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Abstract

Quantile regression has become widely used in empirical macroeconomics, in particular for

estimating and forecasting tail risks to macroeconomic indicators. In this paper we examine

various choices in the specification of quantile regressions for macro applications, for example,

choices related to how and to what extent to include shrinkage, and whether to apply shrinkage

in a classical or Bayesian framework. We focus on forecasting accuracy, using for evaluation

both quantile scores and quantile-weighted continuous ranked probability scores at a range of

quantiles spanning from the left to right tail. We find that shrinkage is generally helpful to tail

forecast accuracy, with gains that are particularly large for GDP applications featuring large

sets of predictors and unemployment and inflation applications, and with gains that increase

with the forecast horizon.
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1 Introduction

Quantile regression has become widely used in empirical macroeconomics, in particular for esti-

mating and forecasting tail risks to macroeconomic indicators. Several examples in a voluminous

literature include Giglio, Kelly, and Pruitt (2016) and Adrian, Boyarchenko, and Giannone (2019)

for output growth; Kiley (2022) for unemployment; Gaglianone and Lima (2012), Korobilis (2017),

Lopez-Salido and Loria (2022), and Manzan and Zerom (2013) for inflation; and Manzan (2015)

for a range of variables.

Several of the papers cited above use classical, unconstrained quantile estimation. Yet, in point

and density forecasting in macroeconomics, practitioners and researchers now widely recognize the

potential value of employing some form of shrinkage in the estimation of the parameters of fore-

casting models. Bayesian estimation is one common way to incorporate shrinkage, particularly

with vector autoregressions, and also for structural analysis. Frequentist approaches to incorpo-

rating shrinkage commonly rely on loss functions with particular penalty terms, as in ridge, lasso,

and elastic net formulations. Other tools such as forecast averaging and data reduction through

common factors can also be seen as shrinkage methods.

In the tail risk and quantile regression setting, comparable options for incorporating shrinkage

into estimation exist. These include Bayesian quantile regression as developed in sources such

as Khare and Hobert (2012) and Yu and Moyeed (2001) and used in macroeconomic forecasting

by studies including Korobilis (2017) and Mitchell, Poon, and Mazzi (2022). Studies have also

considered averaging or combining quantile forecasts (e.g., Giacomini and Komunjer (2005) and

Korobilis (2017)) and factor reduction (e.g., Carriero, Clark, and Marcellino (2022)) through the

partial quantile regression approach developed in Giglio, Kelly, and Pruitt (2016).

The availability of multiple options raises the question of whether any particular approach of-

fers consistent advantages such that it should be preferred. In point and density forecasting in

macroeconomics, many studies have conducted examinations of alternative estimation approaches,

covering Bayesian versus frequentist approaches, and the choice or estimation of prior settings in

Bayesian VARs (e.g., Carriero, Clark, and Marcellino (2015), Chan (2021), and Giannone, Lenza,

and Primiceri (2015)). In the quantile regression setting, no such examination of alternative spec-

ification choices has been conducted. Yet such shrinkage could be particularly helpful, given the
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effectively small sample sizes for estimation of tail risk models. In the quantile literature, it is well

known that the estimation of extreme quantiles with small samples of observations can result in

coefficient bias (see, e.g., Chernozhukov, Fernandez-Val, and Kaji (2017)). According to a rule of

thumb summarized in Chernozhukov, Fernandez-Val, and Kaji (2017), extreme value methods — as

opposed to standard quantile regression methods — should be used when τT/k ≤ 15 to 20, where

τ denotes the quantile, T is the sample size, and k is the number of regressors. In an application

like that of Adrian, Boyarchenko, and Giannone (2019), with about 40 years of quarterly data, a

quantile of 0.05, and 3 regressors, τT/k ≈ 2.7. This suggests some challenges with extreme quantile

estimation and forecasting in quarterly macroeconomic time series, as well as some likely benefit

to shrinkage methods for forecasting.

Accordingly, in this paper we examine various choices in the specification of quantile regressions

used for modeling and forecasting macroeconomic tail risks. Our analysis is based on applications

to US data on GDP growth, the unemployment rate, and inflation, patterned on empirical work

by Adrian, Boyarchenko, and Giannone (2019), Caldara, et al. (2021), and Plagborg-Moller, et al.

(2020) for output growth; Kiley (2022) for unemployment; and Korobilis, et al. (2021) and Lopez-

Salido and Loria (2022) for inflation. For each application, we compare the accuracy of quantile

forecasts obtained from simple quantile regression, averages of quantile regression forecasts obtained

with one indicator at a time, partial quantile regression, quantile regression with ridge penalty, and

a few different specifications of priors for Bayesian quantile regression. These prior specifications

include a fixed Minnesota-type prior (e.g., Carriero, Clark, and Marcellino (2022)) and a horseshoe

prior (e.g., Kohns and Szendrei (2021) and Mitchell, Poon, and Mazzi (2022)). In comparing

accuracy, we consider a range of quantiles — spanning from the left to right tail — and use quantile

scores (e.g., Giacomini and Komunjer (2005)), as well as quantile-weighted continuous ranked

probability scores developed in Gneiting and Ranjan (2011) that consider the entire predictive

density.

Some related work has considered choices that bear on the accuracy of complete predictive

densities obtained with quantile regression as an input. Specifically, some empirical work on tail

risk has considered measures — such as expected shortfall — that require a complete predictive

density and not just quantile estimates. In this empirical work, following the precedents of studies

such as Korobilis (2017) and Adrian, Boyarchenko, and Giannone (2019), a two-step approach
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is common: In step 1, estimate selected quantiles using quantile regression; in step 2, use some

smoothing approach to fit a complete predictive density to the quantiles. One approach follows

Korobilis (2017) in empirically smoothing a wide range of quantiles. Another approach follows

Adrian, Boyarchenko, and Giannone (2019) in fitting a parametric skewed-t density by matching

population expressions of the moments of the density to several empirical quantiles. Mitchell, Poon,

and Zhu (2022) and Mitchell, Poon, and Mazzi (2022) compare alternative specifications of this

two-step approach to fitting a complete density, focusing on the choice of the number of quantiles

and the choice of the second-step fitting or smoothing approach. Mitchell, Poon, and Mazzi (2022)

recommend the empirical smoothing of Korobilis (2017) with 19 quantiles for accurate density

estimation; Mitchell, Poon, and Zhu (2022) recommend an improved non-parametric smoothing

approach that is capable of capturing multi-modalities in predictive distributions. As mentioned, in

our evaluation we focus on the quantile forecasts themselves rather than on the resulting predictive

density, as specific quantiles (e.g., in the left or right tails) are often of interest in empirical macro

applications. As noted above, we evaluate these quantile forecasts using both quantile scores and

quantile-weighted continuous ranked probability scores that use a range of quantiles to cover the

entire predictive distribution but weight selected regions more than others.

To anticipate some of our main results, we find that shrinkage is generally helpful to tail forecast

accuracy, yielding consistent gains relative to standard quantile regression. The gains are particu-

larly large for GDP applications featuring large sets of predictors and unemployment and inflation

applications, and the gains increase with the forecast horizon. This suggests that newer analyses

of risks to GDP growth, inflation, and unemployment would be better based on partial quantile

regression or Bayesian quantile regression rather than the classical quantile regression that is most

commonly (although not exclusively) used in macroeconomic applications. Moreover, based on

magnitudes of gains and consistency across applications, horizons, and quantiles, partial quantile

regression may be seen as the best-performing method, though at long forecast horizons the par-

tial quantile regression tail quantile estimates can be very volatile, in particular for unemployment

but also for inflation. Furthermore, within the Bayesian quantile regression family of approaches,

nothing clearly beats simply fixing a Minnesota-type prior at our baseline setting. Finally, while

there is some evidence of temporal instability, it does not seem to affect qualitatively the model

and method rankings obtained over the full evaluation sample.
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The paper proceeds as follows. Section 2 details the models. Section 3 explains the applications

and data used. Section 4 provides details on the forecast evaluation. Section 5 presents our empirical

results. Section 6 summarizes the main findings and concludes. Additional results are gathered in

the supplementary online appendix.

2 Models

This section details the models or shrinkage approaches considered, from quantile regression through

Bayesian quantile regression. Throughout, our models take a direct multi-step form, relating the

variable of interest h steps ahead to indicators in period t. We consider a few different forecast

horizons, detailed in the applications and data section. We estimate the models and evaluate

forecasts for a range of quantiles τ : τ = 0.05, 0.10, 0.2, 0.3, . . . , 0.90, 0.95. For some applications

(GDP growth), the lower tail is mostly of interest. For others (e.g., unemployment), the upper tail

may be of more interest.

2.1 Quantile regression (QR)

We take as a baseline forecasts obtained from simple (frequentist) quantile regression estimates.

For a given variable y to be predicted and quantile τ , we estimate a regression model using a direct

multi-step form as in Adrian, Boyarchenko, and Giannone (2019) and many others in the literature:

y
(h)
t+h = x′tβτ + ετ ,t+h, (1)

where h is the forecast horizon and the coefficient vector and innovation term are specific to quantile

τ . The k × 1 vector of predictors xt includes a constant and other indicators as described below,

depending on the application.

The parameter vector βτ is estimated with quantile regression:

β̂τ = argmin
βτ

T−h∑
t=1

(
τ · 1

(y
(h)
t+h≥x

′
tβτ )
|y(h)t+h − x

′
tβτ |+ (1− τ) · 1

(y
(h)
t+h<x

′
tβτ )
|y(h)t+h − x

′
tβτ |

)
. (2)

We estimate the model for the range of quantiles indicated above.

In results not reported in the interest of brevity, we have also examined forecasts obtained
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by estimating quantile regressions with the extreme value methods of Chernozhukov, Fernandez-

Val, and Kaji (2017). Although their bias adjustment did yield some adjustments of coefficient

estimates, we obtained time series of quantile forecasts very similar to the simple QR forecasts.

Effects could well be larger for a researcher looking at tails more extreme than those we consider.

2.2 Quantile regression average (QR-avg)

For one frequentist approach to shrinkage of quantile regression, we consider QR forecasts obtained

as an (equally weighted) average of estimates from regressions estimated with one predictor at a

time. In a different setting, Korobilis (2017) also uses a one-predictor-at-a-time approach, applying

Bayesian model averaging to quantile regressions.

More specifically, let xj,t denote a set of regressors including a constant, a lag of the dependent

variable, and just one of the other indicators in the full variable set xt for a given application. For

each j, quantile τ , and horizon h, we estimate a quantile regression including as predictors the

vector xj,t, of the form:

y
(h)
t+h = x′j,tβj,τ + εj,τ ,t+h. (3)

For the regressor set xj,t, we form the quantile forecast as the predicted component x′j,tβ̂j,τ . Our

QR-avg forecast for quantile τ and horizon h then takes the form of a simple average of these

individual forecasts, from a total of J indicators: J−1
∑J

j=1 x
′
j,tβ̂j,τ .

2.3 Partial quantile regression (PQR)

As another shrinkage approach to frequentist quantile regression, we consider dimension reduction

via the use of a common factor in the predictors. Specifically, we consider the partial quantile

regression (PQR) method of Giglio, Kelly, and Pruitt (2016) (henceforth, GKP). GKP character-

ize partial quantile regression as an adaptation of partial least squares to a quantile regression

framework. PQR is targeted to quantile regression in that it uses quantile regression in the factor

estimation. With respect to using principal components for factor estimation, PQR summarizes the

information to make it as useful as possible to predict the quantiles of the specific target variable

of interest. In our implementation, we follow GKP in using a single factor specification.

At each forecast origin, consider the vector of variables xt included as predictors in a given
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application. For each quantile τ and horizon h, we follow the quantile regression-based approach

of GKP to obtain a time series of a scalar factor fτ ,t from the indicators of xt.
1 Letting x̃t denote

a vector containing an intercept, lagged dependent variable, and PQR factor estimate formed for

the other variables of xt, we then estimate the quantile regression

y
(h)
t+h = x̃′tβτ + ετ ,t+h, (4)

and form the PQR forecast for quantile τ and horizon h with the resulting coefficient estimates.

2.4 Quantile regression with ridge penalty

With frequentist estimation, other options for imposing shrinkage on estimates of quantile regression

follow from adding penalty terms to the tick loss function underlying quantile regression, so as to

penalize the addition of more regressors and associated parameters. Following Bayer (2018), we

consider quantile regression with a ridge penalty, which pushes coefficients toward zero.2 For QR

with the ridge penalty, the loss function takes the form

β̂τ = argmin
βτ

T−h∑
t=1

(
τ · 1

(y
(h)
t+h≥x

′
tβτ )
|y(h)t+h − x

′
tβτ |+ (1− τ) · 1

(y
(h)
t+h<x

′
tβτ )
|y(h)t+h − x

′
tβτ |

)
(5)

+ 0.5λ

k∑
i=1

β2τ ,i.

For estimating the model, we rely on the algorithm of Yi and Huang (2017), also used in Bayer

(2018); we set the shrinkage parameter λ so as to minimize in pseudo-real-time the quantile score

up through the forecast origin.

2.5 Bayesian quantile regression (BQR)

Particularly in settings with a regressor set that can be large, Bayesian shrinkage is helpful in

mitigating imprecision in coefficient estimates and associated noise in forecasts. Yu and Moyeed

1In the first-stage quantile regression used to obtain the factor, we include a constant and one of the components
of xt, on a one-at-a-time basis (omitting the lagged dependent variable).

2Following Lima, Meng, and Godeiro (2020), in additional results omitted in the interest of brevity, we consider
quantile regression with an elastic net penalty, originally developed in Zou and Hastie (2005). The elastic net
penalty encourages sparsity while working well with strongly correlated indicators. In the recursive scheme results
we examined, QR with the elastic net penalty performed comparably to QR with ridge penalty.
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(2001) established that quantile regression has a convenient mixture representation that enables

Bayesian estimation. For a given variable y to be forecast for quantile τ , our BQR formulation

takes the form

y
(h)
t+h = x′tβτ + ετ ,t+h, (6)

where ετ ,t+h has a mixture representation. For each model at quantile τ and horizon h, the repre-

sentation includes zτ ,t+h, which is exponentially distributed with scale parameter στ ,h. The mixture

representation of the quantile regression model can be written as

y
(h)
t+h = x′tβτ + θzτ ,t+h + κ

√
στ ,hzτ ,t+huτ ,t+h, (7)

where θ and κ are fixed parameters as functions of the quantile τ and uτ ,t+h is i.i.d. standard

normal.

We estimate Bayesian quantile regressions with the Gibbs sampler of Khare and Hobert (2012)

(with modifications as needed to add steps to accommodate some of the coefficient priors indicated

below). As a baseline we use an independent Normal-Gamma prior, with a normal distribution

for the regression coefficients βτ and a Gamma distribution for the scale parameter στ ,h. The

first step of the Gibbs sampler draws the mixture state time series z from an inverse Gaussian

distribution. The second step draws the scale parameter στ ,w from its inverse Gamma conditional

posterior. In the subsequent step, the regression parameter vector βτ ,w is drawn from its Normal

conditional posterior. For some of the priors described below, additional steps (also described

below) are needed to draw parameters entering the prior on the regression parameter vector. For

each quantile, forecast results from BQR specifications are based on samples of 5000 retained draws,

obtained by sampling a total of 6000 draws and discarding the first 1000. Letting β̂τ denote the

posterior mean of the coefficient vector, the quantile forecast is formed as x′tβ̂τ . We have verified

that these settings are adequate for the Markov chain to mix well and converge. For example,

across coefficients, forecast horizons, quantiles, and samples, the medians of inefficiency factors fall

within a range of about 2 to 5.

Drawing on other approaches in the recent literature, we consider three different specifications

of the prior for the regression coefficients. In all cases, the priors’ means are 0; the differences are
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related to the prior variances. In the first approach (labeled BQR-MN below), following studies

such as Carriero, Clark, and Marcellino (2022), we fix the prior variance using a Minnesota-style

form that takes account of the relative scales of variables and shrinks the coefficients on other

variables more than those on the lag of the dependent variable. The shrinkage is controlled by

two hyperparameters (smaller numbers mean more shrinkage): λ1, which controls the overall rate

of shrinkage, and λ2, which controls the rate of shrinkage on variables other than lags of the

dependent variable. At each forecast origin, the prior variance for the coefficient on the lagged

dependent variable is simply λ1. The prior variance associated with the coefficient on the i-th

variable xi,t of xt is specified as λ1λ2
σ2
y

σ2
i
. Finally, for the intercept, the prior is uninformative, with

variance 1000σ2y. In setting these components of the prior, for σ2y and σ2i we use simple variances

estimated with the regression sample available as of the forecast origin.3 In this case, we fix the

hyperparameters at values that may be considered very common in Minnesota-type priors and

forecasting: λ1 = 0.04 and λ2 = 0.25.

In results omitted in the interest of brevity, we examined the extent to which our BQR-MN

results are driven by our particular prior settings (of course, our consideration of other priors

described in the remainder of this section provides some additional evidence along these lines). In

particular, we have compared results for other settings of these parameters, ranging from tighter

to much looser priors, and found that, across variables and quantiles, no alternative is consistently

better than the baseline. For example, a tighter prior is better for unemployment and inflation in

most cases but makes accuracy worse in the small GDP application. We have also examined results

for tighter (lower variance) priors on the intercept. Our findings do not appear to be sensitive to

our baseline of a loose prior. Finally, we have conducted simple comparisons of posterior estimates

to assess whether the Bayesian shrinkage more typically pushes coefficients toward the prior of 0

in tail quantiles as compared to quantiles more in the middle of the distribution. We did not find

any such consistent evidence; in some cases, coefficient estimates are larger (in absolute value) and

more precisely estimated for tail quantiles than others.

In the second approach to the BQR prior (labeled BQR-estMN), we adjust the Minnesota prior

so that, except for the intercept for which the prior variance is set to be loose, the prior variance is

3In the vector autoregression literature, it is typical to use the variances of the residual of low-order AR models.
With multi-step forecast horizons in a direct-multi-step setup, the obvious analogue is not so clear. We simplify the
choice by using simple variances to capture scale differences in the volatilities of variables.
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determined by a single parameter δ, and that parameter is estimated. More specifically, the prior

variance for the intercept is 1000σ2y. For all of the other coefficients i = 2, . . . , k of the coefficient

vector βτ , the prior takes the form βτ ,i ∼ N(0, δCτ ,i), where Cτ ,i = 1 for the lag of the dependent

variable and Cτ ,i =
σ2
y

σ2
i

for other variables. Following Chan (2021), we specify a Gamma prior on

δ parameterized to have mean consistent with our baseline Minnesota setting: δ ∼ G(c1, c2), with

the Gamma parameterized so that its mean is c1c2 = 0.04. As established in Chan (2021), the

conditional posterior for δ is generalized inverse Gaussian (GIG):

δ ∼ GIG

(
c1 − (k − 1)/2, 2/c2,

k∑
i=2

β2τ ,i/Cτ ,i

)
.

The estimation algorithm includes a fourth step to sample δ from this conditional posterior distri-

bution. The supplementary online appendix provides time series of estimates of δ for some of our

applications (see Figures A23-A26). These estimates show sizable variation over time (across fore-

cast origins) in the shrinkage estimate and considerable commonality of estimates across quantiles.

In the case of inflation, for most quantiles the shrinkage estimates decline over time, whereas in the

large GDP application, for some quantiles, the shrinkage estimate moved up in the later years of

the sample.

In another specification (denoted BQR-HS), we consider a horseshoe prior for the regression

parameters, following the quantile regression precedents of Mitchell, Poon, and Mazzi (2022) and

Kohns and Szendrei (2021)). The horseshoe prior, originally developed by Carvalho, Polson, and

Scott (2010), falls in the general class of global-local shrinkage priors, in which the prior variance has

one global term that applies to all coefficients and another term that is specific to each coefficient.

As summarized in Mitchell, Poon, and Mazzi (2022), these priors are flexible in the sense that

they shrink the (presumably small) coefficients of less informative predictors to 0 but have fat tails

so that the (presumably large, in relative terms) coefficients of more informative predictors are

subjected to less shrinkage. Accordingly, the horseshoe prior might be expected to work well when

a small number of predictors in a larger set of variables are useful. Of course, there are other

options for global-local shrinkage priors (these include Normal-Gamma and Dirichlet-Laplace), but

in this class, the horseshoe has the advantage that the researcher does not need to specify any

hyperparameters. In addition, Mitchell, Poon, and Mazzi (2022) find that the horseshoe prior
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performs better than the Dirichlet-Laplace prior in a BQR forecasting setting, and Kohns and

Szendrei (2021) find that the horseshoe prior works well in quantile regression forecasting with a

large number of variables.

Our horseshoe implementation follows that of Mitchell, Poon, and Mazzi (2022), who in turn

borrowed aspects of implementation from Cross, Hou, and Poon (2020). For all of the coefficients

i = 1, . . . , k of the coefficient vector βτ , the prior takes the form βτ ,i ∼ N(0, δλi), where δ governs

global shrinkage and λi governs the local shrinkage for coefficient i. In the general horseshoe setting,

the priors for these shrinkage parameters are half-Cauchy distributions. Mitchell, Poon, and Mazzi

(2022) and Cross, Hou, and Poon (2020) (see the latter for more details) exploit the scale-mixture

representation of the half-Cauchy distribution to obtain conditional posterior distributions of known

form for each coefficient. In turn, following these studies, we use conditional posterior distributions

that are inverse Gamma (IG) to sample — in the fourth step of a Gibbs sampler — the following

parameters that determine the prior variances of the coefficients in the horseshoe specification:

λi|βτ ,i, δ, νi, ε ∼ IG

(
1,

1

νi
+
β2τ ,i
2δ

)
, i = 1, . . . , k

δ|βτ ,i, λi, νi, ε ∼ IG

(
k + 1

2
,
1

ε
+

1

2

k∑
i=1

β2τ ,i
λi

)

νi|βτ ,i, λi, δ, ε ∼ IG

(
1, 1 +

1

λi

)
, i = 1, . . . , k

ε|βτ ,i, λi, δ, νi ∼ IG

(
1, 1 +

1

δ

)
.

In unreported results, we also consider an elastic net prior, following Mitchell, Poon, and Mazzi

(2022), which encourages sparsity while working well with strongly correlated indicators. Since this

prior has no advantage over the others in our results, we have omitted these results in the interest

of brevity.

3 Applications and Data

This section first details the applications we use in examining the efficacy of alternative quantile

forecasting specifications and then describes the data.
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3.1 Applications

In total, we consider five different applications, largely drawn from the recent literature on the

measurement and forecasting of macroeconomic tail risks. All use quarterly data. In all, we

consider forecast horizons of 1, 4, and 12 quarters; in the interest of brevity, we focus on results

for 1 and 4 quarters and more briefly refer to results for 12 quarters provided in the supplementary

online appendix (see Figures A1-A3 and Tables A1-A2 in the appendix). For convenience, Table 1

lists the variables in each model, summarizing the explanations below and detailing transformations

and lag orders.

Our first three applications focus on tail risks to real GDP growth, one with a small set of

predictors, a second with a larger set, and a third with a quite large number of predictors. In these

applications, yt is annualized quarterly GDP growth computed as 400 times the log change. For

h=1, y
(h)
t+h ≡ yt+h. For h=4,12, we forecast the four-quarter average growth rate of GDP; at these

horizons, y
(h)
t+h = 100 ln(GDPt+h/GDPt+h−4).

In the small GDP growth application, based on the influential work of Adrian, Boyarchenko, and

Giannone (2019), we examine tail risks to GDP growth with a model that relates growth to lagged

growth and financial conditions as measured by the Chicago Fed’s index of financial conditions

(NFCI). Note that, in results for this application, we omit the QR-avg and PQR methods because

the predictor set only includes one indicator apart from a constant and lagged GDP growth.

For the large GDP growth application, in view of some other work that has found a broader

range of indicators to be helpful for capturing tail risks to economic activity, we examine a model

that relates growth to lagged growth and a broad set of indicators. To have a relatively large model

in this case, we pull in indicators from a range of studies, some that have considered tail risks to

economic activity measures other than GDP growth. More specifically, in the large GDP growth

application, our choice of broad indicators is informed by the results of applications in Caldara,

et al. (2021) and Plagborg-Moller, et al. (2020), who find that broad factor indexes of economic

and financial conditions have predictive content for growth-at-risk; in a range of studies in the

forecasting literature that generally find credit spreads to be helpful for macroeconomic forecasting

(e.g., Faust, et al. (2013)); and in Kiley (2022), who finds that a credit spread and medium-term

changes in the credit-to-GDP ratio have predictive content for tail risks to economic activity as
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measured by the unemployment rate. Drawing on specifications from these studies, the broad set

of indicators used for tail risk prediction in this large GDP growth application consists of the four

NFCI subindexes for leverage, non-financial leverage, credit, and risk; the Baa corporate/10-year

Treasury bond spread; the Aaa corporate/10-year Treasury bond spread; the four-year growth rate

of the credit-to-nominal GDP ratio; and the Chicago Fed’s national activity index (CFNAI) of the

business cycle.

For the very large GDP growth application, we deliberately adjust the set of predictors of

output growth to include even more variables but to have less overlap with the predictors in our

other applications. We take the set of predictors from the variables included in a factor model

designed for forecasting in Bok, et al. (2018), omitting the handful of their variables for which long

time series are not available and adding as predictors the NFCI and the Baa corporate/10-year

Treasury bond spread in order to include more financial indicators. The total number of predictors

in the model (including lagged GDP growth) is 29. We transform the variables for stationarity

following Bok, et al. (2018).

Following Kiley (2022), our fourth application examines tail risks to unemployment with a model

that relates the change in the unemployment rate to the lagged level of the unemployment rate, the

Baa corporate/10-year Treasury bond spread, the 10-year Treasury bond/federal funds rate term

spread, the four-year growth rate of the credit-to-nominal GDP ratio, and the four-quarter rate of

inflation in PCE prices excluding food and energy (henceforth, core PCE prices). In these results,

our specification is patterned along the lines of Kiley (2022), to predict the change in unemployment

rather than the level. In this case, the variable being predicted is y
(h)
t+h = URt+h −URt, where UR

denotes the unemployment rate.

Finally, our fifth application considers tail risks to inflation, with a specification patterned after

the model of Lopez-Salido and Loria (2022). Let yt denote annualized quarterly inflation in the

core PCE price index (computed as 400 times the log change), and let ỹ
(h)
t+h ≡ h

−1∑h
i=1 yt+i denote

the h-period average inflation rate. In this application, the variable forecast is the h-period change

in the h̃-period average inflation rate, where h̃ equals h if the horizon is four quarters or less but

h̃ equals 4 otherwise: y
(h)
t+h = ỹ

(h)
t+h − ỹ

(h)
t (so the 1-step-ahead predictand is the 1-period change in

the annualized quarter-on-quarter inflation rate, whereas at the longer horizons the h-steps-ahead

predictand is the h-period change in the year-on-year (four-quarter) inflation rate). The model
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relates the change in core PCE inflation (as just defined) to the lagged difference between core

PCE inflation (measured on a four-quarter basis) and a long-run survey-based measure of inflation

expectations taken from the Federal Reserve Board’s FRB/US model (denoted PTR in the model);

an unemployment rate gap measured as the actual rate less the Congressional Budget Office’s

(CBO’s) estimate of the non-cyclical rate of unemployment; relative import price inflation; and the

four-year growth rate of the credit-to-nominal GDP ratio.4 We include the credit/GDP measure on

the basis of evidence (for the euro area) in Korobilis, et al. (2021) that credit and money measures

are helpful for quantile forecasts of inflation.

3.2 Data

All data, listed in Table 2, are from the FRED, FRED-MD, or FRED-QD databases maintained

by the Federal Reserve Bank of St. Louis, with the exception of the measure of long-run inflation

expectations (PTR) obtained from the public data files for the Federal Reserve Board’s FRB/US

model and indexes of manufacturing from the Institute for Supply Management obtained from

Haver Analytics. We use data at the quarterly frequency. For those series available at higher

frequencies, quarterly data are simple averages of the higher-frequency data.5

4 Forecast Evaluation

Although some other work has focused on the efficacy of alternative approaches to combining

information from forecasts across quantiles to obtain density forecasts, in this paper we focus

on the efficacy of forecasting the quantiles of interest themselves, as this is often the focus of

macroeconomic applications. We do include some measures that summarize results across the

predictive density, but our focus is not the densities per se.

To assess efficacy in a range of possible applications, we consider a range of 11 quantiles: τ =

4To simplify estimation, our model slightly adjusts the timing used by Lopez-Salido and Loria (2022) and incor-
porates a linear transformation that puts the change in inflation on the left-hand side and makes the model linear.
Specifically, Lopez-Salido and Loria (2022) put the level of inflation in period t+h on the left-hand side and relate it
to inflation in period t− 1 and the inflation expectation in period t, with coefficients that sum to 1 — necessitating
the imposition of the coefficient sum restriction in estimation. We instead date the lagged inflation term on the
right-hand side as period t and impose the coefficient sum restriction, so as to put the change in inflation on the
left-hand side and reduce the two terms for lagged inflation and the inflation to lagged inflation less the long-run
inflation expectation.

5These series include the NFCI and its components, the bond yields and federal funds rate, and the CFNAI.
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0.05, 0.10, 0.2, 0.3, . . . , 0.90, 0.95. For some applications (GDP growth), the lower tail is mostly of

interest. Of course, the tail quantile forecast corresponds to the value at risk (VaR) forecast.6 For

other applications (e.g., unemployment), it is the upper tail that may be of more interest.

Our evaluation of tail risk forecasts includes a few different forecast metrics. The first tail

metric is the quantile score, commonly associated with the tick loss function (see, e.g., Giacomini

and Komunjer (2005)). The quantile score (QS) is computed as

QSτ ,t+h = (y
(h)
t+h −Qτ ,t+h)(τ − 1{y(h)

t+h≤Qτ,t+h}
), (8)

where y
(h)
t+h is the actual outcome of the variable of interest, Qτ ,t+h is the forecast of quantile τ ,

and the indicator function 1{y(h)
t+h≤Qτ,t+h}

has a value of 1 if the outcome is at or below the forecast

quantile and 0 otherwise.

We also evaluate forecasts with metrics based on the quantile-weighted continuous ranked prob-

ability scores (qwCRPS). Gneiting and Ranjan (2011) develop the qwCRPS as a proper scoring

function of the entire predictive density with quantile weighting to emphasize either (as chosen

with particular weights) the left tail, right tail, or the center of the distribution. The qwCRPS is

computed as a weighted sum of quantile scores at a range of quantiles:

qwCRPSt+h =
2

J − 1

J−1∑
j=1

v(τ j)QSτ j ,t+h, (9)

with τ j = j/J . In all CRPS computations, we set J = 10 and compute the score using 9 evenly

spaced quantiles of 0.10, 0.2, 0.3, . . . , 0.90. The left-tail-focused (CRPS-L) gives more weight to

the left tail than the right, with a weighting function of v(τ j) = (1 − τ j)2. The right-tail-focused

(CRPS-R) instead assigns weights of v(τ j) = τ2j , whereas the center-weighted (CRPS-C) uses

v(τ j) = τ j(1− τ j).

For these metrics, we report results for each alternative forecast approach relative to a simple

quantile regression benchmark for the same application.7 In the tables and charts, entries of less

(more) than 1 mean that a given specification is more (less) accurate than the simple QR baseline.

6Adrian, et al. (2022) coined the term “growth at risk” for GDP growth forecasts, and Denicolo and Lucchetta
(2017) coined similar terms for industrial production and employment.

7See Amburgey and McCracken (2022) for a comparison of results from the small GDP growth model of Adrian,
Boyarchenko, and Giannone (2019) to a quantile regression including just lagged GDP growth.
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In our primary results, we compare out-of-sample forecast accuracy for predictions produced

starting in 1985:Q1 — using data through the previous quarter for model estimation — and end-

ing in either (for reasons given below) 2019 or 2021. In the primary results, the forecasts are

produced with a recursive scheme, allowing the sample used for model estimation to expand as

forecasting moves forward in time. The starting point of the sample used for model estimation

varies by application, reflecting availability of data on the indicators used and adjustments for the

forecast horizon. In the GDP applications for horizon h, the sample used for estimation starts with

1971:Q2+h− 1. In the unemployment and inflation applications for horizon h, the sample used for

estimation starts with 1963:Q2+h− 1. As a robustness check of the main results, we also consider

forecasts produced with a rolling scheme. In the first case, we keep the size of the sample used for

model estimation constant at its initial size as forecasting moves forward in time; what we refer to

below as the “rolling scheme” fixes the sample size at 55− h observations in the GDP applications

and 87 − h observations in the unemployment and inflation applications. In the second case, we

set the rolling window size to 40 observations, for all applications.

5 Results

In this section we assess the forecasting performance of the various quantile regression methods

introduced in Section 2 for the applications discussed in Section 3. We first provide results and

then discuss, in turn, the quantile estimates, the variables with the largest predictive power, and

temporal stability.

5.1 Main results

The main results on forecast accuracy — using the recursive scheme — are presented in Figures 1

and 2 and Tables 3 and 4, for the period ending in 2019. From these results we can draw both general

conclusions, which apply across methods, quantiles, horizons, and applications, and more specific

findings. To gauge the statistical significance of differences in scores, the tables include the results

of Diebold and Mariano (1995)-West (1996) t-tests for equality of the average loss. We conduct

these tests on a one-sided basis, such that the alternative hypothesis is that the indicated forecast
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is more accurate than the QR benchmark.8 The tables also denote in blue the best-performing

specification for a given forecast horizon and metric.

Starting with the general conclusions, four main ones are worth mentioning. First, shrinkage

is generally helpful to tail forecast accuracy, yielding consistent gains relative to QR, with a few

exceptions (mostly in the small GDP application in the left tail and in the right tail at longer

horizons). The gains are large in the large GDP, very large GDP, unemployment, and inflation

applications, and in all applications except small GDP, they generally increase with the forecast

horizon. The gains are often, although not always, statistically significant. This finding suggests

that newer analyses of risks to GDP growth with larger sets of predictors, inflation, and unem-

ployment would be better based on PQR or Bayesian QR than classical QR, which has been most

commonly used in the empirical macroeconomics literature to date. Moreover, in the GDP growth

applications, the most accurate results in the left and right tails are obtained with the very large

information set, confirming previous results in the forecasting literature that during uncommon

periods a large information set can help.

Second, based on magnitudes of gains and consistency across applications, horizons, and quan-

tiles, PQR may be seen as the best-performing method. Yet, some of the charts (reported below) of

time series of quantile forecasts and factors raise some questions as to whether the performance of

PQR is somewhat illusory, at least in that the score measures fail to reflect some possible problems

with the PQR forecasts. At longer horizons the PQR tail quantile estimates can be very volatile,

in particular for unemployment but also for inflation.

Third, other shrinkage approaches — frequentist and Bayesian (with neither having a clear edge

over the other) — are also typically helpful to accuracy. In particular, QR-ridge performs relatively

well, if not quite matching the overall accuracy of PQR.

Fourth, within the BQR family of approaches, nothing clearly beats simply fixing a Minnesota-

type prior at our baseline setting. On balance, estimating the Minnesota tightness is not helpful

relative to fixing tightness as in a standard Minnesota prior. Occasionally, BQR-estMN beats BQR-

MN, but far more often than not, the reverse is true. Considering other BQR implementations,

throughout BQR-HS does not seem to have a consistent advantage over BQR-MN. The simple

8We compute the variance underlying the test statistics using the pre-whitened quadratic spectral estimator of
Andrews and Monahan (1992).
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prior treatment used in BQR-MN is most often better, except in a few cases for the small GDP

application.

Focusing now on patterns across quantiles, we can highlight three main ones. First, as men-

tioned, in most applications, PQR is best or close to best in the left tail, the middle, and the right

tail. In the small GDP application, where PQR is not used due to the small data set, for the left

and right tails there are only little differences across methods. Instead, in the large GDP applica-

tion the gains from PQR (relative to the QR baseline from the small GDP variable set) reach 24

percent in the right tail for h=1 and 22 percent in the left tail for h=4; with the very large data

set, the gains from PQR further increase to 26 percent in the right tail for h=1 and 30 percent in

the left tail for h=4.

Second, for the small GDP application, it is interesting that in the middle quantiles QR-ridge

is better than QR, by 6 to 9 percent, suggesting that shrinkage can help even with a small data set.

PQR is best or generally among the best for middle quantiles in most of the other applications,

though the gains with respect to the benchmark QR from methods such as QR-ridge remain.

Third, while for unemployment PQR is generally best across quantiles, with very large gains up

to 40 percent in the right tail for h=4, in the inflation application there is substantial heterogeneity

across quantiles. For h=1, BQR-MN is best in the left tail, PQR is best in the middle, and QR-ridge

is best in the right tail, though the differences across these three methods are generally small across

quantiles. For h=4, QR-ridge is best in the middle and high quantiles.9 Overall, in the inflation

application, it is hard to say one method is best for the left tail, but one consistent pattern is that

BQR-MN offers a consistent improvement over the QR baseline.

Moving to patterns across forecast horizons, including the results for h=12 reported in the

supplementary online appendix (see its Section 1), in most applications accuracy gains relative to

QR increase with the forecast horizon. The small GDP application is an exception to this pattern.

Moreover, PQR’s advantage over other methods grows in the large GDP, very large GDP, and

unemployment rate applications as compared to other applications. Related, except in the large

and very large GDP applications, the prevalence of statistical significance is generally lower at

longer horizons than at shorter ones.

9From the supplementary online appendix (see its Section 1), for h=12, the performance of BQR-MN varies
widely across quantiles, from best in the left tail to middle of the pack (and beaten notably by PQR) in middle and
high quantiles.
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5.2 Selected quantile estimates

The 0.10 and 0.90 quantile estimates are reported in Figures 3 and 4 (sample ending before pan-

demic) for selected methods, the two forecast horizons, and the five applications.

It turns out that the quantile forecasts are more similar — across methods — for horizons of 1

and 4 quarters than for 12 quarters (Figure A2 in the supplementary online appendix reports the

h=12 quantiles). For example, in the small GDP application, at the shorter horizons, the upper

tail quantiles are very similar. Similarly, in the unemployment application, the quantile forecasts

show fairly strong comovement across methods at the shorter horizons.10

To shed some more light on the PQR performance in forecasting, Figure 5 plots the estimated

PQR factors at the 0.10 and 0.90 quantiles for the various forecast horizons and applications. It

turns out that, especially in the unemployment and inflation applications where the estimated

PQR quantiles were highly volatile, the PQR factor for the h=1 case is far more variable than the

factors for the longer horizon of h=4 (and h=12, reported in Section 1 of the supplementary online

appendix). Moreover, unreported results on correlations of the full-sample factors across horizons

and quantiles, and with the variables included in each model, show that the factors for h=1 and

h=4 are correlated with one another (more than with the h=12 factor estimate). However, for a

fixed forecast horizon, factors are strongly correlated across quantiles.

5.3 What variables are most important to predictive content?

To tackle this question, we consider: (1) quantile scores of QR models with one indicator at a time

relative to a QR model with just lags of the dependent variable to provide a rough measure of the

predictive value of each indicator and (2) full-sample (pre-pandemic) coefficient estimates from the

BQR-MN specification. The results (available upon request) point to the following.

First, for GDP growth, with some variation across left and right quantiles and forecast horizons,

the variables with relatively strong predictive content are the CFNAI and a few of the NFCI

10The PQR-based forecast is quite variable at the 12-steps-ahead horizon for both unemployment and inflation.
Moreover, in the small GDP application, at the 12-steps-ahead horizon, the quantile forecasts (particularly, the QR
and BQR-MN forecasts) have a difficult time picking up sizable cyclical changes in downside risk. This likely reflects
the limited predictability of GDP growth — as the horizon grows — in general (see, e.g., Breitung and Knüppel
(2021)) and more specifically using just the NFCI. But even in the large and very large GDP applications, at the
long horizon, the QR-ridge and BQR-MN forecasts are challenged to show much cyclicality in downside risk. In this
case, the PQR-based quantile forecast shows more variation. But the PQR-based forecast more generally tends to
be relatively volatile in the other applications as well.
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components. In the right tail, the Aaa credit spread also has some predictive content, as well as

the unemployment rate in the very large GDP application.

Second, for unemployment, although full-sample coefficient estimates show most variables to

enter significantly (with posterior means/standard deviations above 2 in absolute value), out-of-

sample predictive value is less clear. For h=1, the credit/GDP ratio consistently helps, especially

in the right tail. The term and credit spreads also help a little in the right tail. For the longer

horizons, there is not much that helps OOS predictive content in the tails, despite full-sample

coefficients that appear significant.

Finally, for inflation, consistent with a broader literature on challenges in forecasting inflation,

not many of the predictors considered clearly have significant predictive content for tail risks to

inflation. For h=1, the inflation gap and import inflation helps in the left tail. But nothing makes

much consistent difference in the right tail quantiles at this horizon. Most of the same pattern

applies for h=4 and h=12.

5.4 Are the results stable over time?

To assess whether the results we have discussed so far are stable over time, we have conducted two

robustness analyses. First, we have replaced recursive with rolling estimation of the forecasting

models. Second, using recursive estimation, we have recursively conducted the model comparison

over the evaluation sample, extending the latter to also cover the pandemic period of 2020-21,

which is interesting by itself.

In the interest of brevity, figures and tables with the rolling window results are provided in

the supplementary online appendix (see its Section 2; note that these omit the very large GDP

application to avoid possible issues with estimating a very large model with a very small sample).11

With few exceptions, the key general findings described above for the recursive scheme remain

valid.

The results on performance over time, including over the pandemic, are also presented in the

supplementary online appendix (see its Figures A8-A12). The figures provide score averages over

11As noted above, we consider two different rolling window sample sizes. In the first case, the rolling window size
varies across the applications. Specifically, the rolling window sample size is set to be whatever it is for the first
(1985:Q1) forecast origin. This makes the sample size smaller for the GDP growth applications than the other two
(due to the NFCI data not starting until 1971). In the second case, the rolling window size is 40 observations.
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recursively expanding windows, using forecasts that start with 1985.12 For readability, the charts

focus on a few of the best-performing methods (QR ridge, PQR, and BQR-MN) and four scores

(quantile scores of 0.10 and 0.90 and the left- and right-tail-weighted CRPS).13

Relative to the baseline QR specification, forecast accuracy shows some variation over time,

although not for all applications, horizons, and score metrics. Nonetheless, the relative rankings of

the methods shown are mostly (although not entirely) stable over time. That is, the method that

is best at the end of the sample (corresponding to the full sample, including the pandemic) is also

best over earlier evaluation windows. For example, in the unemployment application, PQR is more

accurate than other methods throughout the sample.

There is some tendency for time variation around the 2007-2009 Great Recession and the pan-

demic, with changes around the former usually sharper than in the pandemic. Around the Great

Recession, score ratios (relative to QR) typically rise. However, changes in accuracy around the

Great Recession are less evident for inflation than GDP growth or the unemployment rate. Around

the pandemic, score ratios rise in some cases and fall in others.

Overall, while there is some evidence of instability, it does not seem to affect qualitatively the

model and method rankings obtained over the full evaluation sample.

6 Conclusions

Quantile regression has become widely used in empirical macroeconomics, in particular for esti-

mating and forecasting tail risks to macroeconomic indicators. In this paper we examine various

choices in the specification of quantile regressions for macro applications. Specifically, focusing on

applications to GDP growth, inflation, and unemployment, we compare the accuracy of quantile

forecasts at different horizons, obtained from simple quantile regression, averages of QR forecasts

obtained with one indicator at a time, partial quantile regression, quantile regression with ridge

penalty, and a few different specifications of priors for Bayesian quantile regression, including a fixed

Minnesota-type prior and a horseshoe prior. In comparing accuracy, we consider a range of quan-

12As noted before, the forecasts in the figures are dated by the forecast origin, not the outcome date. So, for
example, forecasts for an outcome date of 2020:Q2 (the quarter of the sharp economic downturn induced by the
pandemic shutdown) correspond to forecast origins of 2020:Q2−h + 1 for h-steps-ahead forecasts.

13Similar figures in the supplementary online appendix (see its Figures A13-A20) provide corresponding results
for forecasts obtained with the rolling window schemes described above; these results are qualitatively very similar
to the recursive scheme results described here.
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tiles — spanning from left to right tail — and use the quantile score as well as quantile-weighted

continuous ranked probability scores that consider the entire predictive density.

We find that shrinkage is generally helpful to tail forecast accuracy, yielding consistent gains

relative to standard QR. The gains are particularly large for GDP applications featuring large

sets of predictors and unemployment and inflation applications, and the gains increase with the

forecast horizon. Based on magnitudes of gains and consistency across applications, horizons, and

quantiles, PQR may be seen as the best-performing method. Yet, at long horizons the PQR tail

quantile estimates can be volatile, in particular for unemployment but also for inflation. Other

shrinkage approaches — frequentist and Bayesian (with neither having a clear edge over the other)

— are also typically helpful to accuracy, in particular QR-ridge. Moreover, within the Bayesian QR

family of approaches, nothing clearly beats simply fixing a Minnesota-type prior at our baseline

setting. Finally, while there is some evidence of instability, it does not seem to affect qualitatively

the model and method rankings obtained over the full evaluation sample.

Therefore, we can conclude that newer analyses of risks to growth, inflation, and unemployment

would be better based on PQR or Bayesian QR rather than classical QR, which to this point

has been most commonly used in macroeconomic applications. We would recommend that, at a

minimum, researchers using frequentist QR check the robustness of their results to the use of at

least one estimation approach featuring shrinkage.
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Performance relative to QR, horizon = 1
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(a) Small GDP, h = 1
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Figure 1: GDP applications: Comparison of tail forecast accuracy of QR-avg, QR-ridge, PQR, and
BQR specifications relative to baseline. The baseline is the QR specification for the small GDP
variable set. Values below 1 indicate improvement over the baseline. Evaluation window from
1985:Q1 through 2019:Q4.
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Performance relative to QR, horizon = 1
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Figure 2: Unemployment and inflation applications: Comparison of tail forecast accuracy of QR-
avg, QR-ridge, PQR, and BQR specifications relative to baseline. The baseline is the QR speci-
fication for each application. Values below 1 indicate improvement over the baseline. Evaluation
window from 1985:Q1 through 2019:Q4.
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quantile forecasts for h = 1
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(a) Small GDP, h = 1

quantile forecasts for h = 4
quantiles: 0.10 and 0.90

actual QR 0.10 BQR-MN 0.10 QR 0.90 BQR-MN 0.90

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
-6

-4

-2

0

2

4

6

8

(b) Small GDP, h = 4quantile forecasts for h = 1
quantiles: 0.10 and 0.90

actual
QR-ridge 0.10

PQR 0.10
BQR-MN 0.10

QR-ridge 0.90
PQR 0.90

BQR-MN 0.90

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
-12.5

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

(c) Large GDP, h = 1
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(e) Very large GDP, h = 1
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Figure 3: GDP applications: Time series of selected forecasts for quantiles of τ = 0.10, 0.90.
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(c) Inflation, h = 1
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Figure 4: Unemployment and inflation applications: Time series of selected forecasts for quantiles
of τ = 0.10, 0.90.
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PQR factor estimates, quantile = 0.10
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(e) Unemp. app., τ = 0.10

PQR factor estimates, quantile = 0.90

h=1 h=4

1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017
-6

-4

-2

0

2

4

6

8

10

12

(f) Unemp. app., τ = 0.90PQR factor estimates, quantile = 0.10
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(g) Inflation app., τ = 0.10
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Figure 5: PQR factors estimated with data through 2019:Q4, selected quantiles.
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