = (bh
(
b′, z

)
− b′/(1 + ∆tr))/∆t + y(z).

The first-order condition (A.5) will be satisfied at this consumption point if

u′
(
(bh

(
b′, z

)
− b′/(1 + ∆tr))/∆t + y(z)

)
= (1 +∆tr)e

−ρ∆t
∑

z′∈Zh

Γh
(
z, z′

)∂Ṽ h

∂b

(
b′, z′

)
,

(A.6)

and the above rearranges to give an explicit representation for current assets

bh
(
b′, z

)
= max

{
min

{
b̃h(b′, z), b

}
, b
}

(A.7)

where b̃h(b′, z) is a candidate choice of assets found by inverting equation (A.6),

b̃h(b′, z) = ∆t

(
u′
)−1

(1 + ∆tr)e
−ρ∆t

∑
z′∈Zh

Γh
(
z, z′

)∂Ṽ h

∂b

(
b′, z′

)+ b′/(1 + ∆tr)−∆ty(z).

(A.8)

Given the expression in equation (A.7), we have an associated consumption choice at

the point bh(b′, z) given by rearranging the budget constraint

ch
(
bh(b′, z), z

)
=

1

∆t
(bh(b′, z)− b′/(1 + ∆tr)) + y(z). (A.9)

We then interpolate these consumption values for each z to obtain guesses for consumption.

The above method of Carroll (2006) provides us with a way to update the policy function

without ever solving a nonlinear equation. In principle, this can be paired with various

different ways of updating the value function. For this reason, we outline two distinct

algorithms.

Algorithm 2 (Value function iteration with EGM). Given a tolerance level ϵ > 0, value

function iteration with the endogenous grid method is the following.

(i) Fix an arbitrary guess V h
0 : Gh → R for the value function on the grid Gh, chosen such

that the interpolant Ṽ h
0 is concave in its first argument for every z ∈ Z.

(ii) For each (b′, z) ∈ Gh define consumption at the point bh0(b
′, z) in equation (A.7)

using the expression for consumption ch0
(
bh0(b

′, z), z
)
in equation (A.9) together with

a central-difference approximation of the derivative.

(iii) Extend ch0 to every point (b, z) ∈ Gh using linear interpolation.
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(iv) For each (b, z) ∈ Gh update the value function according to

V h
1 (b, z) = ∆tu(c

h
0(b, z)) + e−ρ∆t

∑
z′∈Z

Γ(z, z′)Ṽ h
0 ((1 + ∆tr)(b+∆t(ye

z − ch0(b, z))), z
′).

(A.10)

(v) Return to Step (i) with V h
1 in place of V h

0 and repeat until ||V h
n+1 − V h

n || < ϵ.

Algorithm 2 assumes that the first-order condition for optimality characterizes the opti-

mum at every stage in the algorithm. The following is the same as Algorithm 2 except that

we update the value function using policy function iteration in the analogue of step (iv).

Algorithm 3 (Policy function iteration with EGM). Given a tolerance level ϵ > 0, policy

function iteration with the endogenous grid method is the following.

(i) Fix an arbitrary guess V h
0 : Gh → R for the value function on the grid Gh, chosen such

that the interpolant Ṽ h
0 is concave in its first argument for every z ∈ Z.

(ii) For each (b′, z) ∈ Gh define consumption at the point bh0(b
′, z) in equation (A.7) using

the expression for consumpton ch0
(
bh0(b

′, z), z
)
in equation (A.9).

(iii) Extend ch0 to every point (b, z) ∈ Gh using linear interpolation.

(iv) Find the value function associated with adhering to the policy function ch0 indefinitely,

by solving the system of equations

V h(b, z) = ∆tu(c
h
0(b, z)) + e−ρ∆t

∑
z′∈Z

Γ(z, z′)Ṽ h((1 + ∆tr)(b+∆t(ye
z − ch0(b, z))), z

′)

(A.11)

for V h.

(v) Return to Step (i) with V h
1 in place of V h

0 and repeat until ||V h
n+1 − V h

n || < ϵ.

A.2 Continuous-time framework

The Bellman equations in this paper that arise from a discretization of continuous-time

control problems are all of the form

V h(x) = Bh
[
V h

]
(x), (A.12)

where the operator Bh is defined by

Bh
[
V h

]
(x) = max

c≥0
∆th(x, c)u(c) + e−ρ∆th(x,c)

∑
x′∈Gh

ph
(
x, x′ | c

)
V h

(
x′
)
. (A.13)
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Note that if N = |Gh| is the cardinality of the state space, then the domain of the operator

Bh in (A.13) is simply RN . Subtracting the identity matrix from both sides of (A.13) leads

to the equivalent formulation of the fixed-point as a solution to

0 = max
c≥0

∆th(x, c)u(c) + T h(c)
[
V h

]
(x). (A.14)

The operators Bh and T h defined in equations (A.13) and (A.14) are the building blocks

for value function iteration and policy function iteration outlined below.

Algorithm 4 (Value function iteration). For a given tolerance level ϵ > 0, value function

iteration is defined as follows:

(i) Begin with an initial guess V0 ∈ RN for the value function.

(ii) Update the value function by defining V1 = Bh[V0], where Bh is defined in (A.13).

(iii) Return to Step (i) with V1 in place of V0 and repeat until ||Vn+1 − Vn|| < ϵ.

Value function iteration is sometimes referred to as the method of successive approx-

imations. If the transition probabilities ph remain within the unit interval, Blackwell’s

conditions together with the contraction mapping theorem imply that (V h
n )

∞
n=1 converges

to V h, the solution to the BFE in equation (A.12), as n → ∞. Note that value function

iteration begins with an arbitrary guess for the value function. In contrast, the following

begins with an arbitrary guess for the policy function.

Algorithm 5 (Policy function iteration). For a given tolerance level ϵ > 0, value function

iteration is defined as follows:

(i) Begin with an initial guess c0 ∈ RN for the policy function.

(ii) Update the value function by defining V1 to be the value of adhering to c0 indefinitely,

which is the solution to 0 ≡ ∆th(x, c0)u(c0) + T h(c0)[V1](x).

(iii) Update the policy function by defining c1 to be the policy function that attains the

maximum on the right-hand side of equation (A.14) for V h = V1.

(iv) Return to Step (i) with c1 in place of c0 and repeat until ||Vn+1 − Vn|| < ϵ.

Policy function iteration is sometimes referred to as approximation in the policy space in

the numerical analysis literature. Within the economics literature, it is sometimes referred

to as Howard’s improvement algorithm in honor of Howard (1960). Puterman and Brumelle

(1979) show that policy function iteration is guaranteed to converge monotonically to the

fixed-point of the equation (A.12). Further, the convergence is quadratic near the solution
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and so PFI typically requires a small number of iterations. However, each time we update

the value function, we must solve a linear system of dimension the size of the state space.

An alternative procedure that in some sense lies between VFI and PFI, often referred

to as the modified policy function iteration method (MPFI), combines ideas of these two

methods. Instead of solving equation (A.14) exactly, MPFI performs a number of Jacobi

relaxations on this equation. In other words, instead of solving the functional equation, in

MPFI, one only finds an approximate solution to this equation by performing a number of

iterations in the value space. Puterman and Shin (1978) provide formal convergence proofs

for this class of algorithms.

B Miscellaneous figures and tables

This appendix contains miscellaneous figures and tables.

B.1 Stationary problems

B.1.1 Accuracy

Table 10 and Table 11 show that the accuracy of the continuous-time method is not partic-

ularly sensitive to the choice of timestep, at least within the range of values for which the

transition probabilities remain in the unit interval.

||∆c||1 ||∆c||∞ ||∆c(%)||1 ||∆c(%)||∞
Grid size

(25, 15) 0.0632 0.0942 2.9511 12.8098
(50, 15) 0.0325 0.0619 1.5341 9.2197
(100, 15) 0.0164 0.0415 0.7783 6.5735
(250, 15) 0.0064 0.0249 0.3047 4.1523
(500, 15) 0.0030 0.0170 0.1424 2.9152

Table 10: Accuracy of continuous-time approach (∆t = 0.005)
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||∆c||1 ||∆c||∞ ||∆c(%)||1 ||∆c(%)||∞
Grid size

(25, 15) 0.0618 0.0942 2.8985 12.8036
(50, 15) 0.0311 0.0619 1.4796 9.2153
(100, 15) 0.0150 0.0415 0.7228 6.5705
(250, 15) 0.0049 0.0249 0.2486 4.1506
(500, 15) 0.0015 0.0170 0.0862 2.9138

Table 11: Accuracy of continuous-time approach (∆t = 0.05)

B.1.2 Iterations

Table 12 and Table 13 record the number of iterations necessary for convergence for the

stationary problem studied in Section 2.

VFI MPFI(10) MPFI(50) MPFI(100) MPFI(200) PFI
Grid size

(25, 15) 3620.0 382.0 92.0 49.0 27.0 6.0
(50, 15) 3488.0 373.0 91.0 50.0 27.0 7.0
(100, 15) 3409.0 372.0 93.0 50.0 28.0 7.0
(250, 15) 3365.0 375.0 94.0 51.0 29.0 8.0
(500, 15) 3352.0 377.0 94.0 52.0 29.0 8.0

Table 12: Number of iterations (continuous-time, ∆t = 0.05)

VFI MPFI(10) MPFI(50) MPFI(100) MPFI(200) PFI
Grid size

(25, 15) 212.0 24.0 9.0 9.0 9.0 9.0
(50, 15) 210.0 24.0 9.0 9.0 9.0 9.0
(100, 15) 214.0 25.0 9.0 9.0 9.0 9.0
(250, 15) 216.0 26.0 9.0 9.0 9.0 9.0
(500, 15) 217.0 26.0 9.0 8.0 8.0 8.0

Table 13: Number of iterations (discrete-time, ∆t = 1)
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B.1.3 Speed versus accuracy
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Figure 9: Time versus accuracy (5 income points)
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Figure 10: Time versus accuracy (25 income points)

B.2 Alternative discretization

In this appendix we review the discretization approach of Tauchen (1986). We enumerate

the grid in log income by z0, . . . , zNz+1. Because assets will typically be indexed by i, we

index current and future log income by j and k, respectively. In the main text, we considered

an Ornstein-Uhlenbeck process for log income zt with mean z = 0 and diffusion term σ,

dzt = −µzt + σdωt (B.1)

where µ gives the rate of mean reversion. In this case the discrete-time analogue is

zt+1 = (1−∆tµ)zt + σ
√
∆tϵt (B.2)
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where (ϵt)
∞
t=0 is normally distributed, i.i.d. over time with mean zero and unit variance.

Denote by pjk the probability of transitioning from point zj to point zk, and suppose that

∆z is the size of the increment in z. We then define, for any j ∈ {0, . . . , Nz + 1} and

k ̸= 0, Nz + 1, the probabilities

pjk := P (z′ ∈ (zk −∆z/2, zk +∆z/2))

while for the boundary points the probabilities are

pj0 = P (z′ ≤ z0 +∆z/2)

pj,Nz+1 = P (z′ ≥ zNz+1 −∆z/2).

Writing Φ for the CDF of a standard normal distribution and substituting in the explicit

expression for z′ in (B.2), we have (dropping time subscripts from random variables for

clarity),

pjk = P
(
zk −∆z/2− (1−∆tµ)zj ≤ σ

√
∆tϵ ≤ zk +∆z/2− (1−∆tµ)zj

)
= Φ

(
(zk +∆z/2− (1−∆tµ)zj)/[

√
∆tσ]

)
− Φ

(
(zk −∆z/2− (1−∆tµ)zj)/[

√
∆tσ]

)
(B.3)

for k ̸= 0, Nz + 1, and for the boundary points

pj0 = Φ
(
(z0 +∆z/2− (1−∆tµ)zj)/[

√
∆tσ]

)
pj,Nz+1 = 1− Φ

(
(zNz+1 −∆z/2− (1−∆tµ)zj)/[

√
∆tσ]

)
.

(B.4)

The transition matrix for log income is completely specified by (B.3) and (B.4).

Time versus accuracy. We now complement the main text by documenting the speed

versus accuracy tradeoff using the discretization of Tauchen (1986). The results of this

exercise are given in Figure 11. The relative ordering of the two approaches (continuous-

time versus discrete-time) is unchanged relative to the main text.
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Figure 11: Time versus accuracy (15 income points, Tauchen)

B.3 Naive and sequential policy function iteration

In this appendix, we verify that the naive PFI algorithm and the sequential PFI algorithm

given in Algorithm 1 return approximately the same values. These two algorithms solve the

same system of equations, and so this is only a check on our code and not on the accuracy

of a particular method. Because the naive PFI is prohibitively slow for large grids, we only

verify on small grids. Reassuringly, all of the quantities in Table 14 are minuscule.

||∆c||1 ||∆c||∞ ||∆c(%)||1 ||∆c(%)||∞
Grid size

(50, 10) 1.346799e-09 1.576741e-08 4.761515e-08 5.258059e-07
(100, 10) 1.783527e-09 2.436333e-08 6.479301e-08 9.284047e-07
(150, 10) 2.052531e-09 3.533098e-08 7.622061e-08 1.675828e-06
(200, 10) 2.221267e-09 3.596195e-08 8.347897e-08 1.605795e-06

Table 14: Comparison of naive and sequential PFI in a nonstationary environment
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