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Abstract

We study the use of a zero mean first difference model to forecast the level of a scalar time series that is
stationary in levels. Let bias be the average value of a series of forecast errors. Then the bias of
forecasts from a misspecified ARMA model for the first difference of the series will tend to be smaller in
magnitude than the bias of forecasts from a correctly specified model for the level of the series.
Formally, let P be the number of forecasts. Then the bias from the first difference model has
expectation zero and a variance that is O(1/P 2), while the variance of the bias from the levels model is
generally O(1/P). With a driftless random walk as our first difference model, we confirm this
theoretical result with simulations and empirical work: random walk bias is generally one-tenth to
one-half that of an appropriately specified model fit to levels.
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1 Introduction

One common empirical measure of forecast performance is bias, constructed as the average value of a time
series of forecast errors. The measure is featured prominently in analyses of survey forecasts (e.g.,
Croushore (2010)). While subsidiary to root mean square prediction error, it also appears prominently in
some comparisons of forecasts of econometric models. A recent example is Bennett and Owyang (2022).

In this paper, we document a surprising feature of models to forecast the level of a scalar time series that is
stationary in levels: forecasts relying on a misspecified ARMA model for the difference of the series tend to
have lower bias than forecasts relying on a model for the level of the series. That the model for the
difference of the series is “misspecified” requires that it not be just an overdifferenced version of an
invertible ARMA model for the level of the series. Lower bias for the misspecified differenced model holds
even if the model for the levels is correctly specified.

We establish this result theoretically, confirm it with simulations, and illustrate it with forecasts of some
aggregate US series.

This paper is motivated by Lunsford and West (2023). In that research, we used a set of models, including
a driftless random walk, to forecast each of a collection of macroeconomic time series. The time series
included some that show low persistence. We found that modeling the low-persistence series via a random
walk resulted in forecasts with low bias – a finding we did not anticipate but wanted to understand. Hence
the present paper. To be clear, we are not necessarily arguing for the use of differenced models to forecast
series that are stationary in levels. Rather, we are documenting an interesting effect of doing so.

A simple example will illustrate why our result holds. Suppose that one is making one-step-ahead forecasts
for a stationary univariate time series xt. The data run up to t = P + 1. One predicts first x2, then x3, ...
and finally xP+1–P predictions in all. For a driftless random walk model, the prediction of x2 is x1, the
prediction of x3 is x2, ..., the prediction of xP+1 is xP . The time series of forecast errors is thus x2 − x1,
x3 − x2, ... xP+1 − xP . The average value of the forecast error (i.e., bias)1 is

b =
(x2 − x1) + (x3 − x2) + ...+ (xP+1 − xP )

P

=
xP+1 − x1

P
.

Let “var” denote “variance” and “cov” denote “covariance.” Clearly

Eb = 0, var(b) =
2var(xt)− 2cov(xt, xt+P )

P 2
≤ c

P 2
, c = 4var(xt).

That is, bias b has expectation zero, and variance that is O(1/P 2).

In Section 2, we generalize this theoretical result to: allow h>1, to consider asymptotics both with h fixed
(as was implicit in the above analysis) and with h growing with P at a suitable rate, and to allow forecasts
not just from a random walk but from an ARMA model in the first difference of xt. The result just given
continues to hold, subject to a qualification spelled out below when h grows with P . Our theory is
corroborated by simulation results reported in Section 3 and empirical results reported in Section 4.
Section 5 concludes. The appendix has the proof of our result. An online appendix has some simulation
and empirical results omitted from the paper to save space.

1Here and throughout, we use bias to refer to a sample average.
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2 Theoretical results

We are interested in forecasting the average value of a scalar stationary time series xt over the next h
periods. For a forecast Et(.), the period t+ h forecast error is thus

xt+1 + xt+2 + ...+ xt+h
h

− Et
xt+1 + xt+2 + ...+ xt+h

h
. (2.1)

(Our results continue to hold if one is forecasting the point in time value xt+h rather than the average
value.) Let us make the innocuous assumption that Etxt = xt. Then with a little algebra, the forecast
error (2.1) can be written

h∆xt+1 + (h− 1)∆xt+2 + ...+ ∆xt+h
h

− Et
h∆xt+1 + (h− 1)∆xt+2 + ...+ ∆xt+h

h
(2.2)

We assume that a forecast from an invertible ARMA model for ∆xt is substituted for Et in (2.2).
Specifically, the forecast satisfies

period t forecast of ∆xt+j = ψj∆xt + ψj+1∆xt−1 + ψj+2∆xt−2 + ...+ ψt+j−1∆x1, (2.3)

|ψj | ≤ cρj for some c > 0 and 0 ≤ ρ < 1.

Equation (2.3) is consistent with use of an ARMA model in ∆xt that assumes that ∆xt has mean zero
with ARMA parameters that satisfy the usual stationarity and invertibility conditions. The invertibility
condition implies misspecification: ρ < 1 rules out a unit moving average root. Because xt is stationary
(per our assumptions below), a correctly specified process for ∆xt will have a unit moving average root. In
other words, (2.3) is not just an overdifferenced version of an invertible ARMA model for the level of xt

The random walk model used in the previous section fits into (2.3) with ψi = 0 for all i. The ψj ’s will be
nonzero for all j if one uses an ARMA model for ∆xt with a moving average component. For a final
example, suppose forecasts are made assuming the AR(1) model ∆xt = ϕ∆xt−1+ unforecastable
disturbance, with |ϕ| < 1. (Since ∆xt is overdifferenced, it is wrong to assume that the “unforecastable
disturbance” really is unforecastable.) Then in (2.3) we have ψj = ϕj ; ψj+1 = ψj+2 = ... = ψt+j−1 = 0;
c = 1 and ρ = |ϕ|. In practice ϕ would presumably be an estimate of cov(∆xt,∆xt−1)/var(∆xt).

The investigator uses the formula (2.3) to compute the Et(.) term in (2.2). Bias is

b =

∑P
t=1[h∆xt+1+(h−1)∆xt+2+...+∆xt+h

h − period t forecast of h∆xt+1+(h−1)∆xt+2+...+∆xt+h

h ]

P
(2.4)

Our theoretical result assumes:
xt is covariance stationary (2.5)

and either

(a1)
∞∑
j=0

|cov(xt, xt−j)|<∞ and (a2)h/P = O(1) (2.6)

or
(b)h is fixed as P →∞. (2.7)

In (2.6), absolute summability of xt’s autocovariances is weaker than (though consistent with) xt following
an ARMA process. Equation (2.6) allows the horizon h to grow with the sample size P. This is consistent
with the environment of Richardson and Stock (1989) or Müller and Watson (2016), who make an
equivalent assumption. Under (2.7), we do not require absolute summability of those autocovariances of xt.
This allows, for example, stationary fractionally integrated processes.
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Our basic theoretical result is:

Theorem 2.1 Define b as in (2.4). Under (2.3), (2.5) and (2.6), Eb = 0 and var(b) = O(h/P 2). Under (2.3),
(2.5) and (2.7), Eb = 0 and var(b) = O(1/P 2) .

The proof is in the Appendix. Comments on Theorem 2.1:

1. Theorem 2.1 continues to hold if one is forecasting point-in-time xt+h rather than the average over the
next h periods.

2. Suppose that h = cP for some c > 0, as in Müller and Watson (2016) . Then h/P 2 = c/P and var(b) =
O(1/P), as is the case for the variance of bias from a stationary model. According to this metric, then, bias
from the differenced model is no less variable than is bias from a stationary model applied to the level.
However, if h/P is small, one can still expect less noise from a unit root forecast. Indeed, our simulations
and empirical work indicate that a random walk forecast tends to have lower bias than stationary processes
even when h/P is as large as 0.6, although, consistent with our theory, the advantages of a random walk
forecast diminish when h/P is large.

3. We have been assuming a zero mean model in first differences. One may wonder about the properties of
a forecast based on a zero mean model in higher-order integer differences. Let us consider forecasts from
the (misspecified) I(2) process ∆2xt = ut~ iid. Then when h is fixed, as in (2.7), we again obtain var(b) =
O(1/P 2). On the other hand, for this I(2) process, if h grows with P, var(b) does not go to zero rapidly,
and in fact diverges when h = cP as in our previous point. This suggests that superior performance will
require relatively small values of h/P. Hence our focus on a first difference model.

4. One can ask, which zero mean first difference ARMA process yields the smallest var(b)? The answer
depends on the particulars of the xt process. In our simulations and empirical work, we simply use a
driftless random walk.

3 Simulation results

To study the small sample properties, we use simulations when the DGP follows an AR(2) process. We
have also completed simulations replacing the AR(2) process with an iid process and with a stationary
fractionally integrated I(d) process. To save space, these are reported in our online appendix; they deliver
results similar to those for the AR(2), except as noted below.

In our AR(2) DGP, xt = 0.5xt−1 − 0.1xt−2 + ut,with ut ∼ iid N(0, 1). The first-order autocorrelation of xt
is about 0.45, which is representative of the first-order autocorrelations of the data studied in the next
section. The modulus of both autoregressive roots is about 0.32.

We structure the simulations to parallel the quarterly empirical results in the next section, and the two
sections together supply complementary details on our setup. The total sample size is T + 1 = 156 (39
years of quarterly data). In each simulation sample, we draw initial values from the unconditional
distribution of xt, i.e., from a bivariate N(0, V ) distribution in which the diagonals of V are the variance of
xt and the off-diagonals are the first-order autocovariance of xt.

We use a sample size of R = 48 to compute the initial forecasts. That leaves 108=156-48 observations for
forecasting and for extending the sample used to make forecasts. We compute forecasts for the average
value of x over horizons h = 1, 4, 8, 12, 20, and 40. For a given forecast horizon, there are P = 108− (h-1)
forecasts available for computing the bias. The end dates of the samples used to construct forecasts are
τ = R, ..., T + 1− h. The forecasts use both recursive and rolling estimation samples. (See West (2006), for
example, for definitions and illustrations of these two schemes.)
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In a sample that ends at date τ, the forecast from the driftless random walk (“RW”) model is xτ for both
the recursive and rolling samples, and for all horizons. For the AR(2) model, ordinary least squares is used
to estimate parameters using {x1, ..., xτ} (recursive sample) or {xτ−R+1, ..., xτ} (rolling sample). The
estimated parameters are then used to compute forecasts using the chain rule of forecasting. We also
report results from the infeasible AR(2) forecast that relies on population parameters.

We run 1000 simulations. In each simulation, we compute forecast bias and root mean squared prediction
error (RMSPE) for both models. We then compute (1) the absolute value of relative forecast biases
|bRWj /bARj |, where the subscript j denotes simulation j, and (2) relative RMSPEs,
RMSPERWj /RMSPEARj . We report the median across our 1000 simulations of relative bias and relative
RMSPE, as well as the percentage of simulations in which each ratio is less than 1. To keep the
presentation smooth, we will generally omit “absolute value” when we reference relative bias: “smaller bias”
should be understood to mean “smaller bias in absolute value,” for example.

We note that our paper makes no new predictions about relative RMSPEs. We report these to reassure the
reader that our setup delivers the expected result that in a stationary environment, the RMSPE of a
forecast from a well specified stationary model is less than that of a RW forecast.2

Table 3.1 summarizes results. Each column reports results for a given horizon. For convenience, lines (5)
and (6) give the number of predictions P and the ratio h/P .

Line (2) reports the variance of bias from the RW model, normalized by P 2/h. Our theory suggests that
this normalization should generate a number that is approximately constant across horizons, at least for
large P. For our values of P, this does seem to be the case.

Lines (3a)-(3c) support our central theoretical prediction. The RW model delivered smaller bias in 73
percent - 95 percent of the 1000 samples, with the percentage tending to be higher for shorter horizons.
Relatively good performance for shorter horizons is consistent with one interpretation of our asymptotic
results (see the comments under Theorem 2.1). Note that smaller bias results even when the RW forecast
is compared to the infeasible forecast that relies on population parameters (line (3c)). The value of 0.2 for
h=1, population (line 3c), for example, means that in 500 of our 1000 simulation samples, RW bias was at
most two-tenths of AR(2) bias.

Lines (4a)-(4c) present results for relative RMSPE. Since the DGP’s autoregressive roots are comfortably
below one, we expect the AR(2) model to have lower RMSPE. And that is indeed the case. The “0%”
figures in the table are exact and not just rounded down to zero: in none of the 1000 samples was the
RMSPE lower for the RW than for the AR(2) model.

As noted above, we repeated these calculations with a DGP that was iid (xt = ut) and one that was
fractionally integrated ((1− L)dxt = ut) with d=0.31. The value d=0.31 was chosen because it implies a
first-order autocorrelation for xt of 0.45. For the I (d) DGP, to our eyes there seemed to be a tendency for
var(bRW )× P 2/h to grow, rather than stay approximately constant, as the horizon h increased. We
experimented with a sample size of 400 (instead of 156), and the tendency to grow with h persisted. In this
respect, our theory works less well for I(d) data than for I(0) data. Apart from this discrepancy from Table
3.1, results for both the iid and I (d) DGPs were very similar to those just discussed. In particular, RW
bias was typically a small fraction of the bias from the stationary model (either iid or I(d)), with superior
performance of the RW model most notable for shorter horizons.

We conclude that the simulations are consistent with the theory proposed in the previous section.
2Of course, if the DGP were a stationary model with a near unit autoregressive root, the RW model might tend to have

lower RMSPE than an estimated stationary model.
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4 Empirical results

This section presents some results from pseudo-out-of-sample forecasting. We compare the bias of a
driftless random walk and either an AR(2) process or an AR process with lag length chosen by BIC. We
report results for AR(2) here, with the very similar results for BIC-chosen lag length reported in our online
appendix.

We use four quarterly US series. The series were chosen to encompass a range of persistence while focusing
on series in which estimates of first-order autocorrelation coefficients are consistent with stationarity. We
wished to encompass a range of persistence because the closer the first-order autocorrelation is to 1
perhaps the less surprising it might be to have a RW forecast yield low bias. With growth rates computed
with log differences, the four series are:

• per capita real GDP growth (US BEA (2023); estimated first-order autocorrelation coefficient ρ1=
0.39);

• CPI-U inflation (US BLS (2023a); ρ1= 0.33). Quarterly price levels computed from averages of
monthly data;

• labor productivity growth for nonfarm business (US BLS (2023b); ρ1= 0.08); and

• M3 growth (OECD (2023); ρ1= 0.58). Quarterly level set to last month of quarter.

As in the simulations, the horizons are h=1, 4, 8, 12, 20 and 40 quarters. Our baseline sample ran
1984:1-2022:4, with data prior to 1996 used only for estimates of the parameters of the AR models. The
base for the first prediction thus is 1995:4. The realization for the last prediction was 108 quarters later in
2022:4. For h=4, for example, the first value predicted was the average value over the four quarters
1996:1-1996:4; the second value predicted the average value for the four quarters 1996:2-1997:1, and so on,
ending with a final prediction for the average over the four quarters 2022:1-2022:4. This allowed 105 h=4
quarter ahead predictions in all. More generally, for each horizon h the number of predictions P satisfies
P=108-(h-1). The various values of h, P and the implied values of h/P are given in lines (5) and (6) of
Table 3.1.

An alternative sample used no data past 2019:4, to make sure that the steep fall and rapid recovery of the
COVID recession was not skewing results. When we stop the comparison in 2019:4 instead of 2022:4, P of
course falls by 12 for each horizon.

In estimation of the AR(2) model, we used both rolling and recursive sampling schemes as we moved the
estimation end point forward. We checked for stationarity of the estimates and substituted a driftless RW
forecast if, for a given sample, the estimates did not satisfy stationarity conditions. (In practice, this
substitution was never necessary.)

Table 4.1 gives detailed results for GDP growth, with our online appendix presenting details for the other
three variables. Panel A gives results when the sample ends in 2022:4, panel B when the sample ends in
2019:4. Line 2 gives the bias in the RW forecast (bRW ) , over the various horizons. The magnitude of the
values might be gauged by a comparison to the mean value of GDP growth, which is 1.7 percent. In both
panels of Table 4.1, and for all horizons but h=40, the absolute value of bRW is a small fraction–less than
1/8–of the mean of 1.7 percent. In our experience in forecasting, that is a good result.

Rows (3a) and (3b) are the test of whether our paper’s theoretical results are reflected in the data. In these
rows, a value less than 1 means that bias was smaller in the RW forecast. Upon examining the 24 values in
these two rows, we see that 22, or 92 percent, of the figures are below 1. The superior performance of the
RW model is not because it is better according to a mean squared error criterion. Of the 24 values in lines
(4a) and (4b), only 1, or 4 percent, is less than 1.
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Table 4.2 presents summary results for all four variables. Columns (2)-(4) present in-sample summary
statistics, computed 1984:1-2019:4. Columns (5)-(9) present forecasting results, with columns (6) and (7)
the ones that are central to our paper. In columns (6) and (7), medians are computed across 24
comparisons and percentages are computed from a fraction of 24 comparisons. The 24 comparisons are
those for 6 horizons × 2 sampling schemes (rolling and recursive) × 2 sample endpoints (2022:4 and
2019:4). For example, the “92%” in row (1), column (6) of Table 4.2 reflects the fact that bRWwas lower
than bAR in 22 of 24, or 92 percent, of the entries in rows (3a) and (3b) of Table 4.1.

Column (5) in Table 4.2 indicates that the (absolute) value of bias generally was usually very small–by a
factor of 20 or more–than the mean given in column (1). Columns (6) and (7) present our central results.
For three of the four series, bRWwas almost always smaller than bAR, and typically by a substantial
magnitude: in column (7), the median value (across 24 comparisons per series) of |bRW /bAR| was 0.4, 0.1
and 0.2 for per capita GDP growth, CPI inflation and M3 growth. Labor productivity growth was an
exception: the ratio was less than one in just slightly over half of the 24 comparisons (line (3), column (6)).
We see in columns (8) and (9) that by a mean squared error criterion, the RW model fares poorly
compared to the AR model, for all four data series.

Lines (5) to (7) in Table 4.2 give some statistics aggregated over all four series. Line (5) states that in 84
percent of the 96 (=24×4) comparisons, bRWwas smaller than bAR, with the median value of |bRW /bAR|
being 0.3. Lines (6) and (7) in columns (6) and (7) indicate that there is a modest tendency for the
benefits of RW to decline with horizon. This is consistent with asymptotics in which h increases along with
P (see the discussion in Section 2).

On comparing these results to those in the simulations, one difference is that the excess RMSPE of the RW
model (column (9)) is smaller here than in the simulations. There are many possible reasons for this, one
of which is that the AR(2) model actually generated the simulation data. But even though the AR(2)
model is only an approximating model for the actual data, the reduction in bias (columns (6) and (7)) is
comparable to what is reported for the simulations in Table 3.1.

In sum, the empirical results are strongly supportive of our theoretical and simulation results. In
forecasting a stationary process, bias will generally be more concentrated around 0 for a forecast from a
RW than from a stationary model.

5 Conclusion

Using asymptotic theory, simulations, and empirical estimates, we have shown that if the data are
stationary, a zero mean ARMA model in the first difference of the data will tend to have forecast bias more
concentrated around zero than will a stationary model. This applies even for the infeasible forecast that
relies on population parameters from the stationary process that generated the data. Our empirical work
indicates that a substantial reduction in bias can occur in practice; for some aggregate US data, bias from a
random walk forecast was generally one-tenth to one-half of that of a plausibly specified stationary model.
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7 Appendix

In this Appendix, we prove Theorem 2.1. Throughout, c is a generic constant that varies from statement to
statement. Define

αt ≡ hψt + (h− 1)ψt+1 + ...+ ψt+h−1. (7.1)

From (2.3), we have

period t forecast of [h∆xt+1 + (h− 1)∆xt+2 + ...+ ∆xt+h] = α1∆xt + α2∆xt−1 + ...+ αt∆x1. (7.2)

Using (7.2) in (2.4) , we have

b = (
1

Ph
)× {[h∆x2 + (h− 1)∆x3 + ...+ ∆xh+1]− [α1∆x1] (7.3)

+[h∆x3 + (h− 1)∆x4 + ...+ ∆xh+2]− [α1∆x2 + α2∆x1]

+[h∆x4 + (h− 1)∆x5 + ...+ ∆xh+3]− [α1∆x3 + α2∆x2 + α3∆x1]

+...

+[h∆xP+1 + (h− 1)∆xP + ...+ ∆xP+h]− [α1∆xP + α2∆xP−1 + ...+ αP∆x1]}.

In (7.3), sum the terms multiplied by h (yielding h(xP+1 − x1)), sum the terms multiplied by h− 1, ...,
sum the terms multiplied by α1, ..., sum the terms multiplied by αP . We get

b = (
1

Ph
)× { [h(xP+1 − x1) + (h− 1)(xP+2 − x2) + ...+ (xP+h − xh)] (7.4)

− [α1(xP − x0) + α2(xP−1 − x0) + ...+ αP (x1 − x0)] }

≡ (
1

Ph
)× (A1 −A2 −B1 +B2),

A1 ≡ hxP+1 + (h− 1)xP+2 + ...+ xP+h,

A2 ≡ hx1 + (h− 1)x2 + ...+ xh,

B1 ≡ α1xP + α2xP−1 + ...+ αPx1,

B2 ≡ (α1 + α2 + ...+ +αP )x0.

For h fixed, it suffices to show that the variance of each of the four terms is O(1). This is immediate for A1

and A2. For B1 and B2: it is easily shown that |αt|≤ cρt for a constant c that does not depend on P. Then
B2 =O(1) is immediate. For B1: Let

γj = cov(xt.xt−j).

We have var(B1) =
∑∑

P
s,t=1αsαtγ|s−t|. Also, |αt|≤ cρt ⇒

∑∑∞
s,t=1αsαt ≤ 2c2/[(1− ρ2)(1− ρ)]

≡ cα ⇒var(B1) ≤ cαγ0.

When h/P =O(1), it suffices to show that the variance of each of the four terms is O(h3). Clearly var(B2)
is bounded, even if h grows. I will write out the arguments for A1and B1. The argument for A2 is similar.
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We have

var(A1) = [h2 + (h− 1)2 + ...+ 1]γ0 (7.5)
+ 2[h(h− 1) + (h− 1)(h− 2) + ...+ 2]γ1

+ 2[h(h− 2) + (h− 1)(h− 3) + ...+ 3]γ2

+ ...

+ 2hγh−1

≤ 2[h2 + (h− 1)2 + ...+ 1][|γ0|+ |γ1|+ |γ2|+ ...+ |γh−1|]

≤ 2(
∞∑
j=0

|γj |)[h2 + (h− 1)2 + ...+ 1]

= O(h3),

because
∑∞
j=0 |γj | is finite and h2 + (h− 1)2 + ...+ 1=O(h3). For var(B1), note first that

|αt| ≤ h|ψt|+ (h− 1)|ψt+1|+ ...+ |ψt+h−1| (7.6)

≤ cρt[h+ (h− 1)ρ+ ...+ ρh−1]

≤ cρth(1 + ρ+ ...ρh−1)

≤ c2hρt, c2 ≡ c/(1− ρ).

Then logic similar to that used in analyzing var(A1) yields var (B1) ≤ 2(
∑∞
j=0 |γj |)(α2

1 + α2
2 + ...+ α2

P ) and
it suffices to show α2

1 + α2
2 + ...+ α2

P =O(h3). Using (7.6), we have

α2
1 + α2

2 + ...+ α2
P ≤ c22h2[ρ2 + ...+ ρ2P ]

≤ c22h2 ρ2

1− ρ4

= O(h2).
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Table 3.1

Simulation results on bias and RMSPE, random walk relative to AR(2) forecasts

(1) (2) (3) (4) (5) (6)
(1) h=1  h=4 h=8 h=12 h=20     h=40
(2) var(bRW)×P2/h 2.63 1.92 1.85 1.85 1.72     1.75   

med  %<1   med  %<1   med  %<1   med  %<1   med  %<1   med  %<1
(3) |bRW / bAR|
(3a)      Rolling   0.3 90%   0.3  90%    0.4  86%    0.5  82%    0.6  79% 0.7  73%  
(3b)      Recursive   0.2 95%   0.2  94%    0.2  91%    0.3  90%    0.4  88% 0.6  80%
(3c)      Population   0.2 95%   0.2  95%    0.3  94%    0.3  91%    0.4  88% 0.7  79%

(4) RMSPERW / RMSPEAR

(4a)      Rolling 1.1  0%   1.6   0% 2.0 0%    2.3   0%    2.8   0%    3.5 0%
(4b)      Recursive 1.2  0%   1.6   0% 2.1 0%    2.4   0%    3.0   0%    3.9 0%
(4c)      Population 1.2  0%   1.7   0% 2.2 0%    2.6   0%    3.3   0%    5.0 0%

(5) P 108 105 101 97 89 69
(6) h/P 0.01 0.04 0.08 0.13 0.22 0.58

Notes:

1. 1000 simulation samples of size T+1=156 were generated from a stationary AR(2) model.  The DGP was: xt =
0.5xt-1-0.1xt-2+ut, ut ~ iid N(0,1).  Predictions were made from a driftless random walk model (superscript RW) 
and an AR(2) model (superscript AR). In lines labeled “rolling” and “recursive,” AR(2) predictions were made
using least squares estimates; in lines labeled “population,” population parameters were used.  

2. For horizons given in row (1), the number of predictions in a given sample is given in row (5).  In a given
sample, P predictions (row (5)) were used to compute bias b (row (3)) and root mean squared prediction error
(RMSPE, row (4)).  See text for additional details.

3. In row (2), var(bRW) is the variance of random walk bias across the 1000 samples.  Here and throughout, bias is
the sample average of the difference between realization and prediction.  

4. In rows (3a)-(3c), the “med” column reports the median value, across the 1000 samples, of the absolute value
of the ratio of the bias of the random walk model to the bias of the estimated AR(2) model.  A value less than 1
indicates that the RW forecast had lower bias (in absolute value). The “%<1" column reports the percentage of the
1000 samples in which this ratio was less than 1.

5. Rows (4a)-(4c) are analogous to (3a)-(3b), with RMSPE replacing bias.  Here and throughout, RMSPE is the
square root of the average of squared forecast errors.  A median value greater than 1 indicates that the RW
forecast had a higher RMSPE.



Table 4.1

Bias and RMSPE, random walk relative to AR forecasts, per capita GDP growth

A: Last forecast 2022:4 B: Last forecast 2019:4

(1)   h=1 h=4 h=8 h=12 h=20 h=40 h=1 h=4 h=8 h=12 h=20 h=40
(2) bRW 0.0 0.1 0.1 -0.2 -0.2 -0.3 0.0 0.0 0.0 -0.1 -0.2 -0.4

(3) |bRW / bAR|
(3a) Rolling 0.1 0.2 0.4 1.3 0.8 0.5 0.1 0.4 0.8 0.5 0.6 0.5
(3b) Recursive 0.1 4.5 0.7 0.4 0.4 0.4 0.0 0.0 0.1 0.2 0.4 0.5

(4) RMSPERW / RMSPEAR

(4a) Rolling 0.9 1.1 1.5 1.7 2.1 2.4 1.2 1.3 1.6 1.7 2.1 2.4
(4b) Recursive 1.1 1.7 2.4 1.9 2.3 2.6 1.2 1.4 1.7 1.9 2.4 2.6

Notes:

1. bRW is bias in predictions of the average value of GDP growth over the horizons indicated in row 1, from a
model that assumes that GDP growth follows a driftless random walk. All forecasting exercises are
pseudo-out-of-sample.

2.  For a given horizon h, the first forecast is for average GDP growth from 1996:1 through the next h-1 quarters. 
In panel A, the last forecasted observation is for average GDP growth over h quarters ending in 2022:4; the
number of forecasts and forecast errors P is 108-(h-1) (see line (5) in Table 3.1).  In panel B, the date of the first
forecast is the same but the ending quarter is 2019:4; P is smaller by 12, for each horizon.

3. bAR is bias in forecasts computed from a series of estimates of an AR(2) model.  In the regression relying on the
first sample used to estimate the AR model, the left-hand-side variable spans the 48 quarters from 1984:1 to
1995:4.  For h=1, the left-hand-side in the last estimation sample in panel A runs from 2009:4 to 2022:3 (rolling)
or 1984:1 to 2022:3 (recursive); the dates in panel B are 2007:4-2019:3 and 1984:1-2019:3.  End dates for h>1 are
shifted back to accommodate the longer horizon (e.g., for h=4, the final recursive sample in panel A runs 1984:1-
2021:4).

4. Rows (3a) and (3b) give the absolute value of the ratio of the bias from the random walk forecast to the bias
from the AR forecast. 

5. Rows (4a) and (4b) give the ratio of root mean squared prediction errors (RMSPEs). 



Table 4.2

Bias and RMSPE, random walk relative to AR forecasts: summary statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9)
  median      – |bRW/bAR|  – RMSPERW / RMSPEAR 

mean s.d. ρ1 |bRW| %<1 median %<1 median
(1) Per capita GDP growth 1.7 2.3 0.4 0.10 92% 0.4 4% 1.7
(2) CPI inflation 2.6 1.9 0.3 0.05 96% 0.1 0% 2.0
(3) Labor prod growth 1.9 2.5 0.1 0.05 54% 0.9 0% 2.1
(4) M3 growth 5.5 2.8 0.6 0.05 96% 0.2 0% 1.7

(5) All 4 series, all horizons 0.06 84% 0.3 1% 1.9
(6) All 4 series, h#12 0.05 86% 0.2 2% 1.7
(7) All 4 series, h>12 0.23 81% 0.4 0% 2.4

Notes:

1. Columns (2)-(4) give summary statistics for the series indicated in column (1), computed using quarterly data
1984:1-2019:4.  In column (4), ρ1 is the first-order autocorrelation coefficient.

2. For per capita GDP growth (row 1), columns (5)-(9) are computed from the values in Table 4.1.  

a. Column (5):  “median bRW” is median bias for the random walk model, computed from the 12 values in row
(2) of Table 4.1.

b. Column (6): “|bRW/bAR| %<1” is the percentage of forecast comparisons in which bias for the random walk
model is less than that for the AR(2) model, computed from the 24 values in rows (3a) and (3b) of Table 4.1

c. Column (7): “|bRW/bAR| % median” is the median value of the absolute value of the ratio of the bias of
random walk model to the bias of the AR model, again computed from  the 24 values of rows (3a) and (3b) of
Table 4.1.  

d. Columns (8) and (9) are comparable values for root mean squared prediction error rather than bias,
computed from the 24 values in rows (4a) and (4b) in Table 4.1.

3. The values in rows (2)-(7) are computed analogously to those for GDP growth.  The underlying values
comparable to those in Table 4.1 for GDP growth are given in the online appendix.
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This online appendix presents simulation and empirical results omitted from the paper to save space.

1. Tables A3.1a and A3.1b present simulation results analogous to those presented in Table 3.1, but
with a different DGP and a different stationary forecasting model. 

a. Table A3.1a: the DGP is xt  = ut ~ iid N(0,1); the stationary model for comparison with the
random walk model is iid possibly around a nonzero mean.  That is, the stationary forecast is
xt+h='x for all h, where 'x is the sample mean from the relevant rolling or recursive sample.  The
population forecast is xt+h=0 for all h.

b. Table A3.1b: the DGP  is (1-L)dxt  = ut ~ iid N(0,1), with d=0.31.

i. As in Chung and Baillie (1993), data in a given simulation sample were drawn from an
N(0,V) DGP where V is the variance-covariance matrix of a (156×1) vector of x’s. For
example, the diagonals of V were set to the variance of xt (i.e., to Ã(1-2d)/Ã2(1-d), where Ã is
the gamma function and, again, d=0.31).  Off-diagonals were set in accordance with the
autocovariances of xt.  See Brockwell and Davis (1993, p 522) for formulas.

ii. The technique of Geweke and Porter-Hudak (1983) was used to estimate d, setting the
estimate to -0.49 or 0.49 if the estimate fell outside the interval (-0.49,0.49). Forecasts were
made using the autoregressive representation of xt.  The autoregression was truncated at lag
48 (rolling samples) or at the first observation in the sample (recursive samples). As in our
AR(2) forecasts, h-period-ahead-forecasts were made using the chain rule of forecasting.  

For example, for rolling samples, forecasts were based on the AR(48)

xt!
'x = ö^ 1(xt-1!

'x) +  ö^ 2(xt-2!
'x) +  ... + ö^ 48(xt-48!

'x).

Here 'x is the sample mean, ö^ 1=d^, ö^ 2=!d^(d^-1)/2!, ... and d^ is the estimate of d. Population
forecasts were made from this AR representation using population values, i.e., setting d^=0.31
and 'x=0 (=population mean of x).

c. Table A3.1c: the same as Table A3.1b, except that T+1=400 instead of T+1=156.

2. Tables A4.1a, A4.1b, and A4.1c present results for CPI inflation, labor productivity growth, and M3
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growth analogous to the results presented for GDP growth in Table 4.1. 

3. Table A4.2 presents results analogous to Table 4.2, except that lag length was chosen by BIC with a
maximum lag length of 4.  (Table 4.2 relied on an AR(2) model for its results.) 

Additional references:

Brockwell, Peter J. and Richard A. Davis, 1993, Time Series: Theory and Methods, Springer-Verlag:
New York. https://www.doi.org/10.1007/978-1-4419-0320-4 

Chung, Ching-fan  and Richard T. Baillie, 1993, “Small Sample Bias in Conditional Sum-of-Squares
Estimators of Fractionally Integrated ARMA Models,” Empirical Economics 18, 791-806.
https://doi.org/10.1007/BF01205422 

Geweke, John  and Susan Porter-Hudak, 1983, “The Estimation and Application of Long Memory Time
Series Models,” Journal of Time Series Analysis 4(4), 221-238. 
https://doi.org/10.1111/j.1467-9892.1983.tb00371.x   
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https://www.doi.org/10.1007/978-1-4419-0320-4
https://doi.org/10.1007/BF01205422
https://doi.org/10.1111/j.1467-9892.1983.tb00371.x


Table A3.1a

Simulation results on bias and RMSPE, random walk relative to iid forecasts

(1) (2) (3) (4) (5) (6)
(1) h=1  h=4 h=8 h=12 h=20     h=40
(2) var(bRW)×P2/h 2.08 0.90 0.75 0.73 0.65     0.70   

med  %<1   med  %<1   med  %<1   med  %<1   med  %<1   med  %<1
(3) |bRW / biid|
(3a)      Rolling   0.3 91%   0.3  89%    0.4  86%    0.5  83%    0.6  80% 0.7  74%  
(3b)      Recursive   0.1 95%   0.2  94%    0.2  92%    0.3  90%    0.3  88% 0.6  80%
(3c)      Population   0.1 96%   0.2  94%    0.3  93%    0.3  90%    0.4  87% 0.7  78%

(4) RMSPERW / RMSPEiid

(4a)      Rolling 1.4  0%   2.2   0% 2.8 0%    3.3   0%    4.1   0%    5.3 0%
(4b)      Recursive 1.4  0%   2.2   0% 2.9 0%    3.5   0%    4.4   0%    5.8 0%
(4c)      Population 1.4  0%   2.3   0% 3.1 0%    3.7   0%    4.9   0%    7.4 0%

(5) P 108 105 101 97 89 69
(6) h/P 0.01 0.04 0.08 0.13 0.22 0.58

Notes: See notes to Table 3.1.  

Table A3.1b

Simulation results on bias and RMSPE, random walk relative to I(d) forecasts

(1) (2) (3) (4) (5) (6)
(1) h=1  h=4 h=8 h=12 h=20     h=40
(2) var(bRW)×P2/h 2.53 1.99 2.31 2.68 3.14 3.93

med  %<1   med  %<1   med  %<1   med  %<1   med  %<1   med  %<1
(3) |bRW / bI(d)|
(3a)      Rolling   0.1 97%   0.3  91%    0.4  90%    0.4  87%    0.5  84% 0.7  76%  
(3b)      Recursive   0.1 96%   0.2  95%    0.2  92%    0.3  92%    0.4  89% 0.6  78%
(3c)      Population   0.1 95%   0.2  93%    0.2  92%    0.3  90%    0.4  87% 0.6  79%

(4) RMSPERW / RMSPEI(d)

(4a)      Rolling 1.2  3%   1.5   0% 1.7 0%    1.8   0%    2.0   0%    2.3 0%
(4b)      Recursive 1.2  6%   1.5   0% 1.7 0%    1.9   0%    2.1   0%    2.4 0%
(4c)      Population 1.2  0%   1.6   0% 1.8 0%    2.0   0%    2.3   0%    2.8 0%

(5) P 108 105 101 97 89 69
(6) h/P 0.01 0.04 0.08 0.13 0.22 0.58

Notes: See notes to Table 3.1.  
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Table A3.1c

Simulation results on bias and RMSPE, random walk relative to I(d) forecasts, T+1=400

(1) (2) (3) (4) (5) (6)
(1) h=1  h=4 h=8 h=12 h=20     h=40
(2) var(bRW)×P2/h 2.44 2.20 2.62 3.04 3.91 5.40

med  %<1   med  %<1   med  %<1   med  %<1   med  %<1   med  %<1
(3) |bRW / bI(d)|
(3a)      Rolling   0.1 98%   0.2  94%    0.3  92%    0.4  90%    0.5  86% 0.6  82%  
(3b)      Recursive   0.1 99%   0.1  97%    0.1  97%    0.2  95%    0.2  95% 0.3  92%
(3c)      Population   0.1 97%   0.1  96%    0.1  96%    0.1  94%    0.2  93% 0.3  90%

(4) RMSPERW / RMSPEI(d)

(4a)      Rolling 1.1  0%   1.4   0% 1.7 0%    1.8   0%    2.0   0%    2.2 0%
(4b)      Recursive 1.2  1%   1.5   0% 1.7 0%    1.8   0%    2.0   0%    2.4 0%
(4c)      Population 1.2  0%   1.6   0% 1.8 0%    1.9   0%    2.2   0%    2.6 0%

(5) P 353 350 346 342 334 314
(6) h/P 0.003 0.01 0.02 0.04 0.06 0.13

Note: This table differs from Table A3.1b in that T+1=400 instead of T+1=156.
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Table A4.1a

Bias and RMSPE, random walk relative to AR forecasts, CPI inflation

A: Last forecast 2022:4 B: Last forecast 2019:4

(1)   h=1 h=4 h=8 h=12 h=20 h=40 h=1 h=4 h=8 h=12 h=20 h=40
(2) bRW 0.1 0.1 0.2 0.0 0.0 -0.3 0.0 0.0 0.0 0.0 -0.1 -0.3

(3) |bRW / bAR|
(3a) Rolling 0.4 1.7 0.8 0.1 0.0 0.4 0.0 0.1 0.1 0.1 0.2 0.4
(3b) Recursive 0.2 0.3 0.3 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.2 0.3

(4) RMSPERW / RMSPEAR

(4a) Rolling 1.1 1.4 1.7 2.1 2.6 3.3 1.2 1.9 2.2 2.6 2.9 3.4
(4b) Recursive 1.2 1.4 1.7 1.9 2.1 2.3 1.2 1.7 1.9 2.0 2.1 2.4

See notes to Table 4.1. 

Table A4.1b

Bias and RMSPE, random walk relative to AR forecasts, labor productivity growth

A: Last forecast 2022:4 B: Last forecast 2019:4

(1)   h=1 h=4 h=8 h=12 h=20 h=40 h=1 h=4 h=8 h=12 h=20 h=40
(2) bRW 0.0 0.0 0.0 0.1 -0.1 -0.5 0.0 0.0 0.0 -0.1 -0.2 -0.8

(3) |bRW / bAR|
(3a) Rolling 0.2 0.9 0.9 0.5 0.3 1.2 0.2 0.1 0.4 0.6 0.9 2.6
(3b) Recursive 0.1 0.3 12.9 4.0 1.0 2.4 0.7 1.1 2.9 3.2 3.3 9.7

(4) RMSPERW / RMSPEAR

(4a) Rolling 1.4 2.1 2.4 2.1 2.2 2.3 1.3 1.8 2.0 2.1 2.1 2.5
(4b) Recursive 1.3 1.9 2.3 2.2 2.6 3.1 1.4 1.9 2.1 2.2 2.5 3.3

See notes to Table 4.1. 
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Table A4.1c

Bias and RMSPE, random walk relative to AR forecasts, M3 growth

A: Last forecast 2022:4 B: Last forecast 2019:4

(1)   h=1 h=4 h=8 h=12 h=20 h=40 h=1 h=4 h=8 h=12 h=20 h=40
(2) bRW 0.1 0.1 0.3 0.9 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0

(3) |bRW / bAR|
(3a) Rolling 1.5 0.3 0.4 0.8 0.5 0.2 0.3 0.2 0.1 0.1 0.0 0.0
(3b) Recursive 0.2 0.2 0.3 0.6 0.4 0.1 0.2 0.1 0.0 0.0 0.0 0.0

(4) RMSPERW / RMSPEAR

(4a) Rolling 1.0 1.2 1.3 1.5 1.7 2.0 1.1 1.4 1.7 1.8 1.9 1.9
(4b) Recursive 1.1 1.3 1.6 1.5 1.7 2.0 1.1 1.4 1.8 2.0 2.2 2.4

See notes to Table 4.1. 

Table A4.2

Bias and RMSPE, random walk relative to AR forecasts: summary statistics
Lag length chosen by BIC

(1) (2) (3) (4) (5) (6) (7) (8) (9)
  median      – |bRW/bAR|  – RMSPERW / RMSPEAR 

mean s.d. ñ1 |bRW| %<1 median %<1 median
(1) Per capita GDP growth 1.7 2.3 0.4 0.10 92% 0.4 0% 1.8
(2) CPI inflation 2.6 1.9 0.3 0.05 96% 0.2 0% 1.9
(3) Labor prod growth 1.9 2.5 0.1 0.05 50% 1.0 0% 2.1
(4) M3 growth 5.5 2.8 0.6 0.05 100% 0.2 0% 1.7

(5) All 4 series, all horizons 0.06 84% 0.3 0% 1.9

(6) All 4 series, h#12 0.05 84% 0.2 0% 1.7
(7) All 4 series, h>12 0.23 84% 0.4 0% 2.4

See notes to Table 4.2.  Columns (1)-(5) are identical to columns (1)-(5) in Table 4.2.
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