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Abstract

Several Phillips curves based on sticky information and sticky prices are estimated

and compared using Bayesian VAR-GMM. This method derives expectations in each

Phillips curve from a VAR and estimates the Phillips curve parameters and the VAR

coefficients simultaneously. Quasi-marginal likelihood-based model comparison selects

a dual stickiness Phillips curve in which, each period, some prices remain unchanged,

consistent with micro evidence. Moreover, sticky information is a more plausible source

of inflation inertia in the Phillips curve than other sources proposed in previous studies.

Sticky information, sticky prices, and unchanged prices in each period are all needed to

better describe inflation dynamics.
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1 Introduction

Since the seminal work of Mankiw and Reis (2002), sticky information—slow dissemination

of information throughout the population—has received much attention in macroeconomics.

They propose the sticky information Phillips curve (SIPC) as a replacement for the New

Keynesian Phillips curve (NKPC), which is based on sticky prices, and indicate that sticky

information helps Phillips curves generate a plausible response of the economy to monetary

policy shocks. Subsequent studies, such as Kiley (2007) and Coibion (2010), estimate and

compare the SIPC and the NKPC. Despite its theoretical appeal for Mankiw and Reis

(2002), the SIPC receives little support from these empirical studies, but they point to

complementarity between sticky information and sticky prices within Phillips curves.1 Thus,

Dupor et al. (2010) and Knotek (2010) develop and estimate a Phillips curve based on both

sticky information and sticky prices, and emphasize that its empirical performance is better

than that of the SIPC and the NKPC. Dupor et al. (2010) call such a Phillips curve the

dual stickiness Phillips curve (DSPC) and show that sticky information gives rise to inflation

inertia. These studies, however, conduct no formal model comparison among the Phillips

curves and take little account of the role of steady-state inflation in inflation dynamics,

which has received increasing attention in recent studies reviewed by, for example, Ascari

and Sbordone (2014).

This paper estimates and compares several Phillips curves based on sticky information

and sticky prices. The benchmark Phillips curve is a DSPC and is derived from a staggered

price model of Calvo (1983) in which, each period, some prices remain unchanged, consistent

with micro evidence, while the other prices are set subject to sticky information as in Mankiw

and Reis (2002). In the presence of the unchanged prices, the DSPC’s inflation inertia and

slope coefficients are influenced by the level of steady-state inflation. This feature contrasts

sharply with the DSPC of Dupor et al. (2010), where steady-state inflation plays little role

because price indexation to steady-state inflation is (implicitly) assumed. Their DSPC is

thus referred to as the DSPC with indexation in this paper. Our DSPC is reduced to the

SIPC in the absence of nominal price rigidity, in line with Dupor et al. (2010), whereas it

1In this context, Carroll (2003) points out that “the real world presumably combines some degree of price
stickiness and a degree of expectational stickiness” (p. 295).
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is reduced to the NKPC of Ascari (2004) in the absence of information rigidity, in contrast

with Dupor et al. (2010)’s paper. These Phillips curves are estimated and compared during

two periods: the Great Inflation period and thereafter.

To estimate the Phillips curves, this paper adopts Bayesian VAR-GMM. This limited-

information method is particularly suitable for estimating Phillips curves with lagged expec-

tations, such as the SIPC and the DSPC.2 The method differs substantially from those used

in the empirical literature on Phillips curves mainly in the following three respects.

First, in the GMM estimation, expectational variables in each Phillips curve are derived

from a VAR, instead of being replaced with their realizations as in previous studies, including

Galí and Gertler (1999). This method is referred to as VAR-GMM by Mavroeidis et al. (2014)

and is adopted by Guerrieri et al. (2010) to estimate an open-economy version of the NKPC.

As in Guerrieri et al. (2010), VAR-GMM can estimate Phillips curve parameters and VAR

coefficients in one step, which contrasts with the two-step procedure employed in previous

studies, such as Sbordone (2002), Cogley and Sbordone (2008), and Dupor et al. (2010), that

first estimates a VAR and then infers Phillips curve parameters, given expectations derived

from the separately estimated VAR.

Second, Bayesian methods are applied to the VAR-GMM estimation. This application is

similar to that of Inoue and Shintani (2018) and Gemma et al. (2017), who adopt Bayesian

methods in the classical GMM estimation. The issue of weak identification has been exten-

sively discussed in the estimation of NKPCs, as in a review of the empirical literature by

Mavroeidis et al. (2014). Kleibergen and Mavroeidis (2014) point out that this issue can be

mitigated using Bayesian methods. Moreover, our paper utilizes a Block Metropolis-Hastings

algorithm (see, e.g., Herbst and Schorfheide, 2015) to estimate Phillips curve parameters and

VAR coefficients simultaneously.

Third, quasi-marginal likelihood (QML) is used for model selection, that is, not only

selection from several Phillips curves but also selection of the lag length in the VAR for each

Phillips curve. As shown by Inoue and Shintani (2018), a model with higher QML can be

regarded as a better one, and this model selection procedure is valid even when some model

parameters are weakly identified.

2The limited-information method is adopted because it leaves unspecified other equations in models and
it is therefore much less subject to misspecification issues than full-information methods.
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The main findings of the paper are twofold.

First, the DSPC is the best Phillips curve both during and after the Great Inflation

period among all those considered. Model comparison based on QML shows that the DSPC

is superior to the SIPC, the NKPC of Ascari (2004), and the DSPC with indexation of

Dupor et al. (2010), as well as the extensively used NKPC of Smets and Wouters (2007).

The estimated DSPC indicates that when steady-state inflation fell after the Great Inflation

period, the probability of price change decreased, thereby generating a flattening of the

Phillips curve. This empirical finding is consistent with the theoretical prediction in the

literature on endogenous price stickiness, initiated by Ball et al. (1988) and subsequently

developed by Levin and Yun (2007) and Kurozumi (2016). The decrease in the estimated

probability of price change leads to an increase in its implied average duration, which is in

line with the rise in the duration implied by the frequency of regular price change reported

in Nakamura et al. (2018).

Second, sticky information is a more plausible source of inflation inertia in the DSPC

both during and after the Great Inflation period than other sources proposed in previous

studies. As a source of inflation inertia in Phillips curves, Galí and Gertler (1999) introduce

rule-of-thumb price setters, while Kurozumi and Van Zandweghe (2019) suggest variable

elasticity of demand generated by a non-CES goods aggregator of the sort proposed by

Kimball (1995).3 Replacing sticky information with each of the two sources in the DSPC

reduces QML, thus deteriorating the empirical performance of the resulting Phillips curve.

As pointed out by Mankiw and Reis (2002), sticky information is due to the presence of

firms’ costs of information acquisition and reoptimization. The importance of these costs

is demonstrated by Zbaracki et al. (2004), who indicate that managerial costs, including

information gathering and decision-making costs, are much larger than menu costs, using

data from a large industrial manufacturer.

These two main findings suggest that sticky information, sticky prices, and unchanged

prices in each quarter are all needed to better describe inflation dynamics both during and

after the Great Inflation period. This extends the result of Dupor et al. (2010) in the direction

of more consistency with micro evidence on price setting.

3In the literature there is another source of inflation inertia, the upward-sloping hazard function proposed
by Sheedy (2010). This source is not employed due to the lack of tractability.
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This paper contributes to two strands of the literature. Since it was proposed by Mankiw

and Reis (2002), the SIPC has been estimated by Khan and Zhu (2006), Kiley (2007),

Coibion (2010), and Coibion and Gorodnichenko (2011). Subsequent studies of Klenow and

Willis (2007), Dupor et al. (2010), and Knotek (2010) develop DSPCs and demonstrate their

empirical relevance relative to the SIPC (and the NKPC). Our paper extends the DSPC

further along the lines of the literature on NKPCs reviewed by Ascari and Sbordone (2014)

and shows that such an extension improves the empirical performance of the DSPC.

Many of the previous studies have estimated Phillips curves using limited-information

methods.4 Galí and Gertler (1999) and Galí et al. (2005) employ GMM in estimating

NKPCs. Guerrieri et al. (2010) utilize VAR-GMM to estimate an open-economy version of

the NKPC. Dupor et al. (2010) exploit the aforementioned two-step procedure to estimate

the DSPC with indexation. To circumvent the weak-identification problem with estimated

NKPCs, Inoue and Shintani (2018) and Gemma et al. (2017) adopt Bayesian GMM and com-

pare estimated NKPCs using QML. Our paper utilizes Bayesian VAR-GMM and a Block

Metropolis-Hastings algorithm to estimate parameters of our DSPC and its associated VAR

coefficients simultaneously, and conducts model selection using QML to show that the DSPC

is the best Phillips curve among all those considered, including the DSPC with indexation.

The remainder of the paper proceeds as follows. Section 2 presents several Phillips curves.

Section 3 explains our method and data for estimating them. Section 4 shows our empirical

results. Section 5 concludes.

2 Phillips Curves

This section presents several Phillips curves based on sticky information and sticky prices.

2.1 Dual stickiness Phillips curve

Our benchmark Phillips curve is a dual stickiness Phillips curve (DSPC). This Phillips curve

is derived from a staggered price model of Calvo (1983) in which, each period, a fraction

λ ∈ [0, 1) of prices remains unchanged, while the other prices are set subject to sticky

4Full-information methods are employed in, for example, Smets and Wouters (2007) and Hirose et al.
(2021).
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information as in Mankiw and Reis (2002): a fraction ω ∈ [0, 1) of the prices is chosen

optimally without information update, whereas the remaining fraction is optimized with it.

As shown in Appendix A, under the assumption

λmax
(
πθ, πθ−1

)
< 1, (1)

the DSPC can be obtained as

π̂t = κbπ̂t−1 + κfEtπ̂t+1 + κ m̂ct + κφ

∞∑
j=1

(βλπθ−1)jEtφ1,t+j − κω
∞∑
j=1

(βλπθ)jEtφ2,t+j

+ κω

∞∑
j=1

ωj−1

[
ωβλπθEt−jm̂ct − Et−jm̂ct−1 −

∞∑
k=1

(βλπθ)k−1
(
ωβλπθEt−jφ2,t+k − Et−jφ2,t+k−1

)
+

1− βλπθ−1

1− βλπθ
∞∑
k=1

(βλπθ−1)k−1
(
ωβλπθEt−jφ1,t+k − Et−jφ1,t+k−1

)]
, (2)

where hatted variables denote log-deviations from steady-state values (e.g., π̂t ≡ log πt −

log π), Et is the expectation operator conditional on information available in period t, πt is

the inflation rate, mct is the real marginal cost, φ1,t and φ2,t are auxiliary variables defined

as

φ1,t ≡ ĝyt + θ π̂t − r̂t−1, φ2,t ≡ φ1,t + π̂t + (1− βλπθ) m̂ct,

gyt is the output growth rate, rt is the nominal interest rate, π is the steady-state inflation

rate, β ∈ (0, 1) is the subjective discount factor, θ > 1 is the elasticity of substitution between

individual goods, and the coefficients κb, κf , κ, κφ, and κω are presented in Appendix A.

In the DSPC (2), two points are worth noting. First, the real marginal cost m̂ct consists

not only of the real unit labor cost ulct but also of the relative price distortion ∆t:

m̂ct = ûlct − ∆̂t, (3)

since the distortion has a first-order effect in the DSPC under nonzero steady-state inflation.

The law of motion of the distortion is then given by

∆̂t = ρ∆∆̂t−1 + κ∆π̂t, (4)
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where the coefficients ρ∆ and κ∆ are presented in Appendix A.

Second, all the coefficients in the DSPC depend not only on the probability of no price

change λ and the probability of no information update ω but also on steady-state inflation

π. The inflation inertia coefficient κb is present under sticky information (i.e., ω > 0), as

emphasized by Dupor et al. (2010), and it declines with a lower probability ω of no informa-

tion update, a lower probability λ of no price change, and a lower steady-state inflation rate

π. In contrast, the slope coefficient κ decreases with a higher ω, a higher λ, and a higher π.

In the absence of nominal price rigidity (i.e., λ = 0), the DSPC is reduced to the SIPC

π̂t =
1− ω
ω

ûlct + (1− ω)
∞∑
j=1

ωj−1
(
Et−jπ̂t + Et−jûlct − Et−jûlct−1

)
, (5)

where m̂ct = ûlct because no nominal price rigidity implies no first-order effect of the relative

price distortion, i.e., ∆̂t = 0.5 On the other hand, in the absence of information rigidity (i.e.,

ω = 0), the DSPC is reduced, under assumption (1), to the NKPC of Ascari (2004)

π̂t = βπEtπ̂t+1 + κ0

(
ûlct − ∆̂t

)
+ κφ0

∞∑
j=1

(βλπθ−1)j
(
Etĝyt+j + θEtπ̂t+j − Etr̂t+j−1

)
, (6)

where the coefficients κ0 and κφ0 correspond to κ and κφ at ω = 0, respectively. The law of

motion of the relative price distortion ∆̂t remains the same as (4).

2.2 Phillips curves with price indexation to steady-state inflation

The DSPC with indexation of Dupor et al. (2010) is a simple variant of the DSPC (2). It

can be obtained only by altering the model so that the prices that remain unchanged in the

aforementioned setting are instead adjusted using indexation to steady-state inflation. Thus

the parameter λ represents the probability of steady-state inflation-indexed price setting.

This implies that all prices change in every period, which contradicts micro evidence. More-

over, the level of steady-state inflation has no influence on the Phillips curve coefficients, and

the relative price distortion has no first-order effect, i.e., ∆̂t = 0. Indeed, the DSPC with

indexation coincides with the DSPC (2) in which its coefficients are set at their values under

5In the absence of nominal price rigidity (i.e., λ = 0), assumption (1) is always met.
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zero steady-state inflation (i.e., π = 1) and there is no distortion term:

π̂t = κb1π̂t−1 + κf1Etπ̂t+1 + κ1ûlct − κω1

∞∑
j=1

(βλ)j
(
Etπ̂t+j + (1− βλ)Etûlct+j

)
+ κω1

∞∑
j=1

ωj−1

{
ωβλEt−jûlct − Et−jûlct−1 −

∞∑
k=1

(βλ)k−1
[
ωβλEt−jπ̂t+k − Et−jπ̂t+k−1

+ (1− βλ)
(
ωβλEt−jûlct+k − Et−jûlct+k−1

)]}
, (7)

where the coefficients κb1, κf1, κ1, and κω1 correspond to κb, κf , κ, and κω at π = 1,

respectively. Note that the DSPC with indexation (7) is reduced to the SIPC (5) in the

absence of nominal price rigidity (i.e., λ = 0), while it is reduced to the textbook NKPC

π̂t = βEtπ̂t+1 + κ1ûlct (8)

in the absence of information rigidity (i.e., ω = 0).

3 Estimation Method and Data

This section explains our method and data for estimating the Phillips curves presented in

the preceding section.

3.1 Bayesian VAR-GMM

This paper utilizes Bayesian VAR-GMM to estimate the Phillips curves. This limited-

information method is particularly suitable for estimating Phillips curves with lagged ex-

pectations, such as the SIPC and the DSPC. The method differs substantially from those

used in the empirical literature on Phillips curves mainly in the following three respects.

First, in the GMM estimation, expectational variables in each Phillips curve are derived

from a VAR, instead of being replaced with their realizations as in previous studies, such as

Galí and Gertler (1999) and Galí et al. (2005). This method is referred to as VAR-GMM

by Mavroeidis et al. (2014) and is adopted by Guerrieri et al. (2010) to estimate an open-

economy version of the NKPC. With VAR-GMM, the Phillips curve parameters and the
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VAR coefficients can be estimated simultaneously, as in Guerrieri et al. (2010). This one-

step procedure contrasts with the two-step one employed in previous studies (e.g., Sbordone,

2002; Cogley and Sbordone, 2008; Dupor et al., 2010), which first estimate a VAR and then

infer Phillips curve parameters, given expectations derived from the separately estimated

VAR. In our model, the steady-state inflation rate π is among not only the Phillips curve

parameters but also the VAR coefficients, and thus our one-step procedure can estimate the

rate π so as to meet restrictions imposed by both the Phillips curve and the VAR.6

Second, Bayesian methods are applied to the VAR-GMM estimation. This application is

similar to that of Inoue and Shintani (2018) and Gemma et al. (2017), who adopt Bayesian

methods in the classical GMM estimation. As reviewed by Mavroeidis et al. (2014), the

literature has extensively discussed the weak identification of parameters, which arises when

instruments are weakly correlated with endogenous regressors. It is an issue in the estimation

of NKPCs that reflects the difficulty of forecasting inflation. Kleibergen and Mavroeidis

(2014) point out that Bayesian methods can mitigate this issue and be considered as an

alternative to the weak-identification robust GMM statistic of Kleibergen and Mavroeidis

(2009) for inference of weakly identified parameters of NKPCs. Moreover, our paper utilizes

a Block Metropolis-Hastings algorithm (see, e.g., Herbst and Schorfheide, 2015) to estimate

the Phillips curve parameters and the VAR coefficients jointly.

Third, quasi-marginal likelihood (QML) is used for model selection, that is, not only

selection from several Phillips curves but also selection of the lag length in the VAR for each

Phillips curve. As shown by Inoue and Shintani (2018), a model with higher QML can be

regarded as a better one, and this procedure of model selection is valid even when some

model parameters are weakly identified or set identified. Using QML, Inoue and Shintani

(2018) compare the NKPCs of Galí and Gertler (1999) and Smets and Wouters (2007), while

Gemma et al. (2017) compare NKPCs with price indexation to steady-state inflation and

without it.

6Another advantage of VAR-GMM is that it allows estimation up to the latest period. For ex-
ample, when the Ascari NKPC (6) is estimated using GMM as in previous studies, such as Galí
and Gertler (1999) and Galí et al. (2005), the NKPC contains the infinite-horizon expectations∑∞
j=1(βλπθ−1)j

(
Etĝyt+j + θEtπ̂t+j − Etr̂t+j−1

)
and thus such expectations need to be truncated at a finite

horizon to replace them with their realizations, so the NKPC cannot be estimated up to the latest period.
VAR-GMM replaces the infinite-horizon expectations with their corresponding VAR forecasts, and thus it
can estimate the NKPC up to the latest period.
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Next, the Bayesian VAR-GMM estimation of the Phillips curves is described. The DSPC

(2) includes four variables: the inflation rate π̂t, the unit labor cost ûlct, the output growth

rate ĝyt, and the nominal interest rate r̂t. Thus, it is assumed that expectational variables

in each Phillips curve are derived from a finite-order VAR with the four variables,

Xt ≡ [π̂t, ûlct, ĝyt, r̂t, . . . , π̂t−n+1, ûlct−n+1, ĝyt−n+1, r̂t−n+1]′ = AXt−1 + εt,

where n denotes the lag length in the VAR. Under this assumption, we derive, for example,

the j-period-ahead inflation forecast as Etπ̂t+j = e′πEtXt+j = e′πA
jXt and the j-period-ago

forecast of current inflation as Et−jπ̂t = e′πA
jXt−j, where eπ is the selection vector for in-

flation. Replacing expectational variables with their corresponding VAR forecasts leads to

the representation of each Phillips curve for estimation. Specifically, for the DSPC, such

a representation can be obtained by combining the DSPC (2), the marginal cost equation

(3), and the law of motion of the relative price distortion (4) and then replacing expec-

tational variables in the resulting equation with their corresponding VAR forecasts. The

representation of the other Phillips curves can be derived likewise. Then, the DSPC (2), the

one with indexation (7), and the SIPC (5) include infinite backward summation, which is

approximated with the truncated sum of 16 lags, following Dupor et al. (2010).7

Let ϕ ≡ [ϑ′, vec(A)′]′ denote a vector that combines Phillips curve parameters ϑ and

its associated VAR coefficients vec(A), and let gt(ϕ) be a vector of moment functions that

satisfies E(gt(ϕ)) = 0 at a true value of ϕ = ϕ0, where E is the unconditional expectation

operator. Define gt(ϕ) as

gt(ϕ) =


ht(ϕ)Zt

(Xt − AXt−1)Xt−1

log πt − log π

, (9)

where ht(ϕ) is each Phillips curve’s residual function and Zt is the vector of instruments

including a constant of unity. The top and middle parts of gt(ϕ) imply the orthogonality

conditions for each Phillips curve and the VAR, respectively. The bottom part presents our

estimation’s assumption that log π = E(log πt), i.e., Eπ̂t = 0.

The efficient two-step GMM estimator is employed, as in previous studies, such as Galí

7We also experimented with 12 or 20 lags and found that the results were qualitatively unaffected.
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and Gertler (1999), Galí et al. (2005), and Guerrieri et al. (2010). The estimator chooses

ϕ ∈ Φ so as to maximize the objective function q(ϕ) = −(1/2) g(ϕ)′W g(ϕ), where g(ϕ) =

(1/
√
T )
∑T

t=1 gt(ϕ) and W is the optimal weighting matrix based on the HAC estimator

of Newey and West (1987).8 The matrix W is calculated as W = [Γ0(ϕ̃) +
∑J

j=1((J −

j)/J)(Γj(ϕ̃) + Γj(ϕ̃)′)]−1, where Γj(ϕ̃) = [1/(T − j)]
∑T

t=j+1 gt(ϕ̃)gt−j(ϕ̃)′, ϕ̃ is an arbitrary

consistent estimator, and the lag length J is selected by the automatic bandwidth selection

method of Andrews (1991).

Following Chernozhukov and Hong (2003), Bayesian methods are applied to the VAR-

GMM estimation. The quasi-posterior distribution of ϕ is defined as

exp(q(ϕ))p(ϕ)∫
Φ

exp(q(ϕ))p(ϕ)dϕ
,

where p(ϕ) is the prior distribution for ϕ. To obtain the quasi-posterior distribution, the

Markov Chain Monte Carlo (MCMC) method is used. Specifically, our paper utilizes the

Block Metropolis-Hastings algorithm with two blocks for Phillips curve parameters and VAR

coefficients to estimate them simultaneously without time-consuming computation of a large

Hessian matrix of the quasi-posterior probability density for the moment functions gt(ϕ) in

(9) and its computational error.9 To obtain initial values for MCMC draws, 10, 000 draws are

generated from the prior distribution of Phillips curve parameters, and the quasi-posterior

probability density is numerically maximized to find the mode, given values of coefficients

in the separately estimated VAR. The Block Metropolis-Hastings algorithm is then used to

generate 210, 000 MCMC draws, and the first 10, 000 draws are discarded as a burn-in to

obtain the quasi-posterior distribution.10

In conducting model selection, this paper follows Inoue and Shintani (2018) and uses the

8The HAC covariance matrix estimator of the moment functions gt(ϕ) in (9) is employed for two reasons.
First, the inflation gap log πt − log π in (9) is possibly serially correlated. Second, the use of the HAC
estimator makes the resulting estimation valid not only for the exact representation of each Phillips curve
but also for the case in which a disturbance (e.g., cost-push shock) is incorporated in it.

9See Appendix C for details of the Block Metropolis-Hastings algorithm in the Bayesian VAR-GMM
estimation of Phillips curves.

10In estimating the DSPC (2) and the NKPC (6), 210, 000 MCMC draws that meet assumption (1) are
generated.
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QML defined as ∫
Φ

exp(q(ϕ))p(ϕ)dϕ .

With the modified harmonic mean method of Geweke (1999), the QML is calculated for each

Phillips curve with each lag length of the VAR.11 Then, a Phillips curve with a lag length of

the VAR that has higher QML is selected as a better model.12

3.2 Data

The primary data used in the estimation are four US quarterly time series: the inflation rate

πt, the real unit labor cost ulct, the output growth rate gyt, and the nominal interest rate

rt. Following Galí et al. (2005), we employ four lags of the inflation rate and two lags of the

nominal wage growth rate, the real unit labor cost, the output growth rate, and the nominal

interest rate as instruments in Zt.

As in Galí and Gertler (1999) and Galí et al. (2005), the data on πt is the inflation

rate of the GDP implicit price deflator, and that on ulct is the labor income share in the

nonfarm business sector. Those on gyt and rt are the per capita real GDP growth rate and

the three-month Treasury bill rate, respectively. The nominal wage growth data is based on

hourly compensation in the nonfarm business sector. To take into account a shift in steady-

state inflation in post-WWII US inflation history, we perform each estimation separately for

the Great Inflation period (1966:Q1–1982:Q3) and the period thereafter (1982:Q4–2019:Q4).

Recent samples (since 2020) are not used due to the COVID-19 pandemic.

For the real unit labor cost, the output growth rate, and the nominal interest rate,

the time series of their log-deviations from steady-state values {ûlct, ĝyt, r̂t} are constructed

separately for each sample period; they are all demeaned using their respective sample period

averages.

11This paper reports the Geweke (1999) modified harmonic mean estimator of QML using the value of its
truncation parameter of τ = 0.5. We confirmed the robustness of the model selection results with respect to
the modified harmonic mean method, by using an alternative value of the truncation parameter of τ = 0.9
in the Geweke (1999) estimator and employing an alternative estimator of Sims et al. (2008) with the values
of the truncation parameter of q = 0.5, 0.9, as in Herbst and Schorfheide (2015).

12The difference in the QML between two Phillips curves or models can be evaluated using, for example,
the Jeffreys (1961) criterion, which is similar to the marginal likelihood-based model comparison in full-
information Bayesian estimation.

12



3.3 Fixed parameters and prior distributions

In each estimation, values of two parameters are fixed to avoid identification issues. The

subjective discount factor is set at β = 0.9975, and the elasticity of substitution between

goods is chosen at θ = 9.32, which is the estimate of Ascari and Sbordone (2014). All

the remaining parameters in each Phillips curve and coefficients in its associated VAR are

estimated.

Table 1 presents the prior distributions for the parameters in each Phillips curve. The

prior for the annualized steady-state inflation rate π̄ (≡ 400 log π) is centered around 3.4,

which is an average of the inflation rate over the period 1966:Q1–2019:Q4, with standard

deviation 1.5. The prior distributions for the probability of no price change λ and the

probability of no information update ω are set to be the beta distributions with mean 0.5

and standard deviation 0.1.13

Table 1: Prior distributions for Phillips curve parameters

Phillips curve parameter Distribution Mean Std. dev.
π̄ annualized steady-state inflation rate normal 3.4 1.5
λ probability of no price change beta 0.5 0.1
ω probability of no information update beta 0.5 0.1
ι degree of price indexation to lagged inflation beta 0.5 0.1
ωr fraction of rule-of-thumb price setters beta 0.5 0.1
−ε parameter governing the curvature of demand curves gamma 3 1

Notes: π̄ ≡ 400 log π. In the DSPC with indexation (7), λ represents the probability of steady-state inflation-
indexed price setting.

For the VAR coefficients, this paper employs the Minnesota prior in which the covariance

matrix of the VAR error term is replaced with the OLS estimate, following Canova (2007).

The hyper-parameters of the prior are also set in the same manner as in Canova (2007).

4 Empirical Results

This section presents the results of model selection from the Phillips curves presented above

and then analyzes the selected Phillips curve.

13Phillips curve parameters reported in the lower panel of Table 1 are explained later.
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4.1 Model comparison of Phillips curves

This paper utilizes QML to conduct model selection from the Phillips curves. To evaluate

their empirical performance, the extensively used NKPC of Smets and Wouters (2007) is

also considered:

π̂t =
ι

1 + βι
π̂t−1 +

β

1 + βι
Etπ̂t+1 +

(1− λ)(1− βλ)

λ(1 + βι)
ûlct, (10)

where ι ∈ [0, 1] denotes the degree of price indexation to lagged inflation. To estimate

this NKPC with Bayesian VAR-GMM, we set the prior distribution for ι to be the beta

distribution with mean 0.5 and standard deviation 0.1, as presented in Table 1.

Table 2: Model comparison of Phillips curves based on sticky information and sticky prices

VAR lag length
Period Phillips curve n = 1 n = 2 n = 3

DSPC (2) −40.72 −80.82 −94.72
SIPC (5) −55.54 −79.32 −89.58

Great Inflation Ascari NKPC (6) −55.15 −64.66 −83.78
(1966:Q1–1982:Q3) DSPC with indexation (7) −56.18 −84.20 −95.81

Textbook NKPC (8) −59.96 −86.03 −98.73
Smets-Wouters NKPC (10) −57.96 −71.75 −106.56
DSPC (2) −50.28 −93.28 −108.99
SIPC (5) −87.43 −119.51 −144.54

Post-Great Inflation Ascari NKPC (6) −64.70 −91.37 −143.14
(1982:Q4–2019:Q4) DSPC with indexation (7) −63.43 −106.83 −122.28

Textbook NKPC (8) −81.79 −117.82 −144.75
Smets-Wouters NKPC (10) −85.90 −117.94 −143.53

Note: The table reports the value of log QML for each Phillips curve with the VAR lag length of n = 1, 2, 3

during the Great Inflation period (1966:Q1–1982:Q3) and the period thereafter (1982:Q4–2019:Q4).

Table 2 reports the value of log QML for each Phillips curve with the VAR lag length of

n = 1, 2, 3. In this table, two findings are detected. First, for each Phillips curve, a VAR lag

length of n = 1 is selected both during and after the Great Inflation period. On each line of

the table, which corresponds to each Phillips curve for each estimation period, the value of

log QML is the largest in the case of a VAR lag length of n = 1. Second, the DSPC (2) with

a VAR lag length of n = 1 is the best Phillips curve among all those considered both during

and after the Great Inflation period. It has the largest value of log QML among them during
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both periods. In addition, the Ascari NKPC (6) and the DSPC with indexation (7) have

relatively good empirical performance. In contrast, the textbook NKPC (8) and the Smets-

Wouters NKPC (10) have relatively poor performance, and so does the SIPC (5) during

the post-Great Inflation period. These results suggest that three factors are all needed to

better describe inflation dynamics both during and after the Great Inflation period: sticky

information, sticky prices, and unchanged prices in each quarter.14

4.2 Model comparison of alternative sources of inflation inertia

We have shown that the DSPC (2) with the VAR lag length of one is the best Phillips curve

among all those considered, and that the three factors—sticky information, sticky prices,

and unchanged prices in each quarter—are needed to better describe inflation dynamics.

Dupor et al. (2010) stress that sticky information generates inflation inertia in the DSPC

with indexation. This raises the question as to what if an alternative source of inflation

inertia is incorporated in the DSPC instead of sticky information.

As the alternative source, Galí and Gertler (1999) propose rule-of-thumb (ROT) price

setters, while Kurozumi and Van Zandweghe (2019) suggest variable elasticity of demand

(VED) that is based on a non-CES goods aggregator of the sort developed by Kimball (1995).

First, the ROT price setters are considered. Let ωr ∈ [0, 1) denote the fraction of ROT

price setters among firms. Under assumption (1), replacing sticky information with ROT

price setters in the Calvo staggered price model leads to the NKPC

π̂t = κb,rπ̂t−1+κf,rEtπ̂t+1+κr

(
ûlct − ∆̂t

)
+κφ,r

∞∑
j=1

(βλπθ−1)j
(
Etĝyt+j + θEtπ̂t+j − Etr̂t+j−1

)
,

(11)

where the coefficients κb,r, κf,r, κr, and κφ,r are presented in Appendix B. The law of motion

of the relative price distortion ∆̂t is the same as (4). The NKPC (11) is called the ROT-

NKPC in this paper and can be reduced to the Ascari NKPC (6) in the absence of ROT

price setters, i.e., ωr = 0.

14By employing alternative priors (e.g., alternative values of the prior mean and variance of the probability
of no price change λ and the probability of no information update ω), we confirmed the robustness of the
result that the DSPC (2) with a VAR lag length of n = 1 is the best Phillips curve among all those considered
both during and after the Great Inflation period.
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Next, we turn to the VED. Under assumption

λmax
(
πγ, πγ−1, π−1, ρdβπ

γ−1
)
< 1, (12)

introducing the non-CES aggregator instead of sticky information in the Calvo model along

the lines of Kurozumi and Van Zandweghe (2019) yields the NKPC

π̂t =
κεd(1 + ρdκ̃d0)

1− κεdκ̃d0

∞∑
j=1

ρj−1
d π̂t−j +

βπ(1 + κεd)

1− κεdκ̃d0

Etπ̂t+1 +
κv

1− κεdκ̃d0

(
ûlct − ∆̂t

)
+

κφ,v
1− κεdκ̃d0

∞∑
j=1

(βλπγ−1)j
[
Etĝyt+j + γ

(
1 +

κεd(1− βλπγ−1)

1− ρdβλπγ−1

)
Etπ̂t+j − Etr̂t+j−1

]

+
κεψ

1− κεdκ̃d0

∞∑
j=1

(βλπ−1)j
(
Etĝyt+j − Etr̂t+j−1

)
(13)

and the law of motion of the relative price distortion

∆̂t = ρs∆̂t−1 + κ∆κs

[
π̂t + κεd

(
∞∑
j=0

ρjdπ̂t−j −
∞∑
j=0

ρjdπ̂t−j−1

)]
,

where γ ≡ θ(1 + ε), ε is the parameter that governs the curvature of demand curves, and

the coefficients κεd, ρd, κ̃d0, κv, κφ,v, κεψ, ρs, κ∆, and κs are presented in Appendix B. The

NKPC (13) is called the VED-NKPC in this paper and can be reduced to the Ascari NKPC

(6) in the case of constant elasticity of demand, i.e., ε = 0.

To estimate these NKPCs with Bayesian VAR-GMM, we set the prior distribution for

the fraction of ROT price setters ωr in the ROT-NKPC (11) to be the beta distribution

with mean 0.5 and standard deviation 0.1, as presented in Table 1. As for the parameter

governing the curvature of demand curves ε in the VED-NKPC (13), we set the prior for −ε

to be the gamma distribution with mean 3 and standard deviation 1, following Hirose et al.

(2021).15

Table 3 reports the values of log QML for the DSPC (2), the ROT-NKPC (11), and the

VED-NKPC (13) with the VAR lag length of n = 1, 2, 3. For each Phillips curve, a VAR

15This paper focuses on the case of ε < 0 in which relative demand for each good is more price-elastic
for an increase in the relative price of the good and less price-elastic for a decrease in the relative price, so
that the demand curve has a smoothed-off kink as in Dotsey and King (2005) and Levin et al. (2008). In
estimating the VED-NKPC (13), 210, 000 MCMC draws that meet assumption (12) are generated.
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lag length of n = 1 is selected during both estimation periods. More importantly, the DSPC

empirically outperforms the ROT-NKPC and the VED-NKPC during both periods. This

result suggests that sticky information is a more plausible source of inflation inertia in the

Phillips curve than the ROT price setters and VED, and confirms that the three factors

of sticky information, sticky prices, and unchanged prices in each quarter are all needed to

better describe inflation dynamics both during and after the Great Inflation period. This

extends the result of Dupor et al. (2010) in the direction of more consistency with micro

evidence on price setting.

Table 3: Model comparison of Phillips curves with alternative sources of inflation inertia

VAR lag length
Period Phillips curve n = 1 n = 2 n = 3
Great Inflation DSPC (2) −40.72 −80.82 −94.72
(1966:Q1–1982:Q3) ROT-NKPC (11) −56.07 −79.50 −93.11

VED-NKPC (13) −45.62 −61.48 −96.43
Post-Great Inflation DSPC (2) −50.28 −93.28 −108.99
(1982:Q4–2019:Q4) ROT-NKPC (11) −56.20 −103.10 −135.60

VED-NKPC (13) −52.44 −92.69 −122.22

Note: The table reports the values of log QML for each Phillips curve with the VAR lag length of n = 1, 2, 3

during the Great Inflation period (1966:Q1–1982:Q3) and the period thereafter (1982:Q4–2019:Q4).

4.3 Posterior estimates of the dual stickiness Phillips curve

We have shown that the DSPC (2) with the VAR lag length of n = 1 is the best Phillips

curve both during and after the Great Inflation period among all those considered. This

subsection analyzes the Phillips curve in detail.

For each of the DSPC parameters and VAR coefficients, its quasi-posterior mean and

90 percent highest quasi-posterior density interval are reported in Table 4. The quasi-

posterior mean estimates show that when the annualized steady-state inflation rate π̄ fell

from 5.84 percent during the Great Inflation period to 2.23 percent thereafter, the probabil-

ity of no price change λ increased from 0.57 to 0.72 and the autoregressive coefficient Aπ,π in

the VAR’s inflation equation—which captures the persistence in the formation of inflation

expectations—decreased from 0.72 to 0.52, while the probability of no information update

ω rose slightly from 0.52 to 0.56. Then, the DSPC’s slope coefficient κ diminished from 0.08
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Table 4: Quasi-posterior estimates of the DSPC parameters and VAR coefficients

Great Inflation Post-Great Inflation
(1966:Q1–1982:Q3) (1982:Q4–2019:Q4)

Mean 90% interval Mean 90% interval
π̄ 5.84 [5.40, 6.30] 2.21 [1.98, 2.46]
λ 0.57 [0.44, 0.68] 0.72 [0.64, 0.80]
ω 0.52 [0.36, 0.66] 0.56 [0.41, 0.72]
Aπ,π 0.72 [0.52, 0.93] 0.54 [0.17, 0.90]
Aπ,ulc −0.01 [−0.07, 0.05] −0.02 [−0.03, 0.00]
Aπ,gy −0.01 [−0.09, 0.06] 0.04 [−0.04, 0.11]
Aπ,r 0.07 [−0.09, 0.23] 0.12 [−0.04, 0.26]
Aulc,π −0.34 [−0.72, 0.05] 0.01 [−0.94, 1.01]
Aulc,ulc 0.79 [0.68, 0.91] 0.94 [0.91, 0.96]
Aulc,gy 0.00 [−0.14, 0.14] 0.41 [0.18, 0.63]
Aulc,r 0.33 [0.13, 0.52] 0.28 [0.01, 0.55]
Agy,π −0.01 [−0.41, 0.35] −0.24 [−0.96, 0.48]
Agy,ulc −0.10 [−0.21, 0.00] 0.02 [−0.00, 0.05]
Agy,gy −0.07 [−0.23, 0.08] 0.35 [0.16, 0.54]
Agy,r −0.54 [−0.80,−0.27] 0.08 [−0.17, 0.32]
Ar,π 0.18 [0.07, 0.30] 0.04 [−0.12, 0.21]
Ar,ulc −0.02 [−0.06, 0.02] 0.00 [−0.01, 0.00]
Ar,gy 0.03 [−0.03, 0.08] 0.08 [0.05, 0.10]
Ar,r 0.86 [0.76, 0.95] 0.97 [0.91, 1.03]
κb 0.31 [0.25, 0.36] 0.34 [0.29, 0.40]
κf 0.61 [0.53, 0.70] 0.62 [0.55, 0.69]
κ 0.08 [0.02, 0.14] 0.03 [0.01, 0.05]
κφ 0.04 [0.01, 0.06] 0.01 [0.00, 0.02]
κω 0.03 [0.01, 0.06] 0.01 [0.00, 0.02]

Note: The table reports the quasi-posterior mean and 90 percent highest quasi-posterior density interval for
each of the DSPC parameters and VAR coefficients during the Great Inflation period (1966:Q1–1982:Q3)
and the period thereafter (1982:Q4–2019:Q4).
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Figure 1: Quasi-posterior distribution of the DSPC parameters and key coefficients

Note: In the figure, panels (a)–(f) display the quasi-posterior distribution during the Great Inflation period
1966:Q1–1982:Q3 (dashed blue line) and the period thereafter 1982:Q4–2019:Q4 (solid red line) of the an-
nualized steady-state inflation rate π̄, the probability of no price change λ, the probability of no information
update ω, the autoregressive coefficient Aπ,π in the VAR’s inflation equation, the DSPC’s inflation inertia
coefficient κb, and its slope coefficient κ, respectively.

to 0.03, whereas its inflation inertia coefficient κb increased slightly from 0.31 to 0.34. These

shifts are also detected in the quasi-posterior distribution of the DSPC parameters and key

coefficients illustrated in Figure 1.

In the estimated DSPC, three points are worth noting. First, the increase in the mean

estimate of the probability of no price change from λ = 0.57 during 1966:Q1–1982:Q3 to

λ = 0.72 during 1982:Q4–2019:Q4 implies an increase in the average duration from 7.0

months to 10.7 months, which is in line with the micro evidence reported by Nakamura et al.

(2018) that the duration implied by the frequency of regular price change increased from 7.6

months during 1978–1987 to 9.4 months during 1988–2014.
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Second, the estimated DSPC indicates that when steady-state inflation fell after the Great

Inflation period, the probability of price change decreased, thereby generating a flattening

of the Phillips curve. This empirical finding is in line with the theoretical prediction in

the literature on endogenous price stickiness, initially started by Ball et al. (1988) and

subsequently developed by Levin and Yun (2007) and Kurozumi (2016). Moreover, the

flattening of the DSPC is consistent with the empirical result of Benati (2007), Ball and

Mazumder (2011), and the International Monetary Fund (2013) that Phillips curves flattened

after the Volcker disinflation.

Third, the decrease in the autoregressive coefficient Aπ,π in the VAR’s inflation (gap)

equation after the Great Inflation period is consistent with the empirical evidence of Cogley

et al. (2010) that the persistence of the inflation gap declined after the Volcker disinflation.

Thus, the decline in the inflation gap persistence is captured by the decrease in the autore-

gressive coefficient Aπ,π but not by the slight increase in the inflation inertia coefficient κb

in the DSPC. The decrease in Aπ,π may also imply that inflation expectations have become

more anchored after the Great Inflation period.

5 Concluding Remarks

This paper has estimated and compared several Phillips curves based on sticky information

and sticky prices using Bayesian VAR-GMM. This method derives expectational variables

in each Phillips curve from a VAR and estimates the Phillips curve parameters and the

VAR coefficients simultaneously. Model selection based on QML has shown that the DSPC,

where each period some prices remain unchanged in line with micro evidence, is the best

Phillips curve among all those considered, including the DSPC with indexation of Dupor

et al. (2010). Moreover, the model comparison has demonstrated that sticky information is

a more plausible source of inflation inertia in the Phillips curve than other sources considered

in previous studies, such as the ROT price setters and VED. These results suggest that sticky

information, sticky prices, and unchanged prices in each quarter are all needed to better

describe inflation dynamics both during and after the Great Inflation period.

Our empirical findings suggest that informational frictions are a crucial source of inflation

inertia in Phillips curves. As an alternative specification of informational frictions, previous
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studies propose noisy information (Phelps, 1970; Lucas, 1972; Woodford, 2003) and ratio-

nal inattention (Sims, 2003; Maćkowiak and Wiederholt, 2009). Using these specifications

to extend the DSPC further and estimating and comparing the DSPCs with alternative

specifications of informational frictions could be a fruitful agenda for future research.
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Appendix

A Derivation of the dual stickiness Phillips curve

The DSPC (2) is derived from a staggered price model of Calvo (1983) in which, each period,

some prices remain unchanged, while the other prices are set subject to sticky information.

In the economy there is a representative composite-good producer that combines the

output of a continuum of firms f ∈ [0, 1] using the CES production technology Yt =[∫ 1

0
(Yt(f))(θ−1)/θ df

]θ/(θ−1)

, where Yt is the output of the composite good and Yt(f) is

firm f ’s output of an individual differentiated good. Given the composite good’s price

Pt and individual goods’ prices {Pt(f)}, the composite-good producer maximizes its profit

PtYt−
∫ 1

0
Pt(f)Yt(f) df subject to the CES production technology. The first-order condition

for profit maximization yields the demand curve for each individual good

Yt(f) = Yt

(
Pt(f)

Pt

)−θ
, (A1)

and thus the CES production technology leads to the composite good’s price equation

Pt =

[∫ 1

0

(Pt(f))1−θ df

] 1
1−θ

. (A2)

Each firm f produces one kind of differentiated good Yt(f) using the Cobb–Douglas

production technology Yt(f) = At (Kt(f))α (lt(f))1−α, where At is total factor productivity

(TFP) and is assumed to be identical across firms, Kt(f) and lt(f) are firm f ’s capital and

labor inputs, and α ∈ (0, 1) is the capital elasticity of output. The TFP is assumed to follow

the nonstationary stochastic process

log (At)
1

1−α = log gy + log (At−1)
1

1−α + εt, (A3)

where gy is the steady-state rate of technological change (At/At−1)1/(1−α), which coincides

with the steady-state rate of output growth gyt = Yt/Yt−1, and εt is an i.i.d. technology

shock. In the presence of the economy-wide factor markets with the capital rental rate

Ptrk,t and the wage rate PtWt, the firm minimizes its cost Ptrk,tKt(f) + PtWtlt(f) subject
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to the Cobb–Douglas production technology. Combining the first-order conditions for cost

minimization shows that all firms face the same real marginal cost mct, so that aggregating

the labor input condition Wtlt(f) = (1 − α)mctYt(f) over firms f ∈ [0, 1] and using the

demand curve (A1) leads to

mct =

∫ 1

0
Wtlt(f) df

(1− α)
∫ 1

0
Yt(f) df

=
Wtlt

(1− α)Yt∆t

=
ulct

(1− α)∆t

, (A4)

where lt ≡
∫ 1

0
lt(f) df is aggregate labor, ulct ≡ Wtlt/Yt is the composite-good-based real unit

labor cost, and

∆t ≡
∫ 1

0

(
Pt(f)

Pt

)−θ
df (A5)

is the relative price distortion. It is worth noting that the marginal cost equation (A4) shows

that each firm’s real marginal cost mct is equal to the individual-good-based real unit labor

cost
∫ 1

0
Wtlt(f) df

/∫ 1

0
Yt(f) df divided by the labor elasticity of output 1 − α. Therefore,

the role of the distortion ∆t in (A4) is to merely shift the basis of the unit labor cost from

composite-good to individual-good production.

Firms set their product prices subject to the demand curve (A1) and the real marginal

cost (A4) on a staggered basis as in Calvo (1983). In each period, a fraction λ ∈ [0, 1)

of firms keeps prices unchanged, while the other firms set prices subject to sticky infor-

mation along the lines of Mankiw and Reis (2002); that is, with probability 1 − ω ∈

(0, 1], each of the price-setting firms updates its information set and maximizes the rel-

evant profit Et
∑∞

j=0 λ
jMt,t+j (Pt(f)− Pt+jmct+j)Yt+j (Pt(f)/Pt+j)

−θ, where Mt,t+j is the

nominal stochastic discount factor between period t and period t+ j, which meets Mt,t+j =∏j
k=1Mt+k−1,t+k. The first-order condition for profit maximization can be written as

Et

∞∑
j=0

λj
j∏

k=1

Mt+k−1,t+k πt+k gyt+k (p∗t )
−θ πθt+k

(
p∗t

j∏
k=1

π−1
t+k −

θ

θ − 1
mct+j

)
= 0, (A6)

where p∗t ≡ P ∗t /Pt, P ∗t is the price set by firms that adjust prices conditional on the contem-

poraneous information set in period t, and πt ≡ Pt/Pt−1. Under the aforementioned price

setting, the composite good’s price equation (A2) and the relative price distortion equation
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(A5) can be reduced to, respectively,

1 = λπθ−1
t + (1− λ)(1− ω)

∞∑
j=0

ωj

[
Et−j

(
p∗t

j−1∏
k=0

πt−k

)
j−1∏
k=0

π−1
t−k

]1−θ

, (A7)

∆t = λπθt∆t−1 + (1− λ)(1− ω)
∞∑
j=0

ωj

[
Et−j

(
p∗t

j−1∏
k=0

πt−k

)
j−1∏
k=0

π−1
t−k

]θ
. (A8)

In the presence of one-period nominal bonds, the nominal interest rate rt satisfies

1 = Et(Mt,t+1 rt) . (A9)

Let βt,t+1 ≡ Mt,t+1 πt+1 (At+1/At)
1/(1−α) and ω̃ ≡ ω[1 − λπθ−1(1 − βλπθ)]. Then, log-

linearizing (A3), (A6), (A7), and (A9) under assumption (1) and combining the resulting

equations give rise to the DSPC (2), where the coefficients κb, κf , κ, κφ, and κω are given by

κb ≡
ωλπθ−1

λπθ−1 + ω̃
, κf ≡

βλπθ

λπθ−1 + ω̃
, κ ≡ (1− λπθ−1)(1− βλπθ)(1− ω)(1 + ωβλπθ)

λπθ−1 + ω̃
,

κφ ≡
{π[1 + ω(1− βλπθ−1)]− 1}(1− ω)(1− λπθ−1)

λπθ−1 + ω̃
, κω ≡

ω(1− ω)(1− λπθ−1)(1− βλπθ)
λπθ−1 + ω̃

.

In addition, the marginal cost equation (3) can be obtained from (A4), while the law of

motion of the relative price distortion (4) can be derived by combining (A7) and (A8), and

its coefficients ρ∆ and κ∆ are given by

ρ∆ ≡ λπθ, κ∆ ≡
θλπθ−1(π − 1)

1− λπθ−1
.

B Coefficients of Phillips curves with inflation inertia

This appendix presents coefficients of the ROT-NKPC (11) and the VED-NKPC (13). In

the ROT-NKPC, the coefficients κb,r, κf,r, κr, and κφ,r are given by

κb,r ≡
ωr

λπθ−1 + ω̃r
, κf,r ≡

βλπθ

λπθ−1 + ω̃r
, κr ≡

(1− λπθ−1)(1− βλπθ)(1− ωr)
λπθ−1 + ω̃r

,

κφ,r ≡
(π − 1)(1− λπθ−1)(1− ωr)

λπθ−1 + ω̃r
, ω̃r ≡ ωr[1− λπθ−1(1− βπ)].
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In the VED-NKPC, the coefficients κεd, ρd, κ̃d0, κv, κφ,v, κεψ, ρs, κ∆, and κs are given by

κεd ≡ −
ε1λπ

−1(πγ − 1)

(1 + ε1)(1− λπ−1)
, ρd ≡

λπ−1(1 + ε1π
γ)

1 + ε1
,

κ̃d0 ≡ κd0 + ρdβ

[
π +

λπγ−1κφ,vγ(1− βλπγ−1)

1− ρdβλπγ−1

]
, κv ≡

(1− λπγ−1)(1− βλπγ)
λπγ−1[1− ε2γ/(γ − 1− ε2)]

,

κφ,v ≡
(π − 1)(1− λπγ−1)

λπγ−1[1− ε2(1 + γ)/(γ − 1)]
, κεψ ≡ −

ε2(π1+γ − 1)(1− λπγ−1)

λπγ−1[γ − 1− ε2(1 + γ)]
,

ρs ≡ λπγ, κ∆ ≡
(

1 + ε1
1− λπγ

1− λ

)−1

, κs ≡
γλπγ−1(π − 1)

1− λπγ−1
,

where ε1, ε2, and κd0 are given by

ε1 ≡ ε

(
1− λπγ−1

1− λ

) γ
1−γ

, ε2 ≡ ε1
1− βλπγ−1

1− βλπ−1
, κd0 ≡ γ(κv − κ̃)− 1

λπγ−1
− βλπγ,

κ̃ ≡ (1− λπγ−1)(1− βλπγ−1)

λπγ−1[1− ε2(1 + γ)/(γ − 1)]
.

C Block Metropolis-Hastings algorithm in Bayesian VAR-

GMM estimation of Phillips curves

This appendix explains the procedure of the Block Metropolis-Hastings algorithm in the

Bayesian VAR-GMM estimation of Phillips curves. Specifically, this algorithm is applied

to obtain the quasi-posterior distribution of the Phillips curve parameters ϑ and the VAR

coefficients vec(A). The algorithm is a natural application of the standard Block Metropolis-

Hastings algorithm described in Herbst and Schorfheide (2015) but with clear-cut parameter

blocks in light of the fundamental property of VAR-GMM. Two blocks are set: one for the

VAR coefficients and the other for the Phillips curve parameters. The algorithm consists of

the following steps:

1. Estimate a VAR solely to obtain the quasi-posterior mean A−1 and the quasi-posterior

variance Σ−1. Initialize vec(A0) at vec(A−1).

2. Initialize ϑ0 at their quasi-posterior mode ϑ̂, fixing vec(A) at vec(A−1). This requires

numerical maximization of their log quasi-posterior probability density.
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3. Apply the Block Metropolis-Hastings algorithm. First, draw candidate values vec(Ã)

of the VAR coefficients from a Gaussian proposal distribution with mean vec(Aj−1) and

variance c2
1Σ−1, where vec(Aj−1) is the previous draw of vec(A) and c1 is the scaling

parameter chosen to obtain an acceptance rate of approximately 25 percent.

Set

Aj =

 Ã with probability α1,j

Aj−1 with probability 1− α1,j,

where

α1,j = min

{
1,

p(ϑj−1, vec(Ã)|Y )

p(ϑj−1, vec(Aj−1)|Y )

}
.

4. Then, draw candidate values ϑ̃ of the Phillips curve parameters from a Gaussian pro-

posal distribution with mean ϑj−1 and variance c2
2Σ̂, where ϑj−1 is the previous draw of

ϑ, Σ̂ is the negative of the inverse Hessian of the log quasi-posterior probability density

of ϑ evaluated at ϑ̂, calculated as

Σ̂ = −
(
∂2 log(p(ϑ, vec(A−1)|Y ))

∂ϑ∂ϑ′

∣∣∣∣
ϑ=ϑ̂

)−1

and c2 is the scaling parameter chosen to obtain an acceptance rate of approximately

25 percent.

Set

ϑj =

 ϑ̃ with probability α2,j

ϑj−1 with probability 1− α2,j,

where

α2,j = min

{
1,

p(ϑ̃, vec(Aj)|Y )

p(ϑj−1, vec(Aj)|Y )

}
.

5. Increment j to j + 1 and return to step 3.

6. Repeat from step 3 to step 5. Discard a certain number of first draws as a burn-in

and use the remaining draws to obtain the quasi-posterior distribution of the Phillips

curve parameters and the VAR coefficients.
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