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Abstract

We assess the empirical relevance of different macroeconomic modeling approaches

to wealth concentration, using the joint distribution of earnings, capital income and net

worth in combination with an OLG model of household heterogeneity. We find large

earnings disparities to be the primary source of US wealth concentration. This reflects

the fact that labor income, from salaries but also from entrepreneurship, is a major

income source for top income and wealth groups in the data. Bequests and differences

in rates of return on capital together explain about half the holdings of the wealthiest of

households, but much less for the rest.
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1 Introduction

Net worth, the balance of a household’s assets and liabilities, is highly concentrated in the
US, with the wealthiest 1 percent holding over a third of the economy’s balance. Economists
have given a set of explanations for this, highlighting factors such as labor income hetero-
geneity; capital return heterogeneity; entrepreneurial activity, which combines heterogeneity
in labor and capital incomes; and bequests.

These explanations differ in their depictions of who the wealthy are and how they become
wealthy. As a result, they disagree in their assessments of economic policy.1 Regrettably, a
direct empirical assessment of how important labor and capital income are for building large
fortunes in the US is infeasible due to the lack of long panel data on earnings, assets and
their returns for households at the top of the income and wealth distribution. In this paper,
we combine cross-sectional data on the joint distribution of net worth, earnings and income
with an overlapping-generations model of savings to assess the relevance of the different
modeling approaches to wealth concentration.

The key difference between the different explanations, which our analysis exploits, is
their prediction for the factor composition of income among top income and wealth groups.
If wealth concentration is driven by differences in asset returns (or bequests), then these
groups should rely heavily on capital income. If it is driven instead by earnings differences,
then labor income should be the primary source of income. Data from administrative tax
records show a substantial labor income component for high-income households (Piketty
et al., 2018). We reach a similar conclusion using data from the Survey of Consumer Fi-
nances (SCF). Earnings account for almost a half to two thirds of total income for the top
1 percent of incomes, depending on the treatment of capital gains and proprietors’ income.
Households outside the top groups rely almost exclusively on labor income. This suggests
an indispensable role for earnings in shaping the wealth distribution.

The somewhat lower labor income shares among the highest income and wealth groups
nonetheless reflect the relative importance of capital income for these groups. Our calcula-
tions indicate that the low shares among the wealthiest are mostly explained by their large
stocks of wealth rather than differences in rates of return. By contrast, we find sizable dif-
ferences in asset returns across income groups. The effect of these differences on wealth

1For example, Kindermann and Krueger (2022) prescribe an optimal top marginal tax rate of 90 percent
using a model of labor income risk, whereas Brüggemann (2021) calls for a 60 percent rate based on a model
of entrepreneurship. Guvenen et al. (2019) argue that wealth taxes may bring efficiency gains in models with
rate of return heterogeneity. Similarly, Hubmer et al. (2020) attribute much of the rise in wealth concentration
to top income tax cuts, whereas Kaymak and Poschke (2016) attribute it to widening earnings dispersion.
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concentration depends on variations in income and on fluctuations in the rates of return
themselves over the course of a lifetime. But such dynamics cannot be estimated from cross-
sectional data. We discipline these dynamics by requiring them to be consistent with the joint
cross-sectional distributions of earnings, capital income and wealth in a structural model of
wealth formation. The emphasis on joint distributions is key to our approach relative to the
macro literature on wealth distribution, which has focused exclusively on marginal distribu-
tions of income and wealth.

To that end, we employ a general equilibrium life-cycle model of household saving
behavior. The model features uninsurable shocks to earnings and rates of return, a non-
homothetic bequest motive, survival risk and retirement. These elements capture the three
main motives for saving: the precautionary motive, the life-cycle motive, and the bequest
motive. We then calibrate the model to match the joint cross-sectional distribution of earn-
ings, income and net worth, including top labor income shares and rates of return. When
combined with our model of savings, these distributions are informative of the dynamics of
the rates of return on assets and top incomes. The calibrated model features realistic earn-
ings dispersion and leptokurtic dynamics with negative skewness as documented by Guvenen
et al. (2021), as well as realistic correlations between rates of return, income and wealth. It
also accurately depicts the life-cycle profiles of earnings, income and wealth, as well as their
cross-sectional dispersions by age group.

We assess the relative contributions of the model components to wealth concentration by
removing them in various combinations and examining the changes to the wealth distribu-
tion. Eliminating the highest wage earners induces the largest drop in top wealth shares on
average, by about half, with little sensitivity to the presence of other factors. Eliminating
bequest inequality reduces them modestly, by 10 to 20 percent. Eliminating the dispersion
in rates of capital return mostly affects the wealthiest 0.1 percent, reducing their share in
wealth by 13 to 63 percent, with an average across combinations of 36 percent. Other con-
centration measures and the Gini coefficient are affected less. Return heterogeneity has a
smaller effect in counterfactual economies with equal bequests, revealing complementarity
between the roles of bequests and capital returns in explaining wealth concentration. There-
fore, even though bequests explain less than a fifth of top wealth shares alone, they matter
more indirectly, by amplifying the effects of return heterogeneity.

Overall, we find the concentration of labor earnings to be the primary source of wealth
dispersion in the US. This puts the emphasis on theories of earnings concentration, including
human capital, superstars or entrepreneurial acumen. Our findings reflect the importance of
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labor earnings for top income and wealth groups in the data. They are robust to measurement
concerns, as earnings remain the primary source of wealth concentration even in a calibra-
tion with substantially lower top labor income shares, despite a slightly larger role for return
heterogeneity.2 In contrast, models that rely on asset returns and bequest motives alone to
generate the empirical wealth concentration not only severely understate earnings concen-
tration but also imply labor shares in income among top income and wealth groups that are
far below plausible lower bounds.

Return heterogeneity and bequest inequality play significant but secondary roles. This is
driven by the slow transitional dynamics of models with rate of return heterogeneity (Gabaix
et al., 2016) and the life-cycle setting. Because young people hold little wealth in the data,
differences in capital returns do not manifest in wealth concentration until much later, and
their effect is limited by the length of life. Bequests help perpetuate wealth accumulation of
dynasties by effectively extending that horizon, but this mechanism is modest given the inter-
generational wealth correlation in the data. Nonetheless, bequests and return heterogeneity
together explain the remaining half of wealth concentration, especially among the highest
echelons of wealth.

In the next section, we give a brief overview of the related literature. In Section 3 we
summarize the empirical distributions of earnings, income and wealth and document the rates
of return by income and wealth implied by the factor composition of income. We present the
model in Section 4, calibrate it in Section 5 and discuss the benchmark economy in Section
6. Section 7 analyzes the relative roles of rate of return heterogeneity, labor income risk
and bequests in wealth concentration. Section 8 illustrates the sources of identification and
discusses the robustness of our results to model specification and measurement. Section 9
provides a discussion of our findings vis-à-vis the literature.

2 Macroeconomics of the Wealth Distribution

The foundations of modern macroeconomic analysis of the wealth distribution are laid out
in early work by Imrohoroğlu (1989), Huggett (1993) and Aiyagari (1994). In this setting,
dispersion in asset holdings emerges from households’ motives to accumulate assets in order
to insure themselves against earnings fluctuations. Early iterations of these models focused
on the implications of household heterogeneity for macroeconomic outcomes, such as the

2They are mostly unchanged when calibrating the model to data excluding entrepreneurs, suggesting similar
determinants of wealth concentration among non-entrepreneurs and in the general population.
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role of precautionary savings for total capital accumulation. It was nonetheless noted that
the observed differences in earnings and income risk, as measured in household surveys
(e.g., the PSID), were not large enough to generate a highly skewed distribution of wealth.
The subsequent literature aimed to enhance the model for applications to questions related to
wealth inequality. The macro literature on the wealth distribution now is vast, with applica-
tions to various economic questions. In our discussion here, we focus on the main modelling
extensions.3

The main shortcoming in the original model was that wealthy households cared little
about earnings risk and therefore limited their savings once their wealth was sufficiently
high. The first modelling extensions that helped maintain continuing wealth accumulation,
and thereby generate a more skewed wealth distribution, involved introducing differences
in savings motives or rates of return on assets. This was achieved by explicitly introducing
heterogeneity in preferences for saving (Krusell and Smith, 1998), in rates of return on assets
(Benhabib et al., 2011; Gabaix et al., 2016; Nirei and Aoki, 2016; Cao and Luo, 2017), as
well as bequest motives that are increasing in wealth (De Nardi, 2004). Benhabib et al.
(2011) show analytically that idiosyncratic capital income risk can generate a Pareto tailed
wealth distribution with a realistic tail index. Capital income risk is essential to a fat-tailed
wealth distribution in some versions of the incomplete markets model, but is not generally
necessary, e.g., if agents have finite lives (Jones, 2015; Stachurski and Toda, 2019; Sargent
et al., 2021).

Benhabib et al. (2019), Hubmer et al. (2020) and Cao and Luo (2017) provide quantitative
assessments of the contribution of rate of return heterogeneity to wealth concentration. The
common element among these models is that the main source of differences in wealth accu-
mulation is capital income. High wealth concentration emerges because wealthy households
enjoy higher rates of return on their assets and have higher saving rates. As a consequence,
capital income is essential to top income and wealth groups.

A second strand of the literature focused on better measurement of earnings. Household
surveys typically provide an incomplete picture of the distribution of earnings and associated
risks due to censoring of earnings above a certain level or limited sampling of high-earning
households. Castaneda et al. (2003) were the first to show that the standard incomplete
markets model can indeed generate a highly skewed wealth distribution if the earnings pro-
cess is calibrated accordingly. This however required unrealistically high earnings levels
for top income groups. Subsequent work refined this approach, using the recent progress

3See De Nardi and Fella (2017) for a more detailed review of the macro literature on wealth inequality.
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in measurement of top earnings levels based on administrative data to discipline the extent
of earnings dispersion in the model (Kindermann and Krueger, 2022; Kaymak and Poschke,
2016). The economic mechanism here is that households that temporarily have very high
earnings face lower future earnings (be it because of retirement or the vagaries of a top-level
career), and therefore have a very strong saving motive. The explicit consideration of very
high earnings levels is a key ingredient in these models, where the main source of wealth
concentration consists of differences in labor income and the associated saving behavior.

Another mechanism that can generate high wealth concentration is entrepreneurship,
which combines elements from the two strands above, since profits reflect both the return
on business investment and the value of entrepreneurial labor (Quadrini, 2000; Cagetti and
De Nardi, 2006). Versions of these models without credit restrictions can be mapped into a
model with earnings heterogeneity and a common return on assets because in equilibrium,
the marginal rate of return on business capital is equalized across entrepreneurs (see Ap-
pendix A). Differences in business income net of the common return on capital, stemming
from inframarginal returns to entrepreneurial skill, are then attributable entirely to labor. This
interpretation is in line with recent work, which finds that entrepreneurial income primar-
ily reflects the entrepreneur’s human capital (Smith et al., 2019; Bhandari and McGrattan,
2021). In versions with credit constraints, some entrepreneurs reap higher (marginal) rates
of return on their investments if, or as long as, they are financially constrained (Buera, 2009;
Moll, 2014). In such cases, differences in business income reflect differences in both the
investment returns and the productivity of entrepreneurial labor. The accounting approach
we adopt below, both in our empirical and in our quantitative analysis, is consistent with this
view.

All these approaches substantially improved the ability of the standard incomplete mar-
kets model to generate a realistic wealth distribution for the US, offering economists several
modelling options. The existing literature has operated with either a model with capital in-
come risk, one with high earnings dispersion, or one with entrepreneurship. Yet, the relative
roles of earnings and capital income risk in generating the observed wealth concentration are
not well understood, in part due to a lack of data on the dispersion and persistence of rates
of return on assets at the household level in the US.4 Our analysis fills this gap.

4Recent work by Fagereng et al. (2020) and Bach et al. (2020) provide empirical evidence for rate of return
heterogeneity using panel data from Norway and Sweden, respectively.
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3 Income, Earnings and Wealth in the US

In this section we summarize the distributions of earnings, income and wealth, and discuss
the relative significance of capital and labor for top income and wealth groups. The primary
sources of data are the 2001 to 2019 waves of the Survey of Consumer Finances (SCF),
a triennial cross-sectional survey of households on their assets, income, and demographic
characteristics. The SCF is particularly suitable for our analysis since it oversamples high-
income households and is commonly used in the macro literature to study upper tails of the
income and wealth distribution (e.g. Kuhn et al., 2020).

3.1 Data and definitions

Since the objective is to identify the importance of different modeling components, we adopt
a market-based notion of income that is compatible with the models of wealth distribution
mentioned above. Our definition of market income includes wage and salary income, busi-
ness and farm income, interest and dividend income, private pension withdrawals and capital
gains, whereas it excludes income from fiscal sources, such as transfer income or Social Se-
curity income.

We distinguish between market income from labor and from capital. Labor income con-
sists of wage and salary income, which includes pay for work for an employer as well as
any salary drawn from an actively managed business. The vast majority of households report
these explicitly in the SCF. For corporations, the IRS requires actively involved shareholders
to explicitly report their salaries. Some business organizations, such as partnerships and sole
proprietorships, are exempt from this requirement. As a result, about 9 percent of house-
holds report some business income but no salary income associated with the business. In
such cases, we impute wages only if a household reports income from actively owned busi-
nesses, but does not report any wage income, or if the respondent or their spouse reports
explicitly that they did not draw salary from their actively managed business. This does
not change the conclusions we draw from the empirical patterns below, reported with and
without imputed salaries. For our benchmark analysis, we include imputed wages in labor
income and later present a version without imputed wages for robustness.

To determine the share of business income that is attributable to capital, we assume that
the contribution of capital to active business income is proportional to the total value of
equity held in the business. Consequently, we regress active business income on business
equity, controlling for the quantity and quality of the labor input. Specifically, we include the
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number of hours worked by household members who are actively involved in the business
as well as demographic characteristics of the head of household, such as gender, age and
education, as control variables. The resulting coefficient on equity is 0.25 (s.e. 0.03), which
we interpret as the capital income share.5 We thus allocate 75 percent of active business
income to labor for those who do not report wage income from their business.

Despite the differences in methodology and data sources, our estimate of 75 percent is
close to that of Piketty et al. (2018), who attribute 70 percent of pass-through income to labor.
While ascertaining the labor share of income among entrepreneurs is inherently difficult, our
estimates potentially underestimate the contribution of entrepreneurial labor, and, hence, we
see them as conservative given our findings. First, empirical work that relies on administra-
tive tax records and variations in ownership that are more exogenous in nature suggest much
higher roles for entrepreneurial labor. Smith et al. (2019), for instance, find that profits of
a business decline substantially upon the owner’s demise. Consequently, they attribute 75
percent of business profits to human capital, in addition to the reported salaries. Similarly,
Bhandari and McGrattan (2021) attribute three quarters of profits to “sweat equity,” which
is embodied in the entrepreneur. We maintain profits as part of the return on capital. Sec-
ond, we do not question the explicitly reported salaries, although business owners have tax
incentives to underreport wage income. Third, among those who do not report wage income,
we only impute wages for the spouse and the respondent due to data limitations. If other
members of the household also work for the business, their labor income is classified as part
of the household’s business income.

Capital’s share of income excludes accrued (but not realized) capital gains since they
are not observed. Including them would lower the overall labor share, but it is not clear
ex ante how it would change the relative labor shares across income and wealth groups,
the critical input to our quantitative analysis below. Burman and Ricoy (1997) find that
higher income groups are overwhelmingly more likely to realize capital gains and realize
a large fraction of their gains when they do. They explain this by differences in portfolio
composition: since housing is the main component of wealth for lower income groups, the
associated capital gains are realized much less frequently relative to financial assets, which
are concentrated among top income groups. This suggests that ignoring accrued gains leads
to larger differences in labor shares across income groups, and, thereby, in rates of return on
capital.This is consistent with Larrimore et al. (2021), where, for the 2001-2016 period, the
average share of the top 1 percent of income is 19.5 with accrued gains, whereas it is 20.6

5This is the share in net income, since depreciation expenses are deducted from the reported business
income. The share in gross income can be found by adding the rate of depreciation.
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Table 1 – Cross-Sectional Distributions of Income, Earnings and Net Worth

Top percentile 0.1% 0.5% 1% 5% 10% 20% 40% Gini

Net worth 0.13 0.26 0.35 0.62 0.74 0.86 0.96 0.84
Income 0.08 0.17 0.22 0.40 0.51 0.66 0.85 0.66
Earnings 0.06 0.12 0.17 0.33 0.46 0.63 0.85 0.64†

† The Gini coefficient for households with a working-age head is 0.56.

Note.– Table shows the cumulative concentration shares for the top percentile groups. Income includes capital
gains. Source: Authors’ calculations from SCF 2001 – 2019.

with realized gains alone (see their Appendix Table 2). This suggests that realized gains are
more skewed than the total (realized and accrued) capital gains.6

3.2 Marginal and joint distributions

Table 1 shows the cross-sectional distributions of income, earnings and wealth. The distri-
bution of net worth is far more skewed than the distributions of income and earnings: the
Gini coefficient for net worth is 0.84, whereas it is 0.64 for earnings and 0.66 for income.
This is driven by both the heavier concentration of wealth at the top and a larger fraction
of households without assets relative to those without income. The top 1 percent of the net
worth distribution has 35 percent of assets, and the top 0.1 percent holds 13 percent of total
wealth. Earnings are also concentrated: the share of the top 1 percent earners is 17 percent,
and that of the top 0.1 percent is 6 percent.

There is a strong correlation between wealth, earnings and income. This can be seen
in Table 2, which shows the wealth shares of different earning and income groups. The
top 1 percent of earners hold about 19 percent of wealth. Similarly, the households in the
highest 1 percent of incomes hold 27 percent of wealth in the US. If the correlation were
zero, wealth shares would be equal to population shares when ranking groups by income or
earnings. This suggests that savings out of earnings and income play a significant role for
wealth accumulation.

6In any case, any bias is likely to be small since Larrimore et al. (2021) report that unrealized gains are only
3.3 percent of income excluding capital gains (see Table 3 therein).
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Table 2 – Shares of Net Worth by Income and Earning Groups

Top percentile of ... 0.1% 0.5% 1% 5% 10% 20% 40%

... income 0.08 0.19 0.27 0.50 0.60 0.70 0.81

... earnings 0.04 0.12 0.19 0.37 0.46 0.57 0.67

Note.– Table shows cumulative shares of net worth held by top income and earning groups. Income includes
capital gains. Source: Authors’ calculations from SCF 2001 – 2019.

3.3 The share of income from labor

Figure 1 shows the factor composition of income for top income and wealth groups. The
gray bars show the share of wage and salary in total income, as reported by households. The
red solid bars show the labor share of total income, including imputed earnings for those
proprietors who do not report wage income from their businesses. The whiskers on each bar
indicate the values when capital gains are included in or excluded from total income. The
height of each bar represents the average of the two.

Overall, 74 to 84 percent of net income is attributed to labor, depending on the treatment
of capital gains and business income.7 Most households rely primarily on wage and salary
income. Outside the top 1 percent of the income distribution, labor income makes up at least
two thirds of income. Since business income and capital gains are not an important source
of income for these groups, the particular definition of income does not change this.

For the top 1 percent of the income distribution, labor income constitutes 53 percent of
total income when capital gains are included, and 66 percent when they are excluded. The
wage share, which excludes imputed wages for some proprietors, is roughly 10 points lower.
Columns 2 to 4 show the percentiles of income within the top 1 percent. Income from labor
is the major source, accounting for at least half of total income, with the exception of the top
0.1 percent.

A similar pattern is observed among wealth groups in Panel (b). Labor’s share of income
for the wealthiest 1 percent is 0.50 and 0.56, with and without capital gains. Excluding
capital gains, income from labor is the main source of income for households outside of
the top 0.1 percent of the net worth distribution. With capital gains, income from capital
dominates labor for those in the top 0.5 percent.

7Since the accounting convention is to report the net income from capital, i.e., excluding depreciation, the
share of labor income in net income is higher than its share in gross income typically used to calibrate macro
models. We use net capital income in our comparisons of the model predictions below with the data above.
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Figure 1 – Labor Component of Income by Income and Wealth Groups (%)

(a) Income Groups (b) Net Worth Groups

Note.– Figure shows wage and labor shares of total income by percentiles of income and net worth. Labor
income includes imputed wage income for active business owners who do not draw a salary from their busi-
nesses. The whiskers show the shares with and without capital gains in total income. The bar heights show the
average of the two values. See Appendix Table B.1 for the data values. Authors’ calculations from SCF 2001
– 2019.

In the Appendix, we document similar patterns in the data based on tax returns (see
Table B.2). Both sets of data agree on the relative roles of sources of income. For most
households, earned income from labor is the primary source of income. As we move up
the income ladder, the share of labor income declines, and income from capital increases.
Nonetheless, even among the top 1 percent of households (and tax units), at least about half
the income can be attributed to labor. The upshot of this is that labor income remains a
non-negligible source of income throughout, and is a primary source of income for most
households (or tax units) outside the highest income and net worth groups.

3.4 Implied heterogeneity in the rate of return on assets

Next, we demonstrate how labor’s share of income can help identify heterogeneity in the rate
of return and discuss the limitations of inference based on cross-sectional data alone.

A group’s relative rate of return on capital can be inferred from its relative labor share
of income. To see this, let λi = ei/(ei + riki) denote the labor income share of a group of
households i, where ei and ki are average earnings and assets of a household in the group,
and ri is the group-specific return on assets. Let i = 0 represent a base group, which we
define below as the bottom 90 percent of the income or wealth distribution. Denote the
earnings ratio of group i relative to the base group by ei/0 = ei/e0, and the asset ratio by
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ki/0 = ki/k0. Then the labor income share of group i can be expressed as:8

λi =
ei

ei + riki
=

λ0

λ0 +
ki/0
ei/0

ri
r0

(1− λ0)
. (1)

Equation (1) relates the labor income share of top income groups to that of the base group.
Top income groups have lower labor income shares in two situations. First, their relative
wealth is higher than their relative earnings, ki/0/ei/0 > 1, or, equivalently, their wealth-to-
earnings ratio is relatively higher. This could arise if, for instance, the saving rate increases
with earnings. Second, they have a higher rate of return on their assets: ri/r0 > 1. To isolate
the latter, we solve equation (1) for the relative rates of return, implied by the observed labor
income shares for different groups:

ri
r0

=
ei/0
ki/0
· 1/λi − 1

1/λ0 − 1
. (2)

Equation (2) allows for an estimate of ri/r0 given relative earnings, wealth and labor shares.
Figure 2 shows the estimates of ri across income (Panel a) and wealth groups (Panel b). To
translate the relative returns to actual returns, we assume an aggregate return of 3.9 percent
(=
∑

i kiri) per year, which corresponds to the rate in our quantitative analysis below. Using
our preferred labor share measure, the dark columns show an annual rate of return of 2.2
percent for the base income group, with higher rates up along the income ladder. The average
return for the top 1 percent of incomes is 6.8 percent, and it is 9.7 percent for the highest
income category (top 0.1 percent).

Because the relative rates of return depend on relative labor shares, the dispersion is ro-
bust to the definition of labor income. The gray bars show the rates implied by excluding
imputed wages from labor income (corresponding to the gray bars in Figure 1). The esti-
mated rates of return rise from 2.4 percent for the base group to 8.8 percent for the highest
income group.

A similar analysis yields smaller differences in rates of return by wealth (Panel b). Top
wealth groups have dramatically more assets. This almost suffices to explain their higher
share of income from capital, leaving only a small role for rates of return.

While Figure 2 suggests a modest degree of cross-sectional heterogeneity in asset re-
turns, it is not possible to accurately gauge how much this matters for wealth concentration.

8λi =
ei/0e0

ei/0e0+riki/0k0
= e0

e0+
ki/0
ei/0

rik0
= e0

e0+rk0
e0+rk0

e0+
ki/0
ei/0

ri
r0
r0k0

= λ0

λ0+
ki/0
ei/0

ri
r0

(1−λ0)
.
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Figure 2 – Rates of Return Implied by Labor Shares (%)

(a) Income Groups (b) Net Worth Groups

Note.– Figure shows the synthetic rate of return on assets by household income and net worth implied by
the labor share of income, assuming an annual average rate of return of 3.9%. Labor share includes imputed
wage income for active business owners who do not draw a salary from their businesses, whereas wage share
excludes it (see Figure 1). Authors’ calculations from SCF 2001 – 2019.

Since higher rates of return lead to higher income and, ultimately, higher wealth, the positive
correlation between rates of return and income (or wealth) may be spurious. Moreover, the
dynamic process for the rates of return cannot be estimated from cross-sectional data. But
the persistence and predictability of returns are crucial for the savings response to these rates
for different income and wealth groups. Below, we combine the cross-sectional information
above with a model of household saving to quantify the role of earnings concentration and
rate of return heterogeneity in shaping the wealth distribution in the US.

4 A Life-Cycle Model of Wealth Accumulation

For the analysis, we employ an overlapping-generations model of life-cycle wealth accumu-
lation under incomplete markets (Huggett, 1996). We augment the model by incorporating
idiosyncratic labor income with extraordinary earnings levels, heterogeneity in the return to
capital income, and a non-homothetic bequest motive.

4.1 Environment

Each period, a continuum of new agents enter the economy, with a potential life span of J
periods, subject to survival probabilities s(j) for each age j. They work for the first Jr − 1
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periods and then retire. The total population is normalized to one.
Agents have labor and capital incomes. A worker’s labor endowment is zεj , where z is

stochastic, following a first-order Markov process Fz(z′|z), and εj is a deterministic com-
ponent that captures age-dependent improvements in human capital, e.g., from experience.
With this endowment, a worker generates a labor income ofwzεjh, wherew is wage per skill
unit and h ∈ [0, 1] is hours worked. Income from capital is rκk, where k denotes assets, and
rκ is an idiosyncratic rate of return that follows a Markov process defined by Fκ(κ′|κ, z).
This process potentially allows for a correlation between labor productivity and capital re-
turns, which could arise in models with entrepreneurs, or in models where some households
have restricted access to financial markets.

Once retired, agents collect a pension, b(z), based on the last realization of their labor
productivity, z, and continue to earn capital income.9 Total income is denoted by y.

All income is subject to taxation. The tax system, outlined below in detail, distinguishes
between different sources of income and features transfers. The disposable income after
all taxes and transfers is denoted by yd. Consumption is subject to sales tax at rate τs.
The government uses the tax revenue to finance an exogenously given expenditure level, G,
pension payments and other transfers.

Goods are produced by a representative firm using aggregate capital K and labor N with
a Cobb-Douglas production function: Y = F (K,N) = ΨKαN1−α. The firm hires capital
and labor in a competitive market to maximize its profits.

4.2 The consumption-savings problem

Agents value consumption, leisure, and the assets they leave for their offspring. An agent’s
problem is to choose labor supply, consumption, savings and bequests to maximize expected
lifetime utility. Future utility is discounted by β ∈ (0, 1). At each period j, agents are
informed of their labor endowment, zεj , and their rate of return, rκ, prior to taking their
decisions. Formally, the Bellman equation for a worker’s problem is

V (j, k, z, κ) = max
c,k′≥0,h∈[0,1]

{ c1−σc

1− σc
− θ h

1+σl

1 + σl
+ β(1− s(j))φ(k′)

+ βs(j)E[V (j + 1, k′, z′, κ′)|z, κ]
}

9The actual US Social Security benefits depend on a worker’s average earnings over their career. Following
Kindermann and Krueger (2022), we assume that pension benefits depend on the earnings of the last working
age period. This allows us to capture the redistributive structure of the US pension system while maintaining
computational feasibility.
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subject to
(1 + τs)c+ k′ = yd(zwεjh, rκk) + k + Tr + Φ(j, z, κ),

where φ(k) = φ1 [(k + φ2)
1−σc − 1] is the utility value of bequeathed assets, and Φ(j, z, κ)

denotes assets received as a bequest. The expectation is taken over the future values of the
labor endowment, z′, and the rate of return on assets, κ′, given the processes Fz and Fκ.

Since retirees do not work, the Bellman equation for a retiree’s problem is given by

V (j, k, z, κ) = max
c,k′≥0

{ c1−σc

1− σc
+ βs(j)E[V (j + 1, k′, z, κ′)|κ, z] + β(1− s(j))φ(k′)

}
subject to

(1 + τs)c+ k′ = yd(b(z), rκk) + k + Tr

4.3 Stationary equilibrium

Let s = {j, k, z, κ} ∈ S be a generic state vector. The stationary equilibrium of the economy
is given by a consumption function, c(s), a savings function, k′(s), labor supply, h(s), a
value function V (s), a wage rate w, an interest rate r and a distribution of agents over the
state space Γ(s), such that (i) functions V (s), c(s), k′(s) and h(s) solve the consumers’
problems, (ii) firms maximize profits, and (iii) factor markets clear:

K =

∫
k′(s)dΓ(s) N =

∫
zεjh(s)dΓj<Jr(s),

the government’s budget is balanced:

G+

∫
b(z)dΓj≥Jr(s) = τs

[∫
c(s)dΓ(s)

]
+

∫
[y − yd(zwεjh, rκk)]dΓj<Jr(s)

+

∫
[y − yd(b(z), rκk)]dΓj≥Jr(s).

and Γ(s) is consistent with the policy functions and is stationary.

5 Calibration of the Model

To quantify the model parameters, we first choose a set of parameters based on information
that is exogenous to the model. Then, we calibrate the remaining parameters so that the
stationary equilibrium of the model economy is consistent with the empirical distributions
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of earnings, wealth and income, as well as other informative data moments.10 Below, we
describe our calibration strategy and highlight the key assumptions. We report a full list of
calibration results, including target moments and parameter values, in Appendix C.

While our approach is broadly consistent with the standard for quantitative macro models
of overlapping generations with idiosyncratic risk, it has some distinctive elements. From a
modeling perspective, the main differences are in the earnings process, where we allow some
households the possibility of reaching an extraordinarily high labor productivity level, and
in the rate of return risk. From an empirical point of view, we differ from earlier studies in
our explicit use of the joint distribution of earnings, income and wealth in addition to their
marginal distributions to identify these modeling extensions.

5.1 Demographics

The model period is five years. The first period corresponds to ages 20 to 24. Retirement
is mandatory at age 65 (Jr = 10) and death is certain after age J = 16 (ages 95-99).
Following Halliday et al. (2019), we model survival probability as a logistic function of age:
s(j) = [1 + exp(ω0 + ω1j + ω2j

2)]−1 and use their recommended parameter values.11

5.2 Preferences and production technology

Preferences are described by a discount factor, β, the inverse elasticity of intertemporal sub-
stitution, σc, the inverse elasticity of labor supply, σl, the disutility of work θ and the param-
eters of utility from bequests: φ1 and φ2. We discuss the last two separately below. We set
σl = 1.22, which implies a Frisch elasticity of 0.82, the average of 0.68 for males and 0.96
for females reported by Blundell et al. (2016). We choose θ so that an average household
allocates 35 percent of their time to work in equilibrium. We set σc = 1.5, in the middle of
the range typically used in the literature. The discount factor, β, is chosen so that the ratio
of capital to (annual) income is 3.2 given an annual depreciation rate of 4.5 percent. This
results in a value of β = 0.945 (0.989 per annum). The implied (value-weighted) interest rate
that clears the asset market is 3.9 percent. We normalize the equilibrium wage rate, w = 1,

10Specifically, we minimize the equally weighted sum of squared deviations between model moments and
data moments.

11Halliday et al. (2019) calibrate to three moment conditions: the dependency ratio (population aged 65 and
over divided by population aged 20-64), which is 39.7 percent in the data; the age-weighted death rate for 20
to 100 year olds of 8.24 percent, and the ratio of the change in the survival probability between ages 65-69 and
75-79 to the change in survival probability between ages 55-59 and 65-69, which is 2.27 in the data.
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which requires an aggregate TFP of Ψ = 1.55. We set capital’s share in output to α = 0.27,
to match the net labor income share observed in the SCF.

5.3 Labor productivity process

The stochastic component of labor productivity takes eight values. Six of these are ordinary
states, and the other two are extraordinary states that generate exceptionally high earnings
levels. The ordinary levels z1 to z6 consist of combinations of two components: a permanent
component, f ∈ {fH , fL}, that is fixed over a household’s career, and a transitory compo-
nent, a ∈ {aL, aM , aH}. Individuals randomly draw their value of f in the first period of their
lives. Idiosyncratic fluctuations in labor income are captured by a 3-by-3 matrix A = [Aij]

with i, j ∈ {L,M,H} and
∑

j Aij = 1 − λin, as well as by λin, which represents the prob-
ability of entering an extraordinary state of productivity. The stochastic labor productivity
process is summarized by the matrix in Table 3. The following additional assumptions are
explicit in the formulation of the matrix. The probability of reaching an extraordinary status,
λin, is independent of one’s current productivity state and age. Likewise, if a household
loses its extraordinary status, then it is equally likely to transition to any one of the ordinary
states.12

Table 3 – Transition Matrix for the Labor Productivity Process

z1 z2 z3 z4 z5 z6 z7 z8

fL + aL fL + aM fL + aH fH + aL fH + aM fH + aH

fL + aL A11 A12 A13 0 0 0 λin 0
fL + aM A21 A22 A23 0 0 0 λin 0
fL + aH A31 A32 A33 0 0 0 λin 0
fH + aL 0 0 0 A11 A12 A13 λin 0
fH + aM 0 0 0 A21 A22 A23 λin 0
fH + aH 0 0 0 A31 A32 A33 λin 0

z7 λout λout λout λout λout λout λll λlh
z8 0 0 0 0 0 0 λhl λhh

initial dist. ζ/4 (1− ζ)/2 ζ/4 ζ/4 (1− ζ)/2 ζ/4 0 0

Note.— The transition probabilities from the state in Column 1 to the states in Columns 2 to 9. The last row
shows the initial distribution of young workers across the productivity states at the time of labor market entry.

12The effect of these assumptions on our quantitative analysis is negligible. In particular, assuming instead
that all those leaving z7 downwards enter z6 hardly affects our quantitative findings.
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Our working assumption is that the values for the ordinary states and the transitions
among them can be inferred from survey data, whereas the transitions to, from and among
extraordinary states can not. To calibrate values and transitions of ordinary states, we assume
that the transitory component, a, follows an AR(1) process, with an annual persistence of
0.97, as estimated by Heathcote et al. (2010), and variance σa. Wage regressions in the
PSID with fixed worker effects indicate that 60 percent of the total variance of wages reflects
differences in the permanent component, and the remaining 40 percent reflects transitory
shocks. Accordingly, we set σ2

a = 0.4σ2, where σ2 is the total variance. Normalizing
aM = 0 and setting aL = −aH < 0 then allows us to determine aL and the elements of
A in terms of σ using the Rouwenhorst approximation. To determine the levels of the fixed
components, we set fL = −fH . Assuming an equal division of households between the two
permanent states, we then express fH in terms of σ such that the implied variance is 0.6σ2.

At this point, all ordinary productivity levels are expressed relative to σ. Note that σ2

is the variance corresponding to the long-run stationary state associated with the transition
matrix. Since the wage distribution is not stationary over the life cycle, this object is not
directly observed in the data. To determine σ, we parameterize the initial distribution of
households over the ordinary productivity states at the beginning of their careers as in the
last row of Table 3. By assumption, households are not born to extraordinary productivity.
Then, given the age distribution implied by the survival function described in Section 5.1,
we jointly calibrate the parameters ζ and σ such that the overall cross-sectional variance of
wages equals 0.58 and the standard deviation of wages grows by 47 percent between the ages
of 22 and 57, as in the PSID. This requires that σ2 = 0.81 and ζ = 0.18.

This leaves the extraordinary productivity levels z7 and z8, and the transition probabilities
(λin, λout, λll, λlh, λhl, λhh). Two of these are pinned down by adding-up constraints for
probabilities. To identify the remaining parameters, we target the marginal distribution of
earnings, specifically, the top 0.1 and 1 percent shares, the labor income shares of percentile
groups 95-99, 99-99.9 and 99.9-100 of the income distribution, as well as the probability of
remaining a top 1 percent earner as reported by Kopczuk et al. (2010) from administrative
data.

The stochastic process for labor productivity is combined with a deterministic age profile
of wages common to all workers. We calibrate this profile to that from the PSID.
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5.4 Rate of return process

The rate of return on capital is stochastic and takes three values, {rκL, rκH , rκtop}, where
r is the equilibrium market rate of return, and the κi are the relative idiosyncratic returns.
The transitions between these states are governed by the following transition matrix, which
might depend on labor productivity z:

Πκ(z) =


κL κH κtop

κL πll 1− πll − πin(z) πin(z)

κH 1− πhh − πin(z) πhh πin(z)

κtop 0 1− πtop,top πtop,top


We assume that πin(z) is identical for ordinary productivity levels (z1, .., z6) but may take on
different values for extraordinary states (z7, z8). If πin is larger for the latter, our calibration
admits a positive correlation between productivity and rates of return.

Since asset returns are not directly observed in the data, we target moments on wealth
concentration, intergenerational wealth mobility and relative returns of different income
groups to identify the elements of Πκ(z). The targets are the top 0.1 percent, 1 percent,
5 percent and 10 percent wealth shares, returns of the top 0.1 and 1 percent income earners
relative to the bottom 90 percent, as well as the intergenerational probabilities of staying
in the fourth and fifth quintiles of the age-adjusted wealth distribution. Values for the rel-
ative return targets are computed in our analysis of returns in Section 3 above. Using data
from the PSID for the period from 1984 to 1999, Charles and Hurst (2003) report the latter
two moments to be 0.26 and 0.36, indicating substantial persistence of wealth across gen-
erations. We replicate their estimation method in our model to compute the corresponding
model moments.13

5.5 Tax and transfer system

Taxes are levied on personal income, corporate income and sales to support exogenous gov-
ernment expenditures, transfers to households, and pensions.

Corporate taxes are modeled as a flat rate, τc, levied on a portion of capital earnings
before households receive their income. We set τc = 23.6 percent, which is the average
effective marginal tax rate on corporate profits in 2010 as estimated by Gravelle (2014).

13We exclude model parent-child pairs where either the child or the parent is in the top 1 percent of wealth.
Results are similar when they are included.
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Since most capital income is not subject to corporate income tax, we levy τc on capital
income above a threshold dc, and set dc such that the corporate tax revenue is 2.5 percent of
GDP. We set the sales tax rate to 5 percent following Kindermann and Krueger (2022).

Personal income taxes are applied to earnings, non-corporate capital income and pen-
sion income. Following Kaymak and Poschke (2016), we model disposable income to be
log-linear in taxable income, augmented to cap the marginal tax rate at 39.6 percent.14 We
calibrate the progressivity of the income tax system to the difference between the average in-
come tax rate paid by the top 1 percent and the bottom 99 percent of the income distribution.
Piketty and Saez (2007) report this value to be 12.4 percent. We choose the average tax rate
to balance the government’s budget.

Tax revenue finances exogenous expenditures, pension payments and transfers. The ex-
penditures are set at 11.6 percent of GDP, which brings the sum of expenditure and transfers
to 22.2 percent of GDP. This number corresponds to revenue from Social Security contribu-
tions and taxes present in the model, as reported in NIPA Tables 3.1 through 3.3. In addition,
the government makes transfers in the form of disability benefits, veterans benefits, etc. In
the data, these transfers represent 2.7 percent of GDP. We set Tr accordingly.

Pension benefits are modeled after the US Social Security system as described in the US
Social Security Bulletin (Social Security Administration, 2013).

5.6 Bequests

The utility value of bequests is φ(k) = φ1[(k + φ2)
1−σc − 1], where φ2 captures the degree

of non-homotheticity and φ1 represents overall altruism. We calibrate φ1 and φ2 to match
the bequest-to-wealth ratio reported by Guvenen et al. (2019) and the share of the largest 2
percent of bequests in total bequests, which is 40 percent (Feiveson and Sabelhaus, 2018).

The model does not feature an explicit link between parents and their offspring, which
requires a larger state space, and is computationally challenging. To capture the dynastic
persistence of wealth, we assume that at age 50, the average age of receiving a bequest in
the data (Feiveson and Sabelhaus, 2018), agents randomly draw a bequest from a mixture of
the bequest distributions of the deceased in the model, where the weights γ̄z and γ̄κ depend
on the recipient’s state. This allows for intergenerational correlations in wealth by ensuring
that the bequests are more likely to come from a parent with similar characteristics. Con-

14This formulation of the income tax system captures net transfers that are non-monotone in income, such as
the earned income tax credit and welfare-to-work programs. See the Appendix for the formal representation.
See Guner et al. (2014), Heathcote et al. (2017) and Bakış et al. (2015) for evidence on the fit of this function.
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Figure 3 – Distribution of Wealth, Income and Earnings

(a) Cross-sectional Distributions
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(b) Wealth by Income and Earnings
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Note.– Panel (a) shows the cumulative shares for the top percentile groups. Panel (b) shows the share of net
worth held by top income and earning groups. Data values come from SCF 2010 and 2016. Income includes
capital gains.

cretely, if γ̄z (γ̄κ) > 1/2, high-productivity (high-return) children are more likely to receive
a bequest from a high-productivity (high-return) parent. We calibrate γ̄z and γ̄κ to match the
intergenerational correlation of 0.3 in wages (Solon, 1992) and of 0.37 in wealth (Charles
and Hurst, 2003).15

6 The Benchmark US Economy

In this section we discuss the fit of the model to the distributions of earnings, income and
wealth, followed by a discussion of the earnings and rate of return processes implied by the
calibration. As an overidentification check, we also compare the model’s implications for
the evolution of earnings, income and net worth over the life cycle.

6.1 Distributions of earnings, income and net worth

Figure 3 depicts the distributions of earnings, income and net worth in the model (markers)
and in the data (lines). Panel (a) shows the marginal distributions for top percentiles of each
variable. The model captures the high concentration of net worth among top fractiles. This

15See Appendix C.5 for details.
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Table 4 – Share of Income from Labor by Income Groups

All Top Percentiles Quintiles

0-100 Top 0.1% Top 1% 95-99 90-95 5th 4th 3rd 2nd 1st

Data 0.82 0.49 0.59 0.77 0.89 0.77 0.93 0.92 0.84 5.02
Model 0.80 0.47 0.61 0.85 0.81 0.78 0.86 0.86 0.77 0.02

Note.– Data values come from the SCF (2001 - 2019).

implies that the model replicates the Pareto tail of the empirical distribution of net worth,
at least up to the top 0.1 percent. The overall Gini coefficient for net worth, which is not
a calibration target, is 0.81 in the model – close to the data value of 0.84. Similarly, the
concentration of income and earnings among top groups is in line with the data.

Panel (b) shows the shares of net worth held by different income and earnings groups,
which is not directly targeted in the calibration. The model closely matches their joint dis-
tribution with the exception of wealth shares of incomes between the 95th and the 99th per-
centiles. This is due to the discreteness of our modeling of the productivity process.

Next, we compare the factor composition of income for different income groups in Table
4. Labor’s share of income is 47 percent (61 percent) in the model for the top 0.1 percent (1
percent) of incomes, compared to a data value of 49 percent (59 percent). Labor’s share for
the wealthiest 1 percent, which is not targeted in the calibration, is 48 percent, close to the
data value of 53 percent.

Overall, the model features a highly skewed wealth distribution with a realistic correla-
tion between earnings and wealth and a realistic role for labor among top income and wealth
groups. Next, we discuss the underlying processes for labor productivity and capital returns.

6.2 Labor productivity process

The model replicates the empirical concentration of earnings in the cross-section. The ex-
traordinary productivity states are critical for this. Workers in these states (z7 and z8) are 23
and 157 times as productive as the average worker, and they represent 0.76 percent and 0.03
percent of the population in equilibrium.16 But earnings are a combination of productivity
and hours worked. The earnings of the top 0.1 and 1 percent of earners are 54 and 18 times

16The transition matrix for the calibrated productivity process and the corresponding levels are shown in
Appendix Table C.1.
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the average in the model, close to their empirical values of 60 and 17.
The distribution of earnings growth, which determines the earnings risk faced by top

earners, is also reasonable. Guvenen et al. (2021) characterize the earnings growth of the
top 1 percent by a large standard deviation (1.1), a high degree of kurtosis (10), and negative
skewness (-1.5). The model economy features a standard deviation of 1.6, a kurtosis of 12,
and a skewness of -3, which are comparable to the data, even though they aren’t explicitly
targeted.17 The highest earning levels are slightly less persistent than ordinary levels: the
probability of remaining among the top 1 percent of earners after 5 years is 62 percent in the
model, identical to the estimate by Kopczuk et al. (2010).18

Overall, the estimated earnings process captures fundamental properties of the earnings
distribution well. It closely matches the cross-sectional distribution of earnings while also
capturing the dynamic aspects of earnings growth.

6.3 Rate of return heterogeneity

Differences in returns on wealth are substantial (see Appendix Table C.2). The calibrated
annual rates are 0.1 percent, 5.5 percent and 25.3 percent. But only 0.1 percent of house-
holds enjoy the top rate and 40 percent of them have the medium rate. All rates are fairly
persistent with retention probabilities between 0.90 and 0.96 over 5 years, but because they
are not permanent, the dispersion in average lifetime rates of return across households is
much smaller than in the cross-section: the average (unweighted) return is 2.3 percent, with
a standard deviation of 2.75 percent.

The calibration implies a positive correlation between the top earner status and the top
investor status. Households with the highest labor productivity are 15 times more likely to
enter the top return state than an ordinary household (Panel b of Table C.2). As a result, 1
percent of households in the top productivity state are also in the top return state, compared
to just 0.1 percent for the population overall.

Figure 4 compares the average rates of return by income and wealth in the model (gray)
with the data (red). Model and data values are generally very close. Recall that the return
for the top 0.1 and 1 percent income groups relative to the bottom 90 percent is a calibration
target. The model thus fits the data values closely (panel a). Higher-income groups have sig-
nificantly higher returns. This reflects the higher propensity of top productivity households

17The strong left skew is partly due to our assumptions on λout. It is significantly less pronounced when all
those leaving z7 downward enter z6. Yet, this change hardly affects our quantitative findings below.

18These studies are based on individual earning records from the Social Security Administration. To our
knowledge, corresponding statistics are not available at the household level.
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Figure 4 – Rates of Return by Wealth and Income: Model vs. Data

(a) Income Groups
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Note.– Figure shows the rates of return on assets by household income and net worth implied in the model.
Data values are authors’ calculations from the 2001 to 2019 waves of the SCF. See Figure 2 for explanations.

to enter the top return state as well as the effect of higher returns on income.
The model also closely replicates returns for different wealth groups (Panel b), which

were not targeted in the calibration. Higher wealth groups have modestly higher returns on
average. This scale dependence is not hardwired in the model—it emerges endogenously,
since households with higher returns are more likely to be wealthy. The main difference
in wealth accumulation across wealth groups therefore comes from differences not in asset
returns, but in saving rates, in line with the data. The saving rate out of income among the
wealthiest 1 percent is 41 percent compared to 21 percent for the aggregate economy. These
findings are consistent with Saez and Zucman (2016), who report small differences in rates
of returns but large differences in saving rates across wealth groups in the data.

6.4 Implications for life-cycle dynamics

Next, we compare the model’s implications for the evolution of income, earnings and wealth
over the life cycle with the data. Since these are not targeted explicitly (with the exception
of the age profile of wages), we view this comparison as a test of the model’s ability to
accurately capture the savings and labor supply behavior among households.

Figure 5 shows average earnings, income and wealth by age. As in the data, young
households start with near-zero wealth, accumulate assets with savings out of income until
retirement, and dissave thereafter. The model overshoots the data for 50 year olds, when
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Figure 5 – Earnings, Income and Wealth over the Life Cycle

(a) Earnings
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(b) Income
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Note.– Solid lines depict the life-cycle profiles of average earnings, income and net worth implied by the
benchmark calibration. Dashed lines show the data values from the SCF.

agents receive all their bequests, and undershoots the data for 85 and over.19

Earnings generally increase with age in a concave fashion and decrease slightly near re-
tirement. Note that earnings reflect households’ labor supply decisions given the age profiles
of wages, which we target, and wealth, which we do not. Similarly, income rises until retire-
ment, albeit at a faster rate, reflecting both higher earnings and higher capital income, and is
flat after retirement.20

Figure 6 compares the evolution of earnings and wealth dispersion with the data. The
rise in earnings dispersion is governed by the productivity process described in Table C.1.
Earnings inequality grows mainly because the wages of young households are similar to each
other. With age, some households move to higher earning states and some to top earning
states.

The Gini coefficient for wealth is initially high, because most young households have
few assets and weak saving motives in anticipation of earnings growth. With age, asset
accumulation becomes more prevalent as earnings grow and retirement approaches. This
reduces the Gini coefficient early on in the life cycle. About 20 years later, the reduction in
the wealth Gini is offset by the increasing dispersion in earnings and income, which tends
to raise wealth dispersion, resulting in a stable dispersion of wealth for middle-aged groups
and older, as in the data.

19Excess dissaving near the end is a known characteristic of life-cycle models (see, e.g., De Nardi et al.
(2009)). It does not affect aggregate bequests, since most households die before reaching these ages.

20The model also generates plausible age profiles across the distributions. For instance, the average age in
the top 1 percent of wealth (income) is 62 years (56) in the model, compared to 60 (55) in the data.
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Figure 6 – Earnings and Wealth Inequality over the Life Cycle
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Overall, the model provides an accurate description of the distributions of earnings, in-
come and wealth. The productivity process captures the salient features of earnings growth
both in the short run and over the life cycle. The factor composition of income is realistic,
including at the top of the distribution, and the implied rates of return by income and wealth
are broadly in line with the data. The wealth distribution is highly concentrated at the top
and correlated with earnings and income, as in the data. Next, we assess the quantitative
significance of different modeling elements for wealth concentration.

7 Determinants of Wealth Concentration

In this section, we quantify the relative roles of earnings concentration, rate of return differ-
ences and bequests in shaping wealth concentration. To do so, we shut down different model
components and compare the implied wealth concentration with the benchmark economy.
Table 5 shows the decomposition results. The first row reports the benchmark measures of
earnings and wealth concentration. Each of the remaining rows takes away a critical model
component and reports the counterfactual moments.
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Table 5 – Determinants of Wealth Concentration: A Decomposition Analysis

wealth top wealth top earnings
Gini shares shares

0.1% 1% 0.1% 1%

benchmark 0.81 0.15 0.37 0.054 0.18

Counterfactual economies with . . .
. . . (1) equal bequests 0.71 0.09 0.28 0.054 0.18
. . . (2) no top earners 0.72 0.10 0.18 0.005 0.04
. . . (3) common returns 0.75 0.08 0.28 0.052 0.18

Note.– Results from model simulations. Economy (2) sets the extraordinary productivity levels to that of the
highest “regular” earnings category (z8 = z7 = z6). Economy (3) sets rκ to its value-weighted average in the
benchmark economy.

First, we investigate the effects of bequest inequality by simulating an economy where
bequests are distributed equally. In this scenario, the Gini coefficient for wealth drops sub-
stantially, from 0.81 to 0.71, roughly the difference between Canada and the US. Top wealth
shares fall by 25 percent to 40 percent. Overall, bequest inequality has a significant impact
on the wealth distribution, as it perpetuates wealth dispersion across generations.21

Next, we remove superearners from the benchmark economy by equating the produc-
tivity at the two extraordinary states to the highest “ordinary” level: z8 = z7 = z6. This
preserves the wage distribution among the remaining states.22 Earnings concentration drops
far below the data in this scenario, with a top 1 percent earnings share of only 4 percent
versus 17 percent in the data, and 0.5 percent for the top 0.1 percent earners, compared to
6 percent in the data. This immensely reduces wealth concentration. The wealth share of
the wealthiest 1 percent drops from 37 percent to 18 percent, and that of the wealthiest 0.1
percent from 15 percent to 10 percent.23 Because there still is substantial earnings disper-
sion outside of the top groups, the overall drop in wealth dispersion, while sizable, is less
extreme—the Gini coefficient drops from 0.81 to 0.72.

Finally, we equalize rates of return by setting rκi to its value-weighted average in the
benchmark economy for all households. Doing so reduces the Gini coefficient for wealth

21In the Appendix, we investigate the role of non-homotheticity and intergenerational links. In both cases,
the effects are qualitatively similar to equal distribution of bequests, but quantitatively smaller (Table D.2).

22We do not change πin(z). Additionally setting πin(z7) = πin(z8) = πin(z6) hardly changes the results.
23Most of the decline in the top 0.1 percent wealth share is due to the reduction in z8, while most of that in

the top 1 percent share is due to the change in z7. (See Appendix Table D.2.)
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Figure 7 – Factors of Wealth Concentration
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Note.– Figure shows the marginal effect of each factor on benchmark wealth concentration. The whiskers
show the range of effects obtained by permuting the order in which factors are eliminated from the benchmark
economy. The column height represents the average across permutations.

from 0.81 to 0.75 and the top 1 percent wealth share from 37 percent to 28 percent. The top
0.1 percent share falls strongly, from 15 percent to 8 percent. These are significant reductions
in top wealth shares.24

Eliminating the different components individually may mask potential interactions be-
tween them. To measure these interactions, we remove multiple model components at once,
permuting the order in which they are removed. We then compute four distinct marginal
effects for each component across permutations. For example, top earners can be removed
starting in a situation where all channels are active, where only one other channel is active
(two permutations), or where only the top earner channel is active. Figure 7 summarizes
the range of marginal effects of each component to wealth concentration.25 The bars rep-
resent the average of four marginal effects expressed as a fraction of the benchmark value.
Whiskers show the smallest and the largest marginal effects.

The contribution of top earners to wealth concentration is large and stable across permu-
tations. On average, removing top earners reduces the top 1 percent wealth share by about a
half and the top 0.1 percent share by around 40 percent.

The contribution of bequests and asset returns to top wealth shares, in contrast, varies
much more strongly across permutations. On average, equalizing bequests reduces top
wealth shares by about 20 percent. The average effect of return heterogeneity on the top
1 percent wealth share is similar, whereas the average effect on the top 0.1 percent is twice

24Most of the reduction in top wealth shares stems from eliminating the top return, as setting κtop = κH
produces a smaller change in the Gini but similar changes in top shares. (See Appendix Table D.2.)

25The simulation results for all permutations are reported in Table D.1 in the Appendix.
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as large, at almost 40 percent, with a wide range, from just about 10 percent to over 60
percent.

Further examination reveals that equalizing bequests has a particularly large effect on
top wealth shares in economies with heterogeneous returns. With common returns, bequest
inequality hardly affects wealth concentration. Conversely, return heterogeneity contributes
more to wealth inequality when bequests are unequal. This pattern indicates a complemen-
tarity between return heterogeneity and bequest inequality in generating wealth inequality to
which we return below. Bequests do not add much to wealth concentration on their own, but
they amplify the other channels, in particular return heterogeneity, by perpetuating within-
generation wealth inequality across generations in a dynasty.

In contrast, the effect of eliminating superearners is similar across permutations.

8 Identification and Robustness

In this section, we conduct a series of alternative calibrations to emphasize the relevance of
factor composition of income for our findings above and examine their sensitivity to mea-
surement and model specification.

8.1 Alternative calibrations and the labor share of income

We begin by calibrating two alternative models of wealth concentration, ignoring either re-
turn heterogeneity or top earners. We then compare the implied distributions of income,
earnings and wealth to the data to underline the sources of identification in our benchmark
calibration and highlight the pitfalls from ignoring either channel.

First, we eliminate superearners by setting z8 = z7 = z6, and raise the top return to
κtop = 0.27 to match the empirical value for the top 0.1 percent wealth share. Second, we set
all κ to its asset-weighted mean in the benchmark and raise the highest productivity level (z8)
to match the top 0.1 percent wealth share. By construction, both models match the top 0.1
percent wealth concentration in the data. But they deviate from the data in other dimensions.

The economy without superearners features a too low concentration of earnings and an
unrealistically low share of labor income for top income and wealth groups. Earning shares
of the top 1 percent and 0.1 percent plummet to 4 percent and 0.5 percent, respectively, much
below their empirical counterparts of 17 percent and 6 percent. Among top income groups,
the implied labor share of income is 0.31, compared to 0.59 in the data. Top wealth groups
rely almost exclusively on capital income, with a labor share of income of 7 percent, much

29



below the 50 percent in the data. This world is reminiscent of Benhabib et al. (2019), whose
model, according to our calculations, features a labor share of income among the wealthiest
1 percent of households between 8 percent and 21 percent, depending on the correlation
between earnings and wealth in their simulations.26

In contrast, an economy with homogeneous returns features an excessively high labor
income share among high income earners, at 79 percent (87 percent) for the top 1 (0.1)
percent of incomes. The top productivity state needs to be more than twice as high, resulting
in a counterfactually high earnings concentration with a top 0.1 percent earnings share of
8 percent versus 6 percent in the benchmark. This world is reminiscent of the economy in
Castaneda et al. (2003).

Taken together, these exercises illustrate how the labor share of top income groups along
with the empirical earnings concentration is crucial to identifying the quantitative drivers of
wealth concentration.

8.2 Sensitivity to labor share estimates

Given the importance of the labor share of income in differentiating between modeling ap-
proaches to wealth distribution, we next check the sensitivity of the results to some of the
assumptions used to compute the factor composition of income. While there are reasons
to suspect biases in either direction, we focus on those on the upside in order to bound the
significance of earnings heterogeneity from below.

The two issues discussed in Section 3, in particular, relate to the factor composition of
business income and to accrued capital gains, which do not show in income. Ascertaining
the labor share of income among entrepreneurs is inherently difficult. Here, we consider the
extreme alternative of allocating all business income to capital. We view this as a conserva-
tive case for all other concerns, such as unmeasured capital income, and interpret the results
as a lower bound for the relevance of labor income for wealth concentration and an upper
bound on the relevance of capital income.27

26Equation (1) gives the labor share of the wealthiest 1 percent as a function of their relative assets, k1pct/0 =
33.6 (from Table 10 in Benhabib et al. (2019)), relative rates of return r1pct/0 = 6.01/3.94 (pg. 1638),
aggregate labor share, λ0 = 0.82 from the SCF, and relative earnings of the wealthiest 1 percent, e1pct/0. The
latter figure is not reported. It is bounded from above by the relative earnings of the top 1 percent earners
(calculated as 3 from Table 1) – corresponding to perfect correlation of earnings and wealth – and from below
by 1, which corresponds to zero correlation.

27Larrimore et al. (2021) report unrealized capital gains to be about 3.3 percent of income ex capital gains
(Table 3, 2000 - 2016 average). For the top 1 percent of incomes, this suggests a labor share of 0.57, signifi-
cantly above the 0.49 we consider below.
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Figure 8 – Factors of Wealth Concentration with Lower Top Labor Income Shares
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Note.– Figure shows the marginal effect of each factor on benchmark wealth concentration. The whiskers
show the range of effects obtained by permuting the order in which factors are eliminated from the benchmark
economy. The column height represents the average across permutations.

In what follows, we compute all relevant data moments under this assumption and fully
re-calibrate our model accordingly. When entrepreneurial income is allocated entirely to
capital (for those who do not explicitly report salary), labor’s income share among the high-
est 1 percent of incomes is 49 percent, much lower than our preferred measure of 59 percent.
Earnings concentration is slightly lower, with the top 1 percent claiming 16 percent of earn-
ings, compared to 17 percent in the benchmark. The implied relative rates of return also
change, from 4.5 and 3.1 for the top 0.1 percent and 1 percent of the income distribution to
3.6 and 2.5.

Repeating the decomposition analysis above yields a lower contribution of earnings het-
erogeneity to wealth concentration and a higher contribution of return heterogeneity (Figure
8). On average, eliminating top earners now reduces the top 1 percent wealth share by 43
percent instead of 51 percent, and the top 0.1 percent wealth share by 26 instead of 40 per-
cent. The role of asset returns increases from 17 percent to 23 percent for the top 1 percent,
and from 36 percent to 43 percent for the top 0.1 percent. The importance of bequests in-
creases on average by 4 percentage points. Overall, superearners remain the main driver of
the top 1 percent wealth share, even at its lower bound, while return heterogeneity becomes
even more important for the wealthiest 0.1 percent.

8.3 An economy without entrepreneurs

Since a significant fraction of high-income and high-net-worth individuals are entrepreneurs,
a strand of the literature has explicitly modeled entrepreneurial activity. While our frame-
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Figure 9 – Distribution of Wealth, Income and Earnings without Entrepreneurs
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Note.– The left panel shows the marginal distributions. The right panel shows the share of net worth held by
top income and earning groups. Source: Author’s calculations from SCF 2001 to 2019.

work does not feature entrepreneurs explicitly, it captures some of the key ingredients of
these models, by allowing for highly productive households with varying rates of return to
labor input and capital investment. In this section, we test our approach by re-calibrating
our model to a world without entrepreneurs. Our objective is not to quantify entrepreneurs’
contribution to wealth concentration per se, but to test if our treatment of them (as highly
productive households with potentially higher return on capital) is appropriate. If the distri-
bution of asset returns and labor productivity among entrepreneurs were drastically different
from that of other households with similar characteristics, then we would expect different
roles for labor and capital in wealth concentration in this alternative calibration.

To begin, we drop all entrepreneurial households from our data, and compare the dis-
tributions of earnings, income and wealth with those in the benchmark economy (Figure
9a). Excluding entrepreneurs lowers the concentration of net worth and earnings, but not
by much. Among non-entrepreneurial households, the wealthiest 1 percent holds 31 percent
of their combined wealth, compared to 35 percent among all households in the benchmark.
This is consistent with the disproportionate prevalence of entrepreneurs among the wealthi-
est households. It also suggests, however, that there is considerable wealth dispersion within
the rest of the population. Earnings concentration falls slightly: the top 1 percent earnings
share is 17 percent in the benchmark and 15 percent when entrepreneurs are excluded. The
correlation between earnings and wealth is slightly weaker as well (Figure 9b). For instance,
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Figure 10 – Factors of Wealth Concentration: An Economy without Entrepreneurs
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Note.– Figure shows the marginal effect of each factor on wealth concentration among non-entrepreneurs. The
whiskers show the range of effects obtained by permuting the order in which factors are eliminated from the
benchmark economy. The column height represents the average across permutations.

the wealth share of the top 1 percent of earners is 15 percent for non-entrepreneurs versus
19 percent for the population. Since entrepreneurial households rely more heavily on capi-
tal income, labor’s income share is higher when they are excluded: 74 percent (70 percent)
among the top 1 percent (0.1 percent) compared to 59 percent (49 percent) in the benchmark.
Because labor shares are similar among non-entrepreneurial households, the implied disper-
sion in rates of return (see Section 3.4) is also lower. For the top 0.1 percent (1 percent) of
non-entrepreneurial households by income, relative rate of returns are 3.6 (2.5) times those
of the bottom 90 percent, compared to 4.4 (3.1) in the benchmark.

Not surprisingly, these figures show that the earnings, income and wealth of entrepreneurs
are more concentrated, that top entrepreneurs derive less of their income from labor, and that
they earn higher returns. Yet, they also show that for the economy as a whole, the presence of
entrepreneurs mostly exacerbates patterns that are already present among non-entrepreneurs,
notably a high concentration of earnings, income and wealth, as well as differences in rates
of return.28

To quantify the marginal impact of entrepreneurs on the wealth distribution, we re-
calibrate four parameters of the model to fit the top 0.1 percent and top 1 percent earnings
shares as well as the top 0.1 percent and 1 percent relative rates of return observed in the data
among non-entrepreneur households. We also set πin to its level for states z1 to z6 for all z.
Importantly, we do not target any moments related to wealth concentration.

28It is not surprising that income concentration remains high when excluding entrepreneurs. For example,
Bakija et al. (2012) show that salaried executives and managers, financial professionals and similar occupations
earn very large wage and salary incomes and account for a substantial fraction of those in top income groups.
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The resulting wealth distribution is less concentrated, with a top 1 percent share of 0.33
versus 0.37 in the benchmark. The Gini coeficient falls to 0.79 from 0.81. These results
suggest that entrepreneurial households are indeed different from other households, but also
that the difference may not be large enough to change our results. Indeed, repeating the
decomposition analysis in this world without entrepreneurs, we find that earnings are the
primary factor behind wealth concentration, with the exception of the wealthiest 0.1 percent
who benefit similarly from high earnings and and high returns (Figure 10). Comparing Fig-
ures 7 and 10 reveals that our findings regarding the relative contribution of factors changed
little, indicating that not much generality is lost by our treatment of entrepreneurs.

9 Discussion

We conclude that earnings heterogeneity is the primary driver of wealth concentration in the
US. Heterogeneous capital returns play an equally critical role, but mostly for the wealthiest
of households. Our conclusion reflects the high empirical concentration of earnings and
the large share of earnings in total income among top income and wealth groups. Yet, it
may appear to be in conflict with studies that seem to suggest that the key role of earnings
heterogeneity is a theoretical impossibility (Stachurski and Toda, 2019; Benhabib and Bisin,
2018).29 It is important to note, however, that these theoretical results pertain to specific
settings that exclude the life-cycle framework adopted here. Notably, Stachurski and Toda
(2019) emphasize the necessity of infinitely lived agents for their impossibility result. In
such a setting, the product of the discount factor and the gross interest rate has to be below
one to ensure that aggregate wealth remains bounded. This limits the upper tail of the wealth
distribution. Other factors then become necessary to generate a fat-tailed distribution, such
as heterogeneity in returns or discount factors.

This is different in a life-cycle model, which allows the product of the discount factor and
the interest rate to exceed one. Wealth does not grow indefinitely because, in the long run,
all agents are dead. Sargent et al. (2021), in particular, show analytically that the tail of the
wealth distribution can be thicker than that of earnings in a life-cycle model if agents start
their lives with a low level of wealth, even with a common return on capital and a common
discount factor. Inducing household wealth to grow faster than earnings – as is the case

29Stachurski and Toda (2019), in particular, show that top wealth concentration (as measured by the thickness
of the upper tail of the distribution) is bounded above by top income concentration in models of household
heterogeneity with infinitely-lived agents, constant discount factors, and common, risk-free return on capital.
This encompasses the seminal workhorse model of Aiyagari (1994) among others.
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empirically – requires an equilibrium return that exceeds the discount rate by some margin.
Under Sargent et al.’s (2021) assumption of random death, this gives a Pareto distribution
for wealth, with a tail fatter than that of the earnings distribution. The theoretical setting we
adopt, where agents enter the economy at age 20 with low wealth and expect to eventually
die, shares this key feature with Sargent et al. (2021).

The same features also keep the quantitative relevance of rate of return heterogeneity in
check. To see the importance of initial wealth on wealth concentration, imagine a scenario
where agents received all their inheritances at the age of 20, instead of 50 as in our bench-
mark. This would allow rate of return differences to raise wealth concentration over a longer
horizon. The top 1 percent wealth share, we find, would increase to 40 percent from 37
percent. Eliminating return heterogeneity would then lower that by a third, not by a quarter
as in our benchmark.30 Since young households have little wealth in reality, this mechanism
has a more modest effect in the benchmark analysis.

Life expectancy also matters. A high-earning household (at thrice the average wage,
say) would join the top 1 percent of the wealth distribution only at age 45 and the top 0.1
percent at age 55 even if it permanently earned the highest return on assets. Rate of return
differences are known to take a long time to manifest their impact on the wealth distribution
(Gabaix et al. (2016)), and human life is simply too short for that to play out.

Dynastic economies, where agents have infinite lives and intergenerational transmission
of wealth is perfect, can exaggerate the role of return heterogeneity, resulting in a counter-
factually low labor share among top income and wealth groups. In Hubmer et al. (2020),
for instance, we find the implied labor share of the wealthiest 1 percent to be too low,
bounded between 6.5 percent and 26.2 percent, depending on the correlation of earnings
and wealth.31 This arises because the wealthiest 1 percent have 27 times the average assets
and enjoy higher-than-average returns on those assets, but their earnings are at most five
times the average earnings in their model economy (assuming perfect correlation of earnings
and wealth). As a result, their capital income swamps their labor earnings. In comparison,
Piketty and Saez (2003) report the corresponding labor share in income as 62.5 percent for

30Conversely, eliminating top earners in this imaginary world would reduce the top 1 percent wealth share
by 39 percent, compared to 50 percent in the benchmark analysis.

31This can be seen from Equation (1). Defining the aggregate economy as the base group, the labor share
of the wealthiest 1 percent is a function of their relative assets, k1pct/0 = 27.4 (from Table 1 in HKS), relative
mean rates of return r1pct/0 = (6.5 + 7.2)/7.2 = 1.9 (from Figure 6 in HKS, their parameter choices, and
assuming a capital-output ratio of 3), the aggregate net labor income share in HKS, λ0 = 0.78, and their relative
earnings, e1pct/0. The latter is not reported, but it is bounded from above by the relative earnings of the top
1 percent earners (calculated as 5.1 from Figure 4 in HKS) – corresponding to perfect correlation of earnings
and wealth – and from below by 1, which corresponds to zero correlation.
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the wealthiest 1 percent in 1967, the target year in Hubmer et al.’s calibration.32

Our findings also may appear to be at odds with recent quantitative analyses by De Nardi
et al. (2016; 2020), who report that even models with rich earnings dynamics, as estimated
from SSA data on individual records by Guvenen et al. (2021), understate top wealth con-
centration. Despite its rich dynamics, however, the earnings process therein significantly
understates the cross-sectional earnings dispersion among households: the Gini coefficient
for earnings among working age individuals is 0.41 in their calibration, much lower than the
0.56 we document for households with a working age head in the SCF.33 If we re-calibrate
our top earnings states to match a Gini coefficient of 0.41, which counterfactually lowers
the earnings share of the highest 1 percent of earners to 6 percent from 17 percent, we too
understate the wealth concentration, producing a Gini coefficient of 0.73 and a top 1 percent
share of 19 percent in the model, versus 0.84 and 35 percent in the SCF respectively. Our
decomposition analysis then finds a trifling role for earnings in wealth concentration (see
Figure D.2 in the Appendix).

The relevance of superearners for wealth concentration warrants a deeper analysis of
earnings concentration. Routes of inquiry that appear promising include human capital ac-
cumulation (Badel et al., 2020), superstar effects (Rosen, 1981), labor market frictions, in
particular among low earnings groups (Karahan et al., 2019), and production complementar-
ities or changes in the degree of assortative matching between workers and firms as well as
among workers across firms (Geerolf, 2016; Song et al., 2019).

Another promising avenue is entrepreneurial activity, since earnings concentration is
partly driven by entrepreneurial incomes. Recall that in the absence of credit frictions,
marginal returns on business investment are equalized across entrepreneurs, and differences
in entrepreneurial skill are fully reflected in earnings from the perspective of our model.
This is consistent with Bhandari and McGrattan (2021), who find that only 26 percent of en-
trepreneurial (human) capital is transferable upon sale of a business. Similarly, Smith et al.
(2019) attribute three quarters of pass-through business profits to an entrepreneur-owner’s
embodied human capital. Models of entrepreneurial human capital formation are promising
paths for understanding how superearners emerge.

The relevance of higher returns for the wealthiest of households points to financial factors
instead. Whether the wedge in rates of returns across households reflects compensation for

32This number is 44 percent on average over the SCF waves 2001 to 2019, and 47 percent in our benchmark
economy.

33Because SSA is at the individual level whereas the SCF is at the household level, assortative household
formation is one possible explanation for the discrepancy.
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risk or impediments to capital mobility remains an open question.
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Online Appendix

A Entrepreneurship and the Distribution of Labor and Cap-
ital Income

Consider the following portfolio allocation problem for an entrepreneur endowed with a

units of assets and a diminishing-return-to-scale business income production function yb =

θkα, where θ represents the productivity of the entrepreneur. We implicitly assume that a
unit of entrepreneurial labor is supplied inelastically as long as the business is in operation.
The entrepreneur’s problem is to

max
k
y = θkα + r(a− k),

where the first term is business income and the second term is market income on excess
assets (or debt service if a < k in equilibrium). The optimal business investment k∗ solves
θαkα−1 = r. Substituting the optimality condition back into the objective function gives:

y∗ = ra+ (1− α)θ
1

1−α
i (r/α)

α
α−1︸ ︷︷ ︸

non−capital income

Note that ra = αyb + r(a − k), the sum of capital’s share of business income and capital
income on excess assets.

This setting is observationally equivalent to a version of our model with a common re-
turn on assets and labor income heterogeneity, which here is driven by differences in en-
trepreneurial ability, θ. In this setting, our calibration procedure correctly interprets differ-
ences in business income as reflecting labor income heterogeneity.

Next, consider the case where entrepreneurs are constrained by their assets when invest-
ing in their business: k ≤ a. For entrepreneurs with sufficient assets, given their productivity
θ, this constraint does not bind, and the argument above applies all the same. If an en-
trepreneur is constrained, then the optimal investment is k∗ = a. Let ri = θαaα−1 > r

denote the marginal return on business capital of a constrained entrepreneur. Then total
income of an entrepreneur can be written as:

y∗ = ria+ (1− α)θ
1

1−α
i (ri/α)

α
α−1︸ ︷︷ ︸

non−capital income
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Our accounting approach then attributes variation in the first term across households to dif-
ferences in wealth and in the return on assets, and variation in the second term to differences
in labor productivity. The relative shares of labor and capital income are correctly identified.

Finally note that for constrained entrepreneurs, heterogeneity in the rate of return affects
not only the capital income component, but also the labor income component of income. In
particular, constrained entrepreneurs have lower earnings conditional on productivity, since
they cannot scale up their ideas to full capacity. Therefore, eliminating differences in asset
returns also raises labor income dispersion. As a consequence, eliminating rate of return
differences while keeping earnings heterogeneity unchanged, as we do in our analysis, may
overstate the importance of rate of return differences. Similarly, eliminating differences in
calibrated productivity levels reduces dispersion in rates of return across households, given
the definition of ri. This implies that eliminating earnings differences while keeping rate of
return differences unchanged, as we do in our analysis, may understate the importance of
productivity differences.

B Data Appendix

The primary sources of data are the 2001 to 2019 waves of the Survey of Consumer Finances
(SCF), sponsored by the Federal Reserve Board in cooperation with the Department of the
Treasury.A1 The measure of net worth is the difference between total assets and total liabil-
ities, as provided by the SCF. To compute total market income, we sum wage and salary in-
come, business and farm income, interest and dividend income, private pension withdrawals
and capital gains. Some tables exclude capital gains from income, as explained in the text
and in the table notes. Income from fiscal sources, such as transfer income or Social Security
income, is excluded.

Wage shares reported in the tables represent wage and salary income divided by total
market income. The labor income share reported in the tables additionally includes part of
business and farm income for a subset of households. The SCF distinguishes between busi-
ness income from an actively managed business or farm and that from non-actively owned
businesses. Specifically, we impute wage income in two situations: first, when the entire
household reports no wage and salary income at all, but reports a positive income from an
actively managed business or farm and positive equity invested in an active business; second,

A1The public use data files are available for download at https://www.federalreserve.gov/econres/scf-
previous-surveys.htm.
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when the respondent (R) or their spouse (SP) reports active business income, reports self-
employment as their main job and reports not having drawn any wage and salary income
from their business. Importantly, we do not modify any wage and salary income reported to
the SCF by active business owners. Households in the imputed sample constitute 15 percent
of the sample, representing 9 percent of the population and roughly half the households with
active business investment.

Our imputation sample also excludes situations where active involvement in the business
is not the main job of the respondent or their spouse. It also excludes other members of the
household, e.g., children who are actively involved in the business but do not report wage or
salary income. Therefore, our measure of labor’s share of income likely understates the true
labor share.

Most of the households with imputed wages do not belong to the top income or wealth
groups. Of all the households in our imputation sample, 3 percent belong to the top 1 percent
income group and 4 percent belong to the wealthiest 1 percent of the population. 95 percent
belong in neither top group. These are better odds than in the general population. Conse-
quently, roughly a quarter of the households in the top 1 percent income or wealth group
have some imputed wages.

To estimate the capital share of business income we regress active business income on
the equity invested in the business among households that report no wage and salary income,
but report a positive income from an actively managed business or farm, our main imputation
sample.A2 The regression specification is:

lnYi = cons.+ α lnKi + β lnLi + εi,

where Yi is the household’s total income from the business, Ki is equity invested in the busi-
ness and Li is the effective labor input, including hours of work as well human capital or
entrepreneurial acumen.A3 The implicit assumption behind this regression is that the invest-
ment income from the business is distributed in proportion to the equity of the shareholders,
so that the capital component of business income is αYi. The SCF reports active business
equity, which we include as Ki. The effective labor input, Li, is not directly observed. To
control for the labor input, we include the following variables as controls: indicators for

A2We exclude households from the regression sample if anyone other than the respondent or their spouse is
actively involved in the business since hours worked for the business is only available for R and SP.

A3To account for negative values of business income, we use the following logarithmic transformation:
l̃ogx = sign(x)× log(1 + |x|).
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categories of educational attainment, age, race, gender, major occupation category, survey
year interacted with educational attainment and occupation, and (log) total hours worked by
the respondent and their spouse for the business, interacted with educational attainment and
occupation. These variables capture the quantity of labor input with hours worked and the
quality of the labor input with demographic variables as well as education and occupation.
The estimated value of α is 0.25 (s.e. 0.03), which is what we use to apportion business
income into its capital and labor components.A4

Table B.1 – Labor Component of Income by Income and Wealth Group

Income Percentile 99-100 99.9-100 99.5-99.9 99-99.5 95-99 90-95 0-100

Wage Income
with capital gains 0.44 0.30 0.47 0.60 0.67 0.84 0.74
without capital gains 0.54 0.44 0.54 0.66 0.71 0.86 0.78

Labor Income
with capital gains 0.53 0.39 0.57 0.69 0.75 0.88 0.80
without capital gains 0.66 0.58 0.66 0.75 0.79 0.90 0.84

Net Worth Percentile 99-100 99.9-100 99.5-99.9 99-99.5 95-99 90-95 0-100

Wage Income
with capital gains 0.35 0.21 0.36 0.46 0.58 0.72 0.74
without capital gains 0.44 0.27 0.46 0.56 0.62 0.75 0.78

Labor Income
with capital gains 0.50 0.31 0.46 0.56 0.68 0.79 0.80
without capital gains 0.56 0.41 0.58 0.68 0.73 0.82 0.84

Note.– Table shows wage and labor shares of total income by percentiles of the income and net worth distri-
bution. Labor income includes imputed wage income for active business owners who do not draw salary from
their businesses. Source: Authors’ calculations from SCF 2001 – 2019

Table B.1 shows the values for the wage and labor components of income (for different
income and net worth groups) that are used to plot Figure 1. Table B.2 compares our findings
with statistics from IRS data. We use the 2018 update to the tables in Piketty and Saez
(2003), who report the sources of income for finely defined top income groups. Since it is
not possible to observe which tax units draw a salary from their business, no imputation is

A4As is common in the literature, we use the demographic measures, educational attainment and occupation
of the head of the household since details are not available for each member of the household who actively
participates in the business.
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Table B.2 – Composition of Income for Top Income Groups (IRS)

Income Percentile Category
without capital gains 99-100 99-99.5 99.5-99.9 99.9-99.99 99.99-100

Wage 57 72 61 48 39
Business 29 20 29 36 35
Interest and Dividend 14 8 11 15 26

Income Percentile Category
with capital gains 99-100 99-99.5 99.5-99.9 99.9-99.99 99.99-100

Wage 48 66 53 39 31
Business 25 18 25 29 28
Int., Div. and Capital Gains 27 16 22 31 42

Note.– Figures in percentages and correspond to averages for 2000-2018. Income percentiles are determined
excluding capital gains (KG). Figures come from 2018 data update to Piketty and Saez (2003).

made, and we report business income separately. These figures are comparable to the top
rows of Figure 1. The share of wage income for the top 1 percent income group as reported
by tax units in Table B.2 is 48 percent when capital gains are included, and 57 percent when
they are excluded – slightly above our findings in the SCF data reported in Table B.1.A5

Columns 2 to 5 in Table B.2 report the components of income within the top 1 percent of
income. Wage income constitutes more than half the income for those outside the top 0.1
percent of top income earners. For the top 0.1 percent of the income distribution, the share of
wage income drops and interest and dividend income becomes increasingly important. For
the top 0.01 percent of the income distribution, interest and dividend income constitutes 42
percent of total income when capital gains are included.

Both the survey data from the SCF and the tax data from the IRS records agree on the
relative roles of sources of income. For most households, earned income from labor services
is the primary source of income. As we move up the income ladder, the share of labor income
declines, and income from capital increases. Nonetheless, even among the top 1 percent of
households (and tax units), the most conservative definition of labor income indicates that

A5There are two subtle but apparently inconsequential differences between the two sets of statistics. First, the
income concept reported in Piketty and Saez (2003) includes fiscal income, such as Social Security payments
and other transfer payments. Since transfer payments are not a significant source of income for top income
groups, this does not affect the results. Second, the IRS data are based on tax units, whereas the SCF data are
based on primary economic unit, which consists of the core members of the household. In most cases, this
includes the respondent, their spouse, if any, and their dependent children.

5



at least about half the income can be attributed to labor. As the size of the top fractile is
reduced, capital income becomes more important. The upshot of this is that labor income
remains a non-negligible source of income throughout, and is a primary source of income
for most households (or tax units) outside the highest income and net worth groups.

C Details of Model Calibration

C.1 US Personal Income Tax System

Taxable personal income is given by:

yf = (zwεjh) Ij<Jr + b(z) Ij≥Jr + min{rκk, dc},

where Ij≥Jr ∈ {0, 1} indicates retirement status. Disposable income is obtained by deduct-
ing corporate and personal income taxes and adding transfers:

yd = λmin{yb, yf}1−τ + (1− τmax) max{0, yf − yb}+ (1− τc) max(rκk − dc, 0) + Tr

The first two terms above represent our formulation of the current US income tax system,
which can be approximated by a log-linear form for income levels outside the top of the
income distribution (Bénabou, 2002), augmented by a flat rate for the top income tax bracket.
The power parameter τ ∈ [0, 1] controls the degree of progressivity of the tax system, while
λ adjusts to meet the government’s budget requirement.

The second term caps the marginal tax rate at τmax = 39.6 percent, as reported by the
IRS. yb denotes the critical level of taxable income at which the top marginal tax rate is
reached: λ(1− τ)y−τb = 1− τmax. We calibrate the progressivity of the income tax system,
τ , to the difference between the average income tax rate paid by the top 1 percent and the
bottom 99 percent of the income distribution. Piketty and Saez (2007) report this value to be
12.4 percent.

C.2 Pension Benefits

The formula that determines Social Security benefits features two bend points (bp1 and bp2
expressed as multiples of average earnings), three replacement rate brackets (0.90, 0.32, and
0.15), and a maximum benefit, bcap. The benefit for an individual retiring with productivity
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z is

b(z) = ξmin{bcap, 0.9 min(ẽ(z), bp1) + 0.32 max[min(ẽ(z), bp2)− bp1, 0]

+0.15 max(ẽ(z)− bp2, 0)},

where ẽ(z) are average earnings of working age agents of productivity z in the model’s
stationary equilibrium. The formula reported by the SSA is for an individual, whereas the
model is based on households, which may contain non-working spouses or survivors. There-
fore, we adjust benefits by a factor, ξ , and calibrate it to match the average ratio of Social
Security expenditure to GDP in the data.

C.3 Labor Productivity Process

Table C.1 – Calibrated Productivity Process in the Benchmark Economy

z1 z2 z3 z4 z5 z6 z7 z8

z1 = 1.00 0.874 0.119 0.004 0 0 0 0.002 0
z2 = 1.97 0.060 0.878 0.060 0 0 0 0.002 0
z3 = 3.89 0.004 0.119 0.874 0 0 0 0.002 0
z4 = 3.24 0 0 0 0.874 0.119 0.004 0.002 0
z5 = 6.39 0 0 0 0.060 0.878 0.060 0.002 0
z6 = 12.61 0 0 0 0.004 0.119 0.874 0.002 0
z7 = 137.36 0.021 0.021 0.021 0.021 0.021 0.021 0.850 0.021
z8 = 1349.46 0 0 0 0 0 0 0.242 0.758

initial distribution 0.044 0.412 0.044 0.044 0.412 0.044 0 0
population share 0.097 0.303 0.097 0.097 0.303 0.097 0.0076 0.0003

Notes.– Table shows the calibrated productivity levels and the corresponding transition probabilities. The last
row shows the fraction of working age population in each productivity state.

Table C.1 summarizes the transition probabilities and the corresponding productivity lev-
els for the stochastic process. The initial distribution represents the share of workers in each
productivity state at labor market entry. Since the initial distribution of young workers is
different from the invariant distribution, and because agents have finite lives, the population
shares of workers across productivity states are different from the invariant distribution. The
population shares for the working age population are reported in the last row of the table.
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Table C.2 – The Transition Matrix for Rates of Return on Capital

from / to κL κH κtop

κL 0.96 0.04− πin(z) πin
κH 0.06− πin(z) 0.94 πin(z)
κtop 0.0 0.10 0.90

population share (%) 59.9 40.0 0.1
annual rate of return (%) 0.1 5.5 25.3

Probability of entering the top return state by z state of origin:

z1 to z6 z7 z8

πin(z) 2.5× 10−4 4.9× 10−4 3.7× 10−3

Note.– The top panel shows the transition probabilities in the benchmark economy from the rate of return in
Column 1 to rates of return in Columns 2 to 4. The annual rates of return associated with each state and the
share of the population in each state are reported in the last two rows. Transition probabilities vary with the
state z, as shown in the lower panel.

Retired agents have zero labor productivity.

C.4 Stochastic Process for Rates of Return

Table C.2 summarizes the transition probabilities and the corresponding annualized rates of
return for the stochastic return process.

C.5 Modeling of Bequests

The model does not feature an explicit link between parents and their offspring, which re-
quires a larger state space, and is computationally challenging. To capture the dynastic
persistence of wealth, we assume that at age 50, the average age of bequest receipt in the
data (Feiveson and Sabelhaus, 2018), agents randomly draw a bequest from a mixture of the
bequest distributions of the deceased in the model. Concretely, we assume that a recipient
with permanent productivity component i′ and saving return j′ draws from the distribution
of bequests left by deceased agents with permanent productivity component i and return j
(i, j, i′, j′ = L,H) with probability γ(i′, j′; i, j). For this purpose, we treat the top produc-
tivity states z7, z8 like fH , and the top return state κtop like κH . To limit the number of
parameters, we model γ(i′, j′; i, j) as γz(i, i′)γκ(j, j′)Γ̄(i, j)/Γ̃(i′, j′), where γz(i, i′) equals

8



Table C.3 – Calibration of the Model: Preset Parameters

Parameter Description Value Source

Demographics
J Maximum life span 16 corresponds to age 100
JR Mandatory retirement age 10 corresponds to age 65

s0, s1, s2 Survival probability by age -5.49, 0.15, 0.016 Halliday et al. (2019)
Preferences

σc Risk aversion 1.5
σl Inverse Frisch elasticity 1.22 Blundell et al. (2016)

Technology
δ Depreciation (annual) 0.045

Labor productivity
See Sections 5.3 and C.3

Taxes and transfers
τc Marginal corporate tax rate 0.236 Gravelle (2014)
τs Consumption tax rate 0.05 Kindermann and Krueger (2022)
Tr Government transfers/GDP 2.7% NIPA Table 3.12

the parameter γ̄z ∈ [0, 1] if i = i′ and 1 − γ̄z otherwise, and analogous for γκ(j, j′). Γ̄(i, j)

denotes the fraction of deaths with states (i, j), and Γ̃(i′, j′) =
∑

i,j γ(i′, j′; i, j) ensures that
the probabilities sum to one.

This formulation allows for intergenerational correlations in wealth by ensuring that the
bequests are more likely to come from a parent with similar characteristics. Concretely, if
γ̄z (γ̄κ) > 1/2, high-productivity (high-return) children are more likely to receive a bequest
from a high-productivity (high-return) parent. We calibrate γ̄z and γ̄κ to match the intergen-
erational correlation of 0.3 in wages (Solon, 1992) and of 0.37 in wealth (Charles and Hurst,
2003).

C.6 Summary Tables

Table C.3 shows the preset parameters. Table C.4 shows the values for internally (and jointly)
calibrated parameters. Table C.5 shows a summary list of calibration targets along with their
sources and the associated values obtained in the benchmark economy.
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D Supplementary Tables and Results

Table D.1 shows the details of the counterfactual economies used to calculate the marginal
contributions of superearners, bequests and asset returns depicted in Figure 7. The bench-
mark economy (0) is reported in the first row. Each counterfactual economy removes the
factors of wealth concentration in different combinations. Economies 1, 2 and 3 are repeated
from Table 5 in the main text. For each factor, four different marginal effects were computed.
The marginal contribution of rate of return heterogeneity to the top 1 percent wealth share,
for instance, was computed as follows: by the difference between the benchmark economy
(0) and the counterfactual economy (3), where only the rate of return differences are elim-
inated, which gives 0.09 = 0.37 − 0.28; by the difference between economy (2), where
superearners are absent, and economy (2)+(3), where both superearners are absent and asset
returns are common, which gives, 0.11 = 0.18 − 0.07; by the difference between economy
(1) with equal bequests and economy (1)+(3) with equal bequests and common asset returns,
which gives 0.03 = 0.28 − 0.25; and, finally, by the difference between economy (1)+(2)
with equal bequests and without superearners and economy (1)+(2)+(3), where all three fac-
tors are inactive, which gives 0.04 = 0.11 − 0.07. The whiskers in Figure 7 represent the
minimum and the maximum values of the four different marginal effects, namely 0.03 and
0.11, relative the benchmark top 1 percent wealth share of 0.37. The height of the bar repre-
sents the average marginal effect across the four marginal effects relative to the benchmark
value. The marginal effects for other factors are calculated in a similar fashion.

Table D.2 shows additional decomposition results for wealth concentration. The first row
reports the benchmark results. Row (1a) removes non-homotheticity in altruism by setting
φ2 = 0, which makes bequests proportional to wealth. In (1b), we remove the correlation of
bequests with parental wealth by setting both γ̄z and γ̄κ to 0.5, so that all bequest recipients
draw their bequest from the same distribution. While this eliminates the intergenerational
correlation of wealth, its effect on top wealth concentration is modest, with top wealth shares
decreasing by about 10 percent.

In (2a), we set the value of the higher top productivity state, z8, equal to the calibrated
value for the lower top state, z7. This lowers wealth concentration by about 10 percent for
the top 1 percent and about a quarter for the top 0.1 percent.

In (3a), we set the top excess return, κtop, equal to the higher regular excess return, κH .
This cuts the top 0.1 percent wealth share by about a half and the top 1 percent wealth share
by about a fifth.

In the benchmark economy, agents receive their bequests when they are 50 years old, the
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Table D.1 – Determinants of Wealth Concentration: A Decomposition Analysis

wealth top wealth top earnings
Gini shares shares

0.1% 1% 0.1% 1%

... (0) benchmark 0.81 0.15 0.37 0.05 0.18

counterfactual economies with . . .

(a) remove individual channels

. . . (1) equal bequests 0.71 0.09 0.28 0.05 0.18

. . . (2) no top earners 0.72 0.10 0.18 0.005 0.04

. . . (3) common returns 0.75 0.08 0.28 0.05 0.18

(b) remove combinations of channels

. . . (1)+(2) equal bequests & no top earners 0.64 0.04 0.11 0.005 0.04

. . . (1)+(3) equal bequests & common returns 0.69 0.08 0.25 0.05 0.18

. . . (2)+(3) no top earners & common returns 0.63 0.01 0.07 0.005 0.04

. . . (1)+(2)+(3) all three channels removed 0.60 0.01 0.07 0.008 0.04

Note.– Results from model simulations. Counterfactual economy (1) fully redistributes all bequests among
recipients. Economy (2) sets productivity in the top productivity states z7 and z8 equal to the highest ordi-
nary state, z6. Economy (3) sets κ to its value-weighted average in the benchmark economy. The remaining
counterfactual economies represent different combinations of these scenarios.
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Table D.2 – Determinants of Wealth Concentration: Additional Decomposition Results

wealth top wealth top earnings
Gini shares shares

0.1% 1% 0.1% 1%

... (0) benchmark 0.81 0.15 0.37 0.05 0.18

counterfactual economies with . . .

. . . (1a) homothetic bequests 0.78 0.14 0.35 0.06 0.18

. . . (1b) uncorrelated bequests 0.77 0.13 0.34 0.05 0.18

. . . (2a) z8 = z7 0.79 0.11 0.33 0.03 0.16

. . . (3a) κtop = κH 0.77 0.08 0.29 0.05 0.18

Note.– Results from model simulations. In counterfactual economy (1a), we set φ2 to zero, making the bequest
motive homothetic. In (1b), we remove the correlation of bequests with parental wealth by setting both γ̄z and
γ̄κ to 0.5, so that all bequest recipients draw their bequest from the same distribution. In (2a), we set the value
of the higher top productivity state, z8, equal to the calibrated value for the lower top state, z7. In (3a), we set
the top excess return, κtop, equal to the higher regular excess return, κH .

median age of receipt in the data. If the households were to receive all their bequests earlier,
then the impact of return heterogeneity on wealth concentration would be stronger. Figure
D.1 compares the marginal contribution of each factor in the benchmark economy with a
hypothetical economy where all bequests are received at age 20, when agents enter the labor
market. Once again, the whiskers show the range of marginal effects obtained by permuting
the order in which factors are eliminated from the benchmark economy. The column height
represents the average across permutations.

D.1 Sensitivity to Labor Share Estimates

In Section 8.2, we calibrated the model to wage shares instead of labor income shares, that
is, we allocated all business income to capital. The low LIS economy differs from the bench-
mark not only in lower top LIS (49 percent instead of 59 percent for the top 1 percent income
group and 37 percent instead of 49 percent for the top 0.1 percent group), but also has lower
earnings concentration and slightly lower relative rates of return at the top. To match these
statistics, we recalibrate the entire model. Here, we report the main changes in parameters.
Most importantly, the lower top labor income shares also imply a lower aggregate labor in-
come share, and therefore a higher value for α, at 0.32. Lower top LIS also imply lower top
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Figure D.1 – Factors of Wealth Concentration: Bequests at Birth

(a) Top 1% Wealth Share
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(b) Top 0.1% Wealth Share
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Note.– Figure shows the marginal contribution of each factor to the concentration of net worth relative to the
benchmark economy, by age of bequest receipt. In the benchmark, bequests are received at age 50. In the
alternative scenario, at labor market entry (“birth”). The whiskers show the range of marginal effects obtained
by permuting the order in which factors are eliminated from the benchmark economy. The column height
represents the average across permutations.

productivity: z8 is 30 percent lower than in the benchmark and z7 is 10 percent lower. In
addition, the probability of leaving z8 (z7) is 40 percent (20 percent) higher. Generating the
same wealth concentration with lower top earnings requires higher returns: κH (κtop) is 2.2
(1.2) percentage points larger. Intergenerational persistence of the high return state is 0.92
instead of 0.9. Finally, the probability that top earners enter the top return state drops from
2 and 15 times that of ordinary earners to 0.5 and 0.7 times, respectively. To keep the same
capital-output ratio as the benchmark economy also requires an adjustment in β, from from
0.989 (annual) to 0.980.

Table D.3 shows the main decomposition results for this economy. All results are sum-
marized in Figure 8 in the main text.

D.2 An Economy with Low Earnings Concentration

Figure D.2 and Table D.4 show decomposition results for an economy with a counterfac-
tually low earnings inequality, as discussed in Section 9 in the main text. In particular, we
recalibrate the earnings process in our model by setting the two top productivity states z7
and z8 to a common value that implies an earnings Gini of 0.41 as in De Nardi et al. (2016).
This change also implies a reduction in the top 1 percent (0.1 percent) earnings share to 6
percent (1 percent), much below the data value of 17 percent (6 percent), which our bench-
mark model matches closely. The recalibrated model with low earnings inequality also has
much lower wealth concentration, with a wealth Gini of 0.73 and a top 1 percent wealth
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Table D.3 – Determinants of Wealth Concentration: Excluding Imputed Wages for En-
trepreneurs

wealth top wealth top earnings
Gini shares shares

0.1% 1% 0.1% 1%

benchmark 0.81 0.13 0.35 0.04 0.16

Counterfactual economies with . . .
. . . (1) equal bequests 0.70 0.08 0.25 0.05 0.16
. . . (2) no top earners 0.75 0.11 0.22 0.004 0.04
. . . (3) common returns 0.73 0.06 0.25 0.04 0.16

Note.– Results from model simulations, for a calibration targeting lower top labor income shares (see text).
Economy (2) sets the extraordinary productivity levels to that of the highest “regular” earnings category (z8 =
z7 = z6). Economy (3) sets κ to its value-weighted average in the benchmark economy.

share of 19 percent. This Gini coefficient is close to that found by Huggett (1996), and by
De Nardi et al. (2016) when using an AR(1) process for earnings. In this economy, further
reducing top earnings by setting z7 and z8 to equal the top ordinary productivity state, z6,
hardly reduces wealth inequality. This is not surprising, since the gap between top and ordi-
nary productivity is small in this low-earnings-inequality economy. Instead, heterogeneous
returns have a major effect on wealth concentration. Eliminating them reduces top wealth
shares by 40 to 60 percent, and takes them to levels similar to those obtained in the models
of Huggett (1996) and De Nardi et al. (2016; 2020), with a top 1 percent wealth share of
about 10 percent.

16



Table D.4 – Determinants of Wealth Concentration – Alternative Economy with Low Earn-
ings Inequality

wealth top wealth top earnings
Gini shares shares

0.1% 1% 0.1% 1%

data 0.84 0.13 0.35 0.06 0.17
benchmark 0.81 0.15 0.37 0.054 0.18

Alternative economy with earnings Gini = 0.41
0.73 0.10 0.19 0.01 0.06

Counterfactual economies with low earnigns inequality and . . .
. . . (1) equal bequests 0.64 0.04 0.12 0.01 0.06
. . . (2) no top earners 0.72 0.10 0.18 0.01 0.04
. . . (3) common returns 0.65 0.01 0.09 0.01 0.06

Note.– The alternative economy has the same parameters as the benchmark, except that the top productivity
levels z7 and z8 are equal and set to generate a Gini coefficient of earnigns of 0.41. Counterfactual economies
are generated as in Table 5 in the main text.

Figure D.2 – Factors of Wealth Concentration – Alternative Economy with Low Earnings
Inequality

(a) Top 1% Wealth Share

0%

20%

40%

60%

Bequests Top earnings Asset returns
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Note.– Figure shows the marginal contribution of each factor to the concentration of net worth relative to
the alternative economy with low earnings concentration. The whiskers show the range of marginal effects
obtained by permuting the order in which factors are eliminated from the benchmark economy. The column
height represents the average across permutations.
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