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Online Appendix 

Appendix A: Partitioning the Jobless Unemployment Rate 
 

A.1 Overview 

To partition the jobless unemployment rate while applying the Ashley/Verbrugge (2022a,b) 
method (described below), we use the Iacobucci-Noullez (2005) filter, setting k = 4 (i.e., using 4 
quarters of univariate forecasts in each rolling window). The Iacobucci-Noullez filter introduces 
no phase shift (unlike, e.g., the Christiano-Fitzgerald (2003) filter).1 Following Ashley and 
Verbrugge (2023), we choose frequency cutoffs so that the jobless unemployment rate is 
partitioned into fluctuations lasting longer than 4 years (termed lowgap

tu , for low-frequency gap), 
fluctuations lasting between 1 year and 4 years (termed medfreq

tu , for medium-frequency), and 
transient fluctuations. Transient fluctuations were found to be unimportant drivers of inflation, 
and so were omitted. The two more persistent unemployment components are plotted in Figure 2. 
This figure also demonstrates how unusual the COVID collapse and recovery were. In particular, 
the low-frequency gap rose, notably much more sharply than usual. Meanwhile, the medium-
frequency component also fell very sharply back to zero, dropping to historic lows.  
 
The first step is to partition the real-time unemployment rate tu  into 3 persistence components – 

3
,1t j tj

u u


  – which by construction add up to the original series. These 3 persistence 

components partition the variation in tu  into monotonically decreasing levels of persistence or, 
equivalently, increasing frequency levels. These components are obtained from the sample data 
using a moving window (augmented with a k-quarter forecast) to filter the tu  data at each time t 
in a one-sided (backward-looking) manner. This approach mitigates end-of-sample filter 
distortions, ensures that parameter estimates are consistent, and retains both the causality 
structure of the data-generating process and any orthogonality conditions that are present in the 
unfiltered data. The Ashley/Verbrugge persistence-dependent regression methodology then 
merely replaces *

t tu u  with these 3 persistence components, estimating a separate coefficient for 
each. (We note in passing that we subtract *

tu  from the most persistent component. That way, the 
3 components add up to an unemployment gap, the typical Phillips curve specification in the 
literature.) Simulation evidence in Ashley, Tsang, and Verbrugge (2020) and Ashley and 
Verbrugge (2022b) indicate that the method yields reliable coefficient estimates and inferences, 
for both linear and nonlinear data-generating processes. Below we summarize why partitioning, 
one-sided filtering, augmentation or ‘padding’ with forecasts, and restriction of the filtering 

 
1 Use of the CF filter in the AV method produced qualitatively similar results, though it calls for the predicted 
recession to begin a quarter or two later. For a comparison of the use of different filters for frequency-dependent 
regression (as well as the sensitivity of results to forecast parameters), see Ashley and Verbrugge (2020b). Using the 
CF filter with the Ashley/Verbrugge method mitigates its phase shift in any case. 
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solely to the tu  data are all essential for obtaining reliable inferences.A.2 One-Sided Filtering 
Method of Ashley and Verbrugge 
 
 

    
Figure A.1: One-sided filtering of unemployment rate data at date s+τ 
(using a two-sided filter, from time s to time s+k+m) 
 
A2.1 Description of one-sided filtering 
 
In brief, one undertakes the one-sided filtering by running a window through the data. Over each 
window, one saves the decomposition at the final data point in the window. Then one increments 
the window by one quarter. However, each window includes not just data but also a second 
component that is a forecast. In other words, each window includes data augmented with a 
forecast.  
 
To explain this in more detail, consider Figure A.1. We wish to compute the decomposition of 
the unemployment rate at time s+κ. As is well-known, obtaining the decomposition at s+κ by 
using a two-sided filter from time s to time s+κ would yield estimates with very poor properties. 
In particular, the resultant time series would (for most filters) incorporate a pronounced phase 
shift, in addition to being highly inaccurate; this inaccuracy is due to the well-known “edge 
effect” problem plaguing all filters. 
 
Both the phase-shift and edge-effect problems are addressed by augmenting the data within a 
window with forecasts. In particular, as in Dagum (1987), Stock and Watson (1999), Kaiser and 
Maravall (1999), Mise, Kim and Newbold (2005), and Clark and Kozicki (2005) – and as is done 
routinely in seasonal-adjustment procedures – one should augment the window sample data with 
forecasted data. In the situation depicted in Figure A.1 we have κ sample data points (from time 
period s to time period s+κ), and m months of projections, yielding a (κ+m)-quarter window 
(from time period s to time period s+κ+m). We then use a two-sided filter to partition that 
window into persistence components, and then save the partition at date s+κ; notice that this is a 
one-sided partition, since no data after date s+κ are used. To obtain the partition at date s+κ+1, 
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we repeat this procedure, obtaining a forecast from data s+κ+1 to data s+κ+1+m, then use a two-
sided filter over dates s+1 to s+κ+m+1 and saving the partition at date s+κ+1. This procedure 
also gracefully allows one to use real-time data. 
 
A2.2 Testing for persistence-dependence 
 
How does testing proceed? In the present case, we wish to test whether the Phillips curve is 
persistence-dependent. Thus, we partition the unemployment rate un into three components 
(say): un1, un2, and un3. Then we replace un in the Phillips curve specification with its 3 
components. One may readily test for persistence-dependence using a standard Chow test. Since 
the components sum to the original series and are based upon one-sided filtering, the causality 
structure and the properties of the error term are preserved. For more details, see the appendix to 
Ashley, Tsang, and Verbrugge (2020). 
 
A2.3 Sensitivity to forecasts and filter 
 
Ashley and Verbrugge (2022b) demonstrate that the resultant persistence decomposition is not 
very sensitive to the number of forecast periods chosen, as long as at least a year of projections 
are used, nor to the frequency filter used (the Iacobucci-Noullez filter, the Christiano-Fitzgerald 
filter, or the Ashley-Verbrugge filter) nor to the details of how these forecasts are produced (as 
long as they are reasonably accurate).  
 
What is crucial is to partition the explanatory variables into an interpretably small set of 
frequency/persistence components that add up to the original data, using moving windows 
passing through the data so that the filtering is done in a backward-looking or one-sided manner. 
The Ashley-Verbrugge filter has a key advantage: it can partition the time series into k 
components in a single pass and is thus more readily used for discovering the persistence-
dependence in the original data. Other filters must be used in an iterative manner, and in our 
experience, results are disappointing if one attempts to partition the data into more than 3 
components. Furthermore, Ashley and Verbrugge (2022b) demonstrate that the results using 
other filters are somewhat sensitive to the manner in which this iteration is done.  
 
But with these details in mind, what is of practical macroeconometric importance is to allow for 
frequency/persistence dependence in the relationship, not – so long as one is mindful of the basic 
desiderata delineated above – the technical details of precisely how the explanatory variable is 
partitioned into its frequency/persistence components. Ashley and Verbrugge (2023) report that 
alternative techniques usually yield quite similar empirical results in practice; see Ashley and 
Verbrugge (2022b) for more details. RATS, Stata, and Matlab code to accomplish this type of 
one-sided decomposition (using simple univariate or multivariate forecasts) is available from the 
authors. 
 
  



5 
 

A2.4 Rationale for partitioning, one-sided filtering, and filtering only explanatory variables 
 
Why are partitioning, one-sided filtering, and restriction of the filtering solely to the *

t tu u  data 
all essential? Partitioning is necessary to ensure that these 3 components of the unemployment 
rate gap add up to the original data, making it easy to test the null hypothesis that the coefficients 
with which these 3 components enter a regression model for the inflation rate are all equal; it 
also allows for straightforward interpretation. One-sided filtering is necessary because two-sided 
filtering – such as ordinary HP filtering or ordinary spectral analysis – inherently mixes up future 
and past values of the unemployment rate gap in obtaining the persistence components, distorting 
the causal meaning of inference in the resulting inflation model and limiting its use for practical 
forecasting and/or policy analysis. These distortions from the use of two-sided filtering are 
particularly severe when the dependent variable is also filtered and when the key relationship 
likely (as here) involves feedback from the dependent variable (inflation) to the (filtered) 
components of *

t tu u  being used as explanatory variables. Fundamentally, this is because 
filtering the dependent variable in a regression model implies that the model error term is 
similarly filtered. For more details, see Ashley and Verbrugge (2008, 2022a); for a “practical” 
comparison of methods, including the Hamilton (2018) filter, see Ashley and Verbrugge 
(2022b).  
 
How about two-sided spectral estimates or filtering with wavelets? These are two-sided methods, 
so the same criticisms apply. Hence, two-sided cross-spectral estimates or filtering with wavelets 
are ruled out for analyses of the present sort. And regarding spectral methods, even absent 
feedback, transfer function gain and phase plots are substantially more challenging to interpret 
than our approach; even without the presence of feedback, Granger describes interpretation of 
such plots as “difficult or impossible” (Granger, 1969). 
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Appendix B: Identification  
 

We adopt the Swanson and Granger (1997) (SG) approach to identification.2 This method is built 
upon the fact that most structural causal models, whether linear or nonlinear, imply 
overidentifying constraints. In particular, a given structural model implies correlation and partial 
correlation constraints on reduced-form regression residuals ( , , ,, ,X t Y t Z te e e ). A partial correlation 
is the conditional correlation between two variables, conditioned on one or more other variables. 
For instance, the partial correlation of ,Y te  and ,Z te  after removing the influence of ,X te  is  

       
   

, , , , , ,
, , 1/2 1/22 2

, , , ,

, , ,
, |

1 , 1 ,
Y t Z t X t Z t X t Y t

Y t Z t Xt

Y t Z t X t Y t

e e e e e e
e e e

e e e e

  


 




          

. 

Under fairly weak assumptions, such overidentifying constraints may be tested using standard t-
statistics (see below).  
 
Now suppose one such constraint is rejected. Not only is the model under consideration rejected, 
but also all structural models that share this constraint are rejected. Hence, such tests may be 
used to restrict the class of models that are consistent with the data. By virtue of ruling out 
candidate models that are inconsistent with the data, tests of such overidentifying constraints thus 
prove useful in specifying a structural model. This procedure substantially reduces the subjective 
nature in the typical SVAR methodology.  
 
We demonstrate how this works using a simple example. Consider the following structural 
model, a (linear) SVAR involving 3 variables, X, Y, and Z; for simplicity, assume that each is 
standardized to have mean 0 and standard deviation 1. The particular model is a structural vector 
autoregression of order 2: 

   
11 13 1 2 ,

21 22 1 22 2 ,

31 1 2 ,

1 0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0 0 0

t t t X t

t t t Y t

t t t Z t

x b b x x v
a y b y c y v
a z z z v

 

 

 

            
            
                            
                           

    (1) 

In matrix notation, the SVAR is denoted 
( )t t tA B L M VΜ = +  

where ( ), ,t t t tX Y Z ′Μ ≡ , ( )B L  is a matrix lag polynomial, and ( ), , ,, ,t X t Y t Z tV v v v ′≡ . The 

corresponding reduced-form model is given by 
( ) ( )1 1

t t t t tA B L M A V L M E− −Μ = + ≡ Φ +  

where ( )LΦ  is a matrix lag polynomial, and ( ), , ,, ,t X t Y t Z tE e e e ′≡ . Identification of the SVAR 

implies obtaining estimates of A and B(L), along with the diagonal variance-covariance matrix V. 
We assume that structural residuals are distributed normally. 

 
2 This method builds upon work in causal modeling (e.g., Glymour and Spirtes, 1988) and is extended in Demiralp 
and Hoover (2003) and Demiralp, Hoover and Perez (2008); see also Moneta (2008). The method originated in 
Blalock (1961). 
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We now represent this model using a causal graph, in Figure A.2. In such figures, an arrow 
denotes a causal influence: a solid arrow represents a within-period influence, while a dashed 
arrow represents an intertemporal influence. Notice that time t variables are depicted as a 
function of other time t variables and lagged variables. For simplicity, the influence of the 
exogenous and independent structural shocks t

kv  on variables { }, , ,k X Y Z∈  are not depicted. 
This causal graph is a directed acyclic graph (DAG): it is directed because arrows lead from one 
variable to another variable, and it is acyclic because one cannot start from any variable, 
following arrows, and return to that starting variable. Causal graphs are useful tools since they 
allow one to quickly deduce whether a model can be identified (if all variables are observed, it 
suffices that it is directed and acyclic), and how the model can be tested. In particular, it is very 
easy to read the implied partial correlation overidentifying restrictions for a given structural 
model, when the model is expressed as a graph. We do this momentarily. 

 

 
Figure A.2: A structural VAR, with causal influences depicted. Solid lines depict 
contemporaneous causation; dashed lines depict intertemporal causation. Thus, for example, at 
time t, variable Y is influenced by variable X contemporaneously, by its own value at time t-1, 
and by its own value at time t-2. 
 
VAR modeling begins by estimating the reduced-form model, yielding the residuals ( , ,X Y Ze e e ). 
How may tests conducted upon these residuals be used to reject models? If Figure A.1 depicts 
the data-generating process, then we can immediately deduce many partial correlation 
restrictions amongst those residuals. For instance, this model implies that  , ,, 0X t Y te e  ; 

 , ,, 0X t Z te e  ;  , ,, 0Y t Z te e  ; and  , , ,, | 0Y t Z t X te e e  . The associated test statistics are 

standard t-statistics from a least-squares regression of this sort: , 1 , 2 ,Y t Z t X t te e e     . In the 
latter regression, the model in Figure A1 would be rejected if 1ˆ 0α ≠ . 
 
This procedure allows us to test a given model; but how do such partial correlations help us to 
deduce the structural model to begin with? Let us return to the SVAR context above, where 
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identification consists of placing restrictions on the A matrix in equation (1).3 With three 
variables, there are 22 possible models (6 of which correspond to Cholesky identification 
schemes – see Figure F.1 in Appendix F). A researcher not making use of the SG approach 
would have to use auxiliary information, such as economic theory and timing restrictions, to 
select one of these 22 models. Now suppose that the DGP is Equation (1). As we now informally 
demonstrate (the procedure is described somewhat more formally below), the SG approach 
would allow us rule out 19 of the models, leaving only 3 models to choose between. Clearly, this 
greatly reduces (though does not fully eliminate) the role of subjective elements in identification. 
 
In the first step, we test all pairwise correlations among the regression residuals. This would 
indicate that the residuals are all pairwise correlated. This rules out the last 7 models in Figure 
F.1, namely those in which at least one variable is neither caused by, nor causes, any other 
variable contemporaneously. As the next step, one would conduct all pairwise conditional 
residual tests, i.e., one would test  , , ,, | 0Y t Z t X te e e  ,  , , ,, | 0X t Z t Y te e e  , and 

 , , ,, | 0Y t X t Z te e e   using OLS regressions. Given the data generating process, the last two 

hypotheses would be rejected, but not the first. This rules out 12 of the remaining models, 
namely those in which Y and Z have a relationship that are not intermediated in some fashion by 
X. Putting this differently, these tests would tell us that there are only three possible models that 
are compatible with the data: those in which Y X  Z, or Z X  Y, or Y  X  Z. Only at 
this point would one use prior economic information (in the usual manner) to select from 
amongst the three candidate models. But these residual tests are useful here as well; for instance, 
economic theory can sometimes pin down the direction of causality based upon the sign of the 
partial correlation. Alternatively one can use the usual timing restrictions – bearing in mind that 
at the micro level, agents may be responding to the micro data they currently observe, data that 
will later be aggregated up to data published by a statistical agency. 
 
The heuristic search procedure involves three steps and relies upon the weak “faithfulness” 
assumption that if X causes Y (or vice versa) within the period, then their residuals will be 
correlated.4 First, compute all bivariate partial correlations, and examine their statistical 
significance. If the correlation between Xe  and Ye  is weak, and  , ,, 0Y t X te e   cannot be 

 
3 Of course, each unique set of restrictions on the A matrix corresponds to an entire class of models, wherein 
intertemporal relationships are not restricted. However, intertemporal relationships may be estimated without 
ambiguity from the data, so identification consists of restrictions on the A matrix. For brevity, we refer to the class 
of models corresponding to a particular structure of the A matrix as “a” model. 
4 We depart somewhat from Swanson and Granger (1997), who forego unconditional correlation tests and instead 
only examine all conditional correlations; this evidently mitigates reliance on the faithfulness assumption. The 
faithfulness assumption will fail under “measure-zero” cases where X causes Y, but the two variables are 
uncorrelated because X causes Z and Z causes Y, and the two causal paths exactly cancel. In the literature, the 
“faithfulness-failure” examples occur when there is a decisionmaker who specifically exerts control over variable Z 
to accomplish this “cancelation.” If there is reason to believe that such a situation exists in a given context, the 
decisionmaker should be included in the causal graph, and the unconditional correlation test would be interpreted 
through this lens. In the general case, we recommend the usage of unconditional correlation tests, following standard 
practice in the causal analysis literature (see, e.g., Moneta 2008). Note that in practice, what matters most for 
impulse response function estimates are the identifying assumptions made vis-à-vis variables whose residuals are 
strongly correlated.  
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rejected, then the data reject X Y  and Y X  within the period. In an SVAR, the 
corresponding entries in the impact matrix A would be set to 0.  
 
Second, for those variable pairs (X, Y) with significant correlation, construct trivariate partial 
correlations with all third variables Z, paying particular attention to those that are correlated with 
both. If  , ,, 0Y t X te e   can be rejected, but if  , , ,, | 0Y t X t Z te e e   cannot be rejected, then we 

again conclude that the data reject X Y  and Y X ; their correlation stems from a joint 
relationship with Z. Third, construct all models that are consistent with this evidence, and select 
the one that is in accord with economic theory priors.5 In our experience (and in the experience 
of Granger and Swanson), parsimonious models appear to agree with the data in most cases, and 
economic theory often plays a minor role in the selection of the final model.6 (In models with 
numerous variables, one may formally test higher-order partial correlation constraints implied by 
the model.)  
 
While a joint testing procedure is unavailable, so that the usual size problems might arise, in 
practice this issue is often moot. This is because in many cases, the significance levels of tests 
can be adjusted significantly without any change in inferences. Furthermore, when a borderline 
case is “accommodated” – i.e., if the model that, owing to a modest partial correlation, initially 
ruled out a contemporaneous causation between X and Y, is then extended to specify either 
X Y  or Y X , estimation typically yields impulse response functions that are insensitive to 
this choice. 
 
After a model has been selected, one can perform a final test of joint significance of correlations 
by estimating the A matrix in the usual manner via maximum likelihood. This test might indicate 
that a particular entry, aij, is not statistically different from 0. At that point, one might decide to 
exclude it. 
 

 
  

 
5 In models with many variables, there are higher-order tests that may be useful.  
6 If more than one model appears equally reasonable, one may investigate the sensitivity of, e.g., IRFs, to model 
choice. 
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Appendix C: Model Estimation Results 
 

 
4

11
PPI PPI PPI PPI medfreq PPI
t j t j t tj

u eπ α β π δ− −=
= + + ∆ +∑    (1) 

 1 1 2 4 5 5
1995

0 1 3 4

CoreG CoreG CoreG CoreG CoreG CoreG CoreG CoreG
t t t t

CoreG PPI CoreG PPI CoreG medfreq CoreG
t t t tu I v

π α φ π φ π φ π

β π β π λ ψ
− − −

+
− −

= + + + +

+ + + + +
 (7) 

 

Table A.1: Regression Results for Equations (1) and (7). 

 
Eq. (1); 

Dependent 
variable 

 
Eq. (7); 

Dependent 
variable 

 

 PPI
tπ   CoreG

tπ   

Regressor Coefficient 
estimate 

Standard 
error 

Coefficient 
estimate 

Standard 
error 

α  0.26 0.13 -0.13 0.05 
1

CoreG
tπ −    1.00 0.04 

4
CoreG
tπ −    -0.60 0.08 

5
CoreG
tπ −    0.46 0.07 

PPI
tπ    -0.00 0.01 

1
PPI
tπ −  1.49 0.08   

2
PPI
tπ −  -0.78 0.15   

3
PPI
tπ −  0.04 0.15 0.03 0.01 

4
PPI
tπ −  0.11 0.08   
4
medfreq

tu+
−    -0.26 0.22 

1
medfreq
tu −∆  -5.85 1.57   

I1995   0.35 0.13 
     

2R  0.87  0.96  

                               Note: We elected to retain 4
medfreq

tu+
−  and 5

CoreG
tπ −  in the core goods equation since, absent I1995, 

                               both clearly belong in the regression. Dropping 5
CoreG
tπ −  would have little influence, given the  

                               size of the estimated coefficient, but dropping 4
medfreq

tu+
−  would make inflation a tad less 

                               responsive to recessionary pressure. 
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Table A.2: Regression Results for Equations (4) and (8). 

 1 1 2 2 5 5

0 1 1

MServXH MServXH MServXH MServXH MServXH MServXH MServXH MServXH
t t t t

MServXH PPI MServXH medfreq MServXH lowgap MNHServ
t t t tu u v

π α γ π γ π γ π

β π λ µ
− − −

+ −
− −

= + + + +

+ + + +
 (8) 

 
5

0 1 41
Hous Hous Hous Hous MServXH Hous medfreq Hous lowgap Hous
t j t j t t t tj

u u eπ α η π β π λ µ+ −
− − −=

= + + + + +∑  (4) 

 

 

 
Eq. (8); 

Dependent 
variable 

 
Eq. (4); 

Dependent 
variable 

 

 MNHServ
tπ   Hous

tπ   

Regressor Coefficient 
estimate 

Standard 
error 

Coefficient 
estimate 

Standard 
error 

α  0.02 0.03 0.24 0.06 
MServXH
tπ    0.01 0.02 

1
MServXH
tπ −  1.19 0.11   

2
MServXH
tπ −  -0.35 0.12   

5
MServXH
tπ −  0.15 0.06   

1
Hous
tπ −    1.25 0.08 

2
Hous
tπ −    -0.26 0.13 

3
Hous
tπ −    0.06 0.13 

4
Hous
tπ −    -0.49 0.13 

5
Hous
tπ −    0.36 0.07 
PPI
tπ  0.00 0.00   
1
lowgap

tu−
−  -0.13 0.04   

4
lowgap

tu−
−    -0.15 0.06 
1
medfreq

tu+
−  -0.19 0.08 -0.88 0.15 

     
2R  0.98  0.97  
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Table A.3: Regression Results for Equations (5) and (9). 

 

 
2 4

11 1
medfreq med medfreq med lowgap med PPI medfreq
t j t j j t j t tj j

u u u eλ µ β π− − −= =
= + + +∑ ∑  (5) 

 
 

2 4 4

1 0 1
lowgap lowgap low lowgap low medfreq low PPI lowgap
t j t j j t j j t j tj j j

u u u vα µ λ β π− − −= = =
= + + + +∑ ∑ ∑  (9) 

 

  

 
Eq. (5); 

Dependent 
variable 

 
Eq. (9); 

Dependent 
variable 

 

 medfreq
tu   lowgap

tu   

Regressor Coefficient 
estimate 

Standard 
error 

Coefficient 
estimate 

Standard 
error 

α  0.00 0.00 0.01 0.01 
1

PPI
tπ −  0.00 0.00 -0.01 0.01 

2
PPI
tπ −    0.02 0.01 

3
PPI
tπ −    -0.01 0.01 

4
PPI
tπ −    0.01 0.01 
1

lowgap
tu −  0.49 0.03 0.58 0.14 

2
lowgap
tu −  -0.47 0.04 0.37 0.14 

3
lowgap
tu −  -0.24 0.05   

4
lowgap
tu −  0.23 0.04   
medfreq
tu    1.65 0.22 

1
medfreq
tu −  0.91 0.06 -1.04 0.26 

2
medfreq
tu −  -0.28 0.06 1.28 0.26 

3
medfreq
tu −    -0.72 0.24 

4
medfreq
tu −    0.43 0.14 

     
2R  0.97  0.99  
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Appendix D: Historical Forecasts 
 

To highlight the fit of our model to historical core PCE inflation data, in Figure D.1 below, we 
plot an inflation forecast from our model, conditional on the actual path of the unemployment 
rate over the 2007Q1-2016Q4 period, alongside the conditional forecast from a more 
conventional Phillips curve model. This latter model is specified as a linear bivariate model of 
core PCE inflation and the unemployment gap.7 For forecasts displayed in Figure D.1(a), both 
models are estimated using data through 2006Q4, and coefficients’ estimates are assumed fixed 
through the forecast sample; inflation forecasts are constructed recursively from 2007Q1 through 
2016Q4, so neither model conditions on post-2006 inflation data. For forecasts displayed in 
Figure D.1(b), both models are estimated using data through 2019Q4; but inflation forecasts are 
still constructed recursively from 2007Q1 through 2016Q4, so neither model conditions on post-
2006 inflation data.  
 
Figure D.1(a) corresponds more closely to a real-time forecast exercise, since the ten-year 
forecasts do not condition on the post-2006 evolution of inflation. The forecast from our model 
displays a sharp inflation deceleration followed by a strong partial rebound starting in 2011, 
broadly capturing the dynamics of core PCE inflation over the period.8 In contrast, the 
conventional model features the well-known “missing disinflation” puzzle. The pre-2006 linear 
Phillips curve relationship is estimated to be strong enough such that the large unemployment 
gap during the Great Recession implies notable downward force on inflation forecast. Figure 
D.1(b) displays “forecasts” which use post-2006 inflation data to estimate coefficients, but still 
generate inflation forecasts recursively, i.e., without reference to the evolution of actual inflation 
after 2006. Our model’s forecasts using circa-2019 coefficients is broadly similar to the ones 
constructed using circa-2006 coefficients – evidently, the Phillips curve coefficients are only 
slightly weakened – and differences mainly relate to long-run convergence levels of the 
components. Conversely, the linear Phillips curve estimated in 2019 solves the missing 
disinflation puzzle by weakening the Phillips curve and thereby introducing the “downward 
speed” puzzle, namely this model almost entirely misses the deceleration of inflation early in the 
forecast. We think this figure convincingly illustrates the superior fit of our nonlinear Phillips 
curve model specification to inflation data compared to the linear analogue 
 
As discussed in Clark and Zaman (2013), these sorts of conditional forecasting exercises provide 
us some indication of how well a model is formulated. By conditioning on the historical path of 
the unemployment rate (thereby removing this source of uncertainty), we can assess how well 
the rest of the model (i.e., the inflation subcomponents) translates this information into inflation 
pressures and correctly captures the persistence of inflation. If the model is well-constructed and 
the unexpected shocks to the inflation components are not too large over the forecast horizon, 
then the conditional forecast of inflation should be close to the actual inflation path. As noted 
above, the conditional forecast of inflation coming from our nonlinear model does a respectable 
job tracking actual inflation over a 10-year period, and clearly outperforms its more standard 

 
7 The regressors of the model are a constant, five lags of 4Q core PCE, and the unemployment gap.  
8 The forecast misses from 2008-2010 are largely attributable to core PCE being driven by large outliers in non-
market services, as discussed in Verbrugge (2022).  
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counterpart, lending strong support to our model and providing reassurance about its ability to 
accurately provide conditional forecasts of the sort conducted in this study. 
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(a) Using coefficients estimated in 2006Q4 

 

 
(b) Using coefficients estimated in 2019Q4 

 
Figure D.1: Historical 10-year forecast from the model and from a conventional Phillips curve. 
Both are conditional recursive forecasts. The models see no inflation data after 2006Q4, but the 
forecasts are conditioned on the evolution of the unemployment rate. 
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Appendix E: An Alternative to Core PCE 
 

Implicitly, our work defines an alternative to core PCE, namely the inflation series defined by 
CorePCEAlt CoreG CoreG Hous Hous CoreServExHous MedianCoreServExHous
t t t t t t tw w wπ π π π= + +  

The 4Q version of this series is plotted below, alongside its core PCE counterpart. 

 
The alternative series has a number of attractive features as an alternative to core PCE. First, it is 
evidently smoother than core PCE. Second, it lacks the problematic dynamics of core PCE 
during the Financial Collapse, dynamics that are highlighted by Verbrugge (2022). Third, it has a 
close connection to core PCE (e.g., it is an approximately unbiased relative to core PCE), so it 
would be much easier for devotees of core PCE to switch to. Finally, it lends itself to most of the 
storytelling that is a perceived advantage of core PCE over, say, trimmed-mean PCE. 
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Appendix F: Enumeration of all identifiable models for 3-variable SVAR 
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Figure F.1: All Identifiable Structural Models Involving Three Variables X, Y, and Z. 
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Appendix G: PPI-IG as an Indicator of Supply Shocks 
In this Appendix section, we present information suggesting that movements in PPI-IG are 
dominated by supply shocks, even during the recent period, although demand shocks also play a 
non-negligible role as well.  

Clearly, PPI-IG is an equilibrium price, and so (in general) its movements will reflect the 
influence of both demand and supply shocks. One must make identifying assumptions to isolate 
the effect of supply on the PPI-IG.  

Theoretically, under our identifying assumptions, the PPI-IG, in conjunction with the other 
variables in the model, allows us to identify supply shocks – as the structural residuals in the 
model. This relies on our assumption that activity, as measured by the unemployment rate, is an 
adequate proxy for demand influences on the PPI-IG. But we now explore the robustness of this 
assumption. 

The New York Fed’s approach to removing demand-side effects from their Global Supply Chain 
Pressures Indicator involves regressions on the PMI New Orders index (PMI-NO).9 Note that 
this variable is a very influential predictor of industrial output over the next several months. 
Thus, we first investigated the extent to which, in monthly data, the PMI-NO index influenced 
the PPI-IG. If PMI-NO are an important driver of contemporaneous PPI-IG movements, we 
might be more reluctant to assert that the structural shocks hitting the PPI-IG are predominately 
supply shocks.  

Our first test was to regress 12-month PPI-IG on contemporaneous PMI-NO, as well as 4 
additional lags of this variable (and we find lags 1, 2, and 12 and 13 seem appropriate in this 
regression), and one lag each of the change in the medium-frequency component, and the change 
in the low-frequency component, of unemployment. We do find a statistically-significant 
contemporaneous impact of PMI-NO, and it is positive (suggesting that PMI New Orders cause 
PPI-IG, consistent with a demand influence on PPI-IG). However, the estimated coefficient is 
small, so its economic magnitude is rather modest: a one-standard deviation in PMI -NO leads 
PPI to rise contemporaneously by 0.17 ppts – but this series has a standard deviation that exceeds 
3.  

Our second test, reported in Verbrugge and Zaman (2023a), was a rather involved robustness 
text. The model in that paper included trimmed mean PCE, rather than the components of core 
PCE as in the present paper, but was otherwise identical. In this test, we respecified the baseline 
four-variable model to include PMI-NO as an additional variable. This required a new 
specification search for each equation, followed by a new application of our identification 
apparatus, etc. We sought to answer four chief questions: a) were there notable changes in the 
historical forecast performance of the model over the recent period?; b), were there notable 
changes in the impulse response function of inflation to a PPI-IG shock?; c), what is the 

 
9 FRBNY also uses a quantities index to adjust some of the underlying series, but the only measure of the quantities 
index we have access to is the Markit measure, and this series starts in 2009. Note that PMI New Orders is not, 
strictly speaking, a “demand shock,” but rather an equilibrium variable subject to both demand and supply 
influences. Thus, regression on PMI-New Orders removes more than simply demand shocks. 
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responsiveness of PPI-IG to a shock to PMI-NO?; and d), historically, how important are PMI-
NO shocks to the variance of PPI-IG? 

We found that lags of PMI-NO influenced PPI-IG and both unemployment components, and that 
PMI-NO responded to lags of PPI-IG and the low frequency gap component. After completing 
our specification search, we identified the model. This revealed contemporaneous relationships 
between PMI-NO and PPI-IG, and also between PMI-NO and the low frequency gap. Thus, we 
had to make a causality assumption for PMI-NO vis-à-vis PPI-IG, and also for PMI-NO vis-à-vis 
the low-frequency gap. To be conservative (i.e., to give “demand” as big a role as possible), we 
assumed that PMI-NO caused both. This implies that there is no role in this new model for 
unemployment to influence PMI-NO contemporaneously, removing one source of “demand” as a 
driver of PMI-NO shocks. One should bear in mind that a PMI-NO shock is presumably a 
mixture of both demand and supply influences. 

We then investigated question a). Our specification and identification procedures indicated that 
there was no direct influence of PMI-NO on trimmed-mean PCE inflation. Thus, the model’s 
historical forecast performance was unaffected by the addition of PMI-NO. 

As to question b), we discovered that the IRF of trimmed mean PCE inflation to a PPI-IG shock 
was moderated, but only very slightly. To the extent that both unemployment and PMI-NO 
capture the influence of demand on PPI-IG, this implies that this IRF depicts the response of 
trimmed mean PCE inflation to a supply shock – and our original IRF is pretty close to this. This 
was very reassuring to us. Qualitatively, all of the conclusions in the paper about this IRF remain 
unchanged. 

Regarding question c), we found that PMI-NO does indeed influence PPI-IG in quarterly data. 
But how important is this linkage? First, we look at the response of PPI-IG to shocks. A one-
standard deviation shock in PMI-NO eventually causes PPI-IG to rise, with a peak response 
about one year after the shock. The rise is about one half of a standard deviation (of PPI-IG). 
Conversely, a one standard deviation shock in PPI-IG itself eventually causes PPI-IG to rise by 
1.4 standard deviations. (Also, neither unemployment rate component is a quantitatively 
important driver of PPI-IG.) Over our estimation period, the correlation of the residuals in the 
PPI-IG equation with versus without PMI-NO is 0.94; only rarely is there a big gap between the 
two residual series. This suggests that PMI-NO is not generally an important driver of PPI-IG. 

Regarding question d), in our augmented model that includes PMI-NO, if we shut down PMI-NO 
shocks (over our estimation period), the variance of PPI falls by about 20%. This suggests that 
PMI-NO is a statistically significant driver of PPI-IG, but that most of the variance in PPI-IG is 
driven by supply shocks.  

Finally, we investigated whether the recent period was different. PMI New Orders did rise 
sharply in the COVID recovery, but they essentially remained within the range experienced over 
our estimation sample period (1985-2019) – suggesting that the main driver of the very large PPI 
shocks over this period seems to have been supply. (It is also the case that during this period, the 
medium-frequency component of the unemployment rate attained historic lows, then rose 
rapidly. Given its influence on PPI-IG, the influence of rapidly-changing demand on PPI-IG was 
arguably captured, at least to some extent.) However, our augmented model allows us to take a 
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deeper dive. Using counterfactual simulations, we turned off PMI-NO shocks from 2020:1 
onwards, to explore the impact of these shocks on PPI-IG. This exercise suggested, perhaps not 
surprisingly, that PMI-NO shocks were rather important drags on PPI-IG in 2020. (This is 
consistent with the findings of Meyer, Prescott and Sheng, 2022.) After that, they provided 
upward pressure: in 2021, they boosted PPI-IG by roughly 20%, and in early 2022, the boost 
rose to roughly 30%. Particularly in the recent period, then, it is important to keep in mind that 
the PPI-IG is an equilibrium variable; in any given episode, might reflect demand shocks more 
than in other episodes. 

Overall, in these quarterly data, we conclude that PMI-NO shocks are an “important” driver of 
PPI-IG movements, generally far from the predominant driver, but occasionally quite important. 

We view all of this as evidence that, while our baseline model does not completely remove the 
impact of demand on the PPI-IG structural residual, the majority of the variance in this structural 
residual “on average” is due to supply shocks. Strictly speaking, however, the PPI-IG structural 
residuals are not 100% pure indicators of supply shocks.  
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Appendix H: Nonlinear Impulse Response Functions and Error Bands 
For computing the nonlinear IRFs to variable X, we make use of the notion that an IRF is the 
difference between a forecast with a particular shock, and the forecast without one. In particular, 
given the model’s nonlinear nature, we construct impulse response functions (IRFs), forecasts, 
and error bands via counterfactual simulations. To obtain accurate error band estimates, we 
augment the bootstrap procedure outlined in Kilian and Lütkepohl (2017) in three ways. First, 
motivated by Phillips and Spencer (2011), we estimate and apply a small-sample bootstrap 
variance correction. (In our context, this turned out to be rather small.) Second, we estimate the 
bias-corrections for B(L) as in Kilian (1998), prior to bootstrapping. Finally, we take into account 
parameter estimation uncertainty via a bootstrap-upon-bootstrap method, along the lines of Potter 
(2000) and Pérez Forero and Vega (2016). For each such bootstrap, we apply the bias corrections 
previously estimated. 
 
In brief, our procedure is as follows. In the outer bootstrap loop, for M replications, we simulate 
data from the model (with shocks bootstrapped from the estimated residuals) and re-estimate the 
model. Estimates are then bias-corrected using our bias-correction estimates; for simplicity, 
explosive draws are thrown out. In the inner bootstrap loop, for N replications, we use this 
newly-estimated (bias-corrected) model, with corrected variance, to estimate an IRF as in Kilian 
and Lütkepohl (2017) – which we describe immediately. We set M =500 and N =500, so that for 
each IRF, MxN=250,000 simulations. We plot the median response, as well as the 10th and 90th 
percentiles from the simulations, as explained below. 
 
In the inner “Kilian/Lütkepohl” loop, we first select the set of initial conditions that will be 
considered (e.g., for the medium-frequency component of the unemployment rate, one case is 
umedFreq(t) >0). (Obviously, prior to bootstrapping, we must identify all dates satisfying the initial 
conditions.) For each of N replications, we randomly sample from these dates as starting 
conditions. Then we produce k-period forecasts, conditional on the (bias-corrected) estimated 
model, and (small-sample-corrected) bootstrap draws from the estimated regression residuals 
(for each period, drawing the vector of residuals over the four equations) This produces a 
“baseline” forecast for this initial condition and this set of bootstrap draws. Then we produce a 
second forecast, where we replace the initial (period s) bootstrap draw for the variable X by a 
given shock. In particular, we replace the bootstrap draw at date s by δX, where δX corresponds to 
a specific shock for X, whose size is chosen to be of sensible magnitude for X. The difference 
between the two forecasts, for each draw, is the impulse response function for that draw. This 
IRF is stored; then we begin the next replication. When all replications have been completed, we 
compute the median and the 10th and 90th percentiles of all the impulse response functions. 
 
Forecast error bands are computed similarly, except that there is no second “δX” draw, and we 
select the initial forecast date, rather than drawing this randomly. 
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