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Abstract 

 
In the December 2022 Summary of Economic Projections (SEP), the median projection for four-
quarter core PCE inflation in the fourth quarter of 2025 is 2.1 percent. This same SEP has 
unemployment rising by nine-tenths, to 4.6 percent, by the end of 2023. We assess the plausibility 
of this projection using a specific nonlinear model that embeds an empirically successful nonlinear 
Phillips curve specification into a structural model, identifying it via an underutilized data-
dependent method. We model core PCE inflation using three components that align with those 
noted by Chair Powell in his December 14, 2022, press conference: housing, core goods, and core-
services-less-housing. Our model projects that conditional on the SEP unemployment rate path 
and a rapid deceleration of core goods prices, core PCE inflation moderates to only 2.75 percent 
by the end of 2025: inflation will be higher for longer. A deep recession would be necessary to 
achieve the SEP’s projected inflation path. A simple reduced-form welfare analysis, which 
abstracts from any danger of inflation expectations becoming unanchored, suggests that such a 
recession would not be optimal. 
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“…you can break inflation down into three sorts of buckets. The first is goods inflation, 
and we see now… goods inflation coming down ... Then you go to housing services …that 
inflation will come down sometime next year. The third piece, which is something like 55 
percent of the …  PCE core inflation index, is non-housing-related core services. And that's 
really a function of the labor market … And we do see a very, very strong labor market, 
one where we haven't seen much softening, where job growth is very high, where wages 
are very high. Vacancies are quite elevated and … there's an imbalance in the labor market 
between supply and demand. So that part of it, which is the biggest part, is likely to take a 
substantial period to get down. The other … the goods inflation has turned pretty quickly 
now after not turning at all for a year and a half. Now it seems to be turning. But there's an 
expectation … that the services inflation will not move down so quickly, so that we'll have 
to stay at it so that we may have to raise rates higher to get to where we want to go. And 
that's really why we are writing down those high rates and why we're expecting that they'll 
have to remain high for a time.” 

 
FOMC Chair Jerome Powell, Press Conference, Dec. 14, 2022 

 

1. Introduction  
 

In his December 14, 2022, press conference, Jerome Powell, chair of the Federal Open Market 

Committee (FOMC), used a tripartite decomposition of core PCE inflation to explain why the 

FOMC expects that the federal funds rate will “have to remain high for a time.” This 

decomposition consists of core goods inflation, housing services inflation, and non-housing core 

services. In the press conference, Chair Powell noted that core goods inflation has “turned down 

pretty quickly” in recent months. He further noted that housing services inflation is expected to 

come down sometime in 2023. Finally, he noted that non-housing core services inflation is 

influenced by the “very, very strong labor market” and, for this reason, is “likely to take a 

substantial period to get down.” 

 In this paper, we use this tripartite decomposition of core PCE inflation to explore the path 

of inflation going forward.1 We build upon recent work by Ashley and Verbrugge (2022a) and 

Verbrugge and Zaman (2023) – two studies providing compelling evidence in favor of a nonlinear 

Phillips curve – to construct a nonlinear structural vector autoregression (SVAR), a model suitable 

 
1 The idea of forecasting aggregate inflation by separately modeling and forecasting its underlying disaggregated 
components has a long tradition; see Tallman and Zaman (2017) and references therein.      
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for exploring counterfactual conditional inflation forecasts. We estimate our model over the 1985-

2019 period and identify it using the data-determined method of Swanson and Granger (1997), 

which substantially reduces the role of subjective elements. When we feed in the December SEP’s 

forecasted path for the unemployment rate (which has it increasing by 0.9 percentage point) into 

our model, we get a higher path for core PCE inflation than the SEP path that has core PCE 

inflation moderating to 2.1 percent by the end of 2025.  Inflation is going to remain higher for 

longer: rather than core PCE inflation reaching 2.1 percent by the end of 2025, our model projects 

that it will be at 2.8 percent, with the 70 percent confidence interval spanning 2.4 to 3.2 percent. 

A key to this result is the fact that inflation is more persistent than commonly believed. We 

conclude that it would take a deep recession to reduce inflation faster. We investigate the claim of 

former Treasury Secretary Lawrence Summers (reported in Aldrick, 2022) and the supporting 

assessment of Ball, Leigh, and Mishra (2022) that it will require two years of 7.5 percent 

unemployment from its current low level of 3.6 to 3.7 percent to bring inflation down to its 2 

percent target. We find that one year of 7.4 percent unemployment would accomplish this task. 

 But would such a recession be ideal? As a first pass at addressing this question, we perform 

a simple reduced-form welfare analysis using a quadratic loss function that equally penalizes 

quarterly deviations of inflation from 2 percent (the FOMC target level of inflation), and deviations 

of unemployment from 4 percent (the FOMC’s estimate of the longer-run level of unemployment). 

In addition to producing inflation forecasts corresponding to the deep recession noted above and 

to the December SEP, we produce inflation forecasts corresponding to a moderate recession 

(defined by the path of unemployment taken in the 2001 recession) and to a soft landing for 

unemployment (which we define as the path of unemployment reported in the June SEP).2 This 

welfare analysis generally prefers the December SEP, unless the weight on inflation is very low 

(in which case, it prefers the soft landing) or very high (in which case, it prefers the moderate 

recession). Importantly, this analysis abstracts from any danger of the unanchoring of inflation 

expectations that might be associated with inflation still being at 2.8 percent three years from now. 

 

 

 

 

 
2 Figura and Waller (2022) argue that a soft landing in the labor market is a plausible scenario. 
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2. Data, Methods and Model  
 

2.1 Data 
We use quarterly data spanning from 1985:Q1 through 2022:Q4, though we estimate the model 

using pre-COVID data.3 Most of the series are available at a monthly frequency, and we aggregate 

them up to a quarterly frequency. Following much precedent in the literature, we focus attention 

on the post-1984 period because inflation dynamics are thought to have changed markedly 

beginning in the mid-1980s onward, and this is the period associated with anchored inflation 

expectations. 

Our model consists of six variables. The first is the PPI for core intermediate goods, 

denoted PPI. Verbrugge and Zaman (2023) find that PPI captures supply price pressures and is an 

important determinant of trimmed-mean PCE inflation. The next three variables are also inflation-

specific, corresponding to the tripartite decomposition of Chair Powell. These include core goods 

and housing services. But rather than using non-housing core services, we instead construct, and 

use, median non-housing core services.4 We do this because non-housing core services are quite 

sensitive to outliers, particularly in non-market services. Verbrugge (2022) demonstrates that such 

sensitivity renders core inflation measures less reliable as indicators of trend inflation. 

Accordingly, we view median non-housing core services inflation as a more accurate estimate of 

the trend in non-housing core services, helping to more reliably capture both the persistence of 

non-housing core services and their sensitivity to labor market pressures.5 Figure 1 plots non-

housing core services inflation alongside its “median” counterpart. As expected, the median series 

is smoother than the original series. Over the sample period displayed, the bias, defined as the gap 

between their respective inflation rates, is zero. However, over specific periods, there can be 

 
3 At the time of this writing, we do not have complete 2022Q4 data. We use available monthly data to construct Q4 
nowcasts for all variables. Our model is estimated using 1985-2019 data, but data from 2021Q3 onward are used for 
forecasting because the model specification includes five lags. 
4Our choice of “median” variable is partly motivated by the successful track record of median CPI and median PCE 
variables constructed by the Federal Reserve Bank of Cleveland in tracking the trend in CPI and PCE inflation, 
respectively. The method used to construct the median series is similar to that of Carroll and Verbrugge (2019), who 
use all the available 190+ disaggregated price categories of the monthly PCE to construct the (weighted) median 
PCE series. To construct the (weighted) median non-housing core services, we use information about the price 
changes in the 82 disaggregated price categories of the PCE that are part of “PCE services excluding energy, food, 
and housing,” along with their respective nominal expenditure shares at a monthly frequency. Since we estimate the 
model with quarterly data, we aggregate up the monthly data to a quarterly frequency.  
5 As with non-housing core services inflation, we find that median non-housing core services inflation has a 
statistically significant Phillips curve, but a weak relationship with nominal wage inflation (as measured either by 
average hourly earnings or by the employment cost index). 
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notable divergence, with more recent periods appearing as a prominent example. Accordingly, in 

computing forecasts of non-housing core services inflation, we apply bias adjustment to the 

forecasts of the median variable.6 

 
Figure 1: Core cervices ex. housing inflation indicators 

 

Following Ashley and Verbrugge (2022a) and Verbrugge and Zaman (2023), the final 

two variables are two “components” of the unemployment rate: a persistent (or low-frequency) 

gap component and a moderately persistent (or medium-frequency) component.7 The approach 

to filtering is described in Appendix A. Following Verbrugge and Zaman (2023), these 

components of the unemployment rate are derived from the jobless unemployment rate of Hall 

 
6 The bias-adjustment procedure is informed by estimating two separate AR(1) processes on the historical wedge 
(i.e., the gap between the two series) and using the estimated processes to compute the estimates of the time-varying 
wedge over the forecast period. One of the AR(1) processes is estimated over the entire sample, based upon a 12-
month moving average of the monthly series; the other one is estimated over the post-1985 sample (with an intercept 
change in 2010), based upon a 3-month moving average of the monthly series, resulting in two forecasts of the time-
varying wedge that are averaged to construct a single series of the wedge. Forecasts of the median variable are then 
bias-adjusted using this forecast of the wedge, so as to obtain an unbiased forecast of core services less housing.    
7 Specifically, the unemployment rate is split into “transient,” “moderately persistent,” and “persistent” components. 
But since the transient fluctuations were found to be unimportant predictors, to keep our model parsimonious, we 
abstract from these fluctuations. “Moderately persistent” refers to fluctuations that take 1-4 years to complete; 
“persistent” fluctuations last longer than that. To obtain valid inferences, frequency filtering must be done in a one-
sided manner (see Ashley and Verbrugge 2022b). Hamilton (2018) recently introduced an alternative to HP filtering, 
but Ashley and Verbrugge (2022c) demonstrate that, for properly decomposing a time series into its lower-
frequency and higher-frequency components, this procedure is inferior to the procedure used in Ashley and 
Verbrugge (2022a) and Ashley, Tsang, and Verbrugge (2020); see Appendix A for more details. We form a low-
frequency gap by subtracting the Zaman (2022) Ut

* estimate from the low-frequency component. Our model 
forecasts even slower deceleration in inflation if we instead use the CBO natural rate estimate. The U* estimates 
from Zaman’s model are available to download from https://github.com/zamansaeed/macrostars. 
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and Kudlyak (2022).8 The jobless unemployment rate is constructed by removing the temporary 

layoffs from overall unemployment. We relate inflation to the jobless unemployment rate rather 

than the overall unemployment rate, since during the pandemic collapse, temporary 

unemployment experienced a 20-standard-deviation shock. Such an extreme movement severely 

distorts coefficient estimates and frequency partitions. Even very modest nonlinearities in 

relationships are likely to dominate the comovement of variables for as long as temporary 

unemployment remains extremely elevated, and these data points will have extremely high 

leverage. Putting this differently, it seems likely that the ordinary relationship between overall 

unemployment and inflation would have broken down in the face of this extreme movement. Our 

approach is to sidestep these twin problems by a) focusing on the relationship of inflation to the 

jobless unemployment rate, since the jobless unemployment rate experienced fairly typical 

dynamics during the COVID recession, and b) by estimating the model over the 1985-2019 

period.  

These two components of the jobless unemployment rate are depicted in Figure 2. Our 

partitioning of the jobless unemployment rate into varying persistence components is motivated 

by the aforementioned previous findings of persistence-dependence in the Phillips curve 

relationship and by an emerging literature that is re-exploring the frequency domain to obtain clues 

about business cycle drivers and dynamics. In contrast to the previous work, which modeled the 

relationship between aggregate inflation (i.e., trimmed-mean PCE inflation), this paper separately 

models the nonlinear Phillips curve relationship for each of the inflation components using the two 

components of the unemployment rate. Accordingly, in our inflation equations, we admit sign 

asymmetry on the unemployment components. We find that each inflation variable is related only 

to the negative part of the persistent unemployment gap (i.e., when the persistent unemployment 

rate is below the natural rate of unemployment), and to the positive part of the moderately 

persistent unemployment component, which is generally consistent with the previous work 

focusing on aggregate inflation. Historically, these portions of the two components align closely 

with overheating and recession, respectively. As we explain below, this simple partition allows us 

to uncover very insightful nonlinear Phillips curve relationships in all of our inflation variables.  

Because we are specifying a structural model, we accordingly specify and estimate an 

equation for each of these unemployment components separately.  

 
8 The data necessary to construct the jobless unemployment rate are available from the Bureau of Labor Statistics.  
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2.2 Methods 
 
Identification is achieved using the data-determined method of Swanson and Granger (1997), 

which substantially reduces the role of subjective elements. This method, which builds upon the 

correlation structure of the reduced-form residuals, is briefly discussed below and explained in 

Appendix B. We generate conditional forecasts by constructing nonlinear system forecasts that 

condition upon labor market variables and (as we explain below) upon structural shocks that allow 

us to impose near-term information about core goods inflation and housing services inflation. As 

has been long-established in the forecasting literature, overall forecast accuracy can be enhanced 

by conditioning upon near-term information (see, e.g., Faust and Wright, 2013; Tallman and 

Zaman, 2020). 

 

 
Figure 2: Two most persistent components of the jobless unemployment rate 
 
 

2.3 Specification  
 
Our specification largely follows Verbrugge and Zaman (2023). We are ultimately interested in 

reliable forecasts, so model parsimony was a chief consideration. We used step-down testing, 

equation by equation, removing variable lags to obtain parsimonious equations that were favored 

by the Bayesian information criterion (BIC). In all inflation equations, we allowed for sign 
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asymmetry in the two unemployment rate components, but did not impose it. In each equation, 

we allow up to 5 quarterly lags in the dependent variable and up to 4 quarterly lags in each of the 

other variables. Allowing for the fifth lag is quite important for accurately assessing the 

persistence of each series, as demonstrated in Verbrugge and Zaman (2023). 

In the PPI equation, the inclusion of all other inflation series was rejected. However, PPI 

has a significant Phillips curve relationship. We rejected sign asymmetry in both unemployment 

rate components. Subsequently, both components appeared to enter as first differences. We thus 

entered both as first differences, and this yielded an equation that fit the data almost equally well; 

furthermore, lowgapu was no longer statistically significant. Dropping this term yielded a more 

parsimonious equation with almost no decline in fit, and so was favored by the BIC. 

 
4

11
PPI PPI PPI PPI medfreq PPI
t j t j t tj

u eπ α β π δ− −=
= + + ∆ +∑  (1) 

In Equation (1) and hereafter, PPI
tπ  refers to 4-quarter (4Q) inflation in the PPI. Similarly, CoreG

tπ  

refers to 4Q inflation in core goods, MNHServ
tπ  refers to 4Q inflation in median non-housing core 

services, and Hous
tπ  refers to 4Q inflation in housing services. Labor market variables are as 

follows: medfreq
tu∆  refers to the 1-quarter change in the medium-frequency component, medfreq

tu+  

refers to the positive portion of the medium-frequency component, and lowgap
tu−  refers to the 

negative portion of the low-frequency gap.  

 The core PCE component inflation rate equations are specified as 

 1 1 2 2 5 5
1995

1 1 2 2 4

CoreG CoreG CoreG CoreG CoreG CoreG CoreG CoreG
t t t t

CoreG PPI CoreG PPI CoreG medfreq CoreG
t t t tu I e

π α φ π φ π φ π

β π β π λ ψ
− − −

+
− − −

= + + + +

+ + + + +
 (2) 

 1 2 5

1 1

MNHServ MNHServ MNHServ MNHServ MNHServ MNHServ MNHServ MNHServ
t t t t

MNHServ medfreq MNHServ lowgap MNHServ
t t tu u e

π α γ π γ π γ π

λ µ+ −
− −

= + + + +

+ + +
 (3) 

 
5

1 41
Hous Hous Hous Hous Hous medfreq Hous lowgap Hous
t j t j t t tj

u u eπ α η π λ µ+ −
− − −=

= + + + +∑  (4) 

where 1995I  is a dummy variable that is 1 prior to 1995Q1. This variable allows us to capture an 

evident mean shift in core goods inflation in the mid-1990s; see Clark (2004). 

Finally, our medfrequ  equation was specified as 

 
2 4

11 1
medfreq med medfreq med lowgap med PPI medfreq
t j t j j t j t tj j

u u u eλ µ β π− − −= =
= + + +∑ ∑  (5) 
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and our lowgapu  equation was specified as 

 
2 4 4

1 1 1
lowgap lowgap low lowgap low medfreq low PPI lowgap
t j t j j t j j t j tj j j

u u u eα µ λ β π− − −= = =
= + + + +∑ ∑ ∑  (6) 

 

Given the model’s nonlinear nature, we construct forecasts and error bands via 

counterfactual simulations, following the procedure outlined in Kilian and Lütkepohl (2017), 

with shocks bootstrapped from estimated residuals. We compute the median response as well as 

the 15th and 85th percentiles from the simulations. 

The forecast of core PCE inflation at time t for h quarters ahead is simply the composite 

forecast of the core goods inflation forecast, housing services inflation forecast, and the median 

services ex. housing inflation forecast (which is our proxy for the core services ex. housing 

forecast), combined using the share weights available as of time t. The weights reflect the 

relative shares of core goods inflation, housing services inflation, and core services ex. housing 

inflation in the overall core PCE inflation. Specifically, the weight for core goods inflation is 

computed as a nominal share of the personal consumption expenditures of core goods over the 

nominal PCE excluding energy and food, and similarly for the other two components.  

 

 

3. Results 
 
3.1 Identification  
 
Structural identification requires us to model the correlations between the reduced-form 

residuals. Our procedure (taken from Verbrugge and Zaman (2023); see Appendix B) starts with 

identifying all statistically significant correlations between the reduced-form residuals. 

Accordingly, we used simple OLS regressions (i.e., regressed the residuals from equation (1) on 

those from equation (2), etc.) and examined t-statistics. We found a significant correlation 

between PPI residuals and core goods residuals, between PPI residuals and median non-housing 

core services residuals, and between lowgapu  and medfrequ  residuals; all other correlations were 

statistically insignificant. This left us with 8 possible models. On the basis of economic theory 

and a priori timing grounds, we assume that contemporaneously, PPI causes core goods, PPI 
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causes median non-housing core services, and medfrequ  causes lowgapu . Denoting our SVAR in 

matrix notation by 

( )t t tAM B L M V= +  

where , , , , ,
TPPI CoreG MNHServ Hous medfreq lowgap

t t t t t t tM u uπ π π π =   , and imposing that tV  is diagonal, our 

assumptions lead to the following loading matrix A (only nonzero entries are indicated): 

21

31

65

1
1

1
1

1
1

PPI
t

CoreG
t

MNHServ
t

t Hous
t

medfreq
t
lowgap
t

a
a

A

u
a u






  
  
     
         
  
  
  
        

 

 

Maximum likelihood estimation of A, based on the variance-covariance matrix from the 

equation residuals and the zeroes of the loading matrix A, indicated that 21a , 31a and 65a  were 

statistically significant.9 

Given these results and the sparsity of the A matrix, to estimate the identified system, it 

suffices to modify the core goods and median non-housing core services equations by including a 

contemporaneous PPI term, modify the lowgapu equation by adding a contemporaneous medfrequ  

term, and estimate the (now fully identified) nonlinear system equation by equation.10 Thus, the 

three respecified equations are 

 

 1 1 2 2 5 5
1995

0 1 1 2 2 4

CoreG CoreG CoreG CoreG CoreG CoreG CoreG CoreG
t t t t

CoreG PPI CoreG PPI CoreG PPI CoreG medfreq CoreG
t t t t tu I v

π α φ π φ π φ π

β π β π β π λ ψ
− − −

+
− − −

= + + + +

+ + + + + +
 (7) 

 1 2 5

0 1 1

MNHServ MNHServ MNHServ MNHServ MNHServ MNHServ MNHServ MNHServ
t t t t

MNHServ PPI MNHServ medfreq MNHServ lowgap MNHServ
t t t tu u v

π α γ π γ π γ π

β π λ µ+ −
− −

= + + + +

+ + + +
 (8) 

 
2 4 4

1 1 0
lowgap lowgap low lowgap low medfreq low PPI lowgap
t j t j j t j j t j tj j j

u u u vα µ λ β π− − −= = =
= + + + +∑ ∑ ∑  (9) 

 
9 There is some abuse of notation. Our full structural model has 11 equations, 5 of which are identities, as explained 
below. But what matters for identification is determining the contemporaneous causation structure among the 
variables, and none of these involve sign asymmetry 
10 Results are qualitatively unchanged if we adopt the commonly used practice of adjusting the original reduced-
form coefficients by multiplying by A-1.  



11 
 

Further, in equations (1), (4), and (5), the reduced-form residuals e are relabeled as structural 

residuals v. Coefficient estimates are reported in Appendix C.  

For simulating the system – necessary for estimation of forecasts and their error bands – 

we must augment these 4 equations with 5 additional equations: 4 equations that split each 

unemployment rate component projection into positive and negative parts, and a final one that 

defines the first difference of medfrequ . 

 ( )max 0,lowgap lowgap
t tu u+ ≡  (10) 

 ( )min 0,lowgap lowgap
t tu u− ≡  (11) 

 ( )max 0,medfreq medfreq
t tu u+ ≡  (12) 

 ( )min 0,medfreq medfreq
t tu u− ≡  (13) 

 1
medfreq medfreq medfreq
t t tu u u −∆ ≡ −  (14) 

The full structural model consists of equations (1), (4), and (5) (with residuals v), and equations 

(7) through (14). 

 

3.2 Forecasts 

As has been long-established in the inflation forecasting literature, overall forecast accuracy can 

be enhanced by conditioning upon near-term information (see, e.g., Faust and Wright, 2013). The 

variables where such information is most useful for our purposes are core goods inflation (where 

monthly inflation has decelerated sharply) and housing inflation (where models relying on short-

term information, discussed below, suggest that we will have at least one more quarter of inflation 

growth).  

 We incorporate the recent deceleration in core goods inflation by conditioning a path for 

4Q core goods inflation over the next four quarters that leaves it slightly negative in 2023Q4.11 If 

anything, doing so imposes a strong downward bias on our forecasts, since the model by itself (i.e., 

unconditionally) predicts a slower deceleration in core goods inflation.  

 
11 Following the nowcasting inflation work of Knotek and Zaman (2017), who found superior accuracy of core PCE 
nowcasts and short-term forecasts using simple models including AR processes, we construct the short-term forecast 
path for monthly core goods inflation using a simple AR(2) model estimated over our sample. 
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 We incorporate short-term information in housing services by use of a short-term model, 

informed by Adams et al. (2022). This paper uses confidential CPI rent microdata to demonstrate 

that new-tenant rents lead official CPI rents (the ultimate source of the housing services inflation 

information in the core PCE) by about 4 quarters, and that the CoreLogic Single-Family Rent Index 

(SFRI) has historically tracked a CPI-microdata-based new-tenant rent index fairly well. We use 

a simple model for monthly housing services inflation12 using lags of both housing services 

inflation and SFRI rent inflation to produce a forecast for housing services inflation for January, 

February, and March of 2023. This yields a 2023Q1 estimate of 7.7 percent (quarterly annualized 

or 7.9 percent 4Q-trailing basis), which we use as a starting condition for housing services 

inflation. 

 We first present the model projection for core PCE inflation through 2025, along with 70 

percent confidence intervals, and the SEP projection in Figure 3. Our model projections are 

conditional on the December SEP path for unemployment. (For interpretive ease, we have 

interpolated between the SEP projected values for core PCE inflation, which are provided only for 

2023Q4, 2024Q4, and 2025Q4.) 

 
Figure 3: Projections of core PCE inflation 
 

 
12 We thank Mark Bognanni and Katia Peneva for advice in constructing this model. 
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The SEP projection initially lies above the model’s mean projection, and outside the 70 

percent confidence interval. This is because, in our model, the projected 2023 uptick in the 

unemployment rate in the SEP projection puts downward pressure on all of the inflation variables. 

Thereafter, however, the persistence of inflation reflected in our model estimates becomes evident, 

and progress toward the 2 percent target slows. Conversely, the SEP projection then continues its 

steady downward drift. This steady decline moves the SEP projection within the confidence 

interval, where it remains for most of 2024. However, thereafter, the SEP projection continues to 

move steadily lower, so that it moves outside of, and well below, the confidence interval. Hence, 

from late 2024 onward, the SEP projection is assessed as too optimistic relative to our model’s 

assessment. Our model forecast is a touch below 2.7 percent by the end of 2025; it does not reach 

2.1 percent inflation until several years later. 

 Figure 4 presents our model projections for our three components: core goods inflation, 

non-housing core services inflation, and housing inflation, conditional on their respective short-

term conditions (as discussed above) and the SEP path for unemployment over the 2023-2025 

period. Our model sees core goods inflation rebounding from -0.5 percent inflation in 2022Q3 to 

near 0 in early 2024, then slowing to a -0.40 percent pace in 2025. Non-housing core services 

inflation is projected to fall to 3.8 percent by the end of 2023, driven by downward pressure from 

the rising unemployment. Then its downward progress slows so that it decelerates to 3.4 percent 

by the end of 2025. Housing services inflation is projected to decline at a steady rate through late 

2024, but then its downward progress stalls out, likely reflecting the sluggish dynamics of rent (see 

Adams et al., 2022 and Gallin and Verbrugge, 2019). During 2025, it settles in at a 4.5 percent 

pace, before continuing to decline briskly, reaching 3.8 percent by early 2027. 
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Figure 4: Projections of the components of core PCE inflation 
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We next provide a number of additional inflation projections, conditional on three 

alternative unemployment rate scenarios: a soft landing scenario, a moderate recession scenario, 

and a severe recession scenario. The soft landing scenario, which conditions on the projected 

unemployment path from the June SEP, has unemployment peaking at 4.1 percent by the end of 

2024.13 The moderate recession scenario conditions on a path for unemployment from 2023Q1 

onward that mimics the 2001 recession. For this path, unemployment tops out at 5.6 percent in 

2025Q3. Finally, the severe recession scenario (inspired by the Summers/Ball/Leigh/Mishra 

assertions) conditions on a path for unemployment from 2023Q1 onward that mimics the 1973 

recession. For this path, unemployment tops out at 7.8 percent in 2024Q2, although unemployment 

averages 7.4 percent over the year. Unemployment rates in all scenarios, with the exception of the 

severe recession, are assumed, after 2025Q4, to descend linearly to hit 4 percent by the end of 

2029 (or in the case of the soft landing, by the end of 2025). All of these scenario paths are plotted 

below in Figure 5. In our specification, the exact path of unemployment taken after 2024 in its 

descent toward 4 percent is essentially immaterial for inflation, but these paths will impact the 

simple welfare analysis conducted below. The implied forecasts for core PCE inflation are shown 

in Figure 6. 

 

 

 
13 The SEP projection reports the forecast of the overall unemployment rate. To back out the implied projection of 
the underlying jobless unemployment rate, we take the temporary-layoff rate reported by the BLS for the month of 
December 2022, and assume that it will persist into the future.  
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Figure 5: Projections of the unemployment rate 
 
 
 

  

 
 

Figure 6: Alternative projections of core PCE inflation 
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Our model sees rapid deceleration of inflation over 2023, for all of these scenarios, driven 

by rapid deceleration in core goods prices and by initial movement back toward trend. 

Recessionary downward force, i.e., the deceleration pressure associated with the positive portion 

of the medium-frequency component of unemployment, amplifies this descent for all scenarios 

except the soft landing. This pressure eases in early 2024 for the December SEP path and the 

moderate recession path but continues for three more quarters in the severe recession scenario. 

Notice, however, that once the deceleration pressures ease, progress toward 2 percent slows 

markedly. Inflation is more persistent than is commonly believed.  

Regarding that persistence, as noted in Verbrugge and Zaman (2023), allowing for the fifth 

lag in each of the three core PCE component inflation variables is quite important. In the appendix 

of their paper, Verbrugge and Zaman (2023) show that, effectively, the persistence of an 

autoregressive process with (say) a coefficient of 0.1 on the fifth lag is far greater than an 

autoregressive process with only one lag, even if the coefficient on that lag is equal to the sum of 

the autoregressive coefficients in the lag-5 process. These forecasts imply that it takes a very long 

time for inflation to return to trend. This fact is consistent with the inflation experience over the 

2012-2019 period, when trend inflation moved a mere 0.5 percentage point (see Ashley and 

Verbrugge, 2022a). We further note that our core PCE projections are very similar to those of the 

model in Verbrugge and Zaman (2023), which is built upon trimmed-mean PCE inflation, and also 

to those from the headline PCE forecasts of the model in Verbrugge and Zaman (2022). 

 In Appendix D, we display a 10-year conditional recursive forecast from our model over 

the 2007-2016 period. Its accuracy leads us to believe that the forecasts from our model are 

generally reliable. 

 

3.3 A Simple Welfare Analysis 

Despite its higher inflation path, is a soft landing preferable? We conduct a simple welfare 

analysis, using a standard (though ad hoc) quadratic loss function. In some contexts, such loss 

functions are a second-order Taylor series approximation to the expected utility of the 

economy’s representative household (Woodford, 2002), specified as 
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Guided by the December SEP and the FOMC’s inflation target, we set * 4.0tu =  and * 2.0π = . 

We examine losses from 1t =  2023Q1 to 2t = 2029Q4. We compare the soft landing, moderate 

recession, severe recession, and December SEP scenarios. We report the losses in Table 1, for 

{ }0.1,0.25,0.5,0.75,0.9w = . 

Table 1: Welfare losses 

 

 

Weight on 
unemployment 

Soft 
landing 

Moderate 
recession 

Severe 
recession 

December 
SEP  

0.1 20.7 15.5 22.8 16.0 
0.25 17.3 16.6 38.0 13.8 
0.5 11.7 18.4 63.4 10.1 

0.75 6.1 20.2 88.8 6.4 
0.9 2.7 21.3 104.0 4.1 

 

In Table 1, we have highlighted the minimum-loss scenario for each value of w. The 

estimates indicate that for moderate values of w, i.e., a weight of 0.25 or 0.50 on the 

unemployment rate, the projection conditioned on the SEP path results in a smaller welfare loss 

than does the soft landing. Only for higher values of w does the soft landing result in smaller 

welfare losses than does the SEP path, and only for very low values of w does the moderate 

recession result in smaller welfare losses than does the SEP path. In summary, this welfare 

analysis suggests that a December SEP is the preferred outcome. Importantly, however, this 

welfare analysis abstracts from any danger of the unanchoring of inflation expectations that 

might be associated with core PCE inflation still being nearly 2.7 percent three years from now. 

4. Conclusion 
This paper implements a nonlinear structural VAR model to jointly estimate the dynamics of 

inflation, as measured by three components of core PCE inflation, an indicator of supply-chain 

pressures, and two components of the jobless unemployment rate: a persistent component and 

moderately persistent component.  
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The model is estimated with post-1985 quarterly data and identification of structural 

shocks is achieved using the data-determined method of Swanson and Granger (1997), which 

substantially reduces the role of subjectivity.  

Looking ahead, our model projects that inflation only very gradually falls back to 2 

percent. Progress toward target is very much influenced by the path that unemployment will take 

over the next several years. Conditional on the December SEP median unemployment rate 

projections, inflation is projected to still be nearly 2.7 percent by the end of 2025, far above the 

SEP’s median projection of 2.1 percent. A moderate recession (roughly equal to the recession of 

2001) would put inflation at 2.4 percent by the end of 2025; conversely, a soft landing (which we 

define as the path of unemployment in the June SEP projection) would put inflation a touch 

above 2.8 percent by the end of 2025. What kind of recession would it take to hit the SEP 

projection for inflation, according to the model developed in this paper? We investigate the claim 

of former Treasury Secretary Lawrence Summers (reported in Aldrick, 2022) and the supporting 

assessment of Ball, Leigh, and Mishra (2022) that it will take two years of 7.5 percent 

unemployment from its current low level to bring inflation down to its 2 percent target. We find 

that one year of 7.4 percent unemployment would accomplish this task. 

A simple welfare analysis based on a standard quadratic loss function overall favors the 

December SEP unemployment rate path. However, this welfare analysis abstracts from any 

danger of the unanchoring of inflation expectations that would be associated with core PCE 

inflation still being 2.8 percent three years from now. 

Ashley and Verbrugge (2022a) summarize a large number of extant theoretical works 

whose predictions are consistent with their (and our) empirical results regarding the nonlinearity 

of the Phillips curve. We hope that the present paper provides further impetus for the development 

of structural models that are consistent with, and provide a theoretical explanation for, our findings. 
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Appendix A: Partitioning the Jobless Unemployment Rate 
 

A.1 Overview 

To partition the jobless unemployment rate while applying the Ashley/Verbrugge (2022a,b) 

method (described below), we use the Iacobucci-Noullez (2005) filter, setting k = 4 (i.e., using 4 

quarters of univariate forecasts in each rolling window). The Iacobucci-Noullez filter introduces 

no phase shift (unlike, e.g., the Christiano-Fitzgerald (2003) filter).14 Following Ashley and 

Verbrugge (2022a), we choose frequency cutoffs so that the jobless unemployment rate is 

partitioned into fluctuations lasting longer than 4 years (termed lowgap
tu , for low-frequency gap), 

fluctuations lasting between 1 year and 4 years (termed medfreq
tu , for medium-frequency), and 

transient fluctuations. Transient fluctuations were found to be unimportant drivers of inflation, 

and so were omitted. The two more persistent unemployment components are plotted in Figure 2. 

This figure also demonstrates how unusual the COVID collapse and recovery were. In particular, 

the low-frequency gap rose, notably much more sharply than usual. Meanwhile, the medium-

frequency component also fell very sharply back to zero, dropping to historic lows.  

The first step is to partition the real-time unemployment rate tu  into 3 persistence 

components – 
3

,1t j tj
u u


  – which by construction add up to the original series. These 3 

persistence components partition the variation in tu  into monotonically decreasing levels of 

persistence or, equivalently, increasing frequency levels. These components are obtained from the 

sample data using a moving window (augmented with a k-quarter forecast) to filter the tu  data at 

each time t in a one-sided (backward-looking) manner. This approach mitigates end-of-sample 

filter distortions, ensures that parameter estimates are consistent, and retains both the causality 

structure of the data-generating process and any orthogonality conditions that are present in the 

unfiltered data. The Ashley/Verbrugge persistence-dependent regression methodology then 

merely replaces *
t tu u  with these 3 persistence components, estimating a separate coefficient for 

each. (We note in passing that we subtract *
tu  from the most persistent component. That way, the 

 
14 Use of the CF filter in the AV method produced qualitatively similar results, though it calls for the predicted 
recession to begin a quarter or two later. For a comparison of the use of different filters for frequency-dependent 
regression (as well as the sensitivity of results to forecast parameters), see Ashley and Verbrugge (2020c). Using the 
CF filter with the Ashley/Verbrugge method mitigates its phase shift in any case. 
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3 components add up to an unemployment gap, the typical Phillips curve specification in the 

literature.) Simulation evidence in Ashley, Tsang, and Verbrugge (2020) and Ashley and 

Verbrugge (2022c) indicate that the method yields reliable coefficient estimates and inferences, 

for both linear and nonlinear data-generating processes. Below we summarize why partitioning, 

one-sided filtering, augmentation or ‘padding’ with forecasts, and restriction of the filtering solely 

to the tu  data are all essential for obtaining reliable inferences. 

A.2 One-Sided Filtering Method of Ashley and Verbrugge 
 
 

    
Figure A.1: One-sided filtering of unemployment rate data at date s+τ 
(using a two-sided filter, from time s to time s+k+m) 
 
A2.1 Description of one-sided filtering 
 
In brief, one undertakes the one-sided filtering by running a window through the data. Over each 
window, one saves the decomposition at the final data point in the window. Then one increments 
the window by one quarter. However, each window includes not just data but also a second 
component that is a forecast. In other words, each window includes data augmented with a 
forecast.  
 
To explain this in more detail, consider Figure A.1. We wish to compute the decomposition of 
the unemployment rate at time s+κ. As is well-known, obtaining the decomposition at s+κ by 
using a two-sided filter from time s to time s+κ would yield estimates with very poor properties. 
In particular, the resultant time series would (for most filters) incorporate a pronounced phase 
shift, in addition to being highly inaccurate; this inaccuracy is due to the well-known “edge 
effect” problem plaguing all filters. 
 
Both the phase-shift and edge-effect problems are addressed by augmenting the data within a 
window with forecasts. In particular, as in Dagum (1987), Stock and Watson (1999), Kaiser and 
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Maravall (1999), Mise, Kim and Newbold (2005), and Clark and Kozicki (2005) – and as is done 
routinely in seasonal-adjustment procedures – one should augment the window sample data with 
forecasted data. In the situation depicted in Figure A.1 we have κ sample data points (from time 
period s to time period s+κ), and m months of projections, yielding a (κ+m)-quarter window 
(from time period s to time period s+κ+m). We then use a two-sided filter to partition that 
window into persistence components, and then save the partition at date s+κ; notice that this is a 
one-sided partition, since no data after date s+κ are used. To obtain the partition at date s+κ+1, 
we repeat this procedure, obtaining a forecast from data s+κ+1 to data s+κ+1+m, then use a two-
sided filter over dates s+1 to s+κ+m+1 and saving the partition at date s+κ+1. This procedure 
also gracefully allows one to use real-time data. 
 
A2.2 Testing for persistence-dependence 
 
How does testing proceed? In the present case, we wish to test whether the Phillips curve is 
persistence-dependent. Thus, we partition the unemployment rate un into three components 
(say): un1, un2, and un3. Then we replace un in the Phillips curve specification with its 3 
components. One may readily test for persistence-dependence using a standard Chow test. Since 
the components sum to the original series and are based upon one-sided filtering, the causality 
structure and the properties of the error term are preserved. For more details, see the appendix to 
Ashley, Tsang, and Verbrugge (2020). 
 
A2.3 Sensitivity to forecasts and filter 
 
Ashley and Verbrugge (2022c) demonstrate that the resultant persistence decomposition is not 
very sensitive to the number of forecast periods chosen, as long as at least a year of projections 
are used, nor to the frequency filter used (the Iacobucci-Noullez filter, the Christiano-Fitzgerald 
filter, or the Ashley-Verbrugge filter) nor to the details of how these forecasts are produced (as 
long as they are reasonably accurate).  
 
What is crucial is to partition the explanatory variables into an interpretably small set of 
frequency/persistence components that add up to the original data, using moving windows 
passing through the data so that the filtering is done in a backward-looking or one-sided manner. 
The Ashley-Verbrugge filter has a key advantage: it can partition the time series into k 
components in a single pass and is thus more readily used for discovering the persistence-
dependence in the original data. Other filters must be used in an iterative manner, and in our 
experience, results are disappointing if one attempts to partition the data into more than 3 
components. Furthermore, Ashley and Verbrugge (2022c) demonstrate that the results using 
other filters are somewhat sensitive to the manner in which this iteration is done.  
 
But with these details in mind, what is of practical macroeconometric importance is to allow for 
frequency/persistence dependence in the relationship, not – so long as one is mindful of the basic 
desiderata delineated above – the technical details of precisely how the explanatory variable is 
partitioned into its frequency/persistence components. Ashley and Verbrugge (2022a) report that 



27 
 

alternative techniques usually yield quite similar empirical results in practice; see Ashley and 
Verbrugge (2022c) for more details. RATS, Stata, and Matlab code to accomplish this type of 
one-sided decomposition (using simple univariate or multivariate forecasts) is available from the 
authors. 
 
A2.4 Rationale for partitioning, one-sided filtering, and filtering only explanatory variables 
 
Why are partitioning, one-sided filtering, and restriction of the filtering solely to the *

t tu u  data 
all essential? Partitioning is necessary to ensure that these 3 components of the unemployment 
rate gap add up to the original data, making it easy to test the null hypothesis that the coefficients 
with which these 3 components enter a regression model for the inflation rate are all equal. One-
sided filtering is necessary because two-sided filtering – such as ordinary HP filtering or ordinary 
spectral analysis – inherently mixes up future and past values of the unemployment rate gap in 
obtaining the persistence components, distorting the causal meaning of inference in the resulting 
inflation model and limiting its use for practical forecasting and/or policy analysis. These 
distortions from the use of two-sided filtering are particularly severe when the dependent 
variable is also filtered and when the key relationship likely (as here) involves feedback from the 
dependent variable (inflation) to the (filtered) components of *

t tu u  being used as explanatory 
variables. Fundamentally, this is because filtering the dependent variable in a regression model 
implies that the model error term is similarly filtered. For more details, see Ashley and 
Verbrugge (2008, 2022b); for a “practical” comparison of methods, including the Hamilton 
(2018) filter, see Ashley and Verbrugge (2022c).  
 
How about two-sided spectral estimates or filtering with wavelets? These are two-sided methods, 
so the same criticisms apply. Hence, two-sided cross-spectral estimates or filtering with wavelets 
are ruled out for analyses of the present sort. And regarding spectral methods, even absent 
feedback, transfer function gain and phase plots are substantially more challenging to interpret 
than our approach; even without the presence of feedback, Granger describes interpretation of 
such plots as “difficult or impossible” (Granger, 1969). 
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Appendix B: Identification  
 

We adopt the Swanson and Granger approach to identification.15 This method is built upon the 
fact that most structural causal models, whether linear or nonlinear, imply overidentifying 
constraints. In particular, a given structural model implies partial correlation constraints on 
reduced-form regression residuals ( , , ,, ,X t Y t Z te e e ). These restrictions take the form |X Y Ze e e . 
Under fairly weak assumptions, such constraints may be tested using standard t-statistics and, if 
the test is rejected, one may thus reject that structural model.  
 
But notice that all structural models that share such a constraint are also accordingly rejected. 
Hence, such tests may be used to restrict the class of models that are consistent with the data. By 
virtue of ruling out candidate models that are inconsistent with the data, tests of such 
overidentifying constraints thus prove useful in specifying a structural model. This procedure 
substantially reduces the subjective nature in the typical SVAR methodology.  
 
To demonstrate how this works in practice, we provide a simple example. Consider the following 
structural model, an SVAR involving 3 variables, X, Y, and Z; for simplicity, assume that each is 
standardized to have mean 0 and standard deviation 1. The model is a structural vector 
autoregression of order 2: 

   
11 13 1 2 ,

21 22 1 22 2 ,

31 1 2 ,

1 0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0 0 0

t t t X t

t t t Y t

t t t Z t

x b b x x v
a y b y c y v
a z z z v

 

 

 

            
            
                            
                           

    (1) 

In matrix notation, the SVAR is denoted 
( )t t tA B L M VΜ = +  

where ( ), ,t t t tX Y Z ′Μ ≡ , ( )B L  is a matrix lag polynomial, and ( ), , ,, ,t X t Y t Z tV v v v ′≡ . The 

corresponding reduced-form model is given by 
( ) ( )1 1

t t t t tA B L M A V L M E− −Μ = + ≡ Φ +  

where ( )LΦ  is a matrix lag polynomial, and ( ), , ,, ,t X t Y t Z tE e e e ′≡ . Identification of the SVAR 

implies obtaining estimates of A and B(L), with the variance-covariance matrix of V being 
diagonal. 

 
The structural model errors   are assumed to be distributed normally, with a diagonal 
covariance matrix (assumed, for simplicity, to be the identity matrix). This model may be 
graphically represented in Figure B.1, depicting time t variables as a function of other time t 
variables and lagged variables. In this figure, an arrow denotes a causal influence: a solid arrow 
represents a within-period influence, while a dashed arrow represents an intertemporal influence. 

 
15 This method builds upon work in causal modeling (e.g., Glymour and Spirtes, 1988) and is extended in Demiralp 
and Hoover (2003) and Demiralp, Hoover, and Perez (2008); see also Moneta (2008). The method originated in 
Blalock (1961). 
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For simplicity, the influence of the exogenous structural shocks t
kv  on variables { }, , ,k X Y Z∈ is 

not depicted.  
 

 

 
Figure B.1: A structural VAR, with causal influences depicted. Solid lines depict 
contemporaneous causation; dashed lines depict intertemporal causation. Thus, for example, at 
time t, variable Y is influenced by variable X contemporaneously, by its own value at time t-1, 
and by its own value at time t-2. 
 
This model will be estimated in reduced-form, yielding the residuals ( , ,X Y Ze e e ). Notice that if 
Equation (1) is the data-generating process, the reduced-form residuals will obey certain 

correlation and partial correlation restrictions. In particular, letting ( ),j ke eρ  denote the 

correlation between je  and ke , some of the correlation restrictions that these residuals must 

satisfy are  , 0X Ye e  ;  , 0X Ze e  ;  , 0Y Ze e  ; and  , | 0Y Z Xe e e  .  
 
Of course, in general, the model that generated the data is unknown. How can the data help us 
specify the model (or more specifically, the structure of the A matrix)?16 Suppose the model in 
Equation (1) is true, but the analyst does not know that. As will typically be the case with 
Normally distributed residuals, the data will not fully identify the model. But the power of the 
Swanson/Granger approach is that the data may nonetheless be used to sharply reduce the set of 
possible models. In a three-variable VAR with normal structural errors, ruling out structural 
models that are impossible to identify leaves 22 possible models (6 of which correspond to 
Cholesky identification schemes; see Figure A.1 in Appendix A). In the present case, as we will 
now demonstrate, the data will reject 19 of these. We describe the Swanson/Granger heuristic 

 
16 The identification challenge in structural VARs of this form consists of restrictions on the A matrix. Of course, 
each unique set of restrictions on the A matrix corresponds to an entire class of models wherein intertemporal 
relationships are not restricted. However, intertemporal relationships may be estimated without ambiguity from the 
data, so identification consists of restrictions on the A matrix. For brevity, we refer to the class of models 
corresponding to a particular structure of the A matrix as “a” model. 
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procedure somewhat more formally below. Here we describe informally how one would reject 
the models that are inconsistent with data generated by Equation (1). 
 
In the first step, by testing all pairwise correlations among the regression residuals (using simple 
t-tests), one would find that the three residuals are all pairwise correlated. This rules out the last 
7 models in Figure A.1, namely, those in which at least one variable is neither caused by, nor 
causes, any other variable contemporaneously. As the next step, one would conduct all pairwise 
conditional residual tests, i.e., test |X Y Ze e e , | ,X Z Ye e e  and |Z Y Xe e e  using OLS 
regressions. Given the data-generating process, the first two hypotheses will be rejected, but not 
the third. What does this additional information tell us? It rules out 12 of the remaining models, 
namely, those in which Y and Z have a relationship that is not intermediated in some fashion by 
X. Putting this differently, it tells us that there are only three possible models that are compatible 
with the data: those in which Y X  Z, or Z X  Y, or Y  X  Z. The data alone cannot be 
used to discriminate between these three models. However, prior economic information can now 
be used (in the usual manner) to select from among the three candidate models. For instance, 
economic theory can sometimes pin down a model based upon the signs of the partial 
correlations. Or one can use the usual timing restrictions – bearing in mind that at the micro 
level, agents may be responding to the micro data they currently observe, data that will later be 
aggregated up to data published by a statistical agency. 
 
The heuristic search procedure involves three steps and relies upon the weak “faithfulness” 
assumption that if X causes Y (or vice versa) within the period, then their residuals will be 
correlated.17 First, compute all bivariate partial correlations and examine their statistical 
significance. If the correlation between Xe  and Ye  is weak, and X Ye e  cannot be rejected, then 
the data reject X Y  and Y X  within the period. In an SVAR, the corresponding entries in 
the impact matrix A would be set to 0. Second, for those variable pairs (X, Y) with significant 
correlation, construct trivariate partial correlations with all third variables Z, paying particular 
attention to those that are correlated with both. If X Ye e  can be rejected, but if |X Y Ze e e  
cannot be rejected, then we again conclude that the data reject X Y  and Y X ; their 
correlation stems from a joint relationship with Z. Third, construct all models that are consistent 
with this evidence, and select the one that is in accord with economic theory priors. In our 
experience (and in the experience of Granger and Swanson), parsimonious models appear to 
agree with the data in most cases, and economic theory often plays a minor role in the selection 

 
17 Swanson and Granger (1997) begin by forgoing unconditional correlation tests and start by examining all 
conditional correlations; this evidently mitigates reliance on the faithfulness assumption. This assumption will fail 
under “measure-zero” cases where X causes Y, but the two variables are uncorrelated because X causes Z and Z 
causes Y, and the two causal paths exactly cancel. In the literature, the “faithfulness-failure” examples occur when 
there is a decision maker who specifically exerts control over variable Z to accomplish this “cancelation.” If there is 
reason to believe that such a situation exists in a given context, we would recommend omitting conditional 
correlation tests (and using this information to help identify the model); otherwise, we recommend the usage of 
unconditional correlation tests for two reasons. First, our recommendations follow standard practice in the causal 
analysis literature (see, e.g., Moneta 2008). Second, in practice, what matters most for impulse response function 
estimates are the identifying assumptions made vis-à-vis variables whose residuals are strongly correlated.  



31 
 

of the final model.18 (In models with numerous variables, one may formally test higher-order 
partial correlation constraints implied by the model.)  
 
While a joint testing procedure is unavailable, so that the usual size problems might arise, in 
practice this issue is often moot. This is because in many cases, the significance levels of tests 
can be adjusted significantly without any change in inferences. Furthermore, when a borderline 
case is “accommodated” – i.e., if the model is extended to specify either X Y  and Y X , 
when their partial correlation is modest – estimation typically yields impulse response functions 
that are insensitive to this choice. 
 

  

 
18 If more than one model appears equally reasonable, one may investigate the sensitivity of, e.g., IRFs, to model 
choice. 
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Appendix C: Model Estimation Results 
 

 
4

11
PPI PPI PPI PPI medfreq PPI
t j t j t tj

u eπ α β π δ− −=
= + + ∆ +∑    (1) 

 1 1 2 2 5 5
1995

0 1 1 2 2 4

CoreG CoreG CoreG CoreG CoreG CoreG CoreG CoreG
t t t t

CoreG PPI CoreG PPI CoreG PPI CoreG medfreq CoreG
t t t t tu I v

π α φ π φ π φ π

β π β π β π λ ψ
− − −

+
− − −

= + + + +

+ + + + + +
 (7) 

 

Table A.1: Regression Results for Equations (1) and (7). 

 
Eq. (1); 

Dependent 
variable 

 
Eq. (7); 

Dependent 
variable 

 

 PPI
tπ   CoreG

tπ   

Regressor Coefficient 
estimate 

Standard 
error 

Coefficient 
estimate 

Standard 
error 

α  0.26 0.13 -0.12 0.05 
1

CoreG
tπ −    1.08 0.08 

2
CoreG
tπ −    -0.27 0.09 

5
CoreG
tπ −    0.05 0.04 

PPI
tπ    0.08 0.03 

1
PPI
tπ −  1.49 0.08 -0.14 0.3 

2
PPI
tπ −  -0.78 0.15 0.10 0.02 

3
PPI
tπ −  0.04 0.15   

4
PPI
tπ −  0.11 0.08   

4
medfreq

tu+
−    -0.39 0.25 

1
medfreq
tu −∆  -5.85 1.57   

I1995   0.34 0.14 
     

2R  0.87  0.94  

                               Note: We elected to retain 1
medfreq

tu+
−  and 5

CoreG
tπ −  in the core goods equation since, absent I1995, 

                               both clearly belong in the regression. Dropping 5
CoreG
tπ −  would have little influence, given the  

                               size of the estimated coefficient, but dropping 1
medfreq

tu+
−  would make inflation a tad less 

                               responsive to recessionary pressure. 
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Table A.2: Regression Results for Equations (4) and (8). 

 1 1 2 2 5 5

0 1 1

MNHServ MNHServ MNHServ MNHServ MNHServ MNHServ MNHServ MNHServ
t t t t

MNHServ PPI MNHServ medfreq MNHServ lowgap MNHServ
t t t tu u v

π α γ π γ π γ π

β π λ µ
− − −

+ −
− −

= + + + +

+ + + +
 (8) 

 
5

1 41
Hous Hous Hous Hous Hous medfreq Hous lowgap Hous
t j t j t t tj

u u eπ α η π λ µ+ −
− − −=

= + + + +∑  (4) 

 

 

 
Eq. (8); 

Dependent 
variable 

 
Eq. (4); 

Dependent 
variable 

 

 MNHServ
tπ   Hous

tπ   

Regressor Coefficient 
estimate 

Standard 
error 

Coefficient 
estimate 

Standard 
error 

α  0.01 0.04 0.27 0.06 
1

MNHServ
tπ −  1.20 0.08   

2
MNHServ
tπ −  -0.36 0.09   

5
MNHServ
tπ −  0.14 0.04   

1
Hous
tπ −    1.24 0.08 

2
Hous
tπ −    -0.26 0.13 

3
Hous
tπ −    0.06 0.13 

4
Hous
tπ −    -0.48 0.13 

5
Hous
tπ −    0.35 0.07 
PPI
tπ  0.00 0.01   

CoreG
tπ    0.01 0.01 

1
lowgap
tu −  -0.12 0.05   

4
lowgap
tu −    -0.15 0.06 

1
medfreq
tu −  -0.19 0.12 -0.88 0.15 

     
2R  0.98  0.97  
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Table A.3: Regression Results for Equations (5) and (9). 

 

 2 4
11 1

medfreq med medfreq med lowgap med PPI medfreq
t j t j j t j t tj j

u u u eλ µ β π− − −= =
= + + +∑ ∑  (5) 

 
 2 4 4

1 1 0
lowgap lowgap low lowgap low medfreq low PPI lowgap
t j t j j t j j t j tj j j

u u u vα µ λ β π− − −= = =
= + + + +∑ ∑ ∑  (9) 

 

  

 
Eq. (5); 

Dependent 
variable 

 
Eq. (9); 

Dependent 
variable 

 

 
1

medfreq
tu −   lowgap

tu   

Regressor Coefficient 
estimate 

Standard 
error 

Coefficient 
estimate 

Standard 
error 

α  0.00 0.00 0.01 0.01 
1

PPI
tπ −  0.002 0.001 -0.01 0.01 

2
PPI
tπ −    0.03 0.01 

3
PPI
tπ −    -0.03 0.01 

4
PPI
tπ −    0.01 0.01 
1

lowgap
tu −  0.44 0.03 0.58 0.14 

2
lowgap
tu −  -0.44 0.04 0.37 0.14 

3
lowgap
tu −  -0.18 0.05   

4
lowgap
tu −  0.18 0.04   
medfreq
tu    2.08 0.25 

1
medfreq
tu −  0.82 0.07 -1.40 0.28 

2
medfreq
tu −  -0.18 0.06 1.32 0.29 

3
medfreq
tu −    -0.77 0.27 

4
medfreq
tu −    0.43 0.16 

     
2R  0.97  0.99  
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Appendix D: Historical Forecasts 
 

To highlight the fit of our model to historical core PCE inflation data, in Figure D.1 below, we 
plot an inflation forecast from our model, conditional on the actual path of the unemployment 
rate over the 2007Q1-2016Q4 period, alongside the conditional forecast from a more 
conventional Phillips curve model. This latter model is specified as a linear bivariate model of 
core PCE inflation and the unemployment gap.19 As Ashley and Verbrugge (2022a) found in 
their study of trimmed mean PCE inflation, the conditional forecast from the present nonlinear 
model broadly captures the decline in inflation following the financial collapse and the very slow 
return of inflation to the inflation target. We think this serves as a demonstration of how the 
model responds appropriately to evolving slack and how it accurately captures inflation 
dynamics over an extended period. In contrast, the conventional model underestimates the 
strength of the Phillips curve relationship, thereby missing the large drop in inflation following 
the 2008 financial crisis (and the Great Recession), and its recovery after that. However, this 
simple model, just like our nonlinear model, correctly captures the high degree of persistence in 
core PCE inflation. 
 
As discussed in Clark and Zaman (2013), these sorts of conditional forecasting exercises provide 
us some indication of how well a model is formulated. By conditioning on the historical path of 
the unemployment rate (thereby removing this source of uncertainty), we can assess how well 
the rest of the model (i.e., the inflation subcomponents) translates this information into inflation 
pressures and correctly captures the persistence of inflation. If the model is well-constructed and 
the unexpected shocks to the inflation components are not too large over the forecast horizon, 
then the conditional forecast of inflation should be close to the actual inflation path. As noted 
above, the conditional forecast of inflation coming from our nonlinear model does a respectable 
job tracking actual inflation over a 10-year period, and clearly outperforms its more standard 
counterpart, lending strong support to our model and providing reassurance about its ability to 
accurately provide conditional forecasts of the sort conducted in this study. 

 

 
 

 

 
19 This model has 5 coefficients: a constant, coefficients on lags 1, 2, and 5, and the Phillips curve coefficient. For 
the importance of including the fifth lag, see the appendix to Verbrugge and Zaman (2023). 
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Figure D.1: Historical 10-year forecast from the model and from a conventional Phillips curve. 
Both are conditional recursive forecasts. The models see no inflation data after 2006Q4, but the 
forecasts are conditioned on the evolution of the unemployment rate. 
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