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Abstract

Quantile regression methods are increasingly used to forecast tail risks and uncertainties
in macroeconomic outcomes. This paper reconsiders how to construct predictive densities
from quantile regressions. We compare a popular two-step approach that fits a specific
parametric density to the quantile forecasts with a nonparametric alternative that lets the
“data speak.” Simulation evidence and an application revisiting GDP growth uncertainties in
the US demonstrate the flexibility of the nonparametric approach when constructing density
forecasts from both frequentist and Bayesian quantile regressions. They identify its ability to
unmask deviations from symmetrical and unimodal densities. The dominant macroeconomic
narrative becomes one of the evolution, over the business cycle, of multimodalities rather
than asymmetries in the predictive distribution of GDP growth when conditioned on financial
conditions.
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1 Introduction

Recent research has used quantile regression (QR) methods both to produce density nowcasts
and forecasts of macroeconomic and financial variables and to assess tail risks, emphasizing
asymmetries in the distribution of (real) GDP growth when conditioned on financial conditions.1

A commonly adopted approach in this literature, following Adrian et al. (2019) [henceforth
ABG], is to produce the density forecasts in two steps. As a first step, the QRs are estimated.
This means that the underlying conditional density is defined only at the chosen quantiles
(typically four quantiles are chosen). As a result, as a second step, the skewed-t density
function of Azzalini and Capitanio (2003) is fitted to these quantile forecasts by minimizing
the distance (the ℓ2 norm) between the (empirical) regression quantiles and the (theoretical)
density-implied quantiles. This second step both smooths the estimated quantile functions
and provides a complete density forecast, albeit one whose form is now controlled by the class
of skewed-t density assumed. This second step, therefore, contrasts with the nonparametric
nature of the first-step quantile regressions. Policy institutions, such as the IMF, have also
adopted this two-step approach to monitor international macroeconomic risks, such as growth-
at-risk (GaR); see Prasad et al. (2019).

This paper reconsiders the use of QRs when interest rests with the production and subsequent
evaluation of density forecasts, from which specific risk forecasts, such as GaR, can always be
extracted. The attraction of producing density forecasts rather than specific point, quantile,
or interval forecasts is that, given the forecast user’s loss function, one can readily extract
from the density forecast the features of specific interest to the user. Such a focus on the
production of density forecasts is rare in the quantile regression literature (with the notable
exceptions listed above), despite considerable attention having been paid to the production
and evaluation of the quantile forecasts themselves (for example, see Komunjer (2013)).

Our paper proposes and then contrasts with the aforementioned two-step ABG method,
which has become so established, a simple nonparametric (strictly “semi-parametric”) approach
to the production of density forecasts from QRs. Unlike ABG’s, this approach does not
superimpose a global density on specific quantile forecasts. Instead, the conditional quantile
forecasts from the first-step QRs are mapped directly to a conditional density, assuming
only local uniformity between the quantile forecasts. In an application to US GDP growth,
we find that use of this nonparametric approach matches or slightly improves upon the

1On the use of QR methods to produce density nowcasts and forecasts, see, e.g., Gaglianone and Lima
(2012), Manzan and Zerom (2013), Gaglianone and Lima (2014), Manzan (2015), Korobilis (2017), Chen et al.
(2021), Ferrara et al. (2022), and Mitchell et al. (2022). On the more specific but connected issue of the
assessment of tail risks using QRs, see, e.g., Giglio et al. (2016), Ghysels et al. (2018), Adrian et al. (2019),
Figueres and Jarocinski (2020), Reichlin et al. (2020), Brownlees and Souza (2021), Carriero et al. (2022), and
Carriero et al. (2023).
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accuracy of the ABG densities. It also supports the much-cited finding of ABG that the
left-tail of the conditional density of GDP growth moves with the tightness of financial
conditions. But the nonparametric approach delivers conditional forecast densities with very
different features than those when, following ABG, a skewed-t density is assumed globally.
In particular, linking to Adrian et al. (2021), we find that the very same QRs used by
ABG do, in fact, deliver multimodal GDP growth density forecasts. This is notably so
at times of recession, when conditioning on a popular index of financial conditions. The
evolution over the business cycle of multimodalities rather than asymmetries then becomes
the dominant macroeconomic narrative of the conditional predictive distribution of GDP
growth. But even though, especially when implemented as proposed in this paper, QRs can
flexibly capture nonlinearities when forecasting, as a nonparametric (reduced-form) model
they cannot so readily discriminate between alternative (more structural) explanations for the
observed distributional properties of GDP growth. This would require stronger parametric
assumptions.

This paper focuses on the construction of density forecasts from QRs, given their growing
use in macroeconomics and finance since ABG. A large literature, of course, considers the
production of density forecasts using other methods; see Aastveit et al. (2019) for a review. A
literature has also grown up, in response to ABG, on the production of GaR and density
forecasts using both parametric and nonparametric alternatives to QR; for example, see
Caldara et al. (2021), De Polis et al. (2020), Plagborg-Moller et al. (2020), Adrian et al.
(2021), and Carriero et al. (2023). By contrast, we deliberately stick to the QR models of
ABG. In so doing, we emphasize the empirical importance of moving beyond their skewed-t
parametric assumption when fitting the density to these quantile forecasts.

The remainder of this paper is structured as follows. Section 2 considers the construction
of density forecasts from quantile regressions, estimated via frequentist or Bayesian methods.
It contrasts parametric and nonparametric methods for the production of the density forecast.
Section 3 presents Monte Carlo evidence on the relative efficacy of the parametric and nonparametric
approaches at fitting densities to distributions of various underlying shapes. Section 4 revisits
the GaR application of ABG and contrasts empirical results using the parametric and nonparametric
approaches. Section 5 concludes. An online appendix contains supplementary material.
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2 Density forecasts from quantile regressions

Consider the QR relating the τ -th quantile of yt+h, the variable of interest (GDP growth in our
application), to xt, a d−dimensional vector of conditioning variables including an intercept:

Qτ (yt+h|xt) = x′
tβτ , τ ∼ U(0, 1), (1)

with t = 1, ..., T and where h is the forecast horizon and U(.) is the uniform density. Note
that, following ABG, we focus on QR models with time-invariant parameters.2

The QR slope, βτ , is chosen to minimize the weighted absolute sum of errors:

β̂τ = argmin
βτ

T−h∑
t=1

(τ.1(yt+h≥x′
tβτ ) |yt+h − x′

tβτ |+(1−τ).1(yt+h≤x′
tβτ ) |yt+h − x′

tβτ |), τ ∈ (0, 1), (2)

where 1(.) denotes an indicator function. A perceived attraction of QR is that the informational
importance of xt for yt+h can vary by quantile and thereby accommodate situations where
conditioning variables have, for example, more or less informational content in the tails of the
density.

The quantile forecasts from (2), conditional on xt, are:

Q̂τ (yt+h|xt) = x′
tβ̂τ . (3)

Bayesian estimation of QRs has also gained attention recently. Koenker and Machado
(1999) established that likelihood-based inference using independently distributed asymmetric
Laplace densities (ALD) is directly related to (2). Yu and Moyeed (2001) show how exact
Bayesian inference using Markov chain Monte Carlo (MCMC) methods can proceed by forming
the likelihood function using the ALD; they emphasize the utility of the ALD, irrespective of
the original distribution of the data. And Kozumi and Kobayashi (2011) propose a mixture
representation of the ALD that renders the model conditionally Gaussian, facilitating estimation
using more efficient MCMC methods. Unlike classical estimation methods, Bayesian methods
naturally accommodate parameter uncertainty when forecasting. While a bootstrap-based
approach, for example, could in principle be used to construct quantile forecasts that acknowledge
parameter estimation error from QRs estimated via classical methods, in practice this is not
undertaken, certainly in the ABG-inspired growth-at-risk literature.

2Recent research in macroeconomics has moved on to consider QR models with time-varying parameters
(e.g., see Korobilis et al. (2021)). The same issues, as discussed in this paper, arise when considering how to
construct density forecasts from these QR models.
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Quantile forecasts can be constructed from the Bayesian QR, as per (3), from the posterior
parameter distribution for βτ . For the r-th MCMC draw, β̂r

τ , these quantile forecasts are given
as:

Q̂τ (yt+h|xt)
r = x′

tβ̂
r
τ . (4)

In empirical applications, quantile regressions are estimated at a finite number of τ , i.e.,
[τ1, ..., τk], where 0 < τ1 < τ2 < .... < τk < 1. ABG, in fact, consider just k = 4. This means
that the underlying conditional density is defined only at these k quantiles. To estimate the
full conditional h−step-ahead predictive density, f̂(yt+h|xt), we therefore need to establish a
mapping from the k quantile forecasts, as in (3) or (4):

{
Q̂τ1(yt+h|xt), ..., Q̂τk(yt+h|xt)

}
→ f̂(yt+h|xt),∀[x′

t, yt+h]
′ ∈ Rdim(x)+1, (5)

where, for notational ease, we denote these quantile forecasts Q̂τj(yt+h|xt) = x′
tβ̂τ ; that is, we

suppress dependence on the MCMC draw.
Below we set out two ways of establishing this mapping. We start with the parametric

approach of ABG. As discussed in the introduction, this approach is used widely in macroeconomics,
despite the contradiction with the nonparametric flavor of the first-step QRs.

2.1 ABG’s parametric quantile-matching approach

To estimate the full continuous conditional density forecast of yt+h, from the k quantile
forecasts, ABG, in effect, combine them by fitting the skewed-t density function of Azzalini
and Capitanio (2003) to the quantile forecasts, (3). They minimize the distance (the ℓ2

norm) between the (empirical) regression quantiles and the (theoretical) distribution-implied
quantiles:

arg
µ,σ,α,υ

min
∑
τ

(
Q̂τ (yt+h|xt)− F̂−1(τ ;µ, σ, α, υ)

)2
, (6)

where F is the CDF of the skewed-t PDF, f, given as:

f(y;µ, σ, α, υ) =
2

σ
t

(
y − µ

σ
; υ

)
T

(
α
y − µ

σ

√
υ + 1

υ +
(
y−µ
σ

)2 ; υ + 1

)
, (7)

where t and T (.) respectively denote the PDF and CDF of the Student t-distribution, where
µ is a location parameter, σ is the scale, υ is the fatness, and α is the shape. When α = 0,
the skewed-t reduces to the Student t. When, in addition, υ = ∞, (7) reduces to a Gaussian
distribution, with mean µ and standard deviation σ.
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ABG focus on the exactly identified case of matching the 0.05, 0.25, 0.75, and 0.95
quantiles. But, in principle, as ABG discuss in a footnote but do not explore empirically,
more quantiles could be used, allowing the four parameters of (7) to be over-identified. Since
the choice of these k = 4 quantiles is somewhat arbitrary and may affect the shape of the
fitted distribution, below we also consider fitting the skewed-t distribution to more quantiles.

While ABG used (6) on quantile forecasts, (3), produced from a frequentist QR, others
have fitted the skewed-t distribution to forecasts produced from a Bayesian QR. Ferrara et al.
(2022), for example, use (6) on the mean (across r = 1, ..., R MCMC draws) quantile forecasts,
(4).

2.2 Constructing the density forecast nonparametrically

Rather than assume a parametric function for f̂(yt+h|xt), following Parzen (1979) and Koenker
(2005), one can back out the conditional distribution directly from the conditional quantile
function via the integral transforms:

F̂ (yt+h|xt) =

∫ 1

0

1{x′
tβ̂τ ≤ yt+h}dτ. (8)

By considering all τ ∈ (0, 1), one can approximate the true conditional quantile function
arbitrarily well, when the true density is a smooth conditional density (Koenker (2005), p.
53).

In practice, we follow Koenker and Zhao (1996) and adopt a simple simulation-based
approach, instead of relying on numerical integration. A random draw from the h-step-ahead
forecast distribution is given by:

ŷt+h = Q̂U(yt+h|xt)
r, (9)

where U is a uniformly distributed random variable on [0, 1] as in Koenker and Zhao (1996).
Repeating across many random draws approximates F̂ (yt+h|xt).

To operationalize, with a finite k, we smooth/interpolate across adjacent quantile forecasts
by taking a first-order Taylor expansion of the CDF, (8), between the j-th and j + 1-th
quantiles:

F̂k(yt+h|xt) = τj +
τj+1 − τj

x′
tβ̂τj+1

− x′
tβ̂τj

(yt+h − x′
tβ̂τj) (10)

= τj + F ′(y∗t+h,j|xt)(yt+h − x′
tβ̂τj), (11)
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for y∗t+h,j ∈
(
x′
tβ̂τj , yt+h

)
⊂
(
x′
tβ̂τj , x

′
tβ̂τj+1

)
. Assuming that the interval between adjacent

quantiles is relatively small, the implied distribution function is approximately linear within
the interval.

Figure 1 provides an illustration, plotting the approximate CDF in yellow and the true
CDF in blue. This illustration intuitively points to higher values of k delivering better
approximations. That is, the marginal benefits of the first-order approximation decline as k
increases, an issue we explore below in both the simulations and the application. Unlike ABG’s,
this approach does not superimpose a global (parametric, such as a skewed-t) distribution
on specific quantile forecasts. Instead, it assumes local uniformity between the k quantile
forecasts. Hence, it is best seen as a “semi-parametric” method, although for convenience we
continue to refer to the method as nonparametric.

Algorithm 1 summarizes the mechanics of how the density forecast is formed nonparametrically
from the QRs. Whether the QRs are estimated by frequentist or Bayesian methods, the
empirical density forecast is constructed from the sample:[
yt+h,1,yt+h,2, ...,yt+h,k,yt+h,k+1

]
. This vector can be used directly by the macroeconomist or

a kernel could be fitted.3

We note four features of Algorithm 1:

1. Since:
Prob(F−1(τj|xt) ≤ yt+h < F−1(τj+1|xt)) = τj+1 − τj, (12)

to take a sample of length N from the conditional distribution F (·|X = xt) requires
(τj+1 − τj)N samples to be taken between:(

x′
tβ̂τj , x

′
tβ̂τj+1

)
. (13)

2. The quantile forecasts are re-arranged as necessary (following Chernozhukov et al. (2010))
to avoid quantile crossing.

3. The density is fitted beyond the outer or “extreme” quantiles, defined by τ1 and τk, by
assuming that a specific CDF applies in the tails.4 The researcher is free to assume that

3See Krüger et al. (2021) for a discussion of the pros and cons of alternative methods for estimating the
distribution from the underlying simulation output. Their analysis demonstrates that the empirical CDF-based
approximation works well in many contexts.

4In our simulations and the application, we define “extreme” as those quantiles either beyond 0.05 and 0.95
or beyond 0.01 and 0.99.
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any parametric CDF of their choosing applies in the tails. We focus on the case:

Φ(x′
tβτ1 , µ1, σ1) = τ1,Φ(x

′
tβτ2 , µ1, σ1) = τ2 (14)

Φ(x′
tβτk−1

, µ2, σ2) = τk−1,Φ(x
′
tβτk , µ2, σ2) = τk, (15)

where Φ is the Gaussian CDF, and we solve for [µ1, µ2, σ1, σ2] to satisfy these 4 equations.
In our application, results are robust to this choice. This is understood by noting that
this Gaussianity assumption affects only the behavior of the extreme tails of the density
forecasts constructed via Algorithm 1.5 In addition to the question of how to fit the
density beyond the outer quantiles defined by τ1 and τk, it is well known that estimation
of extreme quantiles with small samples can lead to coefficient bias; see Chernozhukov
(2005). In small sample applications, the researcher may therefore prefer to estimate
the extreme quantiles using extremal methods or Bayesian QR with shrinkage rather
than frequentist QR. Alternatively, rather than estimate the extreme quantiles directly,
increased power in small samples could be gained by simultaneously estimating the QR
across multiple τ including the extreme quantiles. In the online appendix (Section 6.2),
to illustrate how our algorithm can be operationalized in such situations, we present
results where we adapt the composite QR method (Zou and Yuan, 2008), and when
k = 99 (τ ∈ [0.01, 0.02, ..., 0.99]) we estimate a pooled QR in the extreme left tail as
follows:

arg min
b1,..bk,β

K∑
k=1

{
T∑
t=1

ρτk (yt+h − bk − x′
tβ)

}
for τ1, ...τK ≤ 0.05, and similarly for the right tail quantiles ≥ 0.95. In this application,
use of composite QR methods does not improve forecast accuracy.

4. Algorithm 1 consistently estimates the true conditional distribution F (yt+h|xt) as T, k →
∞. This is understood by noting that there are two convergence aspects to consider in
Algorithm 1: (a) statistical convergence, T → ∞, and (b) convergence of the approximate
distribution to the true distribution as the number of quantile levels, k → ∞:

(a) The consistency of the QR estimates β̂τj as T → ∞ (see Chernozhukov et al.
5In Section 6.2 of the online appendix we present results when, instead of the Gaussian distribution, we

assume that the generalized extreme value (EV) distribution of type 1 applies in the tails. The EV density is
commonly used when undertaking inference of extremal QRs; see Chernozhukov (2005). When repeating the
main empirical exercises in the main paper using the EV rather than the Gaussian distribution in the tails,
we find that the densities both look and forecast similarly. We also experimented with the student-t CDF in
the tails, to acknowledge that fatness in the extreme tails may be helpful. Again we find that our empirical
results are little different, although the t density does introduce some extra “wiggles” into the extreme tails.
Ultimately, the choice of what density to assume for the outer quantiles is an empirical question to be decided
on an application-by-application basis.
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(2010) and Koenker (2005)), at the chosen quantile levels, j, implies that the
approximate distribution F̂k → Fk. That is, referring again to Figure 1, the
approximate distribution converges to the piecewise-linear function (the yellow
line) approximating the true CDF (the blue line) at the chosen quantile. For
τ ∈ {τ1, ..., τk}:

Fk(x
′
tβτ |xt) = F (x′

tβτ |xt), (16)

i.e., the vertex of the function equals the true density at the finite sequence of
quantile levels (and the blue and yellow lines equal each other).

(b) As k → ∞, the piecewise-linear CDF (the yellow line in Figure 1) converges to the
true distribution (the blue line in Figure 1) between these quantile levels. This is
seen as follows. Given a smoothness assumption for the true density, by Taylor’s
theorem, rewrite the true distribution as:

F (yt+h|xt) = τj + f(y∗t+h,1|xt)(yt+h − x′
tβτj), (17)

for any yt+h ∈
(
x′
tβτj , x

′
tβτj+1

)
and some y∗t+h,1 ∈

(
x′
tβτj , yt+h

)
. Then, by the mean

value theorem, the approximate k quantile level distribution is:

Fk(yt+h|xt) = τj +
τj+1 − τj

x′
tβτj+1

− x′
tβτj

(yt+h − x′
tβτj) (18)

= τj + f(y∗t+h,2|xt)(yt+h − x′
tβτj), (19)

for y∗t+h,2 ∈
(
x′
tβτj , x

′
tβτj+1

)
. Comparing (17) and (19), the only difference is between

y∗t+h,1 and y∗t+h,2. Yet, note that:

x′
tβτj ≤ y∗t+h,2 ≤ x′

tβτj+1
(20)

x′
tβτj ≤ y∗t+h,1 ≤ yt+h ≤ x′

tβτj+1
. (21)

Further assume that the conditional quantiles are linear in the regressors, uniformly
across all τ. Then, we can let k → ∞. As k → ∞, τj+1 − τj → 0, and the intervals
in (20) and (21) converge by the sandwich theorem such that:

y∗t+h,1 = y∗t+h,2.

Hence:
lim
k→∞

Fk(yt+h|xt) = F (yt+h|xt).

In the simulations and empirical application below, we consider how to choose k.
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true CDF
Equal weights CDF
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j+1
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Figure 1: Illustrative comparison of the true CDF against Algorithm 1 (Fk) and the CDF
assuming uniform (equal) weights between adjacent quantiles

We suggest, in effect, to choose k empirically to maximize forecasting performance.
In general, we find that intermediate values of k (such as k = 19) tend to work
best. These balance the need for a value large enough to accurately trace out the
shape of the underlying distribution, with the risk, especially in smaller samples,
of introducing noise by estimating QRs in the tails of the distribution with too few
observations.

Algorithm 1, where the proposed distribution is:

F̂k(yt+h|xt) = τj +
τj+1 − τj

x′
tβ̂τj+1

− x′
tβ̂τj

(yt+h − x′
tβ̂τj), (22)

when yt+h ∈
(
x′
tβ̂τj , x

′
tβ̂τj+1

)
, can be contrasted with an alternative of using equal weights

between adjacent quantiles:

F̂EW (yt+h|xt) =


τj yt+h ∈ (x′

tβ̂τj , x
′
tβ̂τj+1

)

0 yt+h < x′
tβ̂τ1

1 yt+h ≥ x′
tβ̂τk

, (23)

which amounts to a zero-order approximation of the CDF between quantiles j and j+1. We
emphasize that this is, in effect, the approach used by Korobilis (2017) to produce density
forecasts from Bayesian QRs. This approach involves collecting together the r = 1, ..., R

MCMC draws of the quantile forecast Q̂yT+h
(τ |xt)

r across τ ∈ [0.05, 0.10, ..., 0.90, 0.95] and
then constructing the full posterior density forecast from this stacked vector - using a kernel

10



to smooth.
Figure 1 also illustrates how equal weights differ from Algorithm 1. It shows how equal

weights intuitively provide a worse approximation to the true CDF, although, as with Algorithm
1, the quality of its approximation will improve as k increases. Indeed, as k → ∞ the difference
between Algorithm 1 and equal weights disappears; of course in practice, for finite T , the
econometrician can only estimate a finite number of QRs. Note that, given the estimated
quantile levels, the straight lines that Algorithm 1 imposes between adjacent quantiles provide
a piecewise-linear approximation to the CDF. Unlike the piecewise-constant function implied
by equal weights, the piecewise-linear approximation benefits from smoothness in the estimated
CDF. Statistics such as the conditional mean can be obtained via numerical integration of:∫

xtf̂k(yt+h|xt)dxt, (24)

where:

f̂k(yt+h|xt) =


ϕ(yt+h|µ̂1, σ̂1) yt+h ≤ x′

tβ̂τ1

τj+1−τj

x′
tβ̂τj+1−x′

tβ̂τj

x′
tβ̂τj < yt+h ≤ x′

tβ̂τj+1

ϕ(yt+h|µ̂2, σ̂2) yt+h > x′
tβ̂τk .

(25)

Algorithm 1, instead, relies on samples from the conditional density f̂k(yt+h|xt), which lets
us readily construct the whole density.

3 Simulation results

To evaluate the performance of the nonparametric approach to construction of the predictive
density from QRs, relative to extant alternatives including the approach of ABG, we conduct
a set of Monte Carlo experiments. These experiments let us assess the ability of the different
approaches to uncover a range of distributional forms. We consider five data-generating
processes (DGPs) that yield densities for {yt}Tt=1 that are:

1. (DGP1) Gaussian: N(0, 1).

2. (DGP2) Negatively skewed: f(y;µ = 1, σ = 2, α = −0.5, υ = 10), where f(.) is as
defined in (7).

3. (DGP3) Skewness and high kurtosis: f(y;µ = 1, σ = 1, α = 1, υ = 5).

4. (DGP4) Bimodal (mixture of Gaussian) : 1/3N(0, .04) + 2/3N(1, .04).

11



Algorithm 1 A local-linear algorithm to construct density forecasts from quantile regressions
• Estimate the QR at τj (j = 1, ..., k).

• Denote the QR estimates, β̂τj , where for Bayesian estimation β̂τj = {β̂1
τj
, ..., β̂R

τj
} is a

d × R dimensional matrix, where r = 1, ..., R, defined by stacking across the MCMC
draws. In the frequentist case, R = 1. Define:

Qt =
[
(xt

ˆ′βτ1)
′, (x′

tβ̂τ2)
′, ..., (x′

tβ̂τk)
′
]
∈ RR×k.

• Rearrange the elements of the rth row of the matrix Qt from smallest to largest in case
they are not monotonic.

• for j = 2 : k

– Obtain the sub-sample given random variables uniformly distributed on
[Q̃t,j−1, Q̃t,j]:

yt+h,j = Q̃t,j−11
′
(τj−τj−1)N

+ diag(Q̃t,j − Q̃t,j−1)Uj

where Q̃t,j denotes the j−th column of Qt and Uj is a matrix of dimension R×(τj−
τj−1)N , with each element drawn from a standard uniform distribution similar to
(9).

• end

• Fit a Gaussian (or some other) distribution via β̂τ1 and β̂τ2 , and sample from the lower
tail F (yt+h|xt) < τ1 to obtain yt+h,1

• Fit a Gaussian (or some other) distribution via βτk−1n and βτk,n, and sample from the
upper tail F (yt+h|xt) > τk to obtain yt+h,k+1

Finally, create the stacked vector of forecasts:
[
yt+h,1,yt+h,2, ...,yt+h,k,yt+h,k+1

]
.

12



5. (DGP5) Trimodal (mixture of Gaussian): 1/6N(0, 0.2) + 1/3N(1, 0.2) + 1/2N(2, 0.2).

For {yt}Tt=1 samples of size T = 100 and T = 1, 000 drawn from each of these five DGPs, we
then estimate six alternative densities and compare their fit against the (true) DGP density.
In all cases, when estimating the QR, we set xt = 1, that is, we consider an intercept only.

The six densities we fit to the {yt}Tt=1 samples are:

1. NP(freq): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95])
using frequentist methods, (2), and then construct the density nonparametrically via
Algorithm 1, setting N = 20, 000. We also experiment, as summarized below, with k = 4

where τ ∈ [0.05, 0.25, 0.75, 0.95] (as in ABG) and k = 99 where τ ∈ [0.01, 0.02, ..., 0.99].

2. EW(freq): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95])
using frequentist methods (as in NP(freq)) but then construct the density using equal
weights, (23).

3. NP(B): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95]) using
Bayesian methods and then construct the density nonparametrically via Algorithm 1.
At the first stage, the Bayesian QR is estimated using a standard normal uninformative
prior for the q−vector of βτ coefficients, centered on a zero mean:

βτ ∼ N(0,Vβ), (26)

where Vβ = 10Iq.

4. EW(B): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95]) using
Bayesian methods (as in NP(B)) but then construct the density using equal weights,
(23).

5. ABG: follow ABG (using their replication material) and estimate the QRs (where k = 4,
such that τ ∈ [0.05, 0.25, 0.75, 0.95]) using frequentist methods and then construct the
density parametrically via (7).6

6. ABG kernel: as a non-QR benchmark, follow ABG and nonparametrically estimate a
kernel density.7

6We note that in ABG’s Matlab replication materials (available at http://doi.org/10.3886/E113169V1),
when matching the quantile forecasts to the skewed-t density they approximate integrals with discrete sums.
Specifically, looking at ABG’s Step2match.m file (line 100), we see that they evaluate the skewed-t density
only over a grid from -15 to 10. Instead, we use an exact analytical solution. In the empirical section below
we return to this issue, showing its empirical importance.

7See equation (8) of ABG for details of the specific kernel density estimator employed.

13



For all the Bayesian models, we estimate using 20,000 MCMC draws with a burn-in of 10,000
draws. Next, we then input each MCMC draw (across k quantiles) into Algorithm 1 and set
N = 100. This delivers a vector of 1,000,000 draws from each predictive forecast density.

Tables 1 and 2, for T = 100 and T = 1, 000, respectively, report the mean squared error
(across R = 100 parallelized chains) of the first four moments of the fitted densities relative to
the true (DGP) density and the average Kullback-Leibler (KL) distance between the fitted and
true densities. KL is constructed as the expected difference in their logarithmic scores. Looking
at the KL distance first, as a measure of overall density fit, we see that the nonparametric
(NP) estimators, whether NP(freq) or NP(B), consistently deliver the better-fitting densities
irrespective of the shape of the true density.8 As anticipated, ABG’s parametric approach is
competitive only when the true density is unimodal. Instabilities in estimation of the skewed-t
density mean that ABG is not, however, always the best-fitting density even for DGP1 through
DGP3, when the true density is unimodal, and we might expect the parametric nature of ABG
to deliver gains. But for the multimodal densities (DGP4 and DGP5) use of Algorithm 1 is
clearly preferable, whether deployed on a QR estimated by frequentist or Bayesian methods:
both NP(freq) and NP(B) are consistently the best performers in terms of delivering the lower
KL values. The NP algorithms also match ABG for the unimodal densities (DGP1 through
DGP3). The equal-weighted (EW) approaches, as expected, do not produce as low KL values
as NP does, but they again outperform ABG for DGP4 and DGP5. There is some evidence
that EW(B), because of the extra parameter estimation uncertainty that is accommodated,
yields more volatile estimates than EW(freq). In contrast, the extra smoothing involved means
this result does not hold for NP. The benchmark ABG kernel density, like the NP estimators,
can also accommodate multimodalities. However, the kernel density does not deliver as good-
fitting densities as the NP approaches, in particular for the smaller sample size of T = 100.

Turning to the accuracy of the first four moments, as judged by the mean squared error
(MSE) between the respective moment of the fitted and true densities, we again see that the
NP estimators tend to be more accurate than ABG and kernel. The EW approach can also

8To isolate the role of k in explaining this result, given k = 4 in ABG but k = 19 in NP(freq), we
experimented with NP(freq) when k = 4 (τ ∈ [0.05, 0.25, 0.75, 0.95]) and k = 99 (τ ∈ [0.01, 0.02, ..., 0.99]); and
we experimented with ABG when k was increased from its maintained value of 4. As Table 4 in the online
appendix shows, decreasing k to k = 4 markedly lessens the accuracy of NP(freq) and increasing k to k = 99
also worsens accuracy. While we might expect increases in k to improve accuracy for NP(freq), as the local
uniformity assumption becomes weaker, parameter estimation errors increase for more extreme quantiles. The
objective function of the standard QR estimator is not smooth, and the QR estimates can experience jumps.
Future work might consider the benefits of producing the density forecasts having first smoothed the objective
function, e.g., as in Fernandes et al. (2021). Increasing k for NP(freq), well into the 5 percent tails as is
the case when k = 99, was therefore found to deliver noisier estimates of the underlying conditional density,
especially for the smaller T = 100. By contrast, due to its parametric assumption, increasing k did little to
affect results for ABG.

14



be competitive, although accuracy for the unimodal densities (DGP1 through DGP3) can
deteriorate, particularly when the QRs are estimated by Bayesian methods. We attribute this
to the inability of EW to provide as smooth a representation of the tails of the density as
NP. We also note how explosive estimation, for some Monte Carlo replications, pushes up the
MSE estimates in some instances, especially for EW(B) and ABG. When estimates of υ < 4,
not all of the first four moments of the skewed-t density are defined.

In sum, the Monte Carlo evidence confirms that the choice of how to fit a density to quantile
forecasts matters. While ABG’s parametric assumption may work well, unsurprisingly it will
only do so for true densities that are unimodal. Instead, it is relatively simple to let the
“data speak,” as they do when estimating the QRs in the first place, and use nonparametric
approaches as detailed in Algorithm 1 to construct the forecast density from the quantile
forecasts. While these simulations are, of course, just illustrative, they do indicate how
the nonparametric approach of Algorithm 1 can flexibly accommodate a greater variety of
distributional shapes than ABG, even for modest sample sizes. They also suggest that when
using Algorithm 1 intermediate values of k (such as k = 19) best approximate the underlying
density.

In principle, we anticipate a trade-off when selecting what k to use in Algorithm 1. Too
small a value does not give NP sufficient flexibility to smoothly fit different distributional
shapes. Too large a value for k, especially for smaller sample sizes, T , increasingly forces
the QR into the tails of the density, where there are fewer observations. This may induce
noise in the forecast density, and it raises the risk of introducing erroneous spikes or modes
(undersmoothing) in the forecast density when fitted using NP. To investigate this possible
trade-off, in the online appendix we report supplementary simulation results (see Table 5).
These involve, for DGP1 through DGP5, using the calibrated unimodality test of Hartigan
and Hartigan (1985), as proposed by Cheng and Hall (1998), and reporting the proportion
of rejections of unimodality. Table 5 confirms that while increasing k, when using NP(freq),
does increase the chance of identifying false peaks in the unimodal densities of DGP1 through
DGP3, this risk rapidly declines to zero for sample sizes of T > 50. This suggests that
increasing k does not inject false peaks into the fitted densities, except for very small samples
(T = 25). In turn, for the multimodal DGPs (DGP4 and DGP5), NP(freq) does a good job of
rejecting unimodality, except for smaller values of k (specifically, k = 4 and k = 9). As long
as k is at least 19, we see rejection rates in Table 5 of over 90 percent, even when T = 25.
These rejection rates rise further as T increases. In short, these supplementary unimodality
tests both support the use of intermediate values of k when using Algorithm 1 and provide
confidence that Algorithm 1 does not identify false modes in the forecast density, unless T is
especially small relative to k.
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Table 1: Average Mean Squared Error and Kullback-Leibler (KL) distance for T = 100

Models Mean Variance Skewness Kurtosis KL

DGP1: Unimodal (Gaussian)

NP(freq) 0.01 0.03 0.12 0.40 0.02

EW(freq) 0.01 0.02 0.12 0.38 0.01

NP(B) 0.01 0.03 0.10 0.79 0.04

EW(B) 0.01 0.07 0.03 0.45 0.12

ABG 0.01 0.05 Inf Inf 0.02

ABG Kernel 0.01 0.07 0.04 0.10 0.02

DGP2: Unimodal (Negative Skewness)

NP(freq) 0.05 0.73 0.14 1.51 0.02

EW(freq) 0.04 0.68 0.13 1.48 0.01

NP(B) 0.05 0.67 0.13 1.00 0.05

EW(B) 0.04 1.81 0.05 2.67 0.10

ABG 0.05 Inf Inf Inf 0.03

ABG Kernel 0.05 1.32 0.10 0.82 0.04

DGP3: Unimodal (Skewness & High Kurtosis)

NP(freq) 0.01 0.12 1.11 80.41 0.02

EW(freq) 0.01 0.10 1.06 79.44 0.00

NP(B) 0.01 0.08 0.49 51.28 0.05

EW(B) 0.01 0.24 0.62 84.51 0.10

ABG 0.01 Inf Inf Inf 0.03

ABG Kernel 0.01 0.30 0.66 59.62 0.12

DGP4: Bimodal

NP(freq) 0.00 0.00 0.01 0.04 0.03

EW(freq) 0.00 0.00 0.01 0.03 0.11

NP(B) 0.00 0.00 0.01 0.05 0.04

EW(B) 0.00 0.00 0.01 0.01 0.13

ABG 0.00 0.00 0.30 6.14 0.30

ABG Kernel 0.00 0.00 0.01 0.11 0.11

DGP5: Trimodal

NP(freq) 0.00 0.00 0.01 0.04 0.05

EW(freq) 0.00 0.00 0.01 0.05 0.36

NP(B) 0.00 0.00 0.01 0.09 0.05

EW(B) 0.00 0.01 0.01 0.02 0.14

ABG 0.00 0.01 0.31 5.20 0.26

ABG Kernel 0.00 0.01 0.02 0.07 0.21

Notes: Inf denotes infinity. NP(freq) uses k = 19. The 6 estimators and 5 DGPs are defined in
Section 3.
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Table 2: Average Mean Squared Error and Kullback-Leibler (KL) distance for T = 1, 000

Models Mean Variance Skewness Kurtosis KL

DGP1: Unimodal (Gaussian)

NP(freq) 0.00 0.01 0.06 0.15 0.00

EW(freq) 0.00 0.01 0.05 0.17 0.00

NP(B) 0.00 0.00 0.01 0.08 0.01

EW(B) 0.00 0.06 0.00 0.53 0.06

ABG 0.00 0.00 0.02 0.21 0.00

ABG Kernel 0.00 0.01 0.01 0.02 0.01

DGP2: Unimodal (Negative Skewness)

NP(freq) 0.01 0.31 0.06 1.04 0.00

EW(freq) 0.01 0.33 0.06 1.09 0.00

NP(B) 0.00 0.08 0.02 0.42 0.01

EW(B) 0.00 1.94 0.02 2.74 0.12

ABG 0.00 0.15 0.04 Inf 0.00

ABG Kernel 0.00 0.18 0.02 0.30 0.01

DGP3: Unimodal (Skewness & High Kurtosis)

NP(freq) 0.00 0.10 0.99 82.64 0.00

EW(freq) 0.00 0.10 1.03 82.04 0.01

NP(B) 0.00 0.02 0.25 56.39 0.01

EW(B) 0.00 0.25 0.56 86.42 0.05

ABG 0.00 0.03 Inf Inf 0.00

ABG Kernel 0.00 0.03 0.60 142.25 0.05

DGP4: Bimodal

NP(freq) 0.00 0.00 0.00 0.00 0.00

EW(freq) 0.00 0.00 0.00 0.00 0.11

NP(B) 0.00 0.00 0.00 0.05 0.02

EW(B) 0.00 0.00 0.00 0.01 0.08

ABG 0.00 0.00 0.32 6.23 0.31

ABG Kernel 0.00 0.00 0.00 0.02 0.03

DGP5: Trimodal

NP(freq) 0.00 0.00 0.00 0.01 0.03

EW(freq) 0.00 0.00 0.00 0.01 0.36

NP(B) 0.00 0.00 0.00 0.03 0.03

EW(B) 0.00 0.00 0.00 0.00 0.06

ABG 0.00 0.01 0.30 5.09 0.25

ABG Kernel 0.00 0.00 0.00 0.01 0.09
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4 Empirical results: Revisiting the growth-at-risk application

of ABG

ABG established the empirical utility of quantile regressions for modeling and particularly
forecasting the conditional density of US GDP growth. They found that deteriorating financial
conditions, as captured by the Chicago Fed’s National Financial Conditions Index (NFCI),
have an asymmetric effect on GDP growth.9 In particular, they link GDP growth tail risks
to poor financial conditions. Recessions are associated with left-skewed conditional forecast
densities. Carriero et al. (2023) challenge this view, noting that ABG’s empirical finding
that downside risk varies more than upside risk could equally well be explained by symmetric
conditional forecast densities as by asymmetric unconditional forecast densities. These could
be produced, for example, by Bayesian VAR models with stochastic volatility. Caldara et al.
(2021) similarly suggest use of a parametric modeling framework that rationalizes the empirical
findings of ABG but maintains use of symmetric conditional densities. They capture nonlinear
effects with a Markov-switching model, in which the transition probabilities depend, inter alia,
on financial conditions. This fits with a long literature supportive of nonlinear models of GDP
growth, notably Hamilton (1989), that finds GDP growth is well characterized as regime-
switching. Such regime-switching models imply unconditional multimodality. But while they
usually imply conditional (within a regime) unimodality, if a QR were fitted to data generated
from a regime-switching model the conditional densities from the QR need not be unimodal.10

Adrian et al. (2021) also jettison the use of QR and instead use kernel-based estimators to
support their finding that the forecast density of GDP growth is approximately Gaussian and
unimodal during normal periods, but becomes multimodal during periods of tight financial
conditions. They also make the theoretical case for multimodality, explaining how it arises in
macrofinancial intermediary models with occasionally binding financial constraints.

Given the degree to which ABG’s empirical findings, based on their parametric quantile-
matching approach, have influenced the subsequent literature, as we have just selectively
reviewed, we emphasize the importance of letting the “data speak” about the nature of the
conditional density forecast for GDP growth when mapping the quantile forecasts to the
density forecasts. Accordingly, we revisit ABG’s application. But we compare their skewed-t
conditional density forecasts, which assume unimodality but allow for asymmetry, with those

9The NFCI aggregates a large set of variables capturing credit quality, risk, and leverage.
10More generally, we emphasize that observational equivalence in reduced-form relationships is consistent

with rival structural explanations. As a motivating example in another applied context, Benati and Surico
(2009) show how rival structural explanations for the Great Moderation are consistent with the (same) reduced-
form evidence. So while ABG established that QRs evidence a nonlinear relationship between GDP growth
and financial conditions, as a nonparametric (reduced-form) tool QRs cannot discriminate between alternative
more structural explanations for the drivers of GDP growth.
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conditional density forecasts formed when we make no such assumption and, via Algorithm
1, better let the data inform this mapping.

Specifically, to facilitate comparison with ABG’s parametric approach to constructing
forecast densities from QRs, we use their data, sample periods, and preferred models. Specifically,
we estimate QR models relating GDP growth to both lagged GDP growth and the NFCI.11

This then lets us produce, via the aforementioned parametric and nonparametric approaches,
one-quarter-ahead and one-year-ahead forecast densities for GDP growth conditional first on
both lagged GDP growth and the NFCI and second on just lagged GDP growth. Thereby, we
isolate the role that the NFCI plays in driving results. We re-assess ABG’s claim that financial
conditions are critical when density forecasting GDP growth in the US. In common with much
of the literature, we focus on assessing the in-sample fit of the conditional densities. Thus we
provide guidance on the importance of considering how to fit a density to the quantile forecasts.
But we do provide some out-of-sample evaluation evidence too, although the latter arguably
tells us more about the instabilities faced out-of-sample (see Rossi (2021)) than about the
relative merits of different ways of constructing predictive densities from QRs. Nevertheless, in
anticipation of the known benefits of shrinkage when forecasting out-of-sample, we do consider
a variant of NP(B) that imposes a more informative prior. That is, we estimate Bayesian QRs
with Minnesota priors. We follow Carriero et al. (2022) and set Vi, the i-diagonal elements of
Vβ, as follows:

Vi =


λ1λ2

σGDP

σj

λ1

lλ3

1000σGDP

for the coefficients other than the lag l of GDP,

for the coefficients on the lag l of GDP,

for the intercept,

(27)

where σGDP and σj are the standard deviations from an AR(4) model for GDP growth and the
j-th regressor (other than GDP growth), estimated with data available at the forecast origin.
We follow Carriero et al. (2022) and set λ1 = λ2 = 0.2, and λ3 = 1. In terms of the in-sample
fit, the prior variance on the coefficient on the lag of GDP is 0.2 for both the one-quarter-
and one-year-ahead forecasts. On the other hand, the prior variance on the coefficient for the
NFCI differs. One-quarter-ahead, its prior variance is 0.25, while one-year-ahead it is 0.08.

11A subsequent literature has also used QRs to model GaR and construct GDP growth density forecasts. But
it has examined the benefits of disaggregating the Chicago Fed’s NFCI, using real-time NFCI vintages, and/or
considered additional indicators; e.g., see Plagborg-Moller et al. (2020), Reichlin et al. (2020), Brownlees and
Souza (2021), Kohns and Szendrei (2021), and Amburgey and McCracken (2023). Given the importance of
the original modeling strategy in shaping the ongoing research agenda, as summarized in our introduction, we
return to ABG’s model space and consider the (latest-vintage) NFCI alone. We expect that adding in extra
variables and allowing for possible additional nonlinearities will further distinguish our approach from ABG’s.
Given their skewed-t assumption, ABG’s densities cannot accommodate the likely multimodalities associated
with nonlinearity.
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Let NP(BM) denote forecast densities produced using this Minnesota prior and Algorithm 1.
Given this paper’s emphasis on construction of the entire predictive density rather than just

estimating GaR, we focus on assessing the overall fit of the competing forecast densities using
probability integral transforms (PITs), i.e., the CDF of the forecast evaluated at the subsequent
realization of GDP growth. For correctly calibrated forecast densities (see Diebold et al. (1998)
and Mitchell and Wallis (2011)), these PITs, at the minimum, should be uniformly distributed.
As shown by Diebold et al. (1998), correctly calibrated forecast densities will be preferred by
all users, irrespective of their loss function. Specifically, we use the Rossi and Sekhposyan
(2019) test and, following their recommendation, for multi-step-ahead forecasts, given the
serial correlation in the PITs, to construct the critical values we use a block bootstrap of length
P 1/3, where P is the sample size in the evaluation period. Nevertheless, to supplement these
PITs-based tests of calibration and to facilitate cross-model comparison, we also report two
commonly used scoring rules for density evaluation: the average logarithmic predictive score
and the average continuous ranked probability score (CRPS). The CRPS is a popular density
forecast-based scoring rule that offers greater robustness to outliers than the logarithmic score
used by ABG; see Gneiting and Raftery (2007). We also looked at forecast accuracy in specific
regions of the forecast density, using the PITs-based test of Rossi and Sekhposyan (2019) and
the quantile-weighted CRPS of Gneiting and Ranjan (2011); these results are summarized
below, drawing on the tables in the online appendix.

Figures 2 and 3 plot the cumulated PITs, respectively, for the one-quarter-ahead and
one-year-ahead forecast densities produced using the models of Section 3 plus NP(BM).12

These models consider both the NFCI and lagged GDP growth as conditioning information,
as favored by ABG. We also plot the PITs dropping the NFCI from the QR, to isolate the
importance of conditioning on financial conditions when density forecasting GDP growth.13

Looking at these cumulated PIT plots across these two figures, it is apparent that both of
the new approaches (NP and EW), whether estimated by frequentist or Bayesian methods,
deliver better calibrated forecast densities than either ABG or ABG kernel. Their cumulated
PITs are closer to the 45-degree line. While based on the same frequentist QR as in ABG, this
indicates that fitting the skewed-t density to these same quantile forecasts is not as beneficial
as using Algorithm 1 or indeed using EW. To investigate whether it is the higher value of
k = 19 in NP(freq), relative to ABG (where k = 4), that explains this result rather than
the use of Algorithm 1, we produced predictive densities from ABG assuming k = 19 (see

12We drop EW(freq) to make space for NP(BM), noting that results using EW(freq), as in the Monte Carlo,
are in general slightly worse than those using NP(freq).

13We emphasize how when constructing the ABG densities we use ABG’s replication code. Therefore,
as discussed in Section 3, we approximate integrals with discrete sums. We return later to the empirical
applications of this.
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Figure 19 in the online appendix). As in the Monte Carlo experiments, these alternative ABG
densities are found to perform similarly to those when k = 4. Thus, we conclude that it is the
use of Algorithm 1, rather than a different sized k, that yields the forecasting gains. But the
ABG densities are still well-calibrated, since while we do observe a few extra little deviations
from the 45-degree line, their cumulated PITs still remain well within the critical value bands.
Interestingly, all densities are well-calibrated at a 95 percent significance level, according to
the PITs test of Rossi and Sekhposyan (2019), irrespective of whether the NFCI is included
in the QR.14
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Figure 2: CDF of the in-sample PITs (one-quarter-ahead forecasts, 1973Q1-2015Q4) from the
6 density forecasts with and without the NFCI.
Notes: The 5 estimators (ABG, EW(B), NP(B), NP(freq), and ABG Kernel) are defined in Section 3. NP(BM)
uses the nonparametric Algorithm 1 and estimates a Bayesian QR with the Minnesota prior of Carriero et al.
(2022). The figures show the empirical CDF of the PITs (blue line) from the QR models with the NFCI (and
lagged GDP), the empirical CDF of the PITs (dashed red line) from the QR models without the NFCI, the
CDF of the PITs under the null hypothesis of correct calibration (the 45-degree line), and the 5% critical value
bands of the Rossi and Sekhposyan (2019) PITs test.

Figure 4 confirms that using one of our preferred densities, we take NP(freq), when
conditioned on both the NFCI and lagged GDP growth, does not change the central narrative

14Figure 18 in the online appendix again shows how the choice of k in NP(freq) matters. From the S-shaped
nature of the cumulated PITs, we can infer that the density forecast is too narrow at k = 4. Calibration is
better at k = 99, but not obviously better than when k = 19 (as shown in Figures 2 and 3). This is consistent
with the Monte Carlo evidence in Section 3 that a “medium-sized” value for k appears sufficient. The critical
value bands of Rossi and Sekhposyan (2019) should be taken as “general guidance,” to quote ABG, since they
are derived assuming a rolling window of estimation, while, like ABG, we use an expanding window.
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Figure 3: CDF of the in-sample PITs (one-year-ahead forecasts, 1973Q4-2015Q4) from the 6
density forecasts with and without NFCI.
Note: See notes to Figure 2.

of ABG: the left tail of the conditional density of GDP growth moves with the tightness
of financial conditions.15 And the right tail is relatively invariant. Figure 4 evidences this
by plotting, over time, the expected shortfall and longrise estimates from both ABG and
NP(freq). Expected shortfall (SFt+h) and longrise (LRt+h) summarize downside and upside
risk, respectively. They measure the total probability mass that the conditional distribution
assigns to the left and right tails of the distribution:

SFt+h =
1

π

∫ π

0

F̂−1
yt+h|xt

(τ |xt)dτ ; (28)

LRt+h =
1

π

∫ 1

1−π

F̂−1
yt+h|xt

(τ |xt)dτ. (29)

Figure 4 shows that the expected shortfall and longrise estimates from ABG and NP(freq)
track each other very closely. Expected shortfall is far more volatile than expected longrise,
as the narrative of ABG emphasizes.

However, despite this similarity, when we look more deeply at the densities underlying
these estimates we start to appreciate that the choice of how to construct the density from

15This “stylized fact” has been confirmed using alternative modeling approaches to QR, such as the
parametric time-varying skewed-t model of De Polis et al. (2020).
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Figure 4: In-sample plots of the expected shortfall and expected longrise at τ = 0.05 using
ABG and NP(freq), from QRs with the NFCI and lagged GDP.

the quantile forecasts does still matter. It can reveal further features of economic interest.
Figures 5 and 6 show this by plotting, over time, for the one-quarter-ahead and one-year-ahead
forecasts, respectively, the first 4 moments of the ABG and NP(freq) densities. While the first
two moments from ABG and NP(freq) are similar, the third and especially fourth moments
differ, albeit they share some commonalities. In particular, we note how the evidence for
or against skewness in GDP growth varies over time. This is consistent with Carriero et al.
(2023), who find, using alternative tests, weak evidence for skewness. Figure 5, in particular,
shows that NP(freq) points to less negative skewness during the period of the global financial
crisis.16 This disagreement between ABG and NP(freq) is also consistent with the finding in
Plagborg-Moller et al. (2020) that only the lower moments of the GDP growth conditional
density are well-estimated.17

Next we provide some illustrative in-sample plots of our predictive densities. In Figure 7
we zoom in on a relatively stable period: 2005. Then, in Figure 8, we look at 2008, during the
global financial crisis, a period also emphasized in ABG and Adrian et al. (2021). We focus
on the one-quarter-ahead in-sample densities, with the analogous one-year-ahead and out-of-

16This is consistent with modest falls in the degree of asymmetry when NP(freq) rather than ABG is used in
Figure 4. That is, while following the same general patterns, expected shortfall and longrise are more volatile,
over time, when ABG rather than NP(freq) is consulted.

17Figures 16 and 17 in the online appendix indicate how ABG’s coding choice to assess the skewed-t density
over a finite grid is important. If, instead, we assess the skewed-t density analytically, instead of relying on
ABG’s approximation, we observe far more extreme estimates for the higher moments.
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Figure 5: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-quarter-ahead), from QRs with NFCI and lagged GDP.

sample plots in the online appendix.18 Confirming the findings of Adrian et al. (2021), who
use kernel methods, clear evidence of multimodality emerges at the time of the global financial
crisis when we use Algorithm 1 to construct the density forecast from the QR.19 If, as in ABG,
we assume a skewed-t density we obscure this important macroeconomic feature. Instead, we
would simply infer more evidence for a skewed density. The evidence of multimodality during
the global financial crisis, gleaned from NP(freq), is somewhat more muted when we look at
the out-of-sample density forecasts as plotted in the online appendix. But, as shown by Figure
9, when the calibrated unimodality test of Hartigan and Hartigan (1985) as proposed by Cheng
and Hall (1998) is used, rejections of unimodality are far greater when we do condition on the
NFCI. These rejections are especially pronounced during NBER recessionary periods, again
confirming the finding of Adrian et al. (2021). We do also see evidence from these unimodality
tests that the properties of the GDP growth density change quite rapidly, even outside of
recessionary periods, especially when conditioning on the NFCI. As we go on to discuss next,
this may be explained by the NFCI being a weak predictor, so that small movements in the

18Figures 22, 23, and 24 through 27 in the online appendix qualitatively confirm the impression from Figures
7 and 8.

19There is also recent evidence that professional forecasters’ density forecasts for GDP growth are best
acknowledged, at certain points in time, as multimodal. Ganics et al. (2023), who study the Survey of
Professional Forecasters in the US, find that multimodalities in their combined GDP growth densities emerge
around business cycle turning points, such as the Great Recession. Figures 32 and 33 in the online appendix
(Section 6.5) illustrate that while decreasing k does, as anticipated, affect the look of the forecast densities,
increasing k does not. This offers some reassurance, further to the aforementioned simulation evidence in Table
5 in the online appendix, that our evidence for multimodality is not a direct consequence of setting k = 19.
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Figure 6: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-year-ahead), from QRs with the NFCI and lagged GDP.

NFCI can lead to (larger) changes in the shape of the predictive densities for GDP.
We should emphasize, however, that these empirical features may well be a product of the

predictors (the model space) chosen to explain GDP growth. To facilitate direct comparison
with ABG and draw out the empirical relevance of their choice to assume a skewed-t density,
our application uses their two predictors: lagged GDP growth and the NFCI. An interpretation
of our (and ABG’s) results is that we see the longer left tails to the GDP growth density emerge
during recessions as the NFCI pushes the low conditional quantiles to the left while leaving the
rest of the distribution relatively unaffected. If additional - and importantly better - predictors
of GDP growth were considered, one could imagine that the center of the forecast density
would also shift to the left during recessions. Thus, rather than see recessions associated with
longer left tails, we would simply observe the whole forecast density shift to the left. To begin
to investigate this claim empirically, we experimented with expanding our set of predictors
to consider the global and financial factors suggested by Plagborg-Moller et al. (2020). As
summarized in the online appendix (Section 6.6), this expanded set of predictors delivers more
accurate density forecasts. It also results in forecast densities that look more symmetric over
recessions, although evidence of multimodality remains.

Finally, we turn to out-of-sample evaluation of the forecast densities over the sample period
1993Q1-2015Q4. Again this is the same evaluation period as in ABG, and we follow ABG
in recursively producing the predictive densities from QRs estimated on expanding windows
of data dating back to 1973Q1. Figures 10 and 11 show that the accuracy of the forecast
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Figure 7: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005
made one-quarter-ahead (in-sample).
Notes: The 5 estimators (ABG, NP(freq), NP(B), EW(B), and ABG Kernel) are defined in Section 3. NP(BM)
uses the nonparametric Algorithm 1 and estimates a Bayesian QR with the Minnesota prior of Carriero et al.
(2022).
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Figure 8: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-quarter-ahead (in-sample).
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Figure 9: P-values over time from the calibrated Hartigans’ unimodality test.
Notes: Panel A reports the p-values from the Hartigans’ unimodality test (one-quarter-ahead) for the NP(freq)
in-sample GDP growth density forecasts conditional on the NFCI and lagged GDP. Panel B reports the p-
values from the Hartigans’ unimodality test over time (one-year-ahead) for the NP(freq) in-sample GDP growth
density forecasts conditional on the NFCI and lagged GDP. Panel C reports the p-values from the Hartigans’
unimodality test over time (one-quarter-ahead) for the NP(freq) in-sample GDP growth density forecasts
conditional on only lagged GDP. Panel D reports the p-values from the Hartigans’ unimodality test over time
(one-year-ahead) for the NP(freq) in-sample GDP growth density forecasts conditional only on lagged GDP.
NBER recessionary periods are shaded gray.
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densities is, as expected, considerably worse out-of-sample. Comparison with the in-sample
densities indicates that they too deteriorate in accuracy when evaluated on the sub-sample
from 1993.20 ABG does especially poorly, with the null hypothesis of correct calibration
rejected at a 95 percent significance level both one-quarter- and one-year-ahead. By contrast,
the cumulated PITs are closer to the 45-degree line when Algorithm 1 is used on a QR estimated
by Bayesian methods with the Minnesota prior: NP(BM). Figures 10 and 11 also show that
across methods the PITs are closer to the 45-degree line when not conditioning on financial
conditions, reminding us that autoregressive models can be hard to beat when forecasting
out-of-sample.

Table 3 shows that out-of-sample the Bayesian QR methods with the Minnesota prior
using Algorithm 1 (NP(BM)) deliver the highest average logarithmic predictive scores and the
lowest CRPSs when conditioning on the NFCI. But the average logarithmic score statistics,
in particular, are dominated by the forecasting failures at the time of the global financial
crisis.21 So we prefer to emphasize the CRPS, given that it is more robust to large but rare
forecasting errors.22 Conditioning the GDP density forecasts on the NFCI also tends to lead
to improvements in the CRPS, especially one-quarter-ahead. Importantly, in terms of this
paper’s focus on isolating the best means of constructing density forecasts from the same
quantile forecasts, Table 3 shows that NP at least matches the accuracy of ABG, at both
forecast horizons.

Despite the fact that the accuracy of the ABG densities is often improved upon, both
in-sample and out-of-sample, this is not the key takeaway we wish to emphasize. Instead,
the bottom line is that these alternative nonparametric ways of constructing the predictive
density from QRs on average match, and at times (albeit perhaps modestly) improve upon,
the statistical accuracy of the ABG densities.23 But in so doing they unmask deviations from
unimodality lost by ABG. In turn, they suggest that multimodalities, rather than deviations
from symmetry, are the primary economic feature of GDP density forecasts that should be
emphasized, particularly when conditioning on financial conditions. But, as also emphasized
by Ganics et al. (2023) in their analysis of the density forecasts from the SPF, periods when
multimodalities emerge tend to be rare and short-lived. This means that accommodating

20See Figures 20 and 21 in the online appendix.
21Figures 30 and 31 in the online appendix demonstrate this by plotting the quarter-by-quarter log scores.

EW(B) does especially poorly over the recession.
22When we use the Rossi and Sekhposyan (2019) test to assess the calibration of specific regions of the

forecast distribution, we see even more clearly how NP(BM) provides more accurate forecasts than ABG in
the upper right half of the forecast density, with ABG also bettered in the left tail but less strongly; see Table
8 in the online appendix. The cross-model differences in the quantile-weighted CRPS statistics reported in
Table 9, however, appear more modest, although ABG is still beaten.

23Giacomini and White (2006) tests confirm that the differences between the average scores seen in Table 3
are not statistically significant at traditional significance levels.
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them does not make a big difference when evaluating the average statistical performance of
the models. But it affects the economic narrative.
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Figure 10: CDF of the out-of-sample PITs (one-quarter-ahead, 1993Q1-2015Q4) from the 6
density forecasts with the NFCI and lagged GDP.
Notes: the figures show the empirical CDF of the PITs (red line), the CDF of the PITs under the null hypothesis
of correct calibration (the 45-degree line), and the 5% critical value bands of the Rossi and Sekhposyan (2019)
PITs test. The 5 estimators (ABG, NP(freq), NP(B), EW(B), and ABG Kernel) are defined in Section 3.
NP(BM) uses the nonparametric Algorithm 1 and estimates a Bayesian QR with the Minnesota prior of
Carriero et al. (2022).
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Figure 11: CDF of the out-of-sample PITs (one-year-ahead, 1993q4-2015Q4) from the 6 density
forecasts with the NFCI and lagged GDP.
Notes: See Notes to Figure 10.

Table 3: Average log predictive score (LPS) and continuous ranked probability score (CRPS)
for the one-quarter-ahead forecasts (out-of-sample, 1993Q1-2015Q4) and the one-year-ahead
forecasts (out-of-sample, 1993Q4-2015Q4)

With NFCI & GDP With lagged GDP only

One-quarter-ahead One-year-ahead One-quarter-ahead One-year-ahead

LPS CRPS LPS CRPS LPS CRPS LPS CRPS

ABG -2.24 1.27 -2.02 0.98 -2.31 1.32 -1.99 0.96

EW(B) -0.81 0.98 -1.27 0.99 -0.36 0.97 -1.06 0.98

NP(B) -0.01 0.98 0.02 0.99 0.00 0.98 -0.03 1.00

NP(BM) 0.01 0.98 0.01 0.98 0.00 0.98 -0.03 1.00

NP(freq) -0.23 0.99 -0.03 0.99 -0.02 0.98 -0.09 1.00

ABG Kernel -0.03 1.03 -0.09 1.04 -0.03 1.00 -0.11 1.03
Notes: The LPS values are presented relative to (by subtraction of) the LPS from ABG. The CRPS values
are presented relative to (divided by) those from ABG. The 5 estimators (ABG, EW(B), NP(B), NP(freq),
NP(B), and ABG Kernel) are defined in Section 3. NP(BM) uses the nonparametric Algorithm 1 and
estimates a Bayesian QR with the Minnesota prior of Carriero et al. (2022).
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5 Conclusion

This paper reconsiders how to construct density forecasts from quantile regressions. While
quantile regression methods are finding increasing application in macroeconomics and finance,
as one means of accommodating nonlinear relationships, the specific issue of how to construct
density forecasts from quantile regressions has received less attention. In the macroeconomic
and finance literature, following ABG, it has become popular to assume a specific parametric
form when matching the quantile forecasts to a density forecast. We reconsider nonparametric
approaches to constructing predictive densities from quantile regressions, estimated either by
frequentist or by Bayesian methods, and compare these with the parametric approach. We
suggest a simple simulation-based algorithm. Unlike the parametric approach of ABG, we
find that it can flexibly accommodate various distributional shapes.

In an application revisiting ABG, our proposed nonparametric approach corroborates the
finding of Adrian et al. (2021) that the conditional density of GDP growth in the US can
exhibit multimodality, especially during recessionary periods. These multimodalities in GDP
growth are found to be increasingly prominent when the density forecasts, as suggested by
ABG, are conditioned on financial conditions. But while Adrian et al. (2021) are forced to
move away from the QR framework of ABG to document this novel empirical fact, we show
that this finding is indeed shared by QR-based density forecasts - as long as we let the “data
speak.” However, we need to let the “data speak” not just when we model GDP growth
with respect to financial conditions, via the first-step quantile regressions, but also when we
subsequently construct the forecast densities from the quantile forecasts.

Accordingly, this paper supports the addition of QR methods to the toolkit of the macro
modeler. But it suggests that, when constructing density forecasts from quantile forecasts, it
is better to respect the nonparametric flavor of QR by also using non- (or semi-) parametric
methods to construct the density. Importantly, these methods provide similarly accurate,
even improved (on some metrics) out-of-sample, density forecasts for US GDP growth. The
methods are also operational irrespective of whether the first-step QRs are estimated via
frequentist or Bayesian methods. Relative to ABG and their assumption that the forecast
density is skewed-t, our nonparametric approach unmasks deviations from unimodality in
GDP growth forecast densities when conditioned on financial conditions. The evolution of
multimodalities, rather than asymmetries, then becomes the central macroeconomic narrative
for the conditional predictive distribution of GDP growth. Following Adrian et al. (2021),
this calls for structural macroeconomic models able to accommodate these new empirical
features, such as, for example, the nonlinear dynamic stochastic general equilibrium model
of Rottner (2021) that allows for excessive leverage accumulation and endogenous financial
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crises. Ultimately, as a nonparametric (reduced-form) modeling tool, QRs cannot discriminate
between alternative structural explanations for the drivers of movements in the GDP growth
density. But QRs can provide, especially when, as we suggest in this paper, the density is
fitted to the quantile forecasts nonparametrically, a flexible way of modeling and forecasting
this density.
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This appendix contains supplementary tables and figures referred to in the main paper.
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6.1 Supplementary Monte Carlo results

Table 4: Average mean squared error and Kullback-Leibler (KL) distance for NP(freq) using
k = 4 and k = 99

Models Mean Variance Skewness Kurtosis KL

k = 4 and T = 100

DGP1: Unimodal (Gaussian) 0.02 1.19 0.05 1.84 0.31

DGP2: Unimodal (Negative Skewness) 0.17 20.87 0.02 5.42 0.32

DGP3: Unimodal (Skew & High Kurtosis) 0.03 1.21 1.26 105.97 0.35

DGP4: Bimodal 0.02 0.03 0.16 0.28 0.32

DGP5: Trimodal 0.04 0.36 0.00 0.06 0.36

k = 4 and T = 1, 000

DGP1: Unimodal (Gaussian) 0.01 1.02 0.04 1.85 0.30

DGP2: Unimodal (Negative Skewness) 0.06 18.61 0.01 5.42 0.32

DGP3: Unimodal (Skew & High Kurtosis) 0.00 0.76 1.23 106.43 0.35

DGP4: Bimodal 0.02 0.03 0.15 0.27 0.32

DGP5: Trimodal 0.04 0.36 0.00 0.06 0.36

k = 99 and T = 100

DGP1: Unimodal (Gaussian) 0.01 0.02 0.07 0.35 0.03

DGP2: Unimodal (Negative Skewness) 0.05 0.59 0.39 18.53 0.04

DGP3: Unimodal (Skew & High Kurtosis) 0.01 0.16 1.16 61.56 0.04

DGP4: Bimodal 0.00 0.00 0.01 0.02 0.03

DGP5: Trimodal 0.00 0.00 0.01 0.02 0.05

k = 99 and T = 1, 000

DGP1: Unimodal (Gaussian) 0.00 0.00 0.01 0.06 0.00

DGP2: Unimodal (Negative Skewness) 0.00 0.07 0.02 0.45 0.00

DGP3: Unimodal (Skew & High Kurtosis) 0.00 0.02 0.37 59.98 0.00

DGP4: Bimodal 0.00 0.00 0.00 0.00 0.01

DGP5: Trimodal 0.00 0.00 0.00 0.00 0.03
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Table 5: Rejection rates (across 1,000 replications) of unimodality at 95% using the calibrated
Hartigans’ test

DGP T = 25 T = 50 T = 250 T = 1, 000 T = 10, 000

k = 4

Gaussian 28.70% 30.00% 23.30% 15.20% 2.00%

Negative Skewness 18.00% 16.60% 5.30% 1.00% 0.00%

Skew & High Kurtosis 14.00% 9.70% 0.20% 0.00% 0.00%

Bimodal 94.50% 98.70% 100.00% 100.00% 100.00%

Trimodal 16.80% 8.50% 0.20% 0.00% 0.00%

k = 9

Gaussian 27.80% 13.00% 0.00% 0.00% 0.00%

Negative Skewness 21.30% 8.30% 0.00% 0.00% 0.00%

Skew & High Kurtosis 20.50% 8.00% 0.10% 0.00% 0.00%

Bimodal 93.30% 96.60% 99.90% 100.00% 100.00%

Trimodal 71.50% 18.80% 0.90% 0.00% 0.00%

k = 19

Gaussian 34.20% 11.70% 0.00% 0.00% 0.00%

Negative Skewness 31.80% 9.50% 0.00% 0.00% 0.00%

Skew & High Kurtosis 30.10% 7.90% 0.00% 0.00% 0.00%

Bimodal 91.30% 86.30% 94.20% 99.50% 100.00%

Trimodal 95.60% 94.90% 97.40% 99.90% 100.00%

k = 99

Gaussian 65.10% 31.70% 0.00% 0.00% 0.00%

Negative Skewness 62.60% 28.50% 0.00% 0.00% 0.00%

Skew & High Kurtosis 59.20% 20.30% 0.00% 0.00% 0.00%

Bimodal 96.00% 96.40% 98.70% 99.90% 100.00%

Trimodal 99.10% 99.30% 99.90% 100.00% 100.00%
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Table 6: Average mean squared error and Kullback-Leibler (KL) distance for EW(freq) using
k = 4 and k = 99

Models Mean Variance Skewness Kurtosis KL

k = 4 and T = 100

DGP1: Unimodal (Gaussian) 0.02 1.05 0.05 1.85 0.28

DGP2: Unimodal (Negative Skewness) 0.12 21.86 0.02 5.55 0.27

DGP3: Unimodal (High Kurtosis) 0.02 0.98 1.26 106.16 0.28

DGP4: Bimodal 0.02 0.03 0.14 0.26 0.62

DGP5: Trimodal 0.04 0.34 0.01 0.08 0.57

k = 4 and T = 1, 000

DGP1: Unimodal (Gaussian) 0.01 1.06 0.04 1.85 0.30

DGP2: Unimodal (Negative Skewness) 0.06 19.49 0.01 5.45 0.29

DGP3: Unimodal (High Kurtosis) 0.00 0.74 1.24 106.44 0.28

DGP4: Bimodal 0.02 0.03 0.15 0.27 0.62

DGP5: Trimodal 0.04 0.36 0.00 0.06 0.57

k = 99 and T = 100

DGP1: Unimodal (Gaussian) 0.01 0.02 0.05 0.32 0.02

DGP2: Unimodal (Negative Skewness) 0.05 0.61 0.23 5.14 0.02

DGP3: Unimodal (High Kurtosis) 0.01 0.09 0.71 52.96 0.02

DGP4: Bimodal 0.00 0.00 0.00 0.02 0.07

DGP5: Trimodal 0.00 0.00 0.01 0.02 0.28

k = 99 and T = 1, 000

DGP1: Unimodal (Gaussian) 0.00 0.00 0.01 0.05 0.00

DGP2: Unimodal (Negative Skewness) 0.01 0.08 0.03 0.40 0.00

DGP3: Unimodal (High Kurtosis) 0.00 0.02 0.38 61.00 0.00

DGP4: Bimodal 0.00 0.00 0.00 0.00 0.06

DGP5: Trimodal 0.00 0.00 0.00 0.00 0.28
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6.2 Alternative estimators of the tails

Here we present results when, instead of the Gaussian distribution used in the main paper (see
equations (14) and (15)) we assume that the generalized extreme value (EV) distribution of
type 1 (also known as the Gumbel) applies in the tails of the forecast densities. In particular,
we solve:

exp

{
− exp

{
−x′

tβτ1 − µ1

σ1

}}
= τ1, exp

{
− exp

{
−x′

tβτ2 − µ1

σ1

}}
= τ2

exp

{
− exp

{
−
x′
tβτk−1

− µ2

σ2

}}
= τk−1, exp

{
− exp

{
−x′

tβτk − µ2

σ2

}}
= τk.

The EV density is commonly used when undertaking inference of extremal QRs; see
Chernozhukov (2005). As shown here, when repeating the main empirical exercises in the
main paper using EV rather the Gaussian distribution, the densities constructed assuming
EV in the tails look very similar. They also have forecasting performance similar to that
presented in the main paper assuming Gaussianity in the tails.

We also experiment and report results when applying the Student-t CDF in the tails,
to acknowledge that fatness in the extreme tails may be helpful in some applications. This
involves fitting the density beyond the extreme quantiles by numerically solving the following
set of equations:

Tν1(
x′
tβτ1 − µ1

σ1

) = τ1, Tν1(
x′
tβτ2 − µ1

σ1

) = τ2, Tν1(
x′
tβτ3 − µ1

σ1

) = τ3

Tν2(
x′
tβτk−2

− µ2

σ2

) = τk−2, Tν2(
x′
tβτk−1

− µ2

σ2

) = τk−1, Tν2(
x′
tβτk − µ2

σ2

) = τk,

where Tν is the t-distribution with ν degrees of freedom. Our empirical results assuming a t
density in the tails are a little different from those assuming either Gaussianity or EV. The t
density introduces some extra “wiggles” into the extreme tails of the forecast densities.

42



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) - one quarter ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) - one year ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
E

m
pi

ric
al

 C
D

F
NP(freq) Composite QR estimation and Student-t tails - one quarter ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) Composite QR estimation and Student-t tails - one year ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) Composite QR estimation only - one quarter ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) Composite QR estimation only - one year ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) Student-t tails only - one quarter ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) Student-t tails only - one year ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) Composite QR estimation and Gumbel distribution - one quarter ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) Composite QR estimation and Gumbel distribution - one year ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) Gumbel distribution only - one quarter ahead

Empirical Model
Theoretical and 5% Critical Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

E
m

pi
ric

al
 C

D
F

NP(freq) Gumbel distribution only  - one year ahead

Empirical Model
Theoretical and 5% Critical Value

Figure 12: CDF of the in-sample PITs for NP(freq) and NP(freq) using alternative estimators
of the tails.
Note: The figures show the empirical CDF of the PITs (red line), the CDF of the PITs under the null
hypothesis of correct calibration (the 45-degree line), and the 5% critical value bands of the Rossi
and Sekhposyan (2019) PITs test.
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Figure 13: CDF of the out-of-sample PITs for NP(freq) and NP(freq) using alternative
estimators of the tails.
Note: The figures show the empirical CDF of the PITs (red line), the CDF of the PITs under the null
hypothesis of correct calibration (the 45-degree line), and the 5% critical value bands of the Rossi
and Sekhposyan (2019) PITs test
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Table 7: Average log predictive score (LPS) and continuous ranked probability score (CRPS)
for the one-quarter-ahead forecasts (out-of-sample, 1993Q1-2015Q4) and the one-year-ahead
forecasts (out-of-sample, 1993Q4-2015Q4) for NP(freq) with alternative estimators of the tails

One-quarter-ahead

LPS CRPS Left Right Heavy Tails Center

NP(freq) Composite QR estimation and Student-t tails -3.28 1.29 0.40 0.41 0.17 0.32 0.24

NP(freq) Composite QR estimation only -3.30 1.29 0.39 0.38 0.13 0.28 0.24

NP(freq) Student-t tails only -3.29 1.29 0.40 0.41 0.17 0.32 0.24

NP(freq) Composite QR estimation and Gumbel distribution -3.27 1.29 0.40 0.41 0.17 0.32 0.24

NP(freq) Gumbel distribution only -2.44 1.26 0.40 0.41 0.17 0.32 0.24

One-year-ahead

NP(freq) Composite QR estimation and Student-t tails -2.21 0.98 0.31 0.30 0.13 0.24 0.19

NP(freq) Composite QR estimation only -2.22 0.98 0.31 0.28 0.10 0.21 0.19

NP(freq) Student-t tails only -2.22 0.98 0.31 0.30 0.13 0.24 0.19

NP(freq) Composite QR estimation and Gumbel distribution -2.21 0.98 0.31 0.30 0.13 0.24 0.19

NP(freq) Gumbel distribution only -2.03 0.97 0.31 0.30 0.13 0.24 0.19
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Figure 14: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-quarter-ahead (out-of-sample)
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Figure 15: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-year-ahead (out-of-sample)
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6.3 Additional tests on and analysis of the forecast densities: In-

sample results
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Figure 16: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-quarter-ahead), when ABG’s skewed-t density is simulated not truncated
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Figure 17: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-year-ahead), when ABG’s skewed-t density is simulated not truncated
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Figure 18: CDF of the in-sample PITs for NP(freq) when k = 4 and k = 99.
Note: The figures show the empirical CDF of the PITs (red line), the CDF of the PITs under the null hypothesis
of correct calibration (the 45-degree line), and the 5% critical value bands of the Rossi and Sekhposyan (2019)
PITs test.
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Figure 19: CDF of the in-sample PITs for ABG when k = 19.
Note: The figures show the empirical CDF of the PITs (red line), the CDF of the PITs under the null hypothesis
of correct calibration (the 45-degree line), and the 5% critical value bands of the Rossi and Sekhposyan (2019)
PITs test.
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Figure 20: CDF of the in-sample PITs (one-quarter-ahead forecasts, 1993Q1-2015Q4) from
the 6 density forecasts with and without the NFCI.
Note: The figures show the empirical CDF of the PITs (blue line) from the QR models with the NFCI (and
lagged GDP), the empirical CDF of the PITs (dashed red line) from the QR models without the NFCI, plus
the CDF of the PITs under the null hypothesis of correct calibration (the 45-degree line), and the 5% critical
value bands of the Rossi and Sekhposyan (2019) PITs test.
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Figure 21: CDF of the in-sample PITs (one-year-ahead forecasts, 1993Q4-2015Q4) from the 6
density forecasts with and without NFCI.
Note: The figures show the empirical CDF of the PITs (blue line) from the QR models with the NFCI (and
lagged GDP), the empirical CDF of the PITs (dashed red line) from the QR models without the NFCI, plus
the CDF of the PITs under the null hypothesis of correct calibration (the 45-degree line), and the 5% critical
value bands of the Rossi and Sekhposyan (2019) PITs test.
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Figure 22: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005
made one-year-ahead (in-sample)
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Figure 23: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-year-ahead (in-sample)

51



6.4 Additional tests on and analysis of the forecast densities: Out-

of-sample results

Table 8: Tests on specfic regions of the distribution for the one-quarter- and one-year-ahead
forecasts conditioned on both the NFCI and lagged GDP (out-of-sample, 1993Q1-2015Q4):
p-values from the Rossi and Sekhposyan (2019) test on specific parts of the distribution

Horizon Left Tail Left Half Right Half Right Tail Center Tails

ABG 1q 0.00 0.00 0.00 0.00 0.00 0.00

1y 0.02 0.01 0.03 0.00 0.01 0.02

NP(BM) 1q 0.01 0.02 0.02 0.49 0.03 0.01

1q 0.00 0.08 0.26 0.57 0.16 0.02

NP(freq) 1q 0.00 0.00 0.00 0.00 0.00 0.00

1y 0.00 0.01 0.01 0.02 0.00 0.00
Notes: p-values from the κα test of Rossi and Sekhposyan (2019) when applied to the left tail r ∈ [0, 0.25],
left half r ∈ [0, 0.5], right half r ∈ [0.5, 1], right tail r ∈ [0.75, 1], center r ∈ [0.25, 0.20.75], and tails r ∈
{[0, 0.25] ∪ [0.75, 1]} of the forecast density, where r selects the region of the forecast distribution.
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Table 9: Quantile-weighted continuous ranked probability scores (CRPS) for the one-quarter-
ahead forecasts (out-of-sample, 1993Q1-2015Q4) and the one-year-ahead forecasts (out-of-
sample, 1993Q4-2015Q4) that emphasize regions of interest in the forecast density for GDP
growth

One-quarter-ahead

With NFCI & GDP With lagged GDP only

Left Right Tails Center Left Right Tails Center

ABG 0.39 0.39 0.28 0.25 0.42 0.39 0.30 0.25

EW(B) 0.39 0.38 0.28 0.24 0.41 0.38 0.29 0.25

NP(B) 0.38 0.38 0.28 0.24 0.41 0.38 0.30 0.25

NP(BM) 0.38 0.38 0.28 0.24 0.41 0.38 0.30 0.25

NP(freq) 0.39 0.38 0.28 0.24 0.41 0.38 0.30 0.25

ABG Kernel 0.40 0.40 0.30 0.25 0.42 0.40 0.31 0.25

NP(PRRH) 0.36 0.37 0.27 0.23 0.36 0.36 0.27 0.23

One-year-ahead

ABG 0.31 0.29 0.22 0.19 0.32 0.28 0.23 0.18

EW(B) 0.31 0.28 0.21 0.19 0.32 0.26 0.22 0.18

NP(B) 0.30 0.28 0.21 0.19 0.32 0.27 0.23 0.18

NP(BM) 0.32 0.27 0.23 0.18 0.32 0.27 0.23 0.18

NP(freq) 0.31 0.28 0.21 0.19 0.32 0.27 0.23 0.18

ABG Kernel 0.32 0.30 0.23 0.20 0.33 0.28 0.23 0.19

NP(PRRH) 0.30 0.29 0.22 0.19 0.31 0.27 0.22 0.18
Notes: The weighted CRPS statistics are computed as in Gneiting and Ranjan (2011); see their Table 4 for
details of the weight functions that favor the left and right tails, both tails, and the center of the forecast
density.
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Figure 24: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005
made one-quarter-ahead (out-of-sample)
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Figure 25: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-quarter-ahead (out-of-sample)
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Figure 26: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005
made one-year-ahead (out-of-sample)
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Figure 27: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-year-ahead (out-of-sample)
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Panel C: GDP only Panel D: GDP only
One quarter ahead

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NBER recession bands
P-Values
5% Significance level

One year ahead

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NBER recession bands
P-Values
5% Significance level

Figure 28: P-values over Time from the Calibrated Hartigans’ Unimodality Test for NP(freq).
Notes: Panel A shows the p-values from the Hartigans’ unimodality test (one-quarter-ahead) for the NP(freq)
out-of-sample GDP growth density forecasts conditional on the NFCI and lagged GDP. Panel B shows the
p-values from the Hartigans’ unimodality test over time (one-year-ahead) for the NP(freq) in-sample GDP
growth density forecasts conditional on the NFCI and lagged GDP. Panel C shows the p-values from the
Hartigans’ unimodality test over time (one-quarter-ahead) for the NP(freq) in-sample GDP growth density
forecasts conditional on only lagged GDP. Panel D shows the p-values from the Hartigans’ unimodality test
over time (one-year-ahead) for the NP(freq) in-sample GDP growth density forecasts conditional on only lagged
GDP. NBER recessionary periods are shaded gray.
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Panel A: PRRH factors and GDP Panel B: PRRH factors and GDP
One quarter ahead

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NBER recession bands
P-Values
5% Significance level

One year ahead

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NBER recession bands
P-Values
5% Significance level

Panel C: GDP and global factor only Panel D: GDP and global factor only
One quarter ahead

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NBER recession bands
P-Values
5% Significance level

One year ahead

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NBER recession bands
P-Values
5% Significance level

Figure 29: P-values over Time from the Calibrated Hartigans’ Unimodality Test for
NP(PRRH).
Notes: Panel A shows the p-values from the Hartigans’ unimodality test (one-quarter-ahead) for the
NP(PRRH) out-of-sample GDP growth density forecasts conditional on both the “global” and “financial”
factors from PRRH and lagged GDP. Panel B shows the p-values from the Hartigans’ unimodality test over
time (one-year-ahead) for the NP(PRRH) in-sample GDP growth density forecasts conditional on both the
‘global” and “financial” factors from PRRH and lagged GDP. Panel C shows the p-values from the Hartigans’
unimodality test over time (one-quarter-ahead) for the NP(PRRH) in-sample GDP growth density forecasts
conditional on only lagged GDP and the global factor from PRRH. Panel D shows the p-values from the
Hartigans’ unimodality test over time (one-year-ahead) for the NP(PRRH) in-sample GDP growth density
forecasts conditional on only lagged GDP and the global factor from PRRH. NBER recessionary periods are
shaded gray.
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Figure 30: Out-of-sample LPS (one-quarter-ahead, 1993Q1-2015Q4)
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Figure 31: Out-of-sample LPS (one-year-ahead, 1993Q4-2015Q4)
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6.5 Additional results for NP(freq)
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Figure 32: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005
made one-quarter-ahead (in-sample): illustrating the sensitivity of NP(freq) to k (the number
of quantiles)
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Figure 33: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-quarter-ahead (in-sample): illustrating the sensitivity of NP(freq) to k (the number
of quantiles)
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6.6 Consideration of an extended set of predictors

Here we report illustrative results when we repeat the QR analysis in the main paper, but
consider an extended set of predictors for GDP growth. Specifically, we estimate QRs that
use as predictors not just lagged GDP but also the “global” and “financial” factors suggested
by Plagborg-Moller et al. (2020) (henceforth PRRH). PRRH explain how the NFCI is highly
correlated with a factor extracted from non-financial variables only. Therefore, to better
isolate the role of financial factors in explaining tail risks, they separate the information in a
global indicator of economic conditions from an orthogonal financial-specific factor.

Table 10: Average log predictive score (LPS) and continuous ranked probability score (CRPS)
for the one-quarter-ahead forecasts (out-of-sample, 1993Q1-2015Q4) and the one-year-ahead
forecasts (out-of-sample, 1993Q4-2015Q4)

With NFCI & GDP With lagged GDP only

One-quarter-ahead One-year-ahead One-quarter-ahead One-year-ahead

LPS CRPS LPS CRPS LPS CRPS LPS CRPS

ABG -2.24 1.27 -2.02 0.98 -2.31 1.32 -1.99 0.96

EW(B) -0.81 0.98 -1.27 0.99 -0.36 0.97 -1.06 0.98

NP(B) -0.01 0.98 0.02 0.99 0.00 0.98 -0.03 1.00

NP(BM) 0.01 0.98 0.01 0.98 0.00 0.98 -0.03 1.00

NP(freq) -0.23 0.99 -0.03 0.99 -0.02 0.98 -0.09 1.00

ABG Kernel -0.03 1.03 -0.09 1.04 -0.03 1.00 -0.11 1.03

With global and financial factors & GDP With lagged GDP and global factor only

NP(PRRH) -0.01 0.95 0.06 0.99 0.11 0.89 -0.03 0.99
Notes: The LPS values are presented relative to (by subtraction of) the LPS from ABG. The CRPS values
are presented relative to (divided by) those from ABG. The 5 estimators (ABG, EW(B), NP(B), NP(freq),
NP(B), and ABG Kernel) are defined in Section 3. NP(BM) uses the nonparametric Algorithm 1 and
estimates a Bayesian QR with the Minnesota prior of Carriero et al. (2022).
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Figure 34: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005
made one-quarter-ahead (in-sample)
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Figure 35: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-quarter-ahead (in-sample)

61



-5 0 5 10
0

0.1

0.2

0.3

0.4
2005Q1

A
ct

ua
l v

al
ue

-5 0 5 10
0

0.1

0.2

0.3

0.4
2005Q2

A
ct

ua
l v

al
ue

-5 0 5 10
0

0.1

0.2

0.3

0.4
2005Q3

A
ct

ua
l v

al
ue

-5 0 5 10
0

0.1

0.2

0.3

0.4
2005Q4

A
ct

ua
l v

al
ue

ABG
NP(freq)
NP(B)
NP(BM)
EW(B)
ABG Kernel

Figure 36: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005
made one-year-ahead (in-sample)
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Figure 37: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-year-ahead (in-sample)
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Figure 38: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005
made one-quarter-ahead (out-of-sample)
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Figure 39: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-quarter-ahead (out-of-sample)
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Figure 40: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005
made one-year-ahead (out-of-sample)
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Figure 41: GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008
made one-year-ahead (out-of-sample)
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Figure 42: CDF of the in-sample PITs from ABG, NP(freq), and NP(PRRH).
Note: The figures show the empirical CDF of the PITs (blue line) from the QR models with the NFCI
(and lagged GDP), the empirical CDF of the PITs (dashed red line) from the QR models without
the NFCI, the CDF of the PITs under the null hypothesis of correct calibration (the 45-degree line),
and the 5% critical value bands of the Rossi and Sekhposyan (2019) PITs test.
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Figure 43: CDF of the in-sample PITs (one-quarter-ahead forecasts, 1993Q1-2015Q4) and
(one-year-ahead forecasts, 1993Q4-2015Q4) from ABG, NP(freq), and NP(PRRH).
Note: The figures show the empirical CDF of the PITs (blue line) from the QR models with the NFCI
(and lagged GDP), the empirical CDF of the PITs (dashed red line) from the QR models without
the NFCI, the CDF of the PITs under the null hypothesis of correct calibration (the 45-degree line),
and the 5% critical value bands of the Rossi and Sekhposyan (2019) PITs test.
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Figure 44: CDF of the out-of-sample PITs from ABG, NP(freq), and NP(PRRH).
Note: The figures show the empirical CDF of the PITs (red line), the CDF of the PITs under the null
hypothesis of correct calibration (the 45-degree line) and the 5% critical value bands of the Rossi and
Sekhposyan (2019) PITs test.
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