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Abstract

The paper considers a New Keynesian framework in which agents form expectations based
on a combination of autoregressive mis-specified forecasts and myopia. The proposed expec-
tations formation process is shown to be consistent with all three empirical facts on consensus
inflation forecasts. However, while mis-specified forecasts can be both sufficient and neces-
sary to match all three facts, myopia alone is neither. The paper then derives the general
equilibrium solution consistent with the proposed expectations formation process and esti-
mates the model with likelihood-based Bayesian methods, yielding three novel results: (i)
macroeconomic data strongly prefer a combination of autoregressive mis-specified forecasting
rules - of the VAR(1) or AR(1) type - and myopia over other alternatives; (ii) no strong evi-
dence is found in favor of VAR(1) forecasts over simple AR(1) rules; and (iii) frictions such as
habit in consumption, which are typically necessary for models with full-information rational
expectations, are significantly less important, because the proposed expectations generate
substantial internal persistence and amplification to exogenous shocks. Simulated inflation
expectations data from the estimated general equilibrium model reflect the three empirical
facts on forecasting data.
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1 Introduction

The full-information rational expectations (FIRE) assumption in macroeconomics postulates that

agents understand the true underlying model of the economy and consequently have full knowledge

of the equilibrium probability distribution of economic variables. This assumption is the workhorse

of modern macro work and has brought to the field much discipline and important insights.

However, it contradicts the ample evidence that agents, due to cognitive limitations or information

acquiring costs, often resort to simple non-model-based forecasting rules (mis-specified forecasts)

and do not appropriately take into account future payoffs/quantities (myopia).1 To date, the

literature has not incorporated both departures from FIRE in an equilibrium macro framework

and has not formally tested them with macroeconomic data.

The present paper addresses this gap in the literature and makes its first contribution by jointly

introducing mis-specified forecasting rules and myopia in a New Keynesian framework. The second

contribution is to derive the consistent expectations equilibrium for the inflation process and test its

three implications with evidence on inflation consensus forecasting data. The third contribution is

to develop the full general equilibrium solution while allowing agents to perpetually learn about the

equilibrium, and estimate it on US macroeconomic data with likelihood-based Bayesian methods.2

The key novel result is that the expectations formation process characterized by a combination

of autoregressive mis-specified forecasting rules and myopia is consistent with the evidence on

consensus forecasting data and is strongly preferred by US macroeconomics data as shown by the

likelihood-based Bayesian estimation of the full New Keynesian model.3 Furthermore, the paper
1See for instance, Tversky and Kahneman (1973, 1974), Adam (2007), Hommes (2013); Hommes et al. (2019),

Petersen (2015), Malmendier and Nagel (2016), and Ganong and Noel (2019), among others. See Related Literature
for more details.

2The literature has long shown that agents tend to focus mostly on recent observations; that is, they rely on
perpetual or constant-gain learning. For instance, Fuster, Laibson, and Mendel (2010) argue that “actual people’s
forecasts place too much weight on recent changes,” Malmendier and Nagel (2016) find significant micro evidence
in favor of constant-gain learning, and Tversky and Kahneman (1973, 1974) provide theoretical considerations.

3I prove that the proposed expectations formation process is consistent with all three empirical facts about
inflation consensus forecasting data in the US, namely, that forecasts are positively predicted by ex-ante forecast
revisions; that is, there is under-reaction to new information at the time of forecast (Coibion and Gorodnichenko
(2015)); that forecasters over-react to information at the time of forecast (Kohlhas and Walther (2021)); and
that following a one-time shock, the impulse responses of forecast errors initially under-shoot but then over-shoot
(Angeletos, Huo, and Sastry (2021)). The three papers above use various sources of forecasting data to validate
the three facts. In particular, Angeletos, Huo, and Sastry (2021) use forecasting data from the US SPF, Blue Chip,
and Michigan Survey of Consumers (MSC); Coibion and Gorodnichenko (2015) rely on the same data sets, among
many others, with the caveat that the term structure of the MSC data is not particularly fit for constructing ex-ante
forecasting revisions; Kohlhas and Walther (2021) use data from the US SPF, Euro Area SPF, Livingston Survey,
and MSC.
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brings forward the new result that while mis-specified forecasting rules can be both sufficient and

necessary to match the evidence on forecasting data, myopia alone is neither. This outcome is

important as, differently from other papers in the literature, it highlights that a unique deviation

from FIRE can be sufficient to mirror the evidence.

Agents in the private sector are assumed to be homogeneous, but endowed with imperfect

common knowledge about each other’s economic problems, shocks, and expectations formation

processes. Since agents do not understand their uniformity, they are not aware of the true model

governing the macroeconomy. As a result, they form forecasts about the endogenous variables

based on mis-specified perceived laws of motion, i.e., rules that are structurally different from the

minimum state variable solution granted under FIRE. In particular, motivated by evidence in the

literature (see footnote 1), I assume that the perceived laws of motion are of an autoregressive

nature. To model myopia, I build on the idea of cognitive discounting in Gabaix (2020), where

the private sector has difficulty understanding events that are far in the future. As agents try to

form expectations about the far future, they shrink their autoregressive forecasts - and consecu-

tively, expectations about aggregate variables many periods ahead - toward the steady state of the

economy. As in Gabaix (2020), the private sector is globally patient with respect to the variables’

steady-state equilibrium, but is myopic with respect to their deviations from the steady state.

Differently from Gabaix (2020), where well-specified forecasting rules are myopically adjusted, in

the present paper such an adjustment is applied to mis-specified forecasting rules.4

Once myopia is combined with the autoregressive forecasts, the parameters of the forecasting

rules are pinned down by the solution concept of a consistent expectations (CE) equilibrium, as

defined in Hommes and Sorger (1998) and Hommes and Zhu (2014). A first-order CE equilibrium

arises when the perceived unconditional mean and first-order autocorrelation coefficient/matrix

of the endogenous variable(s) coincides with the same moments as implied by the data-generating

process, that is, the actual law of motion, of the endogenous variable(s).

To assess the relevance of the proposed expectations formation process, I start off with a partial

equilibrium New Keynesian pricing problem, where monopolistically competitive firms that face

exogenous marginal costs maximize their present discounted value of real profits. Motivated by

the work of Preston (2005) and Eusepi and Preston (2018), I model the implied optimal pricing

rule of each firm to be of an infinite horizon nature, and in the presence of mis-specified forecasting
4Well-specified forecasting rules are such that they share a common structure with the minimum state variable

solution under FIRE.
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rules, it cannot be reduced to the standard Phillips curve.5 I show that along the CE equilibrium

path, the inflation persistence is at least as high as the inertia of the marginal cost.6 Importantly,

the degree of myopia interacts with the equilibrium outcomes, and specifically, a lower degree

of myopia or, equivalently, more forward-lookingness in firms’ decisions induces higher inflation

persistence in equilibrium.

I then derive three testable implications for forecasting errors along the CE equilibrium path.

First, I prove that, consistent with the evidence presented in Angeletos, Huo, and Sastry (2021),

a combination of mis-specified forecasts and myopia delivers late over-shooting of forecast errors

following a one-time shock to the marginal cost if and only if there is sufficient over-extrapolation,

that is, if the equilibrium persistence of inflation sufficiently exceeds that of the marginal cost. Fur-

thermore, the analysis proves that mis-specified forecasts alone, that is, a unique departure from

FIRE, is sufficient to replicate delayed over-shooting.7 On the other hand, Angeletos, Huo, and

Sastry (2021) show that late over-shooting is matched if and only there is both over-extrapolation

and a sufficiently large information friction. Second, I prove that a combination of mis-specified

forecasts with myopia reflects the empirical fact that ex-post forecasting errors are positively pre-

dicted by ex-ante forecast revisions but are negatively predicted by current inflation realizations,

as found in Coibion and Gorodnichenko (2015) and Kohlhas and Walther (2021), respectively. The

presence of myopia generally facilitates matching the evidence on under-reaction to forecast revi-

sions by slowing down the update of forecasts as new information becomes available to forecasters.

On the other hand and similarly with results on delayed over-shooting, mis-specified forecasts

alone can be sufficient to replicate over-reaction to current information.

Overall, the theoretical analysis proves that the proposed expectations formation process, that

is, a combination of autoregressive mis-specified forecasts with myopia, is consistent with all three

empirical facts on consensus inflation forecasting behavior.8 However, I show that while mis-

specified forecasts can be both sufficient and necessary to match the evidence, myopia alone is

neither.
5However, when firms use well-specified forecasting rules, as in, e.g., Gabaix (2020), instead, the implied Phillips

curve coincides with the behavioral one in Gabaix (2020) if there is myopia and the standard Phillips curve under
FIRE if there is no myopia.

6When firms rely on well-specified forecasting rules, the persistence of inflation matches that of the marginal
costs.

7I further show that well-specified forecasts combined with or absent myopia as in Gabaix (2020) or FIRE,
respectively, do not match late over-shooting.

8While the current work focuses on a representative agents model and, thus, aggregate/consensus forecasting
data, Gabaix (2020) shows that cognitive discounting (myopia) can be microfounded through noisy signals.
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Evidence in favor of the proposed expectations formation process for inflation represents a

natural motivation to embed such an assumption into a full New Keynesian model with habit in

consumption and inflation indexation, similar to the one in Milani (2006).9 Bayesian estimation

of the full general equilibrium New Keynesian model on US macroeconomic data from 1966:Q1

to 2018:Q3 yields the following outcomes. First, macroeconomic data strongly prefer the model

whose expectations formation process is a combination of autoregressive mis-specified forecasts

and myopia over the other aforementioned alternatives. Second, while VAR(1) forecasting rules

combined with myopia fit the data slightly better than the specification with AR(1) forecasts and

myopia, the evidence is not strongly favoring one over the other. Furthermore, VAR(1) forecasts

do not provide, on average, additional information in terms of forecasting. Throughout the rest

of the paper, I consider both specifications. Third, compared to a case of well-specified forecasts,

frictions such as habit in consumption are significantly less important when mis-specified forecasts

are combined with myopia. In particular, the presence of autoregressive forecasts strengthens the

internal propagative features of the model by inducing excess persistence and volatility. Therefore,

the proposed expectations formation process will often deliver aggregate variable responses to

demand, cost-push, and monetary shocks that are more persistent and volatile, relative to a case

of well-specified forecasts. Myopia, on the other hand, puts downward pressure on fluctuations,

and as a result, the impulse response functions of aggregates can be more amplified when myopia

is absent versus when it is present.

Finally, using the estimated posterior distribution to discipline the parameters of the two model

specifications that best fit macroeconomic data, I simulate inflation annual forecasting data from

the proposed expectations formation process and show that simulated inflation annual forecast

errors support the three empirical facts on consensus forecasts as described in the preceding para-

graphs.

Related Literature

The literature has shown that various assumptions on the expectations formation processes can
9Similar to the partial equilibrium setting, the implied optimal consumption and pricing rules of households and

firms are of an infinite horizon nature and in the presence of mis-specified forecasting rules, they cannot be reduced
to the standard one-period-ahead Euler equation and Phillips curve, respectively. If well-specified forecasting rules
are used, the implied Euler equation and Phillips curve coincide with the behavioral ones in Gabaix (2020) if there
is myopia and the standard FIRE ones if myopia is absent.
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be consistent with forecasting data. For instance, Coibion and Gorodnichenko (2015) show that

the predictability of ex-post forecast errors by ex-ante forecast revisions is consistent only with

the assumptions of sticky information as in Mankiw and Reis (2002) and Reis (2006), or noisy

information as in, e.g., Woodford (2003a), Sims (2003), and Maćkowiak and Wiederholt (2009).10

However, sticky or noisy information alone cannot match forecasters’ over-reaction to recent events

(Kohlhas and Walther (2021)) or forecast errors’ delayed over-shooting (Angeletos, Huo, and Sastry

(2021)). Kohlhas and Walther (2021) rationalize the fact that consensus forecasts under-react to

new information but over-react to recent events through a theory of asymmetric attention to

procyclical variables. The current paper resonates with the findings in Angeletos, Huo, and Sastry

(2021) with two differences. First, I show that the empirical evidence can be matched even with

a unique deviation from FIRE, that is, by relying on autoregressive mis-specified forecasts only,

whereas Angeletos, Huo, and Sastry (2021) show that both over-extrapolation and information

friction are necessary. Second, in the current paper, over-extrapolation is an equilibrium outcome

of agents relying on a mis-specified forecasting rule whose parameters are nonetheless disciplined.

In Angeletos, Huo, and Sastry (2021), the distance between the perceived and actual persistence

of shocks is disciplined from the impulse response functions of forecast errors.

The paper contributes additional evidence to a rich body of literature that validates the usage

of simple forecasting processes by the private sector (e.g., Tversky and Kahneman (1973, 1974),

Adam (2007), Hommes (2013), Greenwood and Shleifer (2014), Petersen (2015), Malmendier and

Nagel (2016), and Hommes et al. (2019).11 The paper is also related to a series of papers that

discuss the analytical implications of mis-specified forecasting rules, as in Hommes and Sorger

(1998), Fuster, Laibson, and Mendel (2010); Fuster, Hebert, and Laibson (2012), Hommes and

Zhu (2014), Airaudo and Hajdini (2021), and Branch, McGough, and Zhu (2022), among others.

In particular, the paper relies on the solution concept of a first-order CE equilibrium, developed

by Hommes and Sorger (1998) and Hommes and Zhu (2014).

The paper shares a common idea with Gabaix (2020) about myopia being an excess discounting
10See Coibion, Gorodnichenko, and Kamdar (2018) as well for a review.
11Experimental evidence in Adam (2007), Hommes (2013), Petersen (2015), and Hommes et al. (2019), among

others, shows that agents are commonly not model-based rational and that they tend to use simple forecasting
rules. Using MSC micro data on inflation expectations, Malmendier and Nagel (2016) show that expectations are
history dependent. From a psychological standpoint, Tversky and Kahneman (1973, 1974) argue that when trying
to solve complex problems, people tend to employ a limited set of heuristics. Moreover, simpler processes generate
on average smaller out-of-sample forecasting errors compared to AR(p) for p > 1 or VARs, especially for inflation
series (see, for example, Atkeson and Ohanian (2001) and Stock and Watson (2007)).
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of future deviations from the steady state, with the crucial difference that the present paper relies

on mis-specified forecasts instead of well-specified ones. Evidence of myopia enhancing model fit

that is presented in the current work further contributes to recent developments in the empirical

literature in favor of myopic agents (see, for instance, Ganong and Noel (2019), who show that

the only model that could rationalize household behavior given a predictable decrease in income

in the data was one with myopic/short-sighted agents).

Furthermore, this work shares common insights with the literature that posits that deviations

from FIRE amplify the propagative features of models and thus can explain aggregate data better.

For instance, papers by Milani (2006, 2007), Slobodyan and Wouters (2012a), and Hommes et al.

(2019) show that imperfect common knowledge explains observed persistence better relative to

FIRE. More recent papers, such as Ilut and Saijo (2021) and Bianchi, Ilut, and Saijo (2022), rely

on a local projection estimation of empirical impulse response functions to show that deviations

from FIRE improve the propagative mechanism of New Keynesian models.12 While a model set

in a FIRE framework with a rich set of frictions as in Smets and Wouters (2003, 2007) can fit

the data pretty well, this paper shows that a combination of autoregressive mis-specified forecasts

and myopia is powerful in replicating the characteristics of business cycle fluctuations, with a

diminished need for mechanical frictions.

Finally, the paper is related to that body of literature that estimates general equilibrium New

Keynesian models free of the FIRE assumption, as in, for instance, Del Negro and Eusepi (2011),

Slobodyan and Wouters (2012a,b), Ormeño and Molnár (2015), Rychalovska (2016), Gaus and

Gibbs (2018), and Cole and Milani (2019).

The rest of the paper is organized as follows. Section 2 describes the expectations formation

process in a New Keynesian pricing problem. Section 3 derives a number of implications about

inflation forecast errors and tests them with evidence from consensus inflation forecasting data.

Section 4 nests the expectations formation process in a full New Keynesian model and presents

the main Bayesian estimation results accompanied by a series of implications. Section 5 re-

evaluates the three empirical facts about consensus forecasting errors with inflation expectations
12Even though the current paper is fundamentally distinctive from Angeletos and Huo (2021), the empirical

evidence presented here stands in favor of their analytical result that myopia and “anchoring of the current outcome
to the past outcome” can be a substitute for mechanical persistence. Angeletos and Huo (2021) prove the equivalence
between a FIRE model with incomplete information and another FIRE model with myopia along with “anchoring
of the current income to the past outcome, as if there was habit.” In contrast, in this paper, backward-looking
components are an attribute of autoregressive mis-specified forecasting rules due to imperfect common knowledge,
whereas myopia is realized through an adjustment process to mis-specified forecasting rules.
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data simulated from the estimated general equilibrium model. Section 6 concludes.

2 Mis-specified Forecasts and Myopia

In what follows, I integrate a combination of mis-specified autoregressive forecasting rules and

myopia into a partial equilibrium New Keynesian pricing problem and solve for the CE equilibrium.

Apart from describing the expectations formation process, this section builds the foundation for

deriving a number of testable implications for inflation forecasting data in the succeeding section.

The rationale for focusing on a pricing problem and therefore expectations about inflation, instead

of other macroeconomic variables, is due to their availability in survey data as well as due to

their particular importance for macroeconomics. Moreover, since testing implications of various

expectations assumptions on inflation forecasting data is the benchmark in the literature, I can

naturally compare the present paper’s expectations process with other alternatives.

2.1 New Keynesian Pricing

Following Woodford (2003b) and Galí (2008), I assume the economy is populated by a continuum

of monopolistically competitive firms, j ∈ [0, 1]. Each firm produces a differentiated good, but

faces the same isoelastic demand schedule

yjt =

(
Pjt

Pt

)−ζ

yt (1)

where ζ > 1 is the elasticity of substitution among the differentiated goods, Pjt is the price set

by the jth firm, Pt is the aggregate price level, and yt is the aggregate output level. The pricing

problem is subject to Calvo price stickiness: each period firms cannot adjust their price with some

constant probability α ∈ (0, 1). Every firm then chooses its current optimal price P ∗
jt that will

maximize its present discounted value of real profits

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

(
P ∗
jt

Pt

yj,t+h −mct+hyj,t+h

)
(2)

where Ẽjt is a generic subjective expectations operator that satisfies the law of iterative expec-

tations and standard probability rules; Qt+h is a generic stochastic discount factor; m̂ct is the
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marginal cost; π̂t is inflation; β ∈ (0, 1) is a predetermined discount factor. The log-linearized

first-order condition of each firm’s pricing problem is given by13

p̂∗jt = Ẽjt

∞∑
h=0

(αβ)h ((1− αβ)m̂ct+h + αβπ̂t+h+1) (3)

where p̂∗jt = log(P ∗
jt/Pt) is the log-linear optimal price in deviation from the aggregate price P̂t.

The marginal cost is exogenous and it evolves according to

m̂ct = ρm̂ct−1 + εt, εt ∼ N (0, σ2
ε) (4)

with ρ ∈ (0, 1). Each firm faces the same problem as stated in (2), is subject to the same marginal

cost shock in (4), and is endowed with the same beliefs about the future evolution of inflation

and marginal costs; hence, they will all choose the same optimal price p̂∗t in (3). However, firms

are endowed with imperfect common knowledge, which impedes them from understanding their

homogeneity; that is, each individual firm is not aware that every other firm relies on the same

optimal pricing rule in (3). As shown in the subsequent subsections, this implies that the optimal

pricing rule in (3) cannot be used to make inferences about future deviations of inflation from its

steady state. Consequently, firms do not understand the true structure of the law of motion for

inflation, and once aggregated, (3) will not produce the standard Phillips curve. For simplicity

purposes only, I assume that firms understand that marginal costs evolve according to (4).14 Since

firms are assumed to be homogeneous, from now on, I drop the subscript j.

2.2 Myopia

Let Ẽ⋆
t π̂t+h denote the forecast about future inflation - in deviation from its steady state - prior

to myopic adjustment. Ẽ⋆
t could be associated with a well-specified forecasting rule that would be

the minimum state variable solution under FIRE, or it could otherwise be linked to a mis-specified

forecasting rule such that forecasts are formed based on a rule that is structurally different from

the minimum state variable solution under FIRE. To model myopia, I build on the idea of cognitive

discounting in Gabaix (2020), where (well- or mis-specified) forecasts about future inflation and

marginal cost in deviations from their steady-state values are discounted by a cognitive discount
13See Appendix A for more details.
14This assumption can be easily relaxed, without altering the main results of the paper.
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factor, n ∈ (0, 1]. The parameter n defines the degree of myopia, such that a higher (respectively,

lower) n relates to firms being more (respectively, less) forward-looking with respect to future

fluctuations around the steady-state equilibrium. In particular,

Ẽt

 π̂t+h

m̂ct+h

 = nhẼ⋆
t

 π̂t+h

m̂ct+h

 (5)

As myopia increases, i.e., n decreases, the expected value of π̂t+h gets closer to 0, or the expected

value of future inflation approaches its steady state. Moreover, for n ∈ [0, 1), as the forecasting

horizon h increases, the myopic adjustment becomes more severe. For n = 1 myopia is shut down.

Substituting for Ẽt

[
π̂t+h m̂ct+h

]′
in (3), the optimal pricing decision becomes

p̂∗t = Ẽ⋆
t

∞∑
h=0

(αβn)h ((1− αβ)m̂ct+h + αβnπ̂t+h+1) (6)

Differently from Gabaix (2020), who assumes that the myopic adjustment happens to the well-

specified forecasting rule about future deviations of inflation from its target, the present paper

assumes instead that the myopic adjustment occurs with respect to a mis-specified forecast about

inflation. I describe the structure of mis-specified forecasts in what follows.

2.3 Mis-specified Forecasts

As mentioned earlier, firms are assumed to understand the process of the exogenous disturbances

they are subject to; therefore, absent myopia, they correctly forecast the marginal cost,

Ẽ⋆
t m̂ct+h = ρhm̂ct (7)

On the other hand, due to imperfect common knowledge, firms do not understand that every other

firm in the economy faces the same optimal pricing rule as in (3). As a consequence, they do not

use the aggregated version of (6) to make inferences about Ẽ⋆
t π̂t+h. Leveraging on a large body

of evidence showing that economic agents form forecasts based on simple autoregressive rules (see

for instance, Adam (2007), Hommes and Zhu (2014), and Malmendier and Nagel (2016), among
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others), I assume that inflation forecasts are based on an AR(1) process,15

π̂t = δ + γ(π̂t−1 − δ) + ϵt (8)

where δ ∈ R is the perceived unconditional mean of inflation, γ ∈ (−1, 1) is the perceived uncon-

ditional first-order autocorrelation of inflation, and ϵt is perceived to follow a white noise process.

The value of ϵt is unknown when firms forecast future inflation, therefore

Ẽ⋆
t π̂t+h = δ(1− γh+1) + γh+1π̂t−1 (9)

As shown in the following section, the pair (δ, γ) will be pinned down using the solution concept

of a CE equilibrium. In other words, the only “free” behavioral parameter is n, which defines the

degree of myopic adjustment to mis-specified forecasts.

2.4 Consistent Expectations Equilibrium

Aggregating equation (6) delivers an expression for inflation,

π̂t = Ẽ⋆
t

∞∑
h=0

(αβn)h (κm̂ct+h + βn(1− α)π̂t+h+1) (10)

where κ = (1 − αβ)(1 − α)/α. To reiterate, equation (10) cannot reduce to the standard one-

step-ahead Phillips curve, because each firm - unaware that all the other firms set their optimal

price according to (6) - cannot deduce that the dynamic equation for inflation is given by (10).

Consequently, they do not form expectations about future inflation based on the expression for

inflation in (10).

Remark 1: Equation (10) reduces to the Phillips curve of the behavioral New Keynesian model

as in Gabaix (2020), π̂t = κm̂ct + βnEtπ̂t+1, if firms understand their homogeneity. In that case,

Ẽ∗
t is associated with a well-specified forecasting rule; that is, the structure of the forecasting rule

is the same as the minimum state variable solution under FIRE. Therefore, firms can use their

own optimal condition in (6) to form expectations about inflation, and the infinite-horizon New
15Note that (8) is structurally different from the minimum state variable solution of the partial equilibrium

pricing model. Specifically, that would be π̂t =
(1−α)(1−αβ)

α(1−βρ) m̂ct.
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Keynesian Phillips curve reduces to the one-step-ahead Phillips curve.16

Remark 2: From Remark 1, it follows that equation (10) reduces to the standard Phillips curve,

π̂t = κm̂ct + βEtπ̂t+1, only if the expectations operator Ẽ∗
t is associated with a well-specified

forecasting rule and there is no myopia (n = 1).

Substituting for Ẽ⋆
t m̂ct+h and Ẽ⋆

t π̂t+h in (10) delivers the actual law of motion for inflation:

π̂t = βnδ

(
1− α

1− αβ
− (1− α)γ2

1− αβnγ

)
+

κ

1− αβρn
m̂ct +

βn(1− α)γ2

1− αβnγ
π̂t−1 (11)

Firms believe that the equation in (8) is a valid perceived law of motion for inflation if and only if

its parameters, which represent the perceived unconditional mean (δ) and first-order autocorrela-

tion (γ), are consistent with the same moments from the data-generating process for inflation in

(11). Coefficients δ and γ in equilibrium are pinned down through the solution concept of a CE

equilibrium, as defined by Hommes and Zhu (2014):

Definition 1 A pair (δ∗, γ∗), where δ∗ and γ∗ are real numbers with γ ∈ (−1, 1), is a first-

order consistent expectations equilibrium if the stationary stochastic process defined by (11) has

unconditional mean δ∗ and unconditional first-order autocorrelation coefficient γ∗.

Along the FIRE equilibrium, firms would be matching the perceived distribution of inflation

with its actual/realized distribution. Along the CE equilibrium, however, firms are only match-

ing certain perceived unconditional moments of the distribution with the actual unconditional

moments.

Proposition 1 Let the data-generating process for inflation be described by equation (11). Then,

there exists a unique consistent expectations equilibrium (δ∗, γ∗), where δ∗ = 0 and γ∗ ∈ [ρ, 1).

16Specifically, let Ẽ⋆
t = Et be the RE operator. From (10),

Etπ̂t+1 = κEtm̂ct+1 + nβ(1− α)Etπ̂t+2 + Et

∞∑
h=1

(αβn)h (κm̂ct+h + βn(1− α)π̂t+h+1)

Hence,

π̂t = κm̂ct + βn(1− α)Etπ̂t+1 + Et

∞∑
h=1

(αβn)h (κm̂ct+h + βn(1− α)π̂t+h+1)︸ ︷︷ ︸
αβnEtπ̂t+1

= κm̂ct + βnEtπ̂t+1
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Proof. See Appendix C.1.

Proposition 1 shows that in the partial equilibrium pricing problem, the CE equilibrium exists,

it is unique, and that, importantly, it generates a higher inflation persistence relative to the case

of well-specified forecasting rules (with or without myopia), i.e., γ∗ ≥ ρ. Given the CE equilibrium

(δ∗, γ∗) as described in Proposition 1, the mis-specified forecast and actual law of motion of inflation

along the CE equilibrium path are, respectively

Ẽ⋆
t π̂t+h = (γ∗)h+1π̂t−1 (12)

π̂t =
κ

1− αβρn︸ ︷︷ ︸
a

m̂ct +
βn(1− α)(γ∗)2

1− αβn(γ∗)︸ ︷︷ ︸
b

π̂t−1 (13)

Corollary 1 Consider the actual law of motion for inflation along the CE equilibrium defined by

(13). Then, the following statements are true.

i) Higher price stickiness (higher α) leads to lower γ∗ in equilibrium.

ii) A higher degree of myopia (lower n) leads to lower γ∗ in equilibrium.

Proof. See Appendix C.2.

Corollary 1 shows that the price stickiness and degree of myopia play an important role in the

occurrence of endogenous over-extrapolation. Specifically, as prices become stickier, the depen-

dence of current inflation on backward-looking expectations drops, thus leading to lower inflation

persistence in equilibrium. On the other hand, as firms become more forward-looking with respect

to future fluctuations of inflation around its steady-state value, the persistence of inflation well

exceeds the inertia of the marginal cost. Furthermore, the actual law of motion for inflation in

equilibrium in (13) resembles the one that would be derived under FIRE in a setting with inflation

indexation/backward-looking pricing (even though these features are missing in the firm’s problem

presented in this section).

Note that the CE solution for inflation in (13) differs structurally from the one where the

forecasting rules remain well-specified (with or without myopia), which describes inflation as a

linear function of the marginal cost shock only, i.e.,

π̂t =
κ

1− βρn
m̂ct (14)
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When firms are appropriately forward-looking, i.e., n = 1, the inflation solution in (14) is the one

implied under full-information RE. On the other hand, when firms are absolutely myopic toward

the future (n = 0), the CE solution for inflation in (13) collapses to the one in (14).

3 Forecasting Data Evidence and Theory

To assess the empirical relevance of the proposed expectations formation process in Section 2, I

first briefly describe the evidence on the behavior of consensus inflation forecasting errors from

both professional forecasters and private agents. Building on the New Keynesian pricing problem

in Section 2, I then derive three testable implications for forecasting errors when agents rely on a

mis-specified forecasting rule and myopia to form inflation expectations.

I prove that a combination of mis-specified forecasts and myopia is consistent with the empirical

evidence on consensus inflation forecasts. However, I show that while mis-specified forecasting rules

are necessary and sufficient to match the empirical evidence along the CE equilibrium, myopia is

neither. Importantly, these findings suggest that a unique deviation from FIRE, that is, usage of

autoregressive mis-specified forecasts along a CE equilibrium, is more than enough to match all

three empirical facts on forecast error behavior.

3.1 Brief Overview of the Evidence

Fact 1: Angeletos, Huo, and Sastry (2021) have brought forward evidence that the impulse

response function (IRF) of annual inflation forecasting errors, following a supply or demand shock,

is initially positive but turns negative at some later point in time.17 The authors define this

phenomenon as delayed over-shooting.18

Fact 2: Coibion and Gorodnichenko (2015) consider regressing ex-post annual forecast errors

on ex-ante forecast revisions, that is

π̂t+h − Ẽtπ̂t+h = c+Kh(Ẽtπ̂t+h − Ẽt−1π̂t+h) + errort+h (15)

where h = 4 is the annual forecast horizon, c is a constant term, and Kh measures forecasters’
17Angeletos, Huo, and Sastry (2021) rely on forecasting data from the US SPF, Blue Chip, and the Michigan

Survey of Consumers.
18I refer the reader to Section 5 in Angeletos, Huo, and Sastry (2021) for a description of their IRF estimation

methodologies, as well as Figures 3 and 4 in their paper for a visualization of delayed over-shooting.
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reaction to new information at the time of forecast. The authors find that K4 is significantly

positive, implying that forecasters under-react to new information at the time of forecast.19 For

instance, Table 1 exhibits the estimates of K4 for US SPF forecasting data when inflation is

measured as the growth rate of the GDP deflator and of the consumer price index (CPI). The

table shows that forecasters generally under-react to new information.20

GDP deflator CPI

1970:2-2020:1 1982:3-2020:1 1982:3-2020:1

Revision, K4 1.01 0.11 0.72
(0.16) (0.18) (0.18)

Current, M4 0.05 -0.15 -0.11
(0.03) (0.04) (0.05)

Table 1: Estimates of regression coefficients in (15) and (16) for inflation using US SPF annual
forecasting data. The estimates of K4 and M4 when inflation is measured as the growth rate of
the CPI are borrowed from Kohlhas and Walther (2021) (see Table C.7 in their online appendix).
All regressions include a constant term. Standard errors are given in parenthesis.

Fact 3: Kohlhas and Walther (2021) instead consider regressing ex-post annual inflation

forecast errors on inflation realized at the time of forecast, that is,

π̂t+h − Ẽtπ̂t+h = c+Mhπ̂t + errort+h (16)

where Mh measures forecasters’ reaction to information about inflation at the time of forecast.

Kohlhas and Walther (2021) find that Mh is significantly negative for annual forecast errors (h =

4), implying that forecasters over-react to inflation realized at the time of forecast.21 Table 1

shows that the estimate of M4 for US SPF forecasting data is negative when considering inflation

forecasting data from the end of 1982 onward.22

19Coibion and Gorodnichenko (2015) rely on inflation forecasting data from the US SPF, MSC, Livingston Survey,
and inflation expectations from the Cleveland Fed based on the method developed in Haubrich, Pennacchi, and
Ritchken (2008).

20When inflation is measured as the growth rate of the GDP deflator, the K4 estimate for US SPF forecasting
data loses significance after 1982; see footnote 22 for more details.

21Kohlhas and Walther (2021) rely on inflation forecasting data from the US SPF, MSC, Livingston Survey, and
Euro Area SPF.

22See Hajdini and Kurmann (2022) for a detailed discussion regarding the instability of the estimates of K4 and
M4.
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3.2 Facts 1, 2, and 3: Linking Theory with Evidence

I now analyze the implications of mis-specified forecasts and myopia for the behavior of forecast

errors along the CE equilibrium path.

Starting with delayed over-shooting, Proposition 2 shows that forecasters initially under-shoot

and then over-shoot when there is sufficiently high endogenous over-extrapolation, that is, when

γ∗ >> ρ. Note that for n = 1, delayed over-shooting is always satisfied, since the condition in

Proposition 2 translates into γ∗ > ρ, and Proposition 1 proved that to always be the case. On the

contrary, if n = 0, the condition for late over-reaction fails to hold, regardless of how the model is

parameterized.

Proposition 2 Let Ik,h be the impulse response function of the h-period-ahead forecasting error

at period (t+ k) for k ∈ {0, 1, 2, ...} with respect to a one-time shock to the marginal cost εt, i.e.,

Ik,h =
∂(π̂t+k − Ẽt+k−hπ̂t+k)

∂εt
(17)

Let the expectations formation process be a combination of autoregressive mis-specified forecasting

rules and myopia. Then, delayed over-shooting occurs if ρh+1 < nh(γ∗)h+1.

Proof. See Appendix C.3.

Figure 1 visualizes the results of Proposition 2 for annual forecast errors (h = 4) along the CE

equilibrium. Importantly, the figure also speaks to the intuition for why sufficiently high over-

extrapolation leads to late over-shooting. Given the backward-looking nature of the expectations

formation process, following a one-time shock to the marginal cost, expectations pick up with a

lag. Consequently, the momentum in the response of inflation will be reflected in expectations at

a later point in time, after the response of inflation has started dissipating (note the difference in

the timing when the blue and red lines reach their peak in panels (b) and (c) of Figure 1). The

more persistent inflation is in equilibrium; that is, the more over-extrapolation there is, the more

amplified the forecasts and hence the higher is the likelihood they exceed ex-post realized inflation

as its response approaches 0.

Next, Proposition 3 provides expressions for the model-implied Kh and Mh, for any forecasting

horizon h > 0. As shown in the proposition, Kh and Mh are composed of positive and negative

components, and the signs of both moments depend on the underlying parameters of the model.
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Figure 1: Evolution of the IRFs of the annual forecasts and ex-post realized inflation for various
values of n. Parameterization: α = 0.5, β = 0.99, κ = 1, ρ = 0.7, σ =

√
5. The implied

equilibrium first-order autocorrelation coefficients of inflation are, respectively from left to right,
γ∗ = 0.7, γ∗ = 0.904, and γ∗ = 0.993.

Proposition 3 Let the data-generating process for inflation be described by (13), with the expec-

tations formation process being a combination of mis-specified forecasts and myopia. Then, the

model-implied Kh and Mh, for any h > 0, are, respectively, given by

Kh = K+
h +K−

h

Mh =M+
h +M−

h

(18)

where K+
h =

ρh(1−b2)(1−nργ∗)
(
ρ+b

∑h−1
j=0 ( b

ρ)
j
)
+bh+1(ρ(b−nγ∗)+1−nbγ∗)

nh(γ∗)h+1(1+n2(γ∗)2−2n(γ∗)2)(1+ρb)
≥ 0; K−

h = − ρ(b−nγ∗)+1−nbγ∗

(1+n2(γ∗)2−2n(γ∗)2)(1+ρb)
≤

0; M+
h = ρh

1+.ρb

[∑h
j=0

(
b
ρ

)j
− b2

∑h−2
j=0

(
b
ρ

)j]
≥ 0; M−

h = −nh(γ∗)h+1(b+ρ)
1+ρb

≤ 0.

Proof. See Appendix C.4.

Together, Propositions 2 and 3 show that there can exist parameterizations of the model,

including the degree of myopia, for which a combination of the three facts is matched.

Since it is impossible to analytically derive parametric spaces for which all three pieces of

empirical evidence are matched, I resort to numerical methods. In particular, I investigate the

parametric region of myopia, n, and marginal cost inertia, ρ, for which the aforementioned em-

pirical facts are matched. Figure 2 exhibits the regions where, in equilibrium, there is delayed

over-shooting (area to the right of the dashed red curve); under-reaction to ex-ante forecast re-

visions (areas in white and dark gray); and over-reaction to current inflation (areas in white and

light gray).

I now turn to the parametric region of myopia, n, and shock inertia, ρ, for which all three
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Figure 2: Regions of delayed over-shooting, under-reaction to ex-ante forecast revisions, and over-
reaction to current realizations. Delayed over-shooting: region to the right of the dashed red
curve. Under-reaction to ex-ante forecast revisions: regions in white and dark gray. Over-reaction
to current inflation: regions in white and light gray. Forecasting horizon: h = 4. The area for
which n < 0.625 is truncated for better visibility, but it is a region of no late over-shooting and
characterized by K4 > 0, M4 > 0. Parameterization: α = 0.5, β = 0.99, κ = 1, σ =

√
5.

aforementioned empirical facts for annual forecast errors (h = 4) are matched. Figure 2 exhibits

the regions where, in equilibrium, there is delayed over-shooting (area to the right of the dashed

red curve), under-reaction to ex-ante forecast revisions (areas in white and dark gray), and over-

reaction to current inflation (areas in white and light gray). The model parameters are set as

follows: α = 0.5, β = 0.99, κ = 1, and σ =
√
5.

As shown in Proposition 2, the condition for delayed over-shooting necessitates sufficiently

high endogenous over-extrapolation, which, as exhibited in Figure 2, is guaranteed to occur for

relatively low degrees of myopia. In line with a similar reasoning, over-reaction to current inflation

also requires sufficiently low myopia. On the contrary, under-reaction to ex-ante forecast revisions

occurs for a much wider range of (n, ρ) pairs, and for n < 0.8 it is guaranteed for any value of

the shock persistence. The rationale is that a higher degree of myopia puts downward pressure on

forecasts and hence enables a positive correlation between forecast errors and ex-ante revisions.

Finally, depending on the parameterization of the model and as hinted by Proposition 3, K4 and

M4 can take both positive and negative values.

17



Figure 3 exhibits a sensitivity analysis of the numerical results presented in Figure 2 for different

levels of price stickiness. As the degree of price stickiness (α) increases from panel (a) to panel (c),

the regions change as follows. First, the dashed red curve shifts to the right, since, as shown in

Corollary 1, higher price stickiness puts downward pressure on the equilibrium inflation persistence

γ∗. The latter implies that lower degrees of myopia are necessary to grant sufficient endogenous

over-extrapolation that would give rise to delayed over-shooting. Second, in line with a similar

reasoning, the black region shrinks to the right and the white region shifts upward.

Figure 3: Sensitivity analysis with respect to price stickiness. Interpretation of regions, the fore-
casting horizon, and parameterization of the model are the same as in Figure 2.

Next, I derive results for the cases when i) there is extreme myopia; and ii) there is no my-

opia. More specifically, Corollary 2 shows that in the presence of extreme myopia, that is, when

agents’ forecast for inflation approaches the steady state in every period (n→ 0), the behavior of

forecasting errors is consistent only with Fact 2.

Corollary 2 Suppose there is extreme myopia, that is, n → 0, and that the marginal cost has

some persistence, that is, ρ > 0. Then, only Fact 2 is matched along the CE equilibrium for any

parameterizations of the model, with limn→0Kh = ∞ > 0.

Proof. Follows directly from Propositions 2 and 3.

On the contrary, Corollary 3 proves that when there is no myopia, that is, for n = 1, there

exist parameterizations of the model for which all three facts are matched. Note that in the case

of no myopia, delayed over-shooting is always satisfied.

18



Corollary 3 Suppose there is no myopia, i.e., n = 1. Then, Facts 1, 2, and 3 are matched for

parameterizations of the model that satisfy the following two inequalities along the CE equilibrium:

γ < (γ∗)h+1 < γ̄ (19)

where γ = ρh+1−bh+1−ρ2b2(ρh−1−bh−1)
ρ2−b2

and γ̄ = ρh+1 + ρhb+ ...+ ρbh + bh+1.

Proof. See Appendix C.5

For instance, applying the result in Corollary 3, one can quickly show that the empirical

evidence is matched for ρ→ 1. To see this, note that limρ→1 γ
∗ = 1, while γ∗ > ρ, and limρ→1 γ̄ >

1. Furthermore, limρ→1
γ

(γ∗)h+1 =
(

ρ
γ∗

)h+1

< 1.

Figure 4: Sensitivity analysis with respect to the forecasting horizon, where there is no myopia,
that is, n = 1. Interpretation of regions, the forecasting horizon, and the rest of the model
parameterization are the same as in Figure 2.

Elaborating more on the case of no myopia, Figure 4 visualizes the parametric space (ρ, α)

across various forecasting horizons for which different facts are matched. The colors in the figure

are interpreted as in Figure 2. The white region where all three facts are matched is substantial,

regardless of the forecasting horizon. For example, for any degree of price stickiness, there exists a

range of values for the marginal cost persistence for which forecasts exhibit delayed over-shooting,

under-reaction to new information, and over-reaction to current inflation.

Last, I focus on the implications of a well-specified forecasting rule for the occurrence of delayed

over-shooting, as well as Kh and Mh. In particular, Proposition 4 shows that, regardless of the

degree of myopia, a well-specified forecast can only match Fact 2.23

23It is clear from Proposition 4 that if one sets n = 1, that is, if one imposes FIRE, none of the facts would be
matched in the current setting.
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Proposition 4 Suppose the forecasting rules are well-specified, such that Ẽtπ̂t+h = nhEtπ̂t+h,

where Et is the RE operator. Then, the following statements are true:

1. Ik,h ≥ 0 for any k ≥ 0; there is no delayed over-shooting.

2. Kh = (1−nρ2)(1−nh)
nh(1+n2ρ2−2nρ2)

≥ 0; there is always under-reaction to ex-ante forecast revisions.

3. Mh = ρh(1− nh) ≥ 0; there is always under-reaction to current inflation realizations.

Proof. See Appendix C.6.

Taken together, Corollary 3 and Proposition 4 highlight that a mis-specified forecasting rule

of the form considered here is necessary and sufficient for the behavior of forecasting errors to be

consistent with the empirical evidence. By contrast, myopia is neither a necessary nor a sufficient

condition. In fact, while sufficiently low degrees of myopia in the presence of mis-specified forecasts

allow for the three facts to be matched, too much myopia does not. Importantly, the analysis in

this section shows that, to match all three facts, only one deviation from FIRE is sufficient.

Relation to other expectations formation processes. The present paper echoes the

findings of Angeletos, Huo, and Sastry (2021), but it is different in two dimensions. First, the

current paper shows that all three empirical facts can be matched even with a unique deviation

from FIRE, that is, through relying on a mis-specified forecasting rule whose mean and first-

order autocorrelation are consistent with the actual law of motion. Angeletos, Huo, and Sastry

(2021) show that all three facts can be matched for combinations of noisy information and over-

extrapolation. Second, in the current paper, over-extrapolation is an equilibrium outcome of

agents relying on simple forecasting rules that are structurally different from the actual law of

motion. While the structure of the mis-specified forecasting rule is - in a sense - exogenously

chosen, its parameters are disciplined through the CE equilibrium concept.24 In Angeletos, Huo,

and Sastry (2021), the shock’s perceived and actual persistence are pinned down from empirically

matching the impulse response functions of forecasting errors.

In Kohlhas and Walther (2021) forecasters’ under-reaction to ex-ante forecast revisions but

over-reaction to recent events are rationalized through a theory of asymmetric attention to pro-

cyclical variables. Nevertheless, as mentioned in Angeletos, Huo, and Sastry (2021), asymmetric
24As shown in the paper, in the current setting, a CE equilibrium is guaranteed to exist for any realistic param-

eterization of the model. However, one can think of other mis-specified forecasting rules that do not yield a CE
equilibrium for given realistic parameterizations, in which case that particular structure of forecasting rule would
never be used.
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attention cannot match delayed over-shooting. Finally, Coibion and Gorodnichenko (2015) show

that equation (19) is consistent with the assumptions of sticky information (see, e.g., Mankiw and

Reis (2002) and Reis (2006)), and noisy information (see, e.g., Woodford (2003a), Sims (2003), and

Maćkowiak and Wiederholt (2009)). However, as shown by Angeletos, Huo, and Sastry (2021),

such informational frictions alone are not sufficient to be consistent with all three pieces of ev-

idence in the literature. Specifically, some degree of over-extrapolation is necessary to fit the

results of forecasters’ over-reaction to recent events in Kohlhas and Walther (2021) and delayed

over-shooting in Angeletos, Huo, and Sastry (2021).

4 General Equilibrium Model

Given the evidence presented in the previous section, I nest the proposed expectations formation

process, namely, a combination of mis-specified forecasts and myopia, into an otherwise base-

line New Keynesian DSGE model with habit formation in consumption and inflation indexation.

Bayesian estimation of the model on US aggregate data seeks to mainly reveal i) the preferred

forecasting process; ii) the estimated value of the degree of myopia; and iii) the relative role of

mis-specified forecasting rules and myopia for macroeconomic fluctuations.

4.1 Basics

The model is fairly standard; hence, I delegate all details to Appendix B.

Households. There is a continuum of identical households, i ∈ [0, 1], that are unaware of

each other’s homogeneity. They consume from a set of differentiated goods, supply labor, and

invest in riskless one-period bonds.25 The consumption bundle of each household over the set

of differentiated goods, j ∈ [0, 1], is determined by the Dixit-Stiglitz aggregator. The optimal

demand of the ith household for the jth good is given by

cit(j) =

(
Pjt

Pt

)−ζ

cit (20)

where Pjt is the price of the jth good and ζ > 1 is the elasticity of substitution among the

differentiated goods. Each period, the household receives labor income and dividends from the
25Bonds are assumed to be in zero net supply.
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monopolistically competitive firms, and it maximizes its expected lifetime utility with respect to

the deviation of current consumption from a stock of internal habits in consumption, labor supply,

and bonds, subject to a budget constraint. The problem each household faces is

max
cit,Hit,Bit

Ẽit

∞∑
h=0

βhξt+h

(
(cit − ηci,t−1)

1−σ

1− σ
− ψ

H1+φ
it

1 + φ

)
(21)

s.t.
Rt−1

πt
bi,t−1 = bit − wtHit − dit + cit (22)

where β ∈ (0, 1) is the discount factor; 0 ≤ η < 1 measures the degree of habit in consumption; σ

is the inverse intertemporal elasticity of substitution; Ẽit is the expectations operator described in

the previous section; ξt is a preference shock; Hit is labor supply; Rt−1 is the gross return on the

past period’s real bond choice bi,t−1; wt is the real wage and dit denotes real dividends from firms.

Solving the household’s optimization problem, log-linearizing around the steady-state equilib-

rium, and applying the myopic adjustment process delivers

x̂t =
η

1 + nηυ
x̂t−1 + n

υ − nβη(1− β)(1− η)

1 + nηυ
Ẽ⋆

t x̂t+1 +
βn2(1− β)(1− η)(1− nβη)

1 + nηυ
Ẽ⋆

t

∞∑
h=0

(βn)hx̂t+h+2

− Ẽ⋆
t

∞∑
h=0

(βn)h
1− βη

σ(1 + nηυ)

(
R̂t+h − π̂t+h+1 − êt+h

)
(23)

where x̂t is the output gap and υ = (1− β + βη). The variable êt is a demand shock assumed to

follow an AR(1) process

êt = ρeêt−1 + σeε
e
t , ε

e
t ∼ N (0, 1) (24)

with ρe ∈ [0, 1).

Firms. The problem of the monopolistically competitive firms is similar to what was described

in Section 2, with the major difference that the marginal cost is now endogenous. The jth firm

combines an exogenously given technology, zt, with labor input, hjt, to produce output yjt as

follows

yjt = zth
ah
jt (25)

where ah ∈ (0, 1]. As in Section 2, firms cannot adjust their price each period with probability

α ∈ [0, 1). However, if the jth firm cannot optimize its price in period t, it can still adjust the
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price according to the following indexation rule (see Christiano, Eichenbaum, and Evans (2005)),

Pjt = Pj,t−1π
ρπ
t−1 (26)

where 0 ≤ ρπ < 1 measures the degree of indexation to past inflation. Each firm will choose its

optimal price P ∗
jt that maximizes the present discounted value of real profits, i.e.,

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

(
P ∗
jt

Pt+h

(
Pt+h−1

Pt−1

)ρπ

yj,t+h − wt+hhj,t+h

)
(27)

s.t.

yjt =

(
P ∗
jt

Pt

)−ζ

yt (28)

where Qt+h is a generic stochastic discount factor. The aggregate price level is linked to the

aggregate optimal price level P ∗
t as described below

Pt =

[
α

(
Pt−1

(
Pt−1

Pt−2

ρπ
))1−ζ

+ (1− α)(P ∗
t )

1−ζ

] 1
1−ζ

(29)

After solving the firm’s optimization problem, log-linearizing around the steady-state equilibrium,

and applying the myopic adjustment process, I derive the aggregate supply as follows26

π̂t =
1

1 + nβρπ(1− α)
(ρππ̂t−1 − κητx̂t−1) +

κ(ω + τ(1− nηβ(α− η))

1 + nβρπ(1− α)
x̂t +

1

1− αβnρu
ût

+
nβ

1 + nβρπ(1− α)
Ẽ⋆

t

∞∑
h=0

(αβn)h ((1− α)(1− αβnρπ)π̂t+h+1 + κ(αω + τ(α− η)(1− αβnη)x̂t+h+1)

(30)

where τ = σ
1−βη

, κ = (1−α)(1−αβ)
α(1+ωζ)

; ω = 1+φ−ah
ah

. The variable ût is a cost-push shock assumed to

follow an AR(1) process,

ût = ρuût−1 + σuε
u
t , ε

u
t ∼ N (0, 1) (31)

with ρu ∈ [0, 1).

Monetary policy. The central bank controls nominal interest rates through a standard Taylor

rule that reacts to deviations of inflation from its target π̄ and deviations of the output gap xt

from its steady state, while smoothing the interest rate path with some degree ρr ∈ [0, 1). The
26I assume that households and firms share the same degree of myopia, n. This is an assumption that can be

easily relaxed.
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log-linearized policy rule is

R̂t = ρrR̂t−1 + (1− ρr)ϕππ̂t + (1− ρr)ϕxx̂t + σvε
v
t , ε

v
t ∼ N (0, 1) (32)

Model in matrix form. Let Θ = {α, β, n, σ, κ, η, ρπ, ω, ϕπ, ϕx, ρr, ρe, ρu, σe, σu, σv}. Then the

model can be compactly written in matrix form as

A0(Θ)St = A1(Θ)St−1 + Ẽ⋆
t

∞∑
h=0

(F (Θ))hA2(Θ)St+h+1 +B(Θ)Et (33)

where St =
[
x̂t π̂t R̂t êt ût

]′
is the state vector; Et =

[
εet εut εvt

]′
is the exogenous shock

vector; and A0, A1, A2, B and F are coefficient matrices. The aggregate economy in (33) nests

two model specifications, namely, i) n ∈ (0,1): this is the novel specification of the paper, where

a realistic value for n is provided through Bayesian inference in Section 4.3; and ii) n = 1: in this

case, agents exhibit no myopia at all.27

4.2 SAC Learning

Households and firms learn to use autoregressive forecasting rules to form expectations about

future endogenous variables, that is, the output gap, inflation, and nominal interest rates, nested

in S1:3,t

S1:3,t = δt−1 + γt−1(S1:3,t−1 − δt−1) + ϵt (34)

where δt−1 is the mean of the S1:3,1:t−1 series; γt−1 represents the first-order correlation matrix

between the S1:3,0:t−2 and S1:3,1:t−1 series; and ϵt is a white noise process. The formulation in

(34) nests commonly used forecasting rules, such as AR(1) and VAR(1) processes, for which I will

estimate the model. The forecast of S1:3,t+h conditional on information about S1:3,t−1, available at

the beginning of period t is28

Ẽ⋆
tS1:3,t+h = δt−1 + (γt−1)

h+1(S1:3,t−1 − δt−1) (35)
27Preston (2005) and Milani (2007) have used a model similar to (33) with n = 1 to investigate implications of

adaptive learning in an infinite horizon learning setting. See Eusepi and Preston (2018) as well for an extensive
review.

28An extensive analysis of the implications of learning for forecast error behavior can be provided by the author
upon request.
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Households and firms update their forecasting rules using sample autocorrelation coefficient (SAC)

learning. This procedure was first introduced in economics by Hommes and Sorger (1998) and it

relies on the Yule-Walker equations combined with sample estimates of autocorrelation coefficients;

that is, δt and γt are recursively updated according to

δt = δt−1 + ι(S1:3,t − δt−1)

γt = γt−1 + ι ((S1:3,t − δt−1)(S1:3,t−1 − δt−1)
′ − γt−1(S1:3,t − δt−1)(S1:3,t − δt−1)

′)η−1
t

ηt = ηt−1 + ι ((S1:3,t − δt−1)(S1:3,t − δt−1)
′ − ηt−1)

(36)

where ηt is the second moment matrix and ι is the gain parameter that nests the two types of

learning. With constant-gain learning, ι = ῑ is a constant parameter and it mimics a situation

where a rolling window of data with length approximately equal to 1
ῑ

is used to revise moments.

With decreasing-gain learning, on the other hand, ι = 1
t+1

and all available historical data are used

to update. The former approach is preferred because it has been universally found to improve

empirical fit and the literature has shown that agents focus on recent observations when updating

forecasting rules.29

4.3 Bayesian Estimation

Incorporating (34) into (33) yields the state-space representation of the model, described by

St = C0(Θ,γt−1)∆t−1 + C1(Θ,γt−1)St−1 + C2(Θ)Et (37)

Yt − Ȳ = PSt (38)

together with the dynamic system in (36), where ∆t =
[
δ′
t 01x2

]′
, Yt =

[
xobst πobs

t Robs
t

]′
is

the vector of observables, P is a matrix mapping model variables to the observables, and Ȳ is a

vector containing the observables’ mean. I use quarterly data on real GDP, real potential GDP

as reported by the US Congressional Budget Office, the GDP deflator, and the federal funds rate

from 1968 to 2018, extracted from the Federal Reserve Economic Data (FRED). The output gap
29See for example, Del Negro and Eusepi (2011), Ormeño and Molnár (2015), Rychalovska (2016), Cole and

Milani (2019), and Gaus and Gibbs (2018), among many others. Furthermore, Fuster, Laibson, and Mendel (2010)
claim that “actual people’s forecasts place too much weight on recent changes.” Malmendier and Nagel (2016)
find significant micro evidence in favor of constant-gain learning. See Tversky and Kahneman (1973, 1974) as well
for theoretical considerations. Additionally, the evolution of beliefs under decreasing-gain learning depends on the
length of the data, whereas constant-gain learning is robust to it.
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is measured as the log difference between real GDP and potential GDP.30 I refer the reader to

Appendix D for more details on data preparation. The state-space form of the model in (36)-

(38) is a Gaussian system; hence, I evaluate the likelihood function using the Kalman filter. The

posterior distribution then is computed as

p(Θ | Y1:T ) ∝ p(Y1:T | Θ)p(Θ) (39)

where p(Y1:T | Θ) is the data likelihood and p(Θ) the prior distribution of parameters. I use the

Metropolis-Hastings algorithm to generate two blocks with 360,000 draws each and discard the

first 60000 draws from the posterior distribution. In terms of the initiation of beliefs, I evaluate

moments of the pre-sample data from 1960 to 1965 and use them as the initial learning parameters,

δ0 and γ0, for the Kalman filter procedure.31

As commonly done in the literature, I fix the discount factor β = 0.99. Furthermore, given that

both the Phillips curve slope and the Calvo parameter, α, appear in the Phillips curve, and that

the former depends on α in addition to other parameters, I cannot estimate the two simultaneously.

Instead, I will fix the Phillips curve slope, κ, to 0.0015, which is the value estimated in Giannoni

and Woodford (2004) for the flexible wages case. For most of the parameters, I set priors commonly

used in the literature, as in, for instance, Milani (2007), Smets and Wouters (2007), and Herbst

and Schorfheide (2016). Priors are given in Table 2.

The prior for n follows a beta distribution with mean 0.5 and standard deviation of 0.2.32 In

Appendix D.2, I present results for when the prior of n is instead assumed to follow a uniform dis-

tribution with mean 0.5 and standard deviation 1/
√
12, and the results remain largely unchanged.

The learning gain parameter for the mis-specified forecasting rules follows a gamma distribution

prior with mean 0.035 and standard deviation 0.015.

The inverse intertemporal elasticity of substitution (IES) coefficient, σ, follows a gamma dis-
30Bayesian inference when the HP-filtered series of output are used as a measure of potential output produces

similar results. Estimates can be provided by the author upon request.
31Forecasting rules that rely on past aggregate variables only have a slight advantage over rules that include

shocks as well. Since beliefs are tied to moments from the data, the natural choice is to match initial beliefs to
pre-sample data moments. This makes the estimation’s vulnerability to initial beliefs - commonly faced in models
with forecasting rules that depend on shocks - disappear.

To give an idea of the different approaches used to generate initial beliefs when the forecasting process depends
on shocks, Milani (2007) estimates initial conditions on pre-sample data; Milani (2007) treats initial beliefs as
parameters and estimates them along with the model’s structural parameters; and Slobodyan and Wouters (2012a,b)
initiate beliefs at the implied moments of the FIRE solution, apart from the other two aforementioned methods.

32Ilabaca, Meggiorini, and Milani (2020) use a prior with mean 0.8 and standard deviation 0.15.
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Parameters pdf mean standard deviation
Calvo parameter α B 0.5 0.2
Degree of myopia n B 0.5 0.2
Inverse IES coefficient σ G 2 0.5
Habit in consumption η B 0.5 0.2
Inflation indexation ρπ B 0.5 0.2
Elasticity mc ω N 0.8975 0.4
Feedback to output gap ϕx N 0.5 0.25
Feedback to inflation ϕπ N 1.5 0.25
Interest rate smoothing ρr B 0.5 0.2
Demand shock autocorr. ρe B 0.5 0.2
Supply shock autocorr. ρu B 0.5 0.2
Demand shock std. σe IG 0.1 2
Supply shock std. σu IG 0.1 2
Monetary shock std. σv IG 0.1 2
Gain parameter ῑ G 0.035 0.015

Table 2: Priors

tribution with mean 2. Habit in consumption and inflation indexation parameters follow a beta

distribution with mean 0.5 and standard deviation of 0.2. The Calvo parameter, α, is assumed to

follow a beta prior with mean 0.5 and standard deviation 0.2. Elasticity of inflation with respect

to marginal cost follows a normal prior with mean 0.8975 and standard deviation 0.4.

Policy reaction coefficients toward deviations of inflation and the output gap from their steady-

state values are normally distributed with mean 1.5 and 0.5, respectively, and they share the same

standard deviation of 0.25. The interest rate smoothing parameter follows a beta distribution

with mean 0.5 and standard deviation 0.2. The autocorrelation coefficient of all shocks follows a

beta distribution with mean 0.5 and standard deviation 0.2. The standard deviation of all shocks

follows an inverse gamma distribution with mean 0.1 and standard deviation 2.

4.3.1 Posterior Distribution

Table 3 reports characteristics of the posterior distribution under FIRE, well-specified forecasts

and myopia, constant-gain SAC learning with AR(1) forecasting rules combined with myopia

and absent it.33 Data fit is judged based on the evaluation of the log marginal data likelihood,
33Posterior distributions are generally well-behaved. I rely on the method proposed by Brooks and Gelman

(1998) to analyze convergence statistics. Figures exhibiting the evolution of convergence statistics are reported in
Appendix D.2.
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computed through the modified harmonic mean method in Geweke (1999).34

In terms of data fit, I set the expectations formation process with well-specified forecasting

rules and myopia be the benchmark one, and compare the other alternatives to that benchmark.

The values in parentheses in the last row of Table 3 report the Bayes factor value of the model

specification relative to the benchmark specification. The log of the Bayes factor for the model with

mis-specified forecasts and myopia is higher than 3, and according to Kass and Raftery (1995), a

factor magnitude whose natural log is higher than 3 denotes strong evidence in favor of the model

with superior fit. On the other hand, the log of the Bayes factor for the model with FIRE as well as

the one with AR(1) forecasting rules absent myopia is negative. Thus, both model specifications fit

the data worse than the benchmark and, as a result, worse than mis-specified forecasts combined

with myopia. Therefore, the data fit analysis showed that i) the model where households and

firms combine learning of AR(1) mis-specified forecasting rules with myopia (column 4 in Table

3) fits the data best; and that ii) generally, the presence of myopia ensures a better fit of the US

macroeconomic data for both specifications with well- and mis-specified forecasting rules.

While myopia is neither a necessary nor a sufficient condition to match the empirical evidence

on forecasting data, the estimated marginal data densities exhibited in Table 3 show that a combi-

nation of myopia with mis-specified forecasting rules improves the fit of the macroeconomic data,

well beyond the data fit that is granted by the specifications without myopia. Consequently, if one

is interested in an expectations formation process that is consistent with consensus forecasting

data evidence only, then a mis-specified forecasting rule alone is sufficient. However, if one is

interested in an expectations formation process that is both consistent with the consensus fore-

casting data evidence and fits the macroeconomic data well, then a combination of mis-specified

forecasting rules and myopia should be preferred over the two departures separately.

The posterior mean estimate of the parameter capturing the degree of myopia, n, is significantly

different from 1, showing evidence in favor of considerable cognitive discounting of expected future

fluctuations in the US economy. The posterior mean of n is around 0.4 for the model with well-
34Bayes’ theorem implies that p(Yt) =

∫
p(Yt | Θ)p(Θ)dΘ, which is impossible to compute analytically. The

modified harmonic mean (MHM) method of Geweke (1999) is evaluated using the posterior distribution draws,

p(Yt) ≈

[
1

M −M0

M∑
m=M0+1

f(Θm)

p(Yt|Θm)p(Θm)

]−1

where M is the total number of draws, M0 is the number of discarded draws, and f(.) is the density of a truncated
normal distribution.
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specified forecasting rules, and 0.7 for the model with AR(1) mis-specified forecasts. The posterior

mean for the learning gain parameter ῑ is estimated to be 0.07 in both the presence and absence

of myopia, which further implies that a rolling window of about 13 quarters is used to recursively

update the parameters of the forecasting process.

The model estimated under the assumption of well-specified forecasts, with or without myopia,

requires significantly higher degrees of habit in consumption as compared to the model with mis-

specified forecasts and myopia. In particular, the posterior mean of η is 0.9 and 0.8 in columns (1)

and (2), respectively. By contrast, in the case of mis-specified forecasts the posterior mean of η

varies between 0.4 and 0.5. On the other hand, the models with well-specified forecasts require high

degrees of inflation indexation of about 0.9 at the posterior mean, whereas the model specifications

with mis-specified forecasts necessitate a somewhat lower degree of inflation indexation of about

0.8.

The posterior mean of the inverse elasticity of intertemporal substitution, σ, is estimated

to be around 2 for all specifications. The Calvo parameter cannot be identified in the model

specifications with well-specified forecasting rules. In the presence of mis-specified forecasts, the

posterior mean of α is estimated to be around 0.4 in cases of both myopia and no myopia. The

implied expected price duration for both specifications is about 5 months on average, which is in

accordance with findings in Bils and Klenow (2004) that, for most goods, prices change on average

once every 4 months. The posterior mean of ω varies in the range between 0.8 and 1 depending

on the model specification.

Policy parameters are generally robust across specifications, where the posterior mean estimates

of the reaction to the output gap is around 0.4, the reaction to inflation varies between 1.4 and

1.5, and the interest rate smoothing parameter is estimated to be close to 0.9.

The posterior mean of the demand shock autocorrelation in the model with mis-specified

forecasts and myopia is about 0.7 and it is slightly lower than its estimate of about 0.8 in the model

with mis-specified forecasts and no myopia. Furthermore, the demand shock is less persistent under

FIRE (ρe ≈ 0.6 at the posterior mean) relative to the specification in column (4). On the other

hand, demand shock innovations are at least two times less volatile under mis-specified forecasts

than under well-specified forecasts: the posterior mean estimates for demand innovations vary

between 1.3 and 2.3 for the case of mis-specified forecasts, but they increase to values above 5 for

well-specified forecasts. The persistence and standard deviation of the supply shock are generally
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robust across specifications, with ρu varying between 0.05 and 0.1, and σu taking values between

0.2 and 0.3. Likewise, the standard deviation of the monetary shock is generally robust across

models at an estimated posterior mode of 0.2.
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Well-specified Forecasting Rules AR(1) Mis-specified Forecasting Rules

(1) (2) (3) (4)

no myopia, n = 1 myopia, n ∈ (0,1) no myopia, n = 1 myopia, n ∈ (0,1)

Parameters mean 5% 95% mean 5% 95% mean 5% 95% mean 5% 95%

Calvo parameter, α - - - - - - 0.37 0.12 0.66 0.43 0.15 0.73
Degree of myopia, n - - - 0.39 0.17 0.61 - - - 0.65 0.40 0.84
Inverse IES coefficient, σ 2.41 1.44 3.29 1.99 1.16 2.78 2.18 1.45 3.05 2.23 1.41 3.19
Habit in consumption, η 0.90 0.83 0.98 0.78 0.56 0.92 0.39 0.25 0.56 0.53 0.31 0.72
Inflation indexation, ρπ 0.90 0.84 0.95 0.87 0.81 0.92 0.77 0.53 0.92 0.80 0.65 0.92
Elasticity mc, ω 0.83 0.20 1.43 0.94 0.31 1.57 0.98 0.34 1.62 0.99 0.36 1.63
Feedback to output gap, ϕx 0.36 0.22 0.49 0.42 0.22 0.60 0.41 0.25 0.63 0.43 0.25 0.66
Feedback to inflation, ϕπ 1.43 1.16 1.70 1.46 1.13 1.77 1.45 1.15 1.78 1.45 1.14 1.77
Interest rate smoothing, ρr 0.88 0.85 0.91 0.92 0.89 0.95 0.92 0.88 0.94 0.92 0.89 0.95
Demand shock autocorr., ρe 0.64 0.50 0.77 0.53 0.30 0.82 0.83 0.72 0.92 0.72 0.55 0.88
Supply shock autocorr., ρu 0.06 0.01 0.10 0.05 0.01 0.09 0.11 0.03 0.27 0.09 0.02 0.18
Demand shock std., σe 5.25 1.64 9.57 5.19 1.75 8.23 1.25 0.54 1.86 2.34 1.01 3.79
Supply shock std., σu 0.26 0.23 0.28 0.16 0.10 0.22 0.33 0.28 0.39 0.33 0.28 0.38
Monetary shock std., σv 0.21 0.19 0.23 0.21 0.19 0.22 0.21 0.19 0.22 0.21 0.19 0.22
Learning gain, ῑ - - - - - - 0.07 0.04 0.10 0.07 0.04 0.11

Log marg. data dens.
Modified Harmonic Mean -272.593 -258.487 -276.482 -255.186∗

Bayes factor (e−17.41) (e−3.30) (e−21.30) (e0)

Table 3: Posterior distribution of the model for various assumptions on the expectations formation process. Values in parentheses
denote the Bayes factor of the model relative to the benchmark specification with well-specified forecasts and myopia. The asterisk
denotes strong evidence in favor of the model relative to the benchmark one.
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Figure 5: Evolution of the AR(1) forecast coefficients in the model with myopia. The black and
dotted curves plot perceived moments for structural parameters set at their estimated posterior
mean and 90 percent highest posterior density, respectively. Gray areas indicate recessionary
periods as reported by the National Bureau of Economic Research. The dashed red lines indicate
the x axis.

Figure 5 plots the historical evolution of the mis-specified forecast coefficients in the model with

mis-specified forecasts and myopia, with parameters set at their posterior mean and 90 percent

highest posterior density values. As shown in Figure 5, recessionary periods, indicated by the

shaded gray areas, have been historically associated with a decrease in the perceived mean and

first-order autocorrelation of the output gap. On the other hand, there is a shift in the way

agents perceive moments of inflation and nominal interest rates during recessions. Particularly,

before the early 1980s, recessions were associated with increasing beliefs about the mean and first-

order autocorrelation of inflation and nominal rates. On the contrary, during and after the Great

Moderation, economic turmoils are characterized by a decrease in beliefs about the mean and

first-order autocorrelation of inflation and nominal interest rates. Therefore, the well-documented
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contrast between the US macroeconomy during the 1970s and the Great Moderation period is

similarly mirrored in agents’ perceptions about moments of inflation and nominal interest rates.35

Another interesting observation from Figure 5 is that the implied beliefs about the annualized

mean of inflation from the aftermath of the Great Recession up until the end of 2018 have been

particularly steady at 2 percent.

4.3.2 VAR(1) Forecasting Rules

To investigate the model’s performance when agents learn to use more sophisticated, yet mis-

specified, forecasting rules, I re-estimate the model with VAR(1) forecasting rules with and without

myopia under constant-gain learning. The characteristics of the posterior distribution of param-

eters are exhibited in the third and fourth columns of Table 4 jointly with the AR(1) forecasting

rule counterpart for easier comparison.

To judge model fit, I set the expectations formation process with AR(1) forecasts and myopia to

be the benchmark specification, and compare the other alternatives to it. The values in parenthesis

in the last row of Table 4 report the value of the Bayes factor for the model specification relative

to the benchmark. The natural log of the Bayes factor for the model with VAR(1) forecasts

and myopia is 2.3 units higher than the benchmark. According to Kass and Raftery (1995), this

would be positive, but not strong, evidence in favor of VAR(1) forecasts and myopia relative to a

combination of AR(1) forecasts and myopia. On the other hand, both specifications with VAR(1)

or AR(1) forecasts absent myopia perform significantly worse than the analogue cases with myopia.

Parameter estimates under a combination of VAR(1) forecasts with myopia are very much sim-

ilar to the ones under an AR(1) forecasting rule with myopia. On the other hand, the specification

of VAR(1) forecasts without myopia exhibits some notable differences when compared with the

other specifications. First, the Calvo parameter is estimated to be more than twice as high, and

the inverse elasticity of substitution is estimated to be twice as high. Similarly, the estimated

posterior mean of the supply shock is about 7 times higher than that of the other specifications,

whereas the estimated standard deviation of supply innovations is about 4 times smaller. These

results imply that, generally, the VAR(1) forecast specification with no myopia requires frictions

of larger magnitudes to fit the macroeconomic data.

Finally, Figure 6 plots the evolution of the estimated agents’ beliefs when they engage in
35See, for instance, Bianchi (2013) and references therein, for a discussion on the differences between the two

periods.
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constant-gain learning of a VAR(1) forecasting process in the specification with myopia. The per-

ceived first-order correlation between any two distinct aggregate variables is estimated to fluctuate

around 0, whereas the perceived first-order autocorrelation fluctuates around a strictly positive

value. Therefore, using more elaborate forecasting rules, such as VAR(1), will not add, on average,

any significant information to households and firms in terms of forecasting, and it will not strongly

enhance the model’s fit of the data.

Figure 6: Evolution of the VAR(1) forecast coefficients in the model with myopia. The black and
dotted curves plot implied beliefs for structural parameters set at their estimated posterior mean
and 90 percent highest posterior density, respectively. Gray areas indicate recessionary periods as
reported by the National Bureau of Economic Research. The dashed red lines indicate the x axis.
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AR(1) Mis-specified Forecasting Rules VAR(1) Mis-specified Forecasting Rules

(1) (2) (3) (4)

no myopia, n = 1 myopia, n ∈ (0,1) no myopia, n = 1 myopia, n ∈ (0,1)

Parameters mean 5% 95% mean 5% 95% mean 5% 95% mean 5% 95%

Calvo parameter, α 0.37 0.12 0.66 0.43 0.15 0.73 0.97 0.93 0.99 0.37 0.12 0.66
Degree of myopia, n - - - 0.65 0.40 0.84 - - - 0.70 0.46 0.88
Inverse IES coefficient, σ 2.18 1.45 3.05 2.23 1.41 3.19 4.08 3.03 5.21 2.18 1.45 3.05
Habit in consumption, η 0.39 0.25 0.56 0.53 0.31 0.72 0.35 0.24 0.54 0.39 0.25 0.56
Inflation indexation, ρπ 0.77 0.53 0.92 0.80 0.65 0.92 0.08 0.02 0.16 0.77 0.53 0.92
Elasticity mc, ω 0.98 0.34 1.62 0.99 0.36 1.63 0.94 0.32 1.57 0.98 0.34 1.62
Feedback to output gap, ϕx 0.41 0.25 0.63 0.43 0.25 0.66 0.40 0.24 0.63 0.41 0.25 0.63
Feedback to inflation, ϕπ 1.45 1.15 1.78 1.45 1.14 1.77 1.45 1.14 1.78 1.45 1.15 1.78
Interest rate smoothing, ρr 0.92 0.88 0.94 0.92 0.89 0.95 0.92 0.88 0.95 0.92 0.88 0.94
Demand shock autocorr., ρe 0.83 0.72 0.92 0.72 0.55 0.88 0.97 0.94 0.99 0.83 0.72 0.92
Supply shock autocorr., ρu 0.11 0.03 0.27 0.09 0.02 0.18 0.74 0.62 0.84 0.11 0.03 0.27
Demand shock std., σe 1.25 0.54 1.86 2.34 1.01 3.79 0.22 0.09 0.52 1.25 0.54 1.86
Supply shock std., σu 0.33 0.28 0.39 0.33 0.28 0.38 0.08 0.05 0.11 0.33 0.28 0.39
Monetary shock std., σv 0.21 0.19 0.22 0.21 0.19 0.22 0.21 0.19 0.23 0.21 0.19 0.22
Learning gain, ῑ 0.07 0.04 0.10 0.07 0.04 0.11 0.03 0.01 0.05 0.07 0.04 0.10

Log marg. data dens.
Modified Harmonic Mean -276.482 -255.186 -277.3623 -252.885
Bayes factor (e−21.30) (e0) (e−22.18) (e2.30)

Table 4: Posterior distribution of the model for AR(1) and VAR(1) mis-specified forecasting rules. Values in parentheses denote the
Bayes factor of the model relative to the benchmark specification with AR(1) mis-specified forecasts and myopia.
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4.3.3 Impulse Response Functions

Computing IRFs under SAC learning is slightly complicated because the response of aggregates to

any shock depends on the perceived first-order autocorrelation prior to the economy being shocked.

Furthermore, as the shock hits the economy the perceived mean and first-order correlation, which

enter the model’s solution non-linearly, evolve jointly with the aggregates. To make the IRFs

comparable across time periods and assumptions on expectations, I assume that the economy

prior to the shock is at its steady state.36

Figure 7 plots the three-dimensional IRFs of the output gap, inflation, and nominal interest

rates to a one standard deviation demand, cost-push, and monetary shock, when the expectations

formation process is characterized by mis-specified - AR(1) in panel (a) and VAR(1) in panel (b)

- forecasts and myopia. The model, including the standard deviation of the various shocks, is

calibrated to the estimated posterior mean as shown in Tables 3 and 4. Both panels show that

the response of aggregates to various fundamental shocks depends on the perceived first-order

correlation coefficients prior to the shock. It is interesting to note that the response of inflation

to monetary shocks is always negative under AR(1) forecasts, whereas under VAR(1) forecasts,

the sign of the response depends on the time period. To better observe such differences, Figure

8 projects the three-dimensional IRFs of Figure 7 on the [response - time period] plane. Overall,

relative to AR(1) forecasts, VAR(1) forecasts introduce more volatility in the sign of the response

of inflation to demand and monetary shocks.

To compare the IRFs across different assumptions on expectations, Figure 9 plots the average

impulse responses for the output gap, inflation, and nominal interest rates. The standard deviation

of all three shocks is normalized to 1, while the rest of the parameters are set at their estimated

posterior mean as reported in Tables 3 and 4. As shown in panel (a), mis-specified forecasts gener-

ally induce more sufficient internal persistence and amplification to exogenous shocks as compared

to well-specified forecasts. Moreover, when compared to AR(1) forecasts, VAR(1) forecasting

rules often times generate a more persistent and intense response of aggregates, particularly to

demand and monetary shocks. As exhibited in panel (b), this outcome is more pronounced when

myopia is absent (note that the estimated standard deviation of the demand shock in the case of

VAR(1) forecasts absent myopia is much smaller than 1). Turning to myopia, its presence tends
36The prior for the perceived mean of the aggregates is set to 0, whereas the priors for the perceived first-order

correlation coefficients are set to their estimated values as plotted in Figures 5 and 6.
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to mute fluctuations around the steady state, and therefore, the response of aggregates to various

shocks is amplified when there is no myopia as compared to cases when mis-specified forecasts are

myopically adjusted.
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(a) AR(1) mis-specified forecasts and myopia

(b) VAR(1) mis-specified forecasts and myopia

Figure 7: Three-dimensional impulse response functions to a one standard deviation positive
demand, cost-push, and monetary shock for the model with mis-specified forecasts and myopia.
Panel (a): AR(1) forecasts; panel (b): VAR(1) forecasts. Parameters are set at their estimated
posterior mean as shown in column (4) of Tables 3 and 4. X axis: periods of response; y axis:
estimation time periods; z axis: impulse response function.
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(a) AR(1) mis-specified forecasts and myopia

(b) VAR(1) mis-specified forecasts and myopia

Figure 8: Impulse response functions of Figure 7 projected on the (response periods,time) plane.
Panel (a): AR(1) forecasts; panel (b): VAR(1) forecasts.
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(a) Myopia: Mis-specified versus well-specified forecasts

(b) Mis-specified forecasts: myopia versus no myopia

Figure 9: Average impulse response functions to a one standard deviation positive demand, cost-
push and monetary shock. In blue: AR(1) mis-specified forecasts; in black: AR(1) mis-specified
forecasts; in red: well-specified forecasts. Panel (a): comparison between mis-specified and well-
specified forecasts when combined with myopia; panel (b): comparison between mis-specified
forecasts with myopia and without myopia. The standard deviation of all shocks is normalized at
1, and all the other parameters are set at their estimated posterior mean as shown in Tables 3 and
4.
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5 Implications for Forecasting Errors

In this final section, I revisit the three empirical facts about inflation consensus forecasting errors

analyzed in Section 3 when autoregressive mis-specified forecasts of the AR(1) and VAR(1) type

are combined with myopia, that is, for both expectations formation processes that best fit the

data as shown in the previous section.37

Figure 10: Three-dimensional impulse response functions of annual inflation forecasting errors
to a one standard deviation positive demand, cost-push, and monetary shock in the model with
mis-specified forecasts and myopia. Top three panels: AR(1) mis-specified forecasts; bottom three
pabels: VAR(1) mis-specified forecasts. Model parameters are set equal to the posterior mean as
shown in Tables 3 and 4. In dark red: (response, time period) plane.

Delayed over-shooting. Setting the model parameters to the posterior mean as found in

column (4) of Tables 3 and 4, I simulate the response of annual inflation forecast errors to a

demand, cost-push, and monetary shock over the estimation period of 1966:Q1 - 2018:Q3. Figure

10 plots the three-dimensional IRFs with the top three panels exhibiting the responses for AR(1)

forecasting rules, and the bottom three panels showing the responses for VAR(1) forecasting rules.

Focusing first on the top three panels, it is clear that, with AR(1) forecast rules, the response of

inflation forecast errors to all three shocks switches sign, exhibiting delayed over-shooting. On the

other hand, with VAR(1) forecast rules, the response of inflation forecast errors switches sign in the
37See Appendix D.3 for an analysis of the behavior of simulated inflation forecast error data when the expectations

formation process is characterized by mis-specified forecasts and no myopia.
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majority of time periods only in response to a cost-push shock. Therefore, VAR(1) mis-specified

forecasts combined with myopia do not always guarantee delayed over-shooting.

Figure 11 projects the impulse response functions of Figure 10 on the (response, time period)

plane. With AR(1) forecasts, delayed over-shooting occurs irrespective of the shock forecast errors

are subjected to and regardless of the initial beliefs about the mean and first-order autocorrelation

of inflation. With VAR(1) forecasts, the response of inflation forecast errors to a cost-push shock

almost always exhibits delayed over-shooting. On the other hand, the response to a demand shock

over-shoots late only during the mid-1980s and 2010s, so it does depend on the initial beliefs about

moments of inflation. In contrast, the response of inflation forecast errors to a monetary shock is

either always positive or always negative, showing no signs of delayed over-shooting.

Figure 11: Impulse response functions of annual inflation forecasting errors to a one standard de-
viation positive demand, cost-push, and monetary shock in the model with mis-specified forecasts
and myopia, projected on the (response, time period) plane. Top three panels: AR(1) mis-specified
forecasts; bottom three panels: VAR(1) mis-specified forecasts. Model parameters are set equal
to the posterior mean as shown in column (4) of Tables 3 and 4. In red: x axis.

Under-reaction to ex-ante forecast revisions, over-reaction to current inflation. I

estimate the two regressions in (15) and (16) with simulated annual forecasting data for inflation,

when the expectations formation process is a combination of myopia and autoregressive mis-

specified forecasts of the AR(1) or VAR(1) type. Table 5 presents the results: panel A shows the

estimates of K4 and M4 over the full sample from 1967:Q1 through 2018:Q3, whereas panel B
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exhibits estimates of M4 after the early 1980s, that is, starting from 1981:Q3 through 2018:Q3.

Panel A: 1967:Q1 - 2018:Q3

AR(1) and myopia VAR(1) and myopia

5% mean 95% 5% mean 95%

Revision 8.75 4.01 1.95 6.98 3.38 1.60
(0.54) (0.33) (0.28) (0.45) (0.31) (0.28)

Current 0.75 0.57 0.32 0.72 0.53 0.29
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Panel B: 1981:Q3 - 2018:Q3

AR(1) and myopia VAR(1) and myopia

5% mean 95% 5% mean 95%

Current 0.41 0.19 -0.11 0.36 0.09 -0.23
(0.04) (0.04) (0.05) (0.04) (0.05) (0.05)

Table 5: Estimates of regressions in (15) and (16) on simulated forecasting data. Model parameters
are set at the posterior 5th percentile, the mean, and the 95th percentile of the distribution for
the model with mis-specified forecasts and myopia as documented in column (4) of Tables 3 and
4. All regressions include a constant term, and standard errors are given in parenthesis. Panel
A: estimates of K4 (revision) and M4 (current) over the full sample for AR(1) and VAR(1) mis-
specified forecasts. Panel B: estimates of M4 (current) since the early 1980s for AR(1) and VAR(1)
mis-specified forecasts.

Consistent with the evidence presented in Section 3, annual inflation forecast errors depend

positively on ex-ante inflation forecast revisions, regardless of the model parameterization and of

the structure of the mis-specified forecasting rule. Similarly, current realizations are positively

correlated with ex-post forecast errors over the full sample. On the other hand, when the sample

starts from the early 1980s, the sign of the correlation between ex-post forecast errors and current

inflation realizations depends on the parameterization of the model. In particular, simulated fore-

cast data over-react to current inflation for parameterizations that are closer to the 95th percentile

of the posterior distribution. This outcome applies to both AR(1) and VAR(1) mis-specified fore-

casts, and it is consistent with the analysis in Section 3 showing that low degrees of myopia are

needed for over-reaction to occur.

6 Concluding Remarks

The present paper combines two of the most prominent deviations from FIRE, namely, mis-

specified forecasts and myopia in a unified New Keynesian framework that is amenable to macroe-
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conomic data. The first part of the paper focuses on a partial equilibrium pricing problem, derives

a number of implications, and tests them with evidence from consensus inflation forecasting data.

The second part of the paper embeds the same departures from FIRE in a full New Keynesian

model with habit in consumption and inflation indexation, derives the general equilibrium solu-

tion under sample autocorrelation coefficient learning, and estimates the model using Bayesian

methods.

The paper underscores a number of novel results. First, it shows that a combination of au-

toregressive mis-specified forecasts and myopia is consistent with consensus inflation forecasts’ i)

delayed over-shooting; ii) under-reaction to ex-ante forecast revisions; and iii) over-reaction to

recent events. The paper further proves that while mis-specified forecasts are both sufficient and

necessary to match all three facts, myopia alone is neither. Second, the general equilibrium em-

pirical analysis reveals that the best fitting expectations formation process for both households

and firms is characterized by a combination of autoregressive mis-specified forecasts and myopia.

Third, no strong evidence is found in favor of more elaborate VAR(1) forecast rules over simple

AR(1) forecasts. Fourth, autoregressive mis-specified forecasts in the presence of myopia generate

substantial internal persistence and amplification to exogenous shocks. Finally, the paper comes

full circle and shows that simulated inflation forecast data from the estimated general equilibrium

mirror the three empirical facts on inflation forecasting data.

The current paper lays solid ground in service to future research. A salient feature of forecasting

data that has not been accounted for in the present paper is heterogeneity. Therefore, one potential

extension of the current work would be to allow for heterogeneity in the degree of myopia, as well

as in the structure of forecasting rules.

44



Appendix (For Online Publication)

A Partial Equilibrium New Keynesian Pricing Problem

Firms face nominal rigidities a la Calvo: they cannot reset the price with probability α ∈ (0, 1)

each period. Every firm seeks to maximize the present discounted value of real profits, i.e.,

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

(
P ∗
jt

Pt+h

yj,t+h −mct+hyj,t+h

)
(A.1)

where Qt is a generic stochastic discount factor; P ∗
jt is the optimal price set by the jth firm; Pt

is the aggregate price level; yjt is the demand for the jth firm’s good; mct is the marginal cost;

β ∈ (0, 1) is a deterministic discount factor. The demand each firm faces and the aggregate price

level are given by

yjt =

(
P ∗
jt

Pt

)−ζ

yt Pt =

[∫ 1

j=0

P 1−ζ
jt

] 1
ζ−1

(A.2)

where ζ > 1 is the elasticity of substitution among the differentiated goods. Substituting for yj,t+h

into (A.1), we have

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

((
P ∗
jt

Pt+h

)1−ζ

−
(
P ∗
jt

Pt+h

)−ζ

mct+h

)
yt+h (A.3)

The first-order condition with respect to P ∗
jt is

P ∗
jt

Pt

=
ζ

ζ − 1

Ẽjt

∑∞
h=0(αβ)

hQt+hyt+hmct+hπ
ζ
t,t+h

Ẽjt

∑∞
h=0(αβ)

hQt+hyt+hπ
ζ−1
t,t+h

(A.4)

where πt,t+h = Pt+h

Pt
=
∏h

l=0 πt+l. Due to Calvo pricing, the aggregate price level in (A.2) can be

rewritten as

Pt =
[
αP 1−ζ

t−1 + (1− α)(P ∗
t )

1−ζ
] 1

ζ−1 (A.5)

Assume that the steady state for inflation is π̄ = 1. From (A.5), we have that in the steady

state, P ∗/P = 1. Then, from the optimality condition in (A.4) it follows that in the steady-state

equilibrium m̄c = ζ−1
ζ

. Log-linearizing the first-order condition around steady-state values and

45



dropping the subscript j, since every firm has the same optimality condition, we have

p̂∗t = Ẽt

∞∑
h=0

(αβ)h ((1− αβ)m̂ct+h + αβπ̂t+h+1) (A.6)

where p̂∗t = P̂ ∗
t − P̂t and π̂t+1 =

Pt+1

Pt
is inflation in period (t+ 1).

B DSGE Model

Households. There is a continuum of identical households, i ∈ [0, 1], that consume from a set of

differentiated goods, supply labor, and invest in riskless one-period bonds. First, households solve

for the optimal allocation of consumption across differentiated goods, produced by monopolistically

competitive firms j ∈ [0, 1], i.e.,

min
cit(j)

∫ 1

j=0

Pjtcit(j)dj

s.t.

cit =

[∫ 1

j=0

cit(j)
ζ−1
ζ dj

] ζ
ζ−1

(B.1)

and

Pt =

[∫ 1

j=0

P 1−ζ
jt

] 1
1−ζ

(B.2)

where ζ is the elasticity of substitution among the differentiated goods. The corresponding La-

grangian is

Lit = min
cit(j)

∫ 1

j=0

Pjtcit(j)dj + χit

cit − [∫ 1

j=0

(cit(j))
ζ−1
ζ dj

] ζ
ζ−1


where χit is the Lagrangian multiplier for the Dixit-Stiglitz consumption aggregator in (B.1). The

first-order condition is

cit(j) =

(
χit

Pjt

)ζ

cit (B.3)

Plugging the expression for cit(j) above into (B.1) and rearranging terms,

χit =

[∫ 1

j=0

P 1−ζ
jt dj

] 1
1−ζ

This implies further that

cit(j) =

(
Pjt

Pt

)−ζ

cit (B.4)
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Equation (B.4) defines the optimal demand of the ith household for the jth good. The intertemporal

problem for the household is to

max
cit,Hit,Bit

Ẽit

∞∑
h=0

βhξt+h

(
(ci,t+h − ηci,t+h−1)

1−σ

1− σ
− ψ

H1+φ
i,t+h

1 + φ

)

with budget constraint satisfying

Rt−1Bi,t−1 = Bit −WtHit −
∫ 1

j=0

Dit(j)dj +

∫ 1

j=0

Pjtcit(j)dj

where Hit is labor supply; Rt−1 gross return on nominal bond choice, Bi,t−1; Wt nominal wage;

Dit(j) nominal dividends from the jth firm; and ξt a preference shock. Households internalize their

optimal demand for good j into their intertemporal maximization problem, therefore

∫ 1

j=0

Pjtcit(j)dj = Ptcit

The budget constraint can be rewritten as

Rt−1Bi,t−1 = Bit −WtHit −Dit + Ptcit (B.5)

where
∫ 1

j=0
Dit(j)dj = Dit. The first-order conditions (FOC) with respect to consumption, bonds,

and hours, respectively, are

ξt(cit − ηci,t−1)
−σ − βηẼitξt+1(ci,t+1 − ηcit)

−σ = λit (B.6)

λit = βẼitRt
λi,t+1

πt+1

(B.7)

ψξtH
φ
it = λitwt (B.8)

where wt =
Wt

Pt
is the real wage.

Firms. There is a continuum of household-owned monopolistically competitive firms, j ∈ [0, 1],

that optimize with respect to price and labor demand. The production technology of each firm is

yjt = zth
ah
jt (B.9)

where zt and hjt are a technology shock and labor demand, respectively, and 0 < ah ≤ 1. The
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price optimization problem is subject to Calvo price stickiness as in Appendix A. Differently from

Appendix A, if firms cannot optimize the price they can still adjust prices according to

Pj,t+h = Pj,t+h−1(πt+h−1)
ρπ = Pjt

(
Pt+h−1

Pt−1

1−ζ)ρπ

(B.10)

where 0 ≤ ρπ < 1. Given the price aggregator in (B.2) and the nominal rigidities firms face, we

have

Pt =

[
α

(
Pt−1

(
Pt−1

Pt−2

)ρπ)1−ζ

+ (1− α)(P ∗
t )

] 1
1−ζ

(B.11)

Each firm chooses the optimal price that will maximize the present discounted value of real profits

such that the demand for its good is satisfied, and then hire the optimal amount of labor hours

that will minimize production costs. Using backward induction, I solve the cost minimization

problem first,

Ljt = min
hjt

wthjt +mcjt(yjt − zth
ah
jt ) (B.12)

where mcjt is the real marginal cost of production. The FOC with respect to labor reads

mcjt =
wt

ahzth
ah−1
jt

(B.13)

The intermediate firms’ problem is

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+h

(
P ∗
jt

Pt+h

(
Pt+h−1

Pt−1

)ρπ

yj,t+h − wt+hhj,t+h

)
(B.14)

Aggregating cit(j) across households in (B.3), we have that the demand faced by the jth firm is

yjt =

(
P ∗
jt

Pt

)−ζ

yt (B.15)

Substituting for yjt and wt in the pricing problem becomes

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt+hyt+h

((
P ∗
jt

Pt+h

)1−ζ (
Pt+h−1

Pt−1

)ρπ(1−ζ)

− ahmcj,t+h

(
P ∗
jt

Pt+h

)−ζ (
Pt+h−1

Pt−1

)−ρπζ
)

(B.16)
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The first-order condition with respect to P ∗
jt reads

Ẽjt

∞∑
h=0

(αβ)hQt+hπ
−ρπζ
t−1,t+h−1P

ζ−1
t+h yt+h

(
ahζmcj,t+hPt+h − (ζ − 1)P ∗

jtπ
ρπ
t−1,t+h−1

)
= 0 (B.17)

Monetary Policy. The central bank controls nominal interest rates through a Taylor rule that

reacts to inflation and output gap deviations from their steady-state values, with some interest

rate smoothing, i.e.,

Rt

R̄
=

(
Rt−1

R̄

)ρr (πt
π̄

)(1−ρr)ϕπ
(xt
x̄

)(1−ρr)ϕx

eσvεvt , εvt ∼ N (0, 1) (B.18)

where xt is the output gap; π̄ and x̄ denote the inflation target and output gap steady-state value,

respectively; ρr ∈ [0, 1).

Steady-state Equilibrium. I calculate steady-state values:

ξ̄ = 1 z̄ = 1 v̄ = 1 (B.19)

π̄ = βR̄ = 1 (B.20)

λ̄ = ȳ−σ(1− βη) (B.21)

w̄ =
ψ

1− βη
(H̄)φ(C̄)σ (B.22)

d̄ = C̄ − 1− β

β
b̄− w̄H̄ (B.23)

ȳ = h̄ah (B.24)

m̄c =
ζ − 1

ahζ
(B.25)

where b̄ = B̄
P̄

and d̄ = D̄
P̄

denote steady-state bond holdings and dividends in real terms.

B.1 Log-linearized Model

Households. Log-linearizing (B.6) and (B.7) around steady states generates

ĉcit = Ẽitĉci,t+1 −
1− βη

σ
Ẽit(R̂t − π̂t+1) +

1

σ
Ẽit (ĝt − ĝt+1) (B.26)
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where ĉcit = ĉit − ηĉi,t−1 − βηẼit(ĉi,t+1 − ĉit) and ĝt = ξ̂t − βηξ̂t+1. One can make inferences about

Ẽitĉci,t+1 by iterating the Euler equation above, i.e.,

ĉci,t+1 = Ẽi,t+1ĉci,t+2 −
1− βη

σ
Ẽi,t+1(R̂t+1 − π̂t+2) +

1

σ
Ẽi,t+1(ĝt+1 − ĝt+2)

So,

Ẽitĉci,t+1 = ẼitẼi,t+1ĉci,t+2 −
1− βη

σ
ẼitẼi,t+1(R̂t+1 − π̂t+2)−

1

σ
ẼitẼi,t+1(ĝt+1 − ĝt+2)

= Ẽitĉci,t+2 −
1− βη

σ
Ẽit(R̂t+1 − π̂t+2)−

1

σ
Ẽit(ĝt+1 − ĝt+2)

where the second equality is an application of the law of iterative expectations. Plugging expec-

tations into the log-linear individual Euler equation, we get

ĉcit = Ẽitĉci,t+2 −
1− βη

σ
Ẽit

t+1∑
h=0

(R̂t+h − π̂t+h+1) +
1

σ
Ẽit

t+1∑
h=0

(ĝit+h − ĝt+h+1)

Similarly, the h-periods-ahead forwardly iterated Euler equation reads

ĉcit = Ẽitĉci,t+h −
1− βη

σ
Ẽit

h−1∑
l=0

(R̂t+l − π̂t+l+1) +
1

σ
Ẽit

t+k−1∑
h=0

(ĝt+h − ĝt+h+1) (B.27)

It is worth noting that if households knew that everyone is subject to the same preference shocks,

and that they all have the same preferences over consumption and labor, then they would know

that in the infinite future, consumption is expected to be at its steady state, implying that

limh→∞ Ẽitĉci,t+h = 0. This would further imply that households would use the one-step-ahead

Euler equation, as under RE. However, households have imperfect knowledge about the rest of

the population, and one needs to combine (B.27) with the infinitely forward iterated household’s
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budget constraint in (B.5):

Bi,t−1 =
Bit

Rt−1

− WtHit

Rt−1

− Dit

Rt−1

+
Ptcit
Rt−1

= ẼitRRt−1,tBi,t+1 − Ẽit

t+1∑
h=0

RRt−1,t+h(Wt+hHi,t+h +Di,t+h) + Ẽit

t+1∑
h=0

RRt−1,t+hPt+hci,t+h

= ...

= lim
τ→∞

ẼitRRt−1,t+hBi,t+h+1 − Ẽit

∞∑
h=0

RRt−1,t+h(Wt+hHi,t+h +Di,t+h) + Ẽit

∞∑
h=0

RRt−1,t+hPt+hci,t+h

= Ẽit

∞∑
h=0

Ft−1,t+hPt+hci,t+h − Ẽit

∞∑
h=0

RRt−1,t+h(Wt+hHi,t+h +Di,t+h)

where RRt−1,t+h =
∏t+h

l=t−1
1
Rl

. To get the last equality I impose the appropriate no-Ponzi con-

straint, i.e., limh→∞ ẼitRRt−1,t+hBi,t+h+1 = 0. To write everything in real terms, I divide by Pt−1

and get

bi,t−1 = Ẽit

∞∑
h=0

RRt−1,t+hπt−1,t+hci,t+h − Ẽit

∞∑
h=0

RRt−1,t+hπt−1,T (wt+hHi,t+h + di,t+h) (B.28)

The log-linearized version of the iterated budget constraint is:

b̄b̂i,t−1 = Ẽit

∞∑
h=0

R̄Rt−1,t+hπ̄t−1,t+hc̄(R̂Rt−1,t+h + π̂t−1,T + ĉi,t+h)

− Ẽit

∞∑
h=0

R̄Rt−1,t+hπ̄t−1,t+hw̄H̄(R̂Rt−1,t+h + π̂t−1,t+h + ŵt+h + Ĥi,t+h)

− Ẽit

∞∑
h=0

R̄Rt−1,t+hπ̄t−1,t+hd̄(R̂Rt−1,t+h + π̂t−1,t+h + d̂i,t+h)

Using (B.21), R̄Rt−1,t+hπ̄t−1,t+h = π̄h+1

R̄h+1 = βh+1. Substituting for R̄Rt−1,t+hπ̄t−1,t+h and optimal

labor supply, the final log-linearized iterated budget constraint is

b̄b̂i,t−1 =

(
c̄+ w̄H̄

σ

φ

)
Ẽit

∞∑
h=0

βh+1ĉi,t+h − w̄H̄
1 + φ

φ
Ẽit

∞∑
h=0

βh+1ŵt+h − d̄Ẽit

∞∑
h=0

βh+1d̂i,t+h

+ (c̄− w̄H̄ − d̄)Ẽit

∞∑
h=0

βh+1(R̂Rt−1,t+h + π̂t−1,t+h)

(B.29)
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Next, recall that ĉcit = ĉit − ηĉi,t−1 − βηẼit(ĉi,t+1 − ηĉit), from which it follows that

ĉit = ĉcit + ηĉi,t−1 + βηẼit(ĉi,t+1 + ηĉit) (B.30)

Substituting for ĉi,t+h into (B.29), I rewrite the intertermporal budget constraint as

b̄b̂i,t−1 =

(
c̄+ w̄H̄

σ

φ

)
Ẽit

∞∑
h=0

βh+1 (ĉci,t+h + ηĉi,t+h−1 + βη(ĉi,t+h+1 − ĉi,t+h))

− w̄H̄
1 + φ

φ
Ẽit

∞∑
h=0

βh+1ŵt+h − d̄Ẽit

∞∑
h=0

βh+1d̂i,t+h

+ (c̄− w̄H̄ − d̄)Ẽit

∞∑
h=0

βh+1(R̂Rt−1,t+h + π̂t−1,t+h)

(B.31)

From (B.27), one can isolate Ẽitĉci,t+h and substitute for it into (B.29):

b̄b̂i,t−1 = β(c̄+ w̄H̄
σ

φ
)

(
1

1− β
ĉcit + ηẼit

∞∑
h=0

(ĉi,t+h−1 + β(ĉi,t+h+1 − ηĉi,t+h))

)

+
β(c̄+ σ

φ
)

σ(1− β)
Ẽit

∞∑
h=0

βh
(
(1− βη)(R̂t+h − π̂t+h+1)− (ĝt+h − ĝt+h+1)

)
− w̄H̄

1 + φ

φ
Ẽit

∞∑
h=0

βh+1ŵt+h − d̄Ẽit

∞∑
h=0

βh+1d̂i,t+h

+ (c̄− w̄H̄ − d̄)Ẽit

∞∑
h=0

βh+1(R̂Rt−1,t+h + π̂t−1,t+h)

Isolating ĉcit, one retrieves the individual demand in terms of ĉcit,

ĉcit =
b̄(1− β)

β(c̄+ w̄H̄ σ
φ
)
b̂i,t−1 − η(1− β)Ẽit

∞∑
h=0

βh (ĉi,t+h−1 + β(ĉi,t+h+1 − ηĉi,t+h))

+
1− β

c̄+ w̄H̄ σ
φ

Ẽit

∞∑
h=0

βh

(
w̄H̄(1 + φ)

φ
ŵt+h + d̄d̂i,t+h

)
− β(1− βη)

σ
Ẽit

∞∑
h=0

βh(R̂t+h − π̂t+h+1)

− β

σ
Ẽit

∞∑
h=0

βh(ĝt+h − ĝt+h+1)−
β(1− β)(c̄− w̄H̄ − d̄)

c̄+ w̄H̄ σ
φ

Ẽit

∞∑
h=0

βh(R̂Rt−1,t+h + π̂t−1,t+h)

(B.32)

Let wc =
w̄H̄(1+φ)

φ(c̄+w̄H̄ σ
φ
)

and dc = d̄
c̄+w̄H̄ σ

φ
. Define

ˆ̃yt = ŷt − ηŷt−1 (B.33)
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Aggregating equation (B.32), imposing market clearing conditions such that ĉt = ŷt = wcŵt+dcd̂t,

ĉct = ŷyt, (c̄− w̄H̄ − d̄) = 0, and b̂t = 0 (since households are homogeneous) one gets

ˆ̃yt = (1−β+βη)Ẽt
ˆ̃yt+1+Ẽt

∞∑
h=0

βh

[
β(1− η)(1− β)Ẽt

ˆ̃yt+h+2 −
1− βη

σ
(R̂t+h − π̂t+h+1)−

1

σ
(ĝt+h − ĝt+h+1)

]
(B.34)

Let x̂t = ŷt − ŷnt be the output gap with ŷnt being the potential level of output. Further, let
ˆ̃xt = x̂t − ηx̂t−1. Rewriting equation (B.34) in terms of the output gap yields the aggregate

demand equation:

ˆ̃xt = (1− β + βη)Ẽt
ˆ̃xt+1 + Ẽt

∞∑
h=0

βh

(
β (1− β) (1− η)ˆ̃xt+h+2 −

1− βη

σ

(
R̂t+h − π̂t+h+1 − êt+h

))
(B.35)

and êt = σ
1−βη

(
(ŷnt+1 − ηŷnt − ĝt+1)− (ŷnt − ηŷnt−1 − ĝt)

)
is such that

êt = ρeêt−1 + σeε
e
t , ε

e
t ∼ N (0, 1) (B.36)

Applying the myopic adjustment to (B.35), the aggregate demand is rewritten as

ˆ̃xt = n(1−β+βη)Ẽ⋆
t
ˆ̃xt+1+Ẽ⋆

t

∞∑
h=0

(βn)h
(
n2β (1− β) (1− η)ˆ̃xt+h+2 −

1− βη

σ

(
R̂t+h − π̂t+h+1 − êt+h

))
(B.37)

mis-specified, substituting for ˆ̃xt = (x̂t − ηx̂t−1) delivers

x̂t =
η

1 + nηυ
x̂t−1 + n

υ − nβη(1− β)(1− η)

1 + nηυ
Ẽ⋆

t x̂t+1 +
βn2(1− β)(1− η)(1− nβη)

1 + nηυ
Ẽ⋆

t

∞∑
h=0

(βn)hx̂t+h+2

− Ẽ⋆
t

∞∑
h=0

(βn)h
1− βη

σ(1 + nηυ)

(
R̂t+h − π̂t+h+1 − êt+h

)
(B.38)

where υ = (1− β + βη).

Firms. Log-linearizing firms’ optimal price condition, we get,

P̂ ∗
jt − P̂t = Ẽjt

∞∑
h=0

(αβ)h [(1− αβ)m̂cj,t+h + αβ(π̂t+h+1 − ρππ̂t+h−1)] (B.39)
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Define p̂∗jt = P̂ ∗
jt − P̂t. The marginal cost of the jth firm is given by

m̂cj,t+h = ŵt +
1

ah
ẑt +

1− ah
ah

ŷt − ζ
1− ah
ah

p̂∗jt (B.40)

(
1 + ζ

1− ah
ah

)
p̂∗jt = Ẽjt

∞∑
h=0

(αβ)h
[
(1− αβ)

(
ŵt+h +

1

ah
ẑt+h +

1− ah
ah

ŷt+h

)
+ αβ(π̂t+h+1 − ρππ̂t+h−1)

]
(B.41)

From (B.10), p̂∗jt = P̂ ∗
jt − P̂t =

α
1−α

(π̂t − ρππ̂t−1) =
α

1−α
ˆ̃πt. Since all firms face the same optimal

pricing condition above, I drop the subscript j. Define ût to be a supply shock that captures

deviations of the empirical output gap from the theoretically relevant gap, assumed to follow an

AR(1) process

ût = ρuût−1 + σuε
u
t , ε

u
t ∼ N (0, 1) (B.42)

Then, the aggregated optimal pricing rule can be written as

ˆ̃πt = κ

(
ωx̂t +

σ

1− ηβ
ˆ̃xt

)
+Ẽt

∞∑
h=0

(αβ)h
(
καβ

(
ωx̂t+h+1 +

σβ(α− η)

α(1− ηβ)
ˆ̃xt+h+1

)
+ β(1− α)ˆ̃πt+h+1 + ût+h

)
(B.43)

where κ = (1−α)(1−αβ)
α(ah+ζ(1−ah)

and ω = (1 + φ− ah). Applying the myopic adjustment yields

ˆ̃πt = κ

(
ωx̂t +

σ

1− ηβ
ˆ̃xt

)
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
καβn

(
ωx̂t+h+1 +

σ(α− η)

α(1− ηβ)
ˆ̃xt+h+1

))
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
nβ(1− α)ˆ̃πt+h+1 + ût+h

) (B.44)

Substituting for ˆ̃πt = π̂t − ρππ̂t−1 and ˆ̃xt = x̂t − ηx̂t−1,

π̂t =
1

1 + nβρπ(1− α)
(ρππ̂t−1 − κητx̂t−1) +

κ(ω + τ(1− nηβ(α− η))

1 + nβρπ(1− α)
x̂t +

1

1− αβnρu
ût

+
nβ

1 + nβρπ(1− α)
Ẽ⋆

t

∞∑
h=0

(αβn)h ((1− α)(1− αβnρπ)π̂t+h+1 + κ(αω + τ(α− η)(1− αβnη)x̂t+h+1)

(B.45)

where τ = σ
1−βη

.

Monetary Policy. The log-linearized version of the policy rule is

R̂t = ρrR̂t−1 + (1− ρr)ϕππ̂t + (1− ρr)ϕxx̂t + σvεt (B.46)
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Model in Matrix Form. The aggregate economy model in matrix form is described by

A0(Θ)St = A1(Θ)St−1 + A02(Θ)Ẽ⋆
tSt+1 + Ẽ⋆

t

∞∑
h=0

F hA12(Θ)St+h+2 +B(Θ)Et (B.47)

where St =
[
x̂t π̂t R̂t êt ût

]′
; Et =

[
εet εut εvt

]′
; Θ = {α, β, n, σ, κ, η, ρπ, ω, ϕπ, ϕx, ρr, ρe, ρu, σe, σu, σv},

F is a zero matrix, with only the first two diagonal entries equal to βn and αβn, respectively.

Using results from the previous subsection, the perceived law of motion (PLM) in matrix form

can be written as

St = ∆t−1 + Γt−1(St−1 −∆t−1)︸ ︷︷ ︸
PLM for aggregate endo var’s

+ HSt−1︸ ︷︷ ︸
PLM for the shocks

+ϵ̃t (B.48)

where δt =
[
δ′
t 01x2

]′
; Γt =

 γt 03x2

02x3 02x2

; H is a diagonal matrix with diagonal equal to[
01x3 ρe ρu

]′
; ϵ̃t =

[
ϵ′t σeε

e
t σuε

u
t

]′
. The forecast of the state vector h ≥ 1 periods ahead

is described by

Ẽ⋆
tSt+h = ∆t−1 + Γτ−t+1

t−1 (St−1 −∆t−1)︸ ︷︷ ︸
forecast of endo var’s

+ HhSt︸ ︷︷ ︸
forecast of shocks

(B.49)

Plugging (B.49) into (B.47), we get the actual law of motion:

Ã0(Θ)St = Ã1(Θ)∆t−1 + Ã2(Θ,Γt−1)St−1 +BEt (B.50)

where

Ã0 = A0 − A02H −

(
∞∑
h=0

F hA12H
h

)
H

Ã1 = A02(I − Γ2
t−1)∆t−1 +

∞∑
h=0

F hA12 −

(
∞∑
h=0

F hA12Γ
h
t−1

)
Γ2

t−1

Ã2 = A1 + A02Γ
2
t−1 +

(
∞∑
h=0

F hA12Γ
h
t−1

)
Γ3

t−1

The infinite sums are defined as follows

∞∑
h=0

F h = (I − F )−1
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vec

(
∞∑
h=0

F hA12H
h

)
= (I −H ⊗ F )−1A12(:)

vec

(
∞∑
h=0

F hA12Γ
h
t−1

)
= vec(A12 + FA12Γt−1 + F 2A12Γ

2
t−1 + ...)

= (I ⊗ I + Γ′
t−1 ⊗ F + (Γ′

t−1)
2 ⊗ F 2 + ...)

= (I − Γ′
t−1 ⊗ F )−1A12(:)

The last equality uses the Kronecker product property that (Γ′
t−1 ⊗F )(Γ′

t−1 ⊗F ) = (Γ′
t−1)

2 ⊗F 2.

B.2 Aggregate Demand and Supply under Well-specified Forecasting

Rules

In this subsection, I derive the equilibrium conditions when Ẽ⋆
t is associated with well-specified

forecasting rules. Consider the aggregate demand

ˆ̃xt = nυẼ⋆
t
ˆ̃xt+1 + Ẽ⋆

t

∞∑
h=0

(βn)h
(
n2β (1− β) (1− η)ˆ̃xt+h+2 −

1− βη

σ

(
R̂t+h − π̂t+h+1 − êt+h

))
(B.51)

Then,

Ẽ⋆
t
ˆ̃xt+1 = nυẼ⋆

t
ˆ̃xt+2 + Ẽ⋆

t

∞∑
h=0

(βn)h
(
n2β

(
υ − η)ˆ̃xt+h+3 −

1− βη

σ

(
R̂t+h+1 − π̂t+h+2

)
− êt+h

))
(B.52)

from which

Ẽ⋆
t

∞∑
h=0

(βn)h
(
n2β(υ − η)ˆ̃xt+h+3 −

1− βη

σ

(
R̂t+h+1 − π̂t+h+2 − êt+h

))
= Ẽ⋆

t
ˆ̃xt+1 − nυẼ⋆

t
ˆ̃xt+2

(B.53)

Substituting for the expression in the left-hand side in the equation above into the original aggre-

gate demand in (B.51) and setting Ẽ⋆
t ≡ Et, we have

ˆ̃xt = nEt

(
(1 + βη)ˆ̃xt+1 − nβηˆ̃xt+2

)
− σ

1− βη
(R̂t − Etπ̂t+1) +

σ

1− βη
êt (B.54)

If n = 1, then the equation above coincides with the standard Euler equation derived under FIRE.
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Similarly, consider the aggregate supply,

ˆ̃πt = κ
(
ωx̂t + τ ˆ̃xt

)
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
καβn

(
ωx̂t+h+1 +

τ(α− η)

α
ˆ̃xt+h+1

))
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
nβ(1− α)ˆ̃πt+h+1 + ût+h

) (B.55)

Hence,

Ẽ⋆
t
ˆ̃πt+1 = κ

(
Ẽ⋆

t

(
τ ˆ̃xt+1 + ω

∞∑
h=0

(αβn)hx̂t+h+1

)
+ βnτ(α− η)Ẽ⋆

t

∞∑
h=0

(αβn)h ˆ̃xt+h+2

)

+ Ẽ⋆
t

∞∑
h=0

(αβn)h
(
nβ(1− α)ˆ̃πt+h+2 + ût+h

) (B.56)

Isolating κωẼ⋆
t

∑∞
h=0(αβn)

hx̂t+h+1 from (B.56), substituting for it into (B.55), and setting Ẽ⋆
t ≡ Et,

we have
ˆ̃πt = κωx̂t + τEt(ˆ̃xt − βηnˆ̃xt+1) + nβEt

ˆ̃πt+1 + ût (B.57)

If n = 1, then the equation above coincides with the standard Phillips curve derived under FIRE.

C Proofs

C.1 Proposition 1

Let the data-generating process for inflation be given by π̂t = am̂ct+ bπ̂t−1, where a = κ
1−αβρn

and

b = βn(1−α)
1−αβnγ∗ (γ

∗)2. Then, one can show that

F (γ) =
E(π̂tπ̂t−1)

E(π̂2
t )

=
b+ ρ

1 + ρb
(C.1)

For a CE equilibrium to exist, we must have that F (γ) = γ for at least one value of γ ∈ (0, 1).

Moreover, F (γ) is an increasing function of γ, with F (0) = ρ > 0 and F (1) = βn(1−α)+ρ(1−αβn)
1−αβn+ρβn(1−α)

,

where ρ ≤ F (1) < 1. Therefore, F (γ) crosses the 45◦ line at least once; that is, a CE equilibrium

is guaranteed to exist. Since F (γ) ≥ ρ, it follows that γ∗ ∈ [ρ, 1).

To show that the CE equilibrium is unique, I show that F (γ) is convex whenever it intersects

with the 45◦ line, i.e., whenever (C.1) holds. Note that F (γ) is an increasing function of γ, such

that F (0) = ρ and F (1) < 1. Therefore, if multiple fixed points existed for γ ∈ [0, 1), it must be
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that at least one fixed point, F (γ), is concave.

F ′′(γ) |γ=γ∗ = (1− ργ∗)
b′′(1 + ρb)− ρ(b′)2

(1 + ρb)2
(C.2)

where b′ = ∂b/∂γ and b′′ denotes the second-order partial derivative of b w.r.t. γ. Therefore,

F ′′(γ = γ∗) > 0 ⇐⇒ b′′ > ρ(b′)2

1+ρb
. One can show that

b′′ =
2βn(1− α)

(1− αβnγ∗)3
(C.3)

Then,

b′′ − ρ(b′)2

1 + ρb
=

2βn(1− α)

(1− αβnγ∗)3
− ρ(βnγ∗(1− α))2(2− αβnγ∗)2

(1− αβnγ∗)3(1− αβnγ∗ + βnρ(1− α)(γ∗)2)

=
βnγ∗(1− α)

(1− αβnγ∗)3(1− αβnγ∗ + βnρ(1− α)(γ∗)2)︸ ︷︷ ︸
(+)

×
(
2(1− αβnγ∗) + 2(βnρ(1− α)(γ∗)2)− ρβn(γ∗)2(1− α)(2− αβnγ∗)2

)︸ ︷︷ ︸
G(γ)

(C.4)

Hence, the sign of F ′′(γ = γ∗) is determined by the sign of G(γ), which is always positive.

G(γ) = 2(1− αβnγ∗) + βnρ(1− α)(γ∗)2(2− 4 + 4αβnγ∗ − (αβnγ∗))

= 2(1− αβnγ∗)(1− βnρ(1− α)(γ∗)2) + αβ2n2ρ(1− α)(γ∗)3)(2− αβnγ∗) ≥ 0
(C.5)

C.2 Corollary 1

Consider F (γ), with F (γ) as defined in (C.1). Since the CE equilibrium is unique, γ∗, following

a change in price stickiness or myopia, will change in the same direction as F (γ). Taking the

first-order partial derivative with respect to α of F (γ) yields

∂F (γ)

∂α
=

1− ρ2

(1 + ρb)2
∂b

∂α︸︷︷︸
(−)

< 0 (C.6)
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Similarly, taking the first-order partial derivative with respect to n of F (γ) yields

∂F (γ)

∂n
=

1− ρ2

(1 + ρb)2
∂b

∂n︸︷︷︸
(+)

< 0 (C.7)

C.3 Proposition 2

The actual law of motion for inflation along the CE equilibrium is π̂t = am̂ct + bπ̂t−1, and the

forecast about next period’s inflation along the equilibrium path is Ẽtπ̂t+1 = n(γ∗)2π̂t−1. Hence,

the h-period-ahead forecasting error about inflation in period (t + k), following a one-time shock

εt in period t, is

π̂t+k − Ẽt+k−hπ̂t+k = am̂ct+k + bπ̂t+k−1 − n(γ∗)2π̂t+k−h−1

= aρkεt + ab(ρk−1 + bρk−2 + ...+ bk−1)εt − anh(γ∗)h+1(ρk−h−1 + ...+ bk−h−1)εt

= aρk−h−1

(
ρh+1 + bρh

(
1 + ...+

(
b

ρ

)h

+ ...+

(
b

ρ

)k−1
))

− aρk−h−1

(
nh(γ∗)h+1

(
1 + ...+

(
b

ρ

)k−h−1
))

εt

= aρk−h−1

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
εt

(C.8)

The effect of εt > 0 on the forecasting error for k = 0 is positive; hence, forecasters under-react

on impact. Moreover, limk→∞ ρk−h−1 = 0, and therefore the forecasting error will eventually

dissipate at some point in the future. The question remains whether, as k → ∞, we approach the

0 forecasting errors from below (delayed over-shooting) or above. Given that a > 0 and ρ > 0,

delayed over-shooting is guaranteed to occur if

lim
k→∞

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
< 0 (C.9)

One can easily show that (bh+1 − nh(γ∗)h+1) < 0. Then, if b > ρ, we have that

lim
k→∞

(
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

= −∞
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so

lim
k→∞

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
= −∞ (C.10)

On the other hand, if b < ρ, we have that limk→∞
(
bh+1 − nh(γ∗)h+1

)∑k−h−1
j=0

(
b
ρ

)j
= ρ(bh+1−nh(γ∗)h+1)

ρ−b
,

so

lim
k→∞

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
=
ρ(ρh+1 − nh(γ∗)h+1)

ρ− b
(C.11)

Hence, when b < ρ, delayed over-shooting is guaranteed to exist if ρh+1 < nh(γ∗)h+1. Mis-specified,

to show that the two conditions stated above are sufficient for late over-response, we have to show

that if the forecast error response turns negative, it will never become positive. Showing this

proves that if the forecast error impulse response approaches 0 from above in the limit as k → ∞,

it has never been negative before. Suppose there exists k∗ ≥ 1, such that for k ≥ k∗,

Ik,h =
∂(π̂t+k − Ẽt+k−hπ̂t+k)

∂εt
= aρk−2

((
b2 − n(γ∗)2

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ(b+ ρ)

)
< 0 (C.12)

Since (bh+1 − nh(γ∗)h+1) < 0, as k increases the impulse response of forecast errors becomes more

negative, and the sign of Ik,h can never flip as k increases.

C.4 Proposition 3

I first derive a number of important moments. Consider first the covariance between π̂t+h and π̂t

for any h > 0:

Cov(h) = E(π̂t+hπ̂t) = a2
(

ρ(ρh − bh)

(ρ− b)(1− ρb)
+

bh(1 + ρb)

(1− b2)(1− ρb)

)
E(m̂c2t )
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Next, I derive the covariance between the ex-post forecast errors, FEt,t+h and ex-ante forecast

revisions, FRt,t+h:

E(FEt,t+hFRt,t+h) = nh(γ∗)h+1
[
aρh+1(1− nγ∗)E(m̂ctπ̂t) + b(Cov(h)− nγ∗Cov(h+ 1))− nh(γ∗)h+1(E(π̂2

t )− Cov(1))
]

=
a2nh(γ∗)h+1ρh+1(1− nργ∗)

1− ρb
E(m̂c2t )

+
a2nh(γ∗)h+1

1− ρb

bh+1(1 + ρb)(1− nbγ∗)− nh(γ∗)h+1(1 + ρb− nγ∗(ρ+ b))

1− b2
E(m̂c2t )

+
a2nh(γ∗)h+1

1− ρb

[
bρh(1− nργ∗)

h−1∑
j=0

(
b

ρ

)j

− nργ∗bh+1

]
E(m̂c2t )

(C.13)

On the other hand, one can show that the variance of forecast errors is given by

E(FR2
t,t+h) = a2n2h(γ∗)2(h+1) (1 + n2(γ∗)2 − 2n(γ∗)2)(1 + ρb)

(1− ρb)(1− b2)
E(m̂c2t )

Finally, Kh is given by the covariance between forecast errors and forecast revisions and divided

by the variance of forecast revisions, that is,

Kh =

ρh(1− b2)(1− nργ∗)

(
ρ+ b

∑h−1
j=0

(
b
ρ

)j)
+ bh+1(ρ(b− nγ∗) + 1− nbγ∗)

nh(γ∗)h+1(1 + n2(γ∗)2 − 2n(γ∗)2)(1 + ρb)︸ ︷︷ ︸
(+)

− ρ(b− nγ∗) + 1− nbγ∗

(1 + n2(γ∗)2 − 2n(γ∗)2)(1 + ρb)︸ ︷︷ ︸
(−)

(C.14)

Now, I compute the covariance between forecast errors and inflation realized in period t,

E(FEt,t+hπ̂t) =
a2ρh

1− ρb
E(m̂c2t ) + bCov(h− 1)− nh(γ∗)h+1Cov(1)

= a2
[

ρ(ρh − bh)

(ρ− b)(1− ρb)
+

bh(1 + ρb)

(1− ρb)(1− b2)
− nh(γ∗)h+1(b+ ρ)

(1− ρb)(1− b2)

]
E(m̂c2t )

(C.15)

Dividing the expression above by the variance of inflation, I derive Mh:

Mh =
ρh

1 + ρb

[
h∑

j=0

(
b

ρ

)j

− b2
h−2∑
j=0

(
b

ρ

)j
]

︸ ︷︷ ︸
(+)

−n
h(γ∗)h+1(b+ ρ)

1 + ρb︸ ︷︷ ︸
(−)

(C.16)
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C.5 Corollary 3

First, from Proposition 2, it is trivial to see that delayed over-shooting is guaranteed to occur for

any parameterization of the model.

Second, I re-write the condition for which Kh > 0 as follows

Kh = ρ(1− b2)(1− ργ∗)
ρh − bh

ρ− b
+ (bh+1 − (γ∗)h+1)(1 + ρb− γ∗(b+ ρ)) > 0

Simple re-arrangement gives rise to the following inequality,

(γ∗)h+1 < bh+1 + ρ(1− b2)(1− ργ∗)
ρh+1 − bh+1

(ρ− b)(1 + ρb− γ∗(b+ ρ))

= bh+1 + ρ(1− b2)(1− ρ2) +
ρh+1 − bh+1

(ρ− b)(1− ρ2)(1− b2)

= ρh+1 + ρhb+ ...+ ρbh + bh+1 = γ̄

(C.17)

where for the second equality, I rely on the fact that along the CE equilibrium, γ∗ = b+ρ
1+ρb

, as

shown in Proposition 1.

Third, I re-write the condition for which Mh < ol.0 as follows

Mh =
ρh

1 + ρb

[
h∑

j=0

(
b

ρ

)j

− b2
h−2∑
j=0

(
b

ρ

)j
]
− (γ∗)h+1(b+ ρ)

1 + ρb
< 0

from which it follows that

(γ∗)h+1 >
ρh+1 − bh+1 − ρ2b2(ρh−1 − bh−1)

ρ2 − b2
= γ

C.6 Proposition 4

As shown in the main text, when myopia is combined with well-specified forecasting rules, the

aggregated optimal pricing rule can be written as π̂t = κm̂ct+βnEtπ̂t+1. The solution for inflation

then is given by π̂t = a0m̂ct, where a0 = κ
1−βnρ

.

1. I show that Ik,h ≥ 0:

Ik,h = a0m̂ct+k − a0ρ
hm̂ct+k−h = a0(ρ

k − nρk)εt ≥ 0 (C.18)

for any k ≥ 0. From here, it follows that if n = 1, i.e., if we impose well-specified forecasts
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absent myopia (FIRE), Ik,h = 0 for any k ≥ 0.

2. Next, I compute the covariance between forecast errors and forecast revisions:

E
(
(π̂t+h − nhEtπ̂t+h)(Etπ̂t+h − Et−1π̂t+h)

)
= nhρ2h(1− nρ2)(1− nh)E(π̂2

t )

Dividing the expression above by the variance of forecast revisions delivers

Kh =
(1− nh)(1− nρ2)

nh(1 + n2ρ2 − 2nρ2)
≥ 0

3. Finally, I compute the covariance between forecast errors and current inflation:

E
(
(π̂t+h − nhEtπ̂t+h)π̂t

)
= ρh(1− nh)E(π̂2

t )

Dividing the expression above by the variance of current inflation gives rise to

Mh = ρh(1− nh) ≥ 0

D Data and Additional Results

D.1 Data

I use quarterly data from 1966 to 2018. All data are extracted from FRED and described as

follows

yt = 100ln

(
GDPC1t
POPindex,t

)

ypotentialt = 100ln

(
GDPPOTt
POPindex,t

)
xobst = yt − ypotentialt

πobs
t = 100ln

(
GDPDEFt

GDPDEFt−1

)
Robs

t =
Fundst

4

where

• GDPC1 – Real GDP, Billions of Chained 2012 Dollars, Seasonally Adjusted Annual Rate.
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• POPindex = CNP160V
CNP160V1992Q3

.

• CNP160V – Civilian non-institutional population, thousands, 16 years and above.

• GDPPOT – Real potential GDP, Billions of Chained 2012 Dollars, as reported by the US

Congressional Budget Office.

• GDPDEF – GDP-Implicit Price Deflator, 2012 = 100, Seasonally Adjusted.

• Funds – Federal funds rate, daily figure averages in percentages.

D.2 Additional Results on Bayesian Estimation

Figures 12 and 13 show the evolution of two crucial convergence statistics in the cases when

myopia is combined with AR(1) forecasting rules and VAR(1) forecasts, respectively. Convergence

is assessed based on the Brooks and Gelman (1998) methodology. To compute B̂, I first estimate

the evolution of the mean across draws for each parameter for each one of the two chains of the

Metropolis-Hastings. Then, B̂ equals the variance of the two means over time. On the other hand,

to compute Ŵ , I first estimate the evolution of the draws variance for each parameter for each

one of the two chains of the Metropolis-Hastings. Then, Ŵ equals the mean of the two computed

variance values. Convergence is achieved when the evolution of Ŵ and Ŵ + B̂ converge to one

another and remain stable.

When the expectations formation process is characterized by a combination of AR(1) forecasts

with myopia, convergence is achieved for all paramaters. In the case of VAR(1) forecasts combined

with myopia, convergence is achieved for most of the parameters: Ŵ and Ŵ + B̂ exhibit some

divergence for σe.

D.2.1 Robustness

Table 6 shows characteristics of the posterior distribution when the degree of myopia is assumed

to have a uniform prior with mean 0.5 and standard deviation 1/
√
12.

The estimated posterior distributions for all three specifications exhibit similar characteristics

relative to the ones presented in the main text. In terms of model fit, I set the model with AR(1)

forecasts and myopia to be the benchmark. The Bayes factor analysis shows i) positive evidence

in favor of the benchmark compared to the well-specified forecasts case; and ii) strong evidence in

favor of a combination of VAR(1) forecasts relative to the benchmark. Overall, one of the main
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Figure 12: Convergence statistics when the expectations formation process is characterized by a
combination of AR(1) mis-specified forecasts and myopia.

Figure 13: Convergence statistics when the expectations formation process is characterized by a
combination of VAR(1) mis-specified forecasts and myopia.

results of the paper - that autoregressive mis-specified forecasts are preferred over well-specified

forecasting rules - holds true.
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(1) (2) (3)

Well-specified AR(1) VAR(1)

Parameters mean 5% 95% mean 5% 95% mean 5% 95%

Calvo parameter, α - - - 0.44 0.15 0.74 0.37 0.12 0.67
Degree of myopia, n 0.26 0.00 0.49 0.72 0.51 0.87 0.73 0.51 0.88
Inverse IES coefficient, σ 1.99 1.15 2.82 2.41 1.57 3.35 2.23 1.47 3.08
Habit in consumption, η 0.73 0.43 0.92 0.43 0.30 0.56 0.40 0.27 0.54
Inflation indexation, ρπ 0.87 0.81 0.92 0.76 0.54 0.91 0.77 0.55 0.92
Elasticity mc, ω 0.94 0.30 1.58 0.98 0.33 1.62 0.94 0.31 1.58
Feedback to output gap, ϕx 0.42 0.23 0.59 0.43 0.26 0.63 0.42 0.25 0.66
Feedback to inflation, ϕπ 1.45 1.13 1.77 1.46 1.13 1.79 1.45 1.13 1.78
Interest rate smoothing, ρr 0.92 0.89 0.95 0.92 0.89 0.95 0.92 0.88 0.95
Demand shock autocorr., ρe 0.56 0.33 0.88 0.80 0.72 0.88 0.83 0.74 0.90
Supply shock autocorr., ρu 0.05 0.01 0.10 0.10 0.02 0.22 0.11 0.03 0.26
Demand shock std., σe 5.17 1.77 8.53 1.48 1.10 1.76 1.21 0.75 1.62
Supply shock std., σu 0.26 0.24 0.28 0.33 0.28 0.38 0.34 0.28 0.39
Monetary shock std., σv 0.21 0.19 0.22 0.21 0.19 0.23 0.21 0.19 0.23
Learning gain, ῑ - - - 0.08 0.04 0.12 0.07 0.04 0.10

Log marg. data dens.
Modified Harmonic Mean -259.195 -256.751 -253.100∗

Bayes factor (e−2.44) (e0) (e3.65)

Table 6: Posterior distribution of the model for various assumptions on the expectations formation
process with myopia. The prior for myopia is uniform with mean 0.5 and standard deviation
1/
√
12. Values in parentheses denote the Bayes factor of the model relative to the benchmark

specification with mis-specified forecasts and myopia. The asterisk denotes strong evidence in
favor of the model relative to the benchmark one.

D.3 Additional Results on Forecast Error Behavior

In this subsection, I repeat the analysis of Section 5 when the expectations formation process is

characterized by mis-specified forecasts of the AR(1) or VAR(1) type and no myopia.

In particular, Figure 14 plots the three-dimensional IRFs of annual inflation forecasting errors

to a demand, a cost-push, and a monetary shock over the estimation period from 1966:Q1 through

2018:Q3. The top three panels exhibit the response of forecast errors in the case of AR(1) forecasts,

and the bottom three panels show the responses in the case of VAR(1) forecasts. In all six subplots,

inflation forecast errors exhibit delayed over-shooting.

Finally, I estimate the regressions in (15) and (16) with simulated inflation forecasting data,
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Figure 14: Three-dimensional impulse response functions of annual inflation forecasting errors to
a one standard deviation positive demand, cost-push, and monetary shock in the model with mis-
specified forecasts and no myopia. Top three panels: AR(1) mis-specified forecasts; bottom three
panels: VAR(1) mis-specified forecasts. Model parameters are set equal to the posterior mean as
shown in Table 3 and 4. In dark red: (response, time periods) plane.

when the expectations formation process is characterized by mis-specified forecasting rules (of the

AR(1) or VAR(1) type) only. Table 7 presents the estimates of coefficients K4 and M4: panel

A shows both estimates over the full sample from 1967:Q1 through 2018:Q3, whereas panel B

exhibits estimates of M4 starting from 1981:Q3 through 2018:Q3.

Estimates in Table 7 show that annual inflation forecast errors depend positively on ex-ante

inflation forecast revisions and negatively on current inflation realizations, regardless of how the

model is parameterized and of the structure of the mis-specified forecasting rule. On the other

hand, when the sample starts from the early 1980s, the sign of the correlation between ex-post

forecast errors and current inflation realizations is always negative for both AR(1) and VAR(1)

forecasts, regardless of how the model is parameterized. This is different from the case when

mis-specified forecasts are combined with some myopia, where the sign of the correlation between

ex-post forecast errors and current realizations depends on the model parameterization.
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Panel A: 1967:Q1 - 2018:Q3

AR(1) and no myopia VAR(1) and no myopia

5% mean 95% 5% mean 95%

Revision 0.54 0.68 0.77 0.48 0.51 0.65
(0.21) (0.22) (0.23) (0.20) (0.19) (0.20)

Current 0.19 0.11 0.07 0.37 0.25 0.19
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Panel B: 1981:Q3 - 2018:Q3

AR(1) and no myopia VAR(1) and no myopia

5% mean 95% 5% mean 95%

Current -0.36 -0.32 -0.44 -0.25 -0.35 -0.43
(0.05) (0.06) (0.06) (0.06) (0.05) (0.06)

Table 7: Estimates of regressions in (15) and (16) on simulated forecasting data. Model parameters
are set at the posterior 5th percentile, the mean, and the 95th percentile of the distribution for
the model with mis-specified forecasts and no myopia as documented in column (3) of Tables
3 and 4. All regressions include a constant term, and standard errors are given in parenthesis.
Panel A: estimates of K4 (revision) and M4 (current) over the full sample for AR(1) and VAR(1)
mis-specified forecasts. Panel B: estimates of M4 (current) since the early 1980s for AR(1) and
VAR(1) mis-specified forecasts.
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